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Observation of unconventional edge states in
‘photonic graphene’
Yonatan Plotnik1†, Mikael C. Rechtsman1†, Daohong Song2†, Matthias Heinrich3, Julia M. Zeuner3,
Stefan Nolte3, Yaakov Lumer1, Natalia Malkova4, Jingjun Xu2, Alexander Szameit3, Zhigang Chen2,4

and Mordechai Segev1*

Graphene, a two-dimensional honeycomb lattice of carbon atoms, has been attracting much interest in recent years. Electrons
therein behave as massless relativistic particles, giving rise to strikingly unconventional phenomena. Graphene edge states
are essential for understanding the electronic properties of this material. However, the coarse or impure nature of the graphene
edges hampers the ability to directly probe the edge states. Perhaps the best example is given by the edge states on the bearded
edge that have never been observed—because such an edge is unstable in graphene. Here, we use the optical equivalent of
graphene—a photonic honeycomb lattice—to study the edge states and their properties. We directly image the edge states on
both the zigzag and bearded edges of this photonic graphene, measure their dispersion properties, and most importantly, find
a new type of edge state: one residing on the bearded edge that has never been predicted or observed. This edge state lies near
the Van Hove singularity in the edge band structure and can be classified as a Tamm-like state lacking any surface defect. The
mechanism underlying its formation may counterintuitively appear in other crystalline systems.

Photonic graphene, an array of evanescently coupled waveg-
uides arranged in a honeycomb-lattice configuration, is a
useful tool for studying graphene physics1–14 in optics15–19,

even accessing the nonlinear domain15,20, which is unfeasible in
electronic graphene systems. As the paraxial wave equation (de-
scribing propagation of light through a waveguide array) is mathe-
matically equivalent to the Schrödinger equation (describing time
evolution of electrons), photonic graphene makes it possible to
directly observe graphenewave dynamics using classical light waves.
Furthermore, photonic lattices offer exquisite control over initial
conditions and allow direct observation of the actual wavefunction
(including phase), features that are virtually impossible in electronic
systems21,22. As the structure of the photonic lattice can be designed
at will, and is not subject to structural defects or absorbate contam-
ination (as in carbon-based graphene), photonic graphene provides
awindow into graphene physics not easily accessible otherwise.

In many proposed graphene-based devices, electrical leads will
be placed on the edges, and will thus interact with the electronic
edge states23–26. There are three types of edge in graphene: the
zigzag, bearded and armchair edges27. The zigzag and bearded
edges have a large and nearly degenerate set of edge states, whereas
an unflawed armchair edge has none. Thus far, observation of
local electronic edge states of graphene has been achieved by
scanning-tunnellingmicroscopy28,29, but only at the zigzag edge and
at defect points of an armchair edge. The bearded edge has been
studied only theoretically2,27,30. In fact, edge states on the bearded
edge have never been observed, owing to the mechanical instability
of the dangling carbon–carbon bonds associatedwith that edge.

Here, we study—theoretically and experimentally—edge states
in photonic graphene lattices.Weuse a coherent laser beam incident
on the zigzag and bearded edges as the probe, and find a new type of
edge state that has never been observed nor predicted before.Weuse
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two different systems to fabricate our photonic graphene samples:
a strongly nonlinear photorefractive crystal where the honeycomb
photonic lattice is created using the optical inductionmethod31; and
a honeycomb-lattice waveguide array written into fused silica by
the femtosecond direct laser writing technique32. In both cases, a
cylindrically focused light beam (akin to a quasi-one-dimensional
(1D) wave) is used as a probe launched into the sample along
the edge. The degree of diffraction broadening in the direction
perpendicular to the edge is ameasure of edge confinement, giving a
direct experimental probe of whether an edge state is present or not.
By changing the launch direction of the probe beam, the presence of
the edge state can be probed as a function of the Bloch wavevector.
As shown below, we make direct observations of the edge states
associated with both the bearded and zigzag edges. Furthermore,
we reveal the existence of a new, previously unknown, edge state
residing on the bearded edge, whose existence is supported by simu-
lations. This new edge state is classified as ‘Tamm-like33’ as opposed
to ‘Shockley-like34’ because it is not associated with band crossings.
That said, unlike conventional Tamm states, it is not a result of
any real defect on the lattice edge. This new edge state cannot be
described by a simple tight-bindingmodel. Rather, amore complete
model is needed, as presented in the Supplementary Information.

The structure of the honeycomb lattice along the simplest
three terminations of the lattice (bearded, zigzag and armchair) is
depicted in Fig. 1a. The lattice is bipartite, meaning that it has two
lattice sites per unit cell. The equation describing the diffraction of
light in photonic graphene is11:
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Figure 1 | Physical structure and band structure of photonic honeycomb
lattices. a, Schematic image of a honeycomb photonic lattice (array of
waveguides), with the three principal edge terminations thereof: bearded,
zigzag and armchair edges. b, Bulk band structure of photonic graphene,
namely propagation constant (β) versus transverse Bloch wavevector, in
the nearest-neighbour-coupling tight-binding limit, in units of the
nearest-neighbour coupling constant, c, exhibiting Dirac points at the
Brillouin zone corners. c, Edge band structure of photonic graphene in the
same limit. The bulk bands (blue) are eigenstates projected (from b) into
the edge band structure, whereas the states residing on the bearded and
zigzag (zz) edges (red and green, respectively) are intrinsic to the edges.

where z is the longitudinal propagation distance into the photonic
lattice;ψ is the envelope of the electric field, defined by E(x,y,z)=
ψ(x,y,z)ei(k0z−ωt )x̂ (E is the electric field, k0 is the wavenumber
within the medium, ω = ck0/n0 and c is the speed of light in
vacuum); 1n(x,y) is the refractive index structure defining the
photonic lattice, and n0 is the refractive index of the ambient

medium in which the lattice is embedded; ∇2 is the Laplacian in
the transverse (x,y) plane; Hcontinuum as defined in equation (1) is
the continuum Hamiltonian for wave propagation in the photonic
lattice. Specifics of the refractive index profile, as well as all
parameters listed above, are given below and in the Supplementary
Information for both the photorefractive and the femtosecond-
laser-written systems. The refractive index structure is composed
of highly confined waveguides (‘potential wells’), each with a single
bound state; hence, we employ the ‘tight-binding approximation.’
In this approximation, the diffraction of light is governed by

i∂zψn(z)=
∑
j

HTB
nj ψj(z) (2)

where ψn(z) is the amplitude of the nth waveguide mode as
a function of z , and HTB is the tight-binding Hamiltonian. In
the simplest case, HTB includes only tunnelling between nearest-
neighbour waveguides; hence,∑

j

HTB
nj ψj =

∑
j

cnjψj (3)

where cnj is non-zero only when the nth and jth waveguide are
nearest neighbours. This approximation works well to predict
the edge states of the Shockley kind, but fails to explain
the newly discovered edge modes on the bearded edge. As
shown below, a modified tight-binding model with a more
complete approximation is needed to explain the existence
of these new modes.

Perhaps the best starting point to understand light propagation
in photonic lattices is to calculate the band structure of the
infinite system with no edges35: the eigenvalues (called propagation
constants, henceforth labelled β) of the system versus the Bloch
wavevector (kx , ky ; refs 31,35,36). The eigenvalue equation is
derived by replacingψ(x,y,z) in equation (1) withψ(x,y)eiβz . The
bulk band structure of the honeycomb photonic lattice (with only
nearest-neighbour coupling) is plotted in Fig. 1b; the band structure
exhibits Dirac points (conical band crossings) characteristic of
graphene2. Similarly, we plot the band structures for the bearded
and zigzag edges (Fig. 1c), assuming nearest-neighbour coupling in
the tight-binding model of equation (3). To do that, we find the
eigenvalues for a system that is infinite in the x-direction but with
bearded and zigzag edges in the y-direction (resulting in a band
structure that is a function of only kx). According to this model, a
bearded edge state exists between kx =−2π/3a and kx =2π/3a, and
a zigzag edge state exists when the wavevector is outside that range,
extending all the way to the boundary of the Brillouin zone (a is the
lattice period). Note that, in the nearest-neighbour tight-binding
limit (equation (3)), both the bearded and zigzag edge states are
entirely dispersionless (the bands are flat)27. Earlier experimental
work on the graphene electronic edge states has focused on
the zigzag case23,25,28,29, but the state on the bearded edge was
never explored experimentally. Using photonic graphene, we can
readily investigate both the zigzag and bearded edges, and we find
experimentally (supported by simulations) the existence of a new
edge state on the bearded edge. As explained below, a refinement of
the tight-binding approximations is required to explain it.

We now study the edge states in our first experimental system—
an optically induced honeycomb lattice with zigzag and armchair
edges (Fig. 2a) in a photorefractive crystal. Here, the photorefractive
index change associated with the lattice is about 1.5 × 10−4,
and the lattice constant is 20 µm. A detailed description of the
experimental set-up is given in the Supplementary Information.
Typical experimental results are shown in Fig. 2. The bright spots in
Fig. 2a are the lattice-inducing beams creating the lattice, whereas
the higher-index regions are indicated by blue spots. The top and
bottom edges are terminated in the zigzag configuration, whereas
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Figure 2 | Experimental demonstration of an edge state at the zigzag edge of an optically induced honeycomb lattice. a, Lattice-inducing beam (bright
spots) and corresponding lattice sites (blue spots) induced under self-defocusing photorefractive nonlinearity. b, Transverse pattern of an input probe
beam launched along the bottom edge in a. c, Localized output when the input beam is tilted at kx=−π/a. d, Diffracted output when the input beam is not
tilted (kx=0). e, Diffracted output when the input beam is launched straight into the bulk. f, Fourier spectrum of the input beam corresponding to c.
g,h, Interferograms of output (c,d) with a tilted broad beam showing the staggered phase (g) and the uniform phase (h) of the output field along the edge.
Note that c and f have been lightened to improve visibility.

the left and right edges in the armchair configuration.When a stripe
beam is sent as a probe along the armchair surface, we observe
no edge state: the beam experiences diffraction broadening in the
direction perpendicular to the edge. However, when the stripe beam
is used to probe the zigzag edge, we observe formation of an edge
state under appropriate launch conditions. Specifically, when the
input probe beam (Fig. 2b) enters at an angle that corresponds to
a wavevector close to kx = −π/a, strong surface confinement is
observed at the output of the photonic lattice (Fig. 2c). In contrast,
when the probe beam is launched at normal incidence into the
lattice such that kx = 0, no surface confinement is observed; rather,
the beam diffracts away from the edge into the bulk of the lattice
(Fig. 2d). For comparison, it is instructive to examine the symmetric
diffraction of the probe beam when launched into the bulk of the
lattice, as shown in Fig. 2e. Comparing the Fourier spectrum of
the input beam with the lattice Brillouin zone (marked by blue
dashed lines; Fig. 2f), we see that the input beam indeed excites the
spectral region in which the zigzag edge state resides, that is, near
the boundary of the edge Brillouin zone at kx = −π/a (Fig. 1c).
The difference between excitations at kx =−π/a and kx = 0 can
also be seen from the measurement of phase gradient, simply by
interfering the output beams in Fig. 2c,d with a tilted plane wave.
Such interferograms are as shown in Fig. 2g,h. The interference
fringes at kx =−π/a interleave—exhibiting a minimum between
consecutive peaks (Fig. 2g), indicating a staggered phase structure
along the horizontal direction, whereas at kx = 0 the phase is
uniform (Fig. 2h). The light confinement at the zigzag edge at
kx =−π/a with the staggered phase indicates the presence of the
edge state, whereas in the bulk the same launch beam experiences
diffractive broadening. This proves the experimental observation of
the edge state residing at the zigzag edge.

Next, we test the prediction shown in Fig. 1c: that the zigzag
edge states exist only for |kx | ≥ 2π/3a. Such experiments are
more readily testable in our second experimental system: the

femtosecond-laser-written samples in fused silica, where edges can
easily be made abrupt. In the experimental set-up, described in
the Supplementary Information, a HeNe laser beam is shaped and
launched on the input face of the photonic lattice in a variety
of horizontal angles related to different kx . Figure 3a shows a
microscope image of the input facet of the honeycomb photonic
latticewith a bearded edge at the top and a zigzag edge at the bottom.
The waveguides are elliptical (horizontal and vertical diameters of
11 and 4 µm, respectively), and have nearest-neighbour spacing
of 14 µm. The functional form of a single waveguide is given by
1n(x,y)= 7×10−4e−((2x/d1)2+(2y/d2)2)3 . The ellipticity leads to some
anisotropy in the inter-waveguide coupling but it is small and
can be ignored. The red ovals in the figure indicate the structure
of the input light: an elliptical beam with its long axis running
along the edge. Thus, we probe the entire edge Brillouin zone by
varying the input angle of the beam; this introduces a linear phase
gradient parallel to the edge and therefore selects a particular Bloch
wavevector, kx . If at a given kx , light is confined to the edge onwhich
it was incident, then an edge state exists, and otherwise it does not.
The beam is sufficiently wide along the edge so that it is narrow in
kx-space and thus probes near a particular kx .

The light emerging from the output facet of the honeycomb
sample is shown for the four cases: when the input beam is incident
on the zigzag edge, with incident angle such that kx = 0 (Fig. 3b);
the zigzag edge, with kx = π/a (Fig. 3c); the bearded edge with
kx = 0 (Fig. 3d); and the bearded edge with kx = π/a (Fig. 3e). In
the first case of Fig. 3b, light is not confined to the zigzag edge
but instead diffracts into the bulk. This is consistent with results
obtained in our first experimental system (Fig. 2d). As for the results
in Fig. 2c, near kx = π/a light stays confined to the edge owing to
the presence of an edge state. On the bearded edge, the existence of
the edge state at kx = 0 is evident in Fig. 3d where light is confined
on the edge. This constitutes the first experimental observation
of an edge state on the bearded edge of a honeycomb lattice,
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Figure 3 | Momentum-resolved measurements of edge states in a
photonic honeycomb lattice. a, Microscope image of the input facet of a
femtosecond-written honeycomb lattice. Red ellipses mark the input
beams for the bearded and zigzag edges. b–e, Wavefunction emerging from
the output facets for: probe beam launched at zigzag edge at k=0, leading
to diffraction into the bulk (b), probe launched at zigzag edge at k=π/a
leading to edge confinement due to the presence of an edge state (c),
probe launched at bearded edge at k=0 leading to confinement due to the
presence of the standard bearded edge state (d), probe launched at
bearded edge at k=π/a (e), exhibiting edge confinement due to the newly
observed edge state. Dashed ellipses mark the expected position of the
output beam when an edge state is present. f, Fraction of power confined to
the edge for the zigzag (green) and bearded (blue) edges; the peaks
indicate strong confinement due to the presence of edge states. Note that
b–e have been lightened to improve visibility.

which was predicted30 but never observed. However, perhaps the
most important observation of this work is shown in Fig. 3e: near
kx=π/a, light remains confined to the bearded edge despite the fact

that edge states have not been previously predicted for this Bloch
wavevector on the bearded edge in a systemwithout defects27,30. We
plot the fraction of optical power that remains confined on the edge
of the structure in Fig. 3f, where the edge is defined as the two outer
rows of waveguides. For the zigzag edge, the results are as predicted
by the simple tight-binding model: for a large range of kx for which
there is no zigzag edge state (kx =−2π/3a through kx = 2π/3a),
the light largely diffracts into the bulk. However, outside this
region, most of the light remains on the edge. For the bearded
edge, on the other hand, the results differ significantly from what
is predicted by simple tight-binding theory. Indeed, light is highly
confined on the edge within the range of the bearded edge state
(kx =−2π/3a through kx = 2π/3a), as predicted, but Fig. 3c clearly
shows that light remains confined also outside this region, reaching
local maxima at kx =±π/a. Thus, our experiments have provided
evidence for a new state residing on the bearded edge. Obviously,
this experimental finding calls for an explanation. As we discuss
below, the existence of this new edge state is supported by the full
continuum description of the honeycomb lattice (equation (1)),
but it does not arise from the commonly used tight-binding model
(equations (2) and (3)), as the other, previously known, edge states
of the graphene structure do. A refinement of the tight-binding
approximations is needed to account for the new edge state.

The presence of the new edge state on the bearded edge and its
band structure (Fig. 4a) are revealed by a full-continuum calcula-
tion (that is, by diagonalizing equation (1)). The refractive index
structure of the unit cell used for the calculation is shown in Fig. 4b.
The absolute value of a bulk eigenfunction ψ(x,y) is shown in
Fig. 4c: it is the eigenfunction associated with the largest propaga-
tion constant,β, at kx=0. In the continuummodel, the bearded and
zigzag edge states no longer have flat bands associated with them
(as the nearest-neighbour tight-binding model predicts), but rather
now have some weak dispersion associated with the curvature of
the edge bands. This can be seen by comparing Fig. 4a with Fig. 1c.
The standard bearded edge states are shown at kx = 0 and standard
zigzag edge states are shown at kx = π/a, in Fig. 4d,e respectively.
Importantly, the continuum band structure contains two new
edge states associated with the bearded edge, which emerge at the
boundaries of the edge Brillouin zone (the two sides of Fig. 4a), and
are shown in Fig. 4f,g. These edge states are more extended into
the bulk than the other edge states, and they lie extremely close
to the bulk bands (again in contrast to the other edge states). In
addition, in contrast to the known edge states occupying only one of
the sublattices, these new edge states occupy both sublattices. This
is shown in detail in Fig. 4h, which is simply a zoomed-in plot of
Fig. 4a, at the boundaries of the edge Brillouin zone. Note that the
band structure is periodic, and thus it repeats with period 2π/a.

These new edge states may be classified as ‘Tamm states’33 (as
opposed to ‘Shockley states’34), because they do not arise from a
band crossing, the criterion for the emergence of Shockley states37.
That said, Tamm states are conventionally associated with surface
perturbations or defects (that are inherent in the system, or that
arise frommodulation38,39), although, in the present case no defects
whatsoever are present. What happens here is that the edge itself
acts as a sufficiently strong defect to localize light on the edge. This
effect, which cannot be accounted for in standard tight-binding
theory, is described below and in more detail in the Supplementary
Information. The observation of these edge states associated with
the bearded edge in the continuum simulations shown in Fig. 4
accounts for the strong confinement on the bearded edge at the
Brillouin zone boundary, as shown in Fig. 3c.

To explain the newly discovered edge states in the context of
the tight-binding model, one must account for additional terms.
Namely, the on-site propagation constant of eachmode is modified
by the refractive index of its neighbouring sites. This modification
differentiates between bulk sites, which have three neighbours,
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Figure 4 | Calculating the new edge state. a, Edge band structure calculated using the full continuum description (equation (1)). The calculation reveals
the zigzag and bearded edge states known from the nearest-neighbour tight-binding description (Fig. 1c), but two more edge states appear on the bearded
edge, at the edge Brillouin zone boundary. b, Refractive index structure used to calculate the edge band containing the bearded (top) and zigzag (bottom)
edges. The cell dimensions are 24×420 µm2. c, Bulk ground state at k=0. d, Bearded edge state at k=0. e, Zigzag edge state at k=π/a. f, The new
bearded edge state at k=π/a (top band). g, The new bearded edge state at k=π/a (bottom band). h, The same as in a, zoom in on the Brillouin-zone edge
in the top band. i, Similar to a, but using the modified tight-binding model incorporating modified on-site energy. The clear agreement between a and i
proves the validity of the model in predicting the new edge states.

and bearded edge sites, which have only one neighbour. This
difference is small and can be neglected to first order, but comes
into play where the modes are highly degenerate, as in the Van
Hove singularity at the edge of the Brillouin zone. At the degeneracy
point, any slight edge perturbation takes the edge mode out of
the band and creates a Tamm-like edge state as shown in Fig. 4i.
We emphasize again that this Tamm-like state does not result
from any real surface perturbation but rather the specific surface
structure along the bearded edge. Note that the effect is stronger
on the bearded edge, compared with the zigzag edge, because the
waveguides on the former are ‘missing’ two bonds, whereas those
on the latter are missing only one. This explanation is elaborated
further in the Supplementary Information, where we also explain
why the edge state appears at exactly kx =π/a.

In conclusion, studying systems analogous to carbon-based
graphene (as in this work) provides a window into new graphene
physics that may otherwise remain unobserved or elusive owing
to structural disorder, mechanical instabilities, and the sheer
difficulty of obtaining large and pure graphene nanoribbons. Our
experiments show that the observation of the richness of graphene
physics does not need to be constrained by present-day fabrication
and chemical isolation limitations. The detailed understanding of
edge states is essential not just for transport properties, as surface

science in general has produced a large variety of new physics
that cannot be found when examining just the material bulk.
Indeed, edge states play a signature role in electron dynamics in the
quantumHall effect and both 2D and 3D topological insulators. The
important goal of realizing a robust optical topological insulator
relies on the understanding of photonic edge states. Owing to its
exquisite tunability, the waveguide array system described here
provides an ideal platform for achieving this goal40.

The class of edge states discussed here is distinct from standard
graphene edge states in a number of ways, and thus yields
unexpected edge physics. Specifically, unlike previously known
states, they are not captured in standard tight-binding models,
and they cannot be derived from Zak phase arguments41; they
are highly dispersive and non-flat (very small effective mass).
Furthermore, there are two of these new edge states at a given kx , and
when both are excited, they exhibit beating (periodic oscillations).
Finally, they reside on both sublattices of the honeycomb unit cell,
contrary to the previously known edge states, which reside only
on one sub-lattice. These distinctions call forward the questions
of whether such states can be observed in graphene itself, what
effect they may have on electronic transport, and not least, whether
they can be topologically protected under the influence of time-
reversal symmetry breaking.
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In this work, we have studied the existence of edge states in a
honeycomb photonic lattice. While observing edge states that were
previously predicted, we discovered new edge states that involve
interesting new physics. Our investigation and explanation of the
new edge state raises an interesting point: this type of defect-free
Tamm state is likely to appear in other systems beyond graphene.
Clearly, the crucial feature for the appearance of such a state is
a point of high degeneracy in the band structure. It is therefore
likely that such edge states will also appear in kagome lattices and
other lattice structures.

Received 30 October 2012; accepted 18 September 2013;
published online 10 November 2013
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