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Nonlocal Surface-Wave Solitons
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We demonstrate, experimentally and theoretically, surface-wave solitons occurring at the interface
between a dielectric medium (air) and a nonlinear material with a very long-range nonlocal response.
These surface solitons are always attracted toward the surface, and unlike their Kerr-like counterparts,

they do not exhibit a power threshold.
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Surface waves, localized waves propagating at the inter-
face between two media with different optical properties,
are among the most intriguing phenomena in optics. Sur-
face waves display unique features having no analogues in
homogeneous media, which make them useful for explor-
ing the properties of material interfaces [1—-3]. In the linear
optical domain, a TM polarized surface wave can exist at
the interfaces between metal and dielectrics [2], between a
periodic layered system and a homogeneous medium [4],
or between anisotropic and isotropic materials [5,6]. In
addition to linear surface states, optical surface waves
can also arise from nonlinearity [7], at the interface be-
tween two media of which at least one of them is nonlinear.
The properties of nonlinear (Kerr) surface waves have been
analyzed theoretically [8—12], revealing a power threshold
for their existence. Interestingly, such threshold behavior
has only recently been observed at the interface of non-
linear waveguide arrays [13—15]. Another type of nonline-
arity supporting surface waves occurs in photorefractives
driven by carrier diffusion [16,17]. However, thus far all
studies on nonlinear surface waves have only considered
local nonlinearities, such as Kerr [8—11] and the photore-
fractive diffusion nonlinearity [16,17], which is effectively
local for beams much wider than the Debye length [18].

An important class of nonlinear material systems is
those exhibiting nonlocal nonlinearities [19]. Such non-
linearities arise in several branches of physics, ranging
from Bose-Einstein condensates to plasmas. In nonlinear
optics, nonlocality can be encountered, for example, in
liquid crystals [20,21] and in thermal nonlinear media
[22,23]. As demonstrated recently [23,24], nonlocality
can lead to new families of waves that would have been
otherwise impossible in local, isotropic, nonlinear media.
In view of this novel behavior, one may naturally ask
whether surface solitons are possible under nonlocal con-
ditions. And if they are, how do they differ from surface-
wave solitons in local nonlinear media?

Here, we present the first study of nonlocal surface-wave
solitons: self-trapped beams propagating at the interface
between air and a nonlocal nonlinear medium. Both TE
and TM polarized nonlinear surface waves are investi-
gated. We show that nonlocal surface solitons are funda-
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mentally distinct from their local counterparts. One
difference that sets them apart is the fact that they do not
exhibit a power threshold (unlike Kerr-like surface soli-
tons). Another fundamental feature is that they reside
mostly in the medium of higher index, which is also non-
linear, and they are attracted to the surface, even from very
far away (exceeding the beam width by orders of magni-
tude), whereas in local nonlinearities a surface soliton must
be launched at the vicinity of the interface, on the side of
the lower-index medium [8]. The attraction to the surface
leads to oscillations about the soliton (“‘equilibrium’)
position.

As an archetypical system for long-range nonlocal non-
linear interactions, we use the thermal optical nonlinearity,
which occurs in lead glasses [22]. In this medium, an
increase in the optical intensity results in a temperature
change, AT, and consequently to a proportional increase in
the refractive index An = BAT = B(T — T,), where T is
the temperature in the absence of light, and 8 = dn/dT is
the thermal coefficient of the refractive index. In lead glass,
B > 0; thus, the nonlinearity is of the self-focusing type.
The light beam gets slightly absorbed and heats the glass,
thus acting as a heat source. Under steady state conditions,
AT, induced by the intensity of the light beam I(x, y, z),
satisfies the heat diffusion equation [23,25]

kV2T(x,y,7) = —al(x, y, z), (1)

where « is the thermal conductivity of lead glass and « is
the absorption coefficient. We are naturally interested in
surface waves that are much narrower than the width of the
sample, and are bound to a single interface.

Consider first the simple case sketched in Fig. 1(a),
where the wave is narrow in x, uniform in y, and propagat-
ing along z. Here, the width of the sample is 2d, and the
interface at x = d is between the nonlocal nonlinear me-
dium with a refractive index n; (in the absence of light),
and a linear medium of refractive index n, (<n;). The
nonlinear index change, An, is proportional to AT
determined from Eq. (1). We take the thermal conductivity
of the linear medium to be much smaller than «; hence,
we can safely assume that the interface at x = d is ther-
mally insulating, thus posing the boundary condition
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FIG. 1. (a) Sketch of a 1D surface soliton with its boundary
conditions for the temperature. (b) Calculated width (FWHM) of
a 1D surface soliton as a function of the 1D optical power
density. (c),(d) Profile of a 1D surface soliton at high and low
optical power, respectively. (e) 1D surface soliton for n; — n, =
2 X 1073; the low index contrast at the boundary supports
surface solitons with a significant part of their optical power
residing in the linear medium.

dT(x = d, y,z)/9x = 0 for all y and z. The other bounda-
ries of the sample are all connected to a heat sink held at
temperature 7; thus, the additional boundary conditions
are T(x = —d,y,z) = T(x,y = *d, z) = T,,. The bound-
ary conditions associated with Eq. (1) directly affect the
temperature distribution in the sample, hence affecting the
index change An induced by the optical intensity 1.

To identify surface solitons, we express the optical field
as E(x,y,z 1) = E(x, y)e'T=") @ being the frequency.
Substituting the field in the Helmholtz equation yields

VA E(x,y) + [k§(n? + 2n1An) — T?]E(x,y) = 0, (2a)

in the nonlinear medium (i.e., for |x| = d), where |An| <
ny, and

Vﬁ_E(x, y) + [k3n —T?]E(x, y) = 0 (2b)

in the linear medium (x = d), ky = w/c, and Vi =02+
8)2 We express the field in the different media as E(x <
d,y) = A(x,y)and E(x = d, y) = B(x, y). An in medium 1
depends on I = |A|?, through Eq. (1) and the relation
between AT and An. The boundary conditions for the
fields at the interface depend on the polarization. For TE
polarization (A = A9), the continuity of the transverse field
and its derivative implies A(x = d, y) = B(x = d, y) and
d,A(x =d, y) = 9,B(x = d, y). The boundary conditions
for the TM polarization can be expressed in a similar
fashion on the magnetic field. At the other transverse inter-
face (at x = —d), we assume that A, B and their derivatives
vanish; i.e., the width of the surface solitons is much
smaller than the sample width, 2d. Note, that because the
problem is nonlinear, the propagation constant I' depends
on the optical power, in contrast to linear surface waves
where I' depends only on the wave numbers in both media.

We first find numerically (1 + 1)D surface soliton in the
configuration sketched in Fig. 1(a). The parameters for the
simulation were taken from the experimental parameters:

2d =0.1cm, a=001[cm™'], T,=25[°C], k=
0.00637 [WK 'em™!], B =1.4X107° [K"!]. To find
a 1D surface self-trapped wave, we solve Egs. (1), (2a),
and (2b) self-consistently [23], with the boundary condi-
tions described above. The solution is a surface-wave
soliton, localized in the nonlinear material at the proximity
of the boundary. Typical examples for the case of a bound-
ary between lead-glass material (n; = 1.8) and air (n, =
1) are shown in Figs. 1(c) and 1(d), for high and low 1D
optical power density, P = 2000 and 200 W /cm, respec-
tively. The example of Fig. 1(d) corresponds to a ~40 um
FWHM surface soliton, with parameters close to those
used in the experiment. The large refractive index differ-
ence between the lead glass and air (n; — ny = 0.8), and
the continuity of the electric field at the boundary, imply
that the soliton resides almost fully inside the lead-glass
material, with only an evanescent tail in the air region. For
the same reason, the wave functions of the TE and TM
solitons are practically identical (at the same optical
power) and share the same qualities. It is, however, im-
portant to note that such nonlocal surface solitons can be
found at any optical power level, and hence there is no
threshold for their formation. To exemplify that, Fig. 1(b)
shows the width of the soliton as a function of optical
power (for power levels that can still support solitons
much narrower than the sample width, as we assume). As
the optical power decreases, the soliton becomes wider and
its peak is located farther away from the boundary
[Fig. 1(d)]. Interestingly, when the boundary is between
two media with a small refractive index difference, n; —
n,, such that it is comparable to the nonlinear index change
(An = 2 X 1073 under our experimental parameters), the
boundary condition on the electric field allows surface
solitons with a significant part of their optical power resid-
ing in the linear medium [Fig. 1(e)].

Next we find (2 + 1)D surface-wave solitons, residing at
a planar interface, in the configuration sketched in
Fig. 2(a). The solutions are found in a fashion similar to
the (1 + 1)D case, under the same boundary conditions.
Typical solutions are shown in Figs. 2(b) and 2(c), for
optical power P = 1.6 W, A = 488 nm, where n; = 1.8,
ny = 1 (air) in Fig. 2(b), and n; = 1.8, n, = 1.79998 in
Fig. 2(c) (with the other parameters as in the 1D case). As
in 1D, there is no threshold for the formation of a 2D
surface soliton. Likewise, the dependence of the soliton
width on the optical power P has a trend similar to the 1D
case. The 2D surface solitons have their peak (maximum
intensity) shifted from the interface, with the shift depend-
ing on the index difference A = n; — n,: the larger A is,
the less the surface wave penetrates into the lower-index
medium.

Having demonstrated the existence of 1D and 2D sur-
face solitons in the nonlocal nonlinear medium, we pro-
ceed to study their robustness. We first test for stability by
simulating their dynamics in the presence of noise. The
example shown in Fig. 3(a) depicts the propagation of a
surface soliton (located at x = x;) for a distance of 30 cm
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FIG. 2. (a) Sketch of a 2D surface soliton, with its boundary
conditions for the temperature. (b) 2D surface soliton for n; —
ny = 0.8. (c) 2D surface soliton for n; — n, =2 X 1073,

(~15 diffraction lengths), launched in the presence of 5%
random noise (amplitude and phase). As shown in
Fig. 3(a), the soliton is very stable, propagating smoothly
without distortion or deviations in its trajectory. Keeping in
mind the nonlocal properties of the medium, the straight
line trajectory of this soliton manifests the fact that a
surface soliton in a nonlocal medium forms when the force
exerted on the beam by the nearby interface is equal to the
force exerted by the distant boundary to the left (at x =
—d). This understanding becomes even more significant
when a narrow beam, of sufficiently high power to form a
soliton, is launched away from the position of surface
soliton (but still at a reasonable proximity to the interface).
Figure 3(b) shows such an example, where we simulate the
propagation of the same beam as in Fig. 3(a), but launched
30 wm away from the center point of the surface soliton
[of Fig. 3(a)]. The beam in Fig. 3(b) maintains a localized
shape, but it is pushed toward the interface and undergoes
total internal reflection from it. The beam then moves past
the center point of the surface soliton expected under such
launch parameters, but is again attracted to the surface,
where it bounces from the surface again, in a fully periodic
fashion. The oscillations are periodic, and the beam never
converges to a soliton of a straight line trajectory. This is
perhaps one of the most interesting features of surface
solitons in nonlocal nonlinearities: a beam launched
away from the surface moves to the interface and “‘sticks”
to its vicinity, even if the launch position is far away from
the position of the surface soliton [26].

It is possible to understand the dynamics of a narrow
beam launched away from the interface, by analyzing the
forces exerted on it by the boundaries. For example, con-
sider the “force” exerted on a 1D beam of intensity I(x)
and 1D power density P = 200 W/cm, launched at a
distance much larger than the distance of the correspond-

0 0.05 x [cm] 0 0.05 X [cm]

FIG. 3. Simulated propagation of (a) a surface soliton launched
at its stationary position (xy) with 5% noise, and (b) a beam of
the same power launched 30 um away from the stationary

position. In the latter case, the beam forms a soliton oscillating
about the stationary position.

ing surface soliton from the interface [Fig. 4(a)]. The
diffusion of the heat generated by the (small) absorption
of the beam creates the temperature profile denoted as
Tip(x) in Fig. 4(a). As shown there, in the 1D case the
temperature is constant between the peak of the beam (x,
center launch point) and the interface, i.e., for x; = x = d,
whereas for x < x; the temperature is decreasing mono-
tonically. That is, in (1 + 1)D, because the interface is
thermally insulating, the temperature at the surface is
identical to the temperature at the launch point (center of
the input beam). This temperature distribution, translated
into An, implies a net force [proportional to Vn/n =
V(An)/n via the Eikonal equation] is pushing the beam
toward the insulating surface. The surface soliton forms
when the Vn/n force is balanced by a “surface force”
(arising from n; — n,) exerted on the beam by the inter-
face. The 2D case reveals similar findings. Consider a 2D
beam of power P = 1.6 W launched at (x;, 0), also shown
in Fig. 4(a). In this 2D case, the cross sections (in the x
direction) of the temperature profile, designated by
T,p(x, y = 0) in Fig. 4(a), reveal that both boundaries exert
forces on the beam, but the forces are unequal, resulting in
a net force pushing the beam toward the insulating inter-
face. In the y direction, when both top and bottom bounda-
ries are maintained at an equal temperature, the net force is
central, resulting in oscillation about y = 0 [27]. If the 2D
beam is launched in the y = 0 plane, the motion of the
beam is restricted to that plane [Fig. 4(b)].

To summarize the understanding, in both 1D and 2D, a
narrow beam of sufficiently high power launched away
from the launch point of the respective soliton (x; # X,
y = 0) is attracted to the insulating interface, and bounces
from the interface repeatedly, oscillating about x,, y = 0.
Because the top and bottom boundaries are kept at a fixed
temperature 7T, they cannot support surface waves.
Moreover, in the configuration of Fig. 2(a), simple (singly
humped) surface solitons can form only at y = 0, where
the forces exerted by the top and bottom boundaries cancel
each other. Hence, any high-power, narrow, 2D beam
launched at y # 0 oscillates about y = 0.

a Temperature cross section (An e AT) b Temperature cross section (Az e AT)
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FIG. 4. The temperature profile induced by a surface soliton
launched at (x; # xg, ¥y = 0) (x¢, 0 being the center point of the
surface soliton under the respective parameters). (a) The asym-
metric cross sections of the temperature profile, taken in the x di-
rection, for a 1D soliton [marked by T (x)], and for a 2D soliton
Trp(x, y = 0). In both cases, there is a net force pushing the
beam toward the insulating interface at x = d = 0.05. (b) The
symmetric cross section (taken in the y direction) of the tem-
perature profile induced by the 2D soliton launched at (x;, 0).
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FIG. 5. Experimental photographs taken at the input and out-
put faces of the sample, along with the respective calculated
trajectories (top view) of the soliton. (a) A 2D surface soliton
launched at its stationary position (xg, 0). (b),(c) A 2D surface
soliton launched 22 and 35 um to the left of (xy, 0). All the
trajectories of (a)—(c) converge to the same output position, and
the beams emerge as a surface soliton, at the close proximity of
the insulating interface. (d) A 2D soliton launched 65 pm to the
left of (x, 0) moves toward the interface, but cannot converge to
the proximity of (x,, 0) within the finite propagation length in
our sample. (e) At low power, the input beam of (a) broadens
considerably, and its intensity is modulated by interference with
reflections from the interface, as shown in (e).

We now describe our experiments, all carried out in (2 +
1)D settings. We launch a TE polarized Gaussian beam of
50 pwm FWHM into a lead-glass sample of dimensions 2 X
2 X 80 mm?®. We set the boundary temperatures as ex-
plained above, and launch the beam at the expected loca-
tion of the surface soliton, ~30 wm away from the air-
glass interface [Fig. 5(a), bottom panel]. The beam forms a
surface soliton at P = 1.2 W, exiting the sample at the
same position relative to the interface [Fig. 5(a), top panel].
[For comparison, at low power the beam broadens to
~200 pum [Fig. 5(e)]]. Between the input and output ex-
perimental data, we add a top view of a simulation result of
the soliton trajectory, which facilitates a comparison be-
tween theory and experiment. To demonstrate that this is
indeed a surface wave, we move the launch point of the
input beam by another 22 um [Fig. 5(b)] and 35 um
[Fig. 5(c)] from the center point of the surface soliton [of
Fig. 5(a)], while keeping the launch trajectory parallel to
the z axis. The output beam observed in these experiments
is shown in the top panels of Figs. 5(b) and 5(c), respec-
tively. In both cases, the input beam moves to the interface,
and sticks to its vicinity, exiting the medium at the same
position as the ideally launched surface soliton [of
Fig. 5(a)]. [The period of the oscillations calculated in
Fig. 3(b) is too large to be observed in our 83-mm-long
samples]. However, when the launch point of the input
beam is moved too far away (65 wm) from the center point
of the surface soliton [Fig. 5(d), bottom], the dynamics is
different: the soliton still moves toward the interface, but
the propagation distance (83 mm) is too short to allow
convergence to the position of an ideally launched surface
soliton. Consequently, the beam emerges at a distance
considerably away from the insulating boundary
[Fig. 5(d), top panel]. This result is corroborated by our

simulations. Finally, we repeat all of these experiments for
a TM polarized beam and obtain the same results, as
expected and as explained above.

To conclude, we presented the first studies of nonlocal
surface-wave solitons. We find that narrow optical beams
propagating in nonlocal nonlinear media display very
strong attraction to the surface, even when launched from
far away. This feature is unique to nonlocal nonlinearities,
and offers a means to manipulate optical beams that follow
adiabatically bent interfaces, along which surface-wave
solitons can “‘flow.”
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