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Optical simulations of gravitational e�ects in the
Newton–Schrödinger system
Rivka Bekenstein*, Ran Schley, Maor Mutzafi, Carmel Rotschild and Mordechai Segev

Some predictions of Einstein’s theory of general relativity (GR) still elude observation, hence analogous systems, such as
optical set-ups, have been suggested as platforms for emulating GR phenomena. GR is inherently nonlinear: for example, the
curvature of space is induced by masses whose dynamics is also a�ected by the curved space they themselves induce. But,
thus far all GR emulation experiments with optical systems have reproduced only linear dynamics. Here, we study gravitational
e�ectswith optical wavepackets under a long-range nonlocal thermal nonlinearity. This system ismathematically equivalent to
the Newton–Schrödinger model proposed to describe the gravitational self-interaction of quantum wavepackets. We emulate
gravitational phenomena by creating interactions between a wavepacket and the gravitational potential of a massive star,
observing gravitational lensing, tidal forces and gravitational redshift and blueshift. These wavepackets interact in the
curved space they themselves induce, exhibiting complex nonlinear dynamics arising from the interplay between di�raction,
interference and the emulated gravitational e�ects.

Emulating GR phenomena1 in laboratory experiments aims to
study the dynamics of light and masses in curved space. Such
experimental settings enable control over physical parame-

ters, suggest new insights and offer considerable intuition. Among
other settings2–4, table-top optical experiments5–11 play a major role.
Initiated by the discovery that moving media act as gravitational
fields on light5,6, these ideas led to the demonstration of an event
horizon by using ultra-short optical pulses8. Likewise, it has been
shown11 that engineering the refractive index structure can mimic
gravitational lensing9–11. Other studies explored wave dynamics in
curved space, by coating a three-dimensional body with a waveg-
uiding layer confining the light to propagate within it, obeying
a wave equation in curved space12–14. Interestingly, the dynamics
of optical wavepackets in curved space can strongly differ from
that of particles, as the wavefunctions do not necessarily propa-
gate along shortest paths (geodesic lines)14. Some of the studies
emulating GR effects included optically nonlinear effects8,14–17, such
as solitons16, nonlinear accelerating beams14, and event horizon
induced by another (powerful) wave in a pump–probe experiment8.
However, thus far in all experimental work on this topic8–11 the
curved space is acting on the probed beam in a linear manner:
the space curvature is always fabricated—via metamaterials18,19 or
controlled by pump beams8—not revealing the actual nonlinear
dynamics of GR. Importantly, all of these studies employed local
optical nonlinearities, such as the Kerr effect or saturable Kerr-like
nonlinearity8,14,16, whereas long-range dynamics is inherent in many
GR phenomena20–22. As we show below, a nonlocal nonlinearity is a
natural setting for studying long-range GR effects23–25, such as tidal
forces in the vicinity of stars and gravitational lensing. Such gravi-
tational phenomena—when emulated by static optically nonlinear
systems—necessitate a highly nonlocal nonlinearity. The dynamics
of an optical wavepacket in the presence of the highly nonlocal ther-
mal optical nonlinearity is described by two coupled equations24:
the paraxial wave equation, which is mathematically equivalent
to the Schrödinger equation in two transverse dimensions and
time (so-called 2D+1) (which was extensively used for observing
many fundamental phenomena26–30) and the Poisson (Newton-type)
equation, describing the dependence of the refractive index on the

light intensity. This set of equations is mathematically equivalent
to the 2D+1 Newton–Schrödinger model (NSE; refs 31–39). The
NSE describes a quantum mass density evolving according to the
Schrödinger equation in the presence of a gravitational potential
created by the mass density itself, specifically for the non-relativistic
limit of the Klein–Gordon (or Dirac) wavefunctions. The NSE is
used as a phenomenological model describing the gravitational self-
interaction of a condensate in the Hartree approximation (mean-
field many-body system)32,37–39. Although the NSE does present
differences from GR, it nonetheless describes self-interaction, in
the spirit of Einstein’s statement on GR: ‘The geometrical states
of bodies and the rates of clocks depend in the first place on
their gravitational fields, which again are produced by the material
systems concerned’40. The NSE model is attracting considerable
interest in the GR community because, in the absence of a unified
theory of gravitation and quantum fields—as is the state of the art
today—this model can considerably contribute to the intuition and
understanding. Also, it was suggested that the NSE can model the
gravitational self-interaction of a non-relativistic quantum particle,
which can in principle question the necessity of quantum gravity41.

Thus far, however, the NSE has been studied strictly theoreti-
cally31,32,36, because the gravitational potential in quantum mechan-
ical systems is extremely weak, making the NSE still inaccessible to
laboratory experiments. It is therefore very interesting to exploit the
analogy between the NSE dynamics and the propagation of optical
wavepackets in the presence of a highly nonlocal thermal optical
nonlinearity, to study the effects of gravitational phenomena on
wavepackets in the NSE framework. Naturally, the ability to explore
the NSE system in experiments raises numerous intriguing ques-
tions: How does the dynamics of structured wavepackets differ from
that of Gaussian wavepackets under theNSEmodel? Howwould the
long-range nonlinearity affect the structure and the evolution of the
wavepackets? Is it possible to observe GR phenomena, such as tidal
forces, in this NSE framework, and can interference phenomena
overcome gravitational effects?

Here, we study the interaction between optical wavepackets in
the presence of a thermal optical nonlinearity, which is governed
by the NSE model. These wavepackets are analogous to quantum
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wavefunctions under the influence of gravitational fields that they
themselves induce—creating mutual nonlinear dynamics. Specifi-
cally, we study the evolution of a broad accelerating wavepacket in-
teracting with an intense Gaussian beam that creates a gravitational
potential equivalent to that of a massive body. We observe gravi-
tational lensing and tidal forces that act on the wavepackets, giving
rise to complex dynamics involving interference and diffraction that
depend on the intensity of the beams (equivalent to themass density
in the NSE frame). We use specific wavepackets to study the in-
terplay between diffraction and gravitational dynamics, and exploit
the bending of accelerating wavepackets towards a star (or outwards
from it) to demonstrate gravitational blueshift(or redshift).

We begin by describing our system. Light propagating through a
slightly absorbing medium acts as a heat source. The heat diffuses
according to the heat equation, giving rise to a temperature change
everywhere in the bulk, all theway to the boundaries (which are held
at constant temperature). This creates a non-uniform temperature
distribution in the medium, which in turn modifies the refractive
index at every point. In some materials, such as lead glass, the
refractive index increases with the temperature, which yields a high
self-focusing effect. This thermal nonlinearity can support nonlocal
solitons23,24 which exhibit interactions from very far away25. The
relation between the heat source (beam intensity) and the change
in the refractive index is given by a Poisson equation:

κ

β
∇

21n=−α|ψ |2 (1)

Here, β describes the dependence of the change in the refractive
index on the temperature change (1n= β1T ), κ is the thermal
conductivity, α is the linear absorption coefficient of the material,
and ψ is the slowly varying amplitude of the EM wave. Specifically
in lead glass, the thermal nonlinearity is strong, even though the
absorption is weak and can be safely neglected for large propagation
distances24. The evolution of the slowly varying envelope ψ(x ,y ,z)
is described by the nonlinear paraxial equation:

iψz+
1
2k
∇
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k1n
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ψ=0 (2)

The coupled equations (1) and (2) describe the propagation of the
light in a medium exhibiting the thermal nonlinearity (k is the
wavenumber, and n0 is the ambient refractive index). In the paraxial
regime, the Laplacian in the equation (1) is only two-dimensional
(x ,y)because the variations of the dynamics in z are small compared
with those in the transverse directions (see Supplementary Infor-
mation). Equations (1) and (2) stand in a complete mathematical
analogy with the 2D+1 Newton–Schrödinger equations:
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The Newton equation is a Poisson equation for the gravitational
potential φ, with the mass density m|ψ |2 acting as a source term,
whereG is that gravitational constant. The dynamics of the quantum
wavefunction (ψ) is therefore described by the Schrödinger equa-
tion with a gravitational potential generated by its mass density. In
our optical system, the propagation direction z plays the role of time,
hence the dynamics described by the time-dependent Schrödinger
equation can be studied in our optical set-up by examining the
spatial evolution (of time-harmonic fields) along the propagation
direction (z). Throughout this article, we use accelerating beams
as a means to study the curved space dynamics of wavepackets in
the vicinity of massive objects. It is therefore essential to recall ba-
sic concepts of accelerating beams. Accelerating wavepackets were

first proposed in quantum mechanics42, and three decades later
were introduced into optics43,44, where they are having a major im-
pact45,46. In their spatial paraxialmanifestation, these are Airy beams
propagating along parabolic trajectories while maintaining their
shape owing to linear interference effects caused by their unique
structure. We chose accelerating beams specifically because, in the
absence of nonlinearity, they are shape-preserving. As such, they
enable the observation of emulated gravitational effects caused by
the interaction, without being overshadowed by spatial diffraction-
broadening. Also, accelerating beams have a broad structure which
enables clear demonstration of the gravitational effects, while at the
same time they have a well-defined peak, whose trajectory plays an
important role in systems with interaction45–48. Accelerating beams
are expected to have complex dynamics in the presence of nonlocal
nonlinearity49 because the evolution of their wavefunctions follows
non-geodesic trajectories that depend directly on their structure.
Hence, the nonlocal nonlinearity may affect both their structure
and their trajectory. Their behaviour differs strongly from that of
localized particle, and as such it enables the demonstration of the
actual wave dynamics of the wavepackets.

In our experimental system (Fig. 1a), an accelerating beam inter-
acts with an intense beam in lead glass, with the interaction being
described by equations (1) and (2). The intense beam (emulating
a star) is a Gaussian beam of 50 µm FWHM (full-width at half-
maximum), which at 1Watt of power becomes a soliton24. This
beam is launched into a lead glass (SF11) sample, of dimensions
4×4×20mm, at the exact centre of the input facet (xy plane), to
ensure propagation parallel to the z axis50. The accelerating beam is
a two-dimensional (2D)Airy beam, created by a cubic phasemask in
k-space. The beams interact with one another from afar inside the
glass sample, as the refractive index change induced by the beams
extends—following equation (1)—all the way to the sample bound-
aries. The interaction strength is controlled by varying the laser
power, which controls the power of both beams while maintaining
their relative power. By imaging the entrance and the exit facets, we
monitor the spatial dynamics of the beams. For example, Fig. 1b
shows a photograph of the beams as they exit the nonlinearmaterial.
Figure 1b shows schematically the trajectories of the 2D Airy beam
and of the intense beam inside the sample. In the NSE framework,
this scheme is analogous to a broad quantum wavefunction inter-
acting with amoremassive body that exerts a gravitational potential
on the wavefunction. The unique Airy shape enables experiments to
studywhat happenswhen thewavepacket is accelerating towards the
star or outwards from the star, as shown schematically by the beam
trajectories in Fig. 1b. Here, a proper choice of the initial waveform
can make the beam overcome the gravitational lensing, and escape
from the attraction of the ‘star’ (blue trajectory in Fig. 1b). This
happens when the beam is structured with a profile that causes
acceleration opposite to the direction of the centre of the potential.
Later on, we explain how the nonlocal nonlinear interaction can—
counterintuitively—also support that opposite acceleration. Typical
results showing measurements of the gravitational lensing are given
in Fig. 1c,d. Themost pronounced effect is that, as the strength of the
interaction increases, the ‘escaping beam’ is attracted more towards
the star (green trajectory in Fig. 1b).Monitoring the trajectory of the
Airy beam and the shift of its main lobe (Fig. 1c,d) reveals that the
attraction towards the centre of the potential grows as the power (of
both the ‘star’ and accelerating beam) is increased. Namely, the non-
linear interaction (equivalent to the gravitational lensing) reduces
the acceleration of the wavepacket escaping from the vicinity of the
star. Surprisingly, for high enough power, the change in the trajec-
tory due to the nonlinearly induced potential saturates (see Fig. 1d).

The saturation effect raises natural questions about its origins.
Intuitively, we would expect the shift of the main lobe to increase as
the gravitational potential grows, without saturating. This is because
our intuition is based on the motion of a localized particle, and a
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Figure 1 | Experimental settings and results. a, A laser beam of 488 nm wavelength is split into a Gaussian beam and a 2D accelerating beam, launched to
interact inside a sample of a highly nonlocal nonlinear medium. b, Left: simulations showing the dynamics of the powerful beam (‘star’) and of the
accelerating beam in the nonlinear medium (bottom) and photograph of the beams exiting the nonlinear medium (top). Right: schematic top-view sketch
of the accelerating beam interacting with the ‘star’, in the linear (blue curve) and the nonlinear (green curve) regimes. Note that the nonlinear dynamics is
mutual: the soliton (red curve) a�ects the beam accelerating towards it, and at the same time its own trajectory is a�ected (becomes curved leftwards) by
the accelerating beam. c, Experimentally measured 1D cross-sections of the accelerating beam taken along the line marked in b, for various power levels of
the localized beam (various values of the mass of the star). As the power is increased, the main lobe is shifted more strongly towards the powerful beam, in
equivalence to gravitational lensing bending light towards a star. d, Shift of the main lobe (gravitational lensing) as a function of the power of the Gaussian
beam. Note the saturation e�ect in the shift, reflecting the mutual nonlinear action between the star and the beam accelerating towards it. The vertical
error bars indicate the measurement resolution (see Supplementary Information for details regarding data analysis).

linear gravitational potential that is not affected by the presence of
the particle. To gain understanding about the nonlinear dynamics
in our system, we simulate numerically the propagation dynamics
of our launched beams, solving equations (1) and (2) together. The
simulations reveal that the gravitational potential of the ‘star’ not
only affects the accelerating beam, but that the accelerating beam
also affects the evolution of the ‘star’. Interestingly, the combination
of the two beams gives rise to a refractive index distribution that
is asymmetric with respect to the ‘star’: it is steeper on the side of
the main lobe, which makes the ‘star’ move away from the main
lobe (of the escaping beam) as the interaction strength is increased
(see Supplementary Information). The ‘star’ is shifted away from the
main lobe towards the tail of the accelerating beam, which actually
contains a considerable fraction of the total beam power. As the
power is increased, the attractive force exerted by the ‘star’ on the
main lobe weakens, owing to a decrease in the slope of the potential
in the region of the accelerating beam. Thus, the refractive index
structure during the high power interaction affects the gravitational
lensing of the main lobe—creating a saturation effect. This is a
nonlinear effect because the only reason for the movement of the
‘star’ from the centre of the sample is the interaction with the
accelerating beam, and this is exactly what is creating the saturation
in the shift of the main lobe of this beam. The simulations also
reveal a second surprising effect: the actual trajectories of the main
lobe are also unexpected (see Fig. 2a). For low-power interaction,

the trajectory can be fitted to a low-order polynomial. However, as
the power is increased, the main lobe is shifted strongly towards
the centre of the potential induced by the ‘star’, only then to
accelerate even faster than the original acceleration and ‘escape’
the gravitational potential well (as explained in the Supplementary
Information). These joint effects are responsible for the saturation
effect, as we explain later on. Even more importantly—these new
phenomena are both nonlinear—depending on the power of the
soliton ‘star’ and of the accelerating beam.

To understand the origin of the second effect, we have to study
the experimental results more closely. The experimental data reveals
the presence of tidal forces: the gravitational force exerted on the
different lobes varies from one lobe to the next, owing to their
different distances from the ‘star’ and the self-induced potential
of the accelerating beam. This effect gives rise to tidal forces that
deform the structure of the wavepacket as it propagates. These tidal
forces arise from the potential both beams induce, although we
also note the presence of a very weak self-focusing effect of the
accelerating beam on itself. The tidal forces pull the lobes towards
one another. Figure 2b shows the cross-sections of the beams from
Fig. 1c, where the beams are superimposed such that the peaks of
theirmain lobe are at the same position, to enable direct comparison
between the structures of the beams. This reveals the effect of tidal
forces on the structure of the accelerating beam. As evident from
Fig. 2b, as the power of the beams is increased, the lobes are attracted
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Figure 2 | Simulations and experiments showing the trajectories of the beam accelerating away from the ‘star’ and the deformation of its structure,
unravelling the e�ect of tidal forces. a, Results of (2+1)D simulations showing the transverse shift (in the x direction) of the main lobe as a function of
propagation distance (z). Di�erent colours are associated with di�erent laser power levels (interaction strengths), where the maximal change in the
refractive index (of each) appears in the legend. The ratio between the power of the beams is set to 1.6% in all simulations. For low-power interaction the
trajectory is a low-order polynomial (blue and red), whereas for high power (yellow and purple) the trajectories are non-trivial: starting with a strong shift
towards the ‘star’ and then a fast acceleration in the counter direction (escaping away from the star) due to a nonlinear change in the refractive index and
the deformation of the accelerating beam. Inset: zooming in reveals trajectories that cross each other. (The triangles represent the simulated data points.)
b, Experimental results: 1D cross-section of the 2D accelerating beam taken along the line marked in Fig. 1b, for various laser power levels (interaction
strengths) with the gravitational lensing factored out. The waveforms are shifted slightly vertically for clarity. Note that the oscillations in the structure of
the accelerating beam become faster as the power is increased, owing to tidal force e�ects exerted by the powerful beam (the star). This beam
deformation is responsible for the increase in the acceleration in the simulation shown in a. c, Experimental results showing the structure of the
accelerating beam at various power levels, compared to the (linear, non-interacting) Airy function, to highlight the deformation of the accelerating beam
due to the tidal forces. The deformation results in a change in the acceleration as the simulation reveals in a.

to one another, creating faster spatial oscillations in the structure of
the accelerating beam. Our observation of the change in the width
of the main lobe as a function of the power is presented in the
Supplementary Information, revealing a pronounced effect of the
tidal force: as the power is increased, the main lobe width decreases
to almost half its width. Figure 2c shows a comparison between
the structures of two accelerating beams at two different power
levels. Fitting (numerically) the shape of the accelerating beam
emerging from the interaction to an Airy function reveals that the
oscillations of the Airy function have almost doubled their (local)
frequencies, at high power. This means the beam accelerates much
faster owing to the deformation of the structure of the beam (see
Supplementary Information), causing the non-trivial trajectories
observed in the simulation. This is a very surprising effect—the non-
local nonlinearity deforms the structure of thewavepackets owing to
an effect analogous to tidal forces, thus affecting the acceleration—
which in itself arises from interference effects. This manifests a
subtle interplay between the nonlocal nonlinearity effects on the
beam and the beam acceleration, which is, in itself, a consequence
of the shape of the beam. Consequently, the acceleration rate is
actually an outcome of the nonlinear interaction—it depends highly
on the power of the beams. This feature can also contribute to

the saturation of the gravitational lensing, as we observe in the
experiment (Fig. 1d). The increase in the beam acceleration due
to the deformation of the beam (caused by the tidal forces) allows
the beam to accelerate faster away from the centre of the potential,
overcoming the gravitational lensing.

Having observed the influence of gravitational lensing on the
accelerating beam (through the trajectory change and of tidal forces
which deform the beam structure), we now use GR formalism to
explain the experimental observations, and attempt to also shed
light on the effect of the tidal forces on the saturation observed in
Fig. 1d. The gravitational lensing and tidal forces aremodelled using
the geodesics equation, which gives the shortest path between two
points in a given curved space. This is the exact path along which
light will propagate, according to Fermat’s principle. For simplicity
we model the behaviour in 1D. To describe the dynamics of the
accelerating wavepacket, we add an inhomogeneous force term F̃ ,
meant to describe the natural acceleration of the beam arising from
the interference effect caused by the initial conditions. The equation
for the trajectories of the different lobes is:

d2x
d2z
=

1
n
d1n(x ,z)

dx
+ F̃(x ,z) (4)
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Figure 3 | Using the inhomogeneous geodesic equation to model the
trajectories of the beam accelerating away from the ‘star’ and the tidal
forces acting on it. a, Calculated trajectories that are solutions of the
inhomogeneous geodesic equation (equation (4)) with the refractive index
data taken from typical simulations, and where F̃ is taken to be constant.
Each coloured line shows the trajectory of one lobe in the beam. The lobes
become closer to one another while propagating in z, which does not
conform to experimental observations (Fig. 1d) and the simulations of the
NSE (Fig. 2a). Inset: zooming in reveals trajectories that cross each other
owing to the tidal forces. b, Same as a but when solving equation (4) F̃(z) is
taken to be a linear function of z. As the lobes propagate they maintain
approximately the same distance from one another, conforming to the trend
shown in the experiments and simulations of the NSE (Fig. 1d, Fig. 2a).

The derivation of equation (4) from the geodesic equation is
described in the Supplementary Information. We solve equation (4)
for the trajectories of the various lobes and compare the results to
the geodesics in the presence of the gravitational potential only (the
homogeneous solution of equation (4)). The solutions are shown in
Fig. 3a, where F̃(x ,z) is taken to be a constant that conforms to
the experimental launch conditions (the field at z = 0). Similarly,
the value and the structure of the refractive index change 1n(x , z)
is taken from typical simulations (specifically, 1D cross-section of
the 2D refractive index profile). The lobes become closer to one
another while propagating in z ; clearly, the beam is deformed and
the lobes even switch positions. However, as we know from Fig. 2b,
the tidal forces deform the shape of the beam, hence its spatial
frequencies actually increase as the beam propagates, consequently
increasing the acceleration. To model this using GR tools, we
solve equation (4) with F̃(z)—the inhomogeneous term—which is
allowed to vary with z , to account for the acceleration change during
propagation. The solutions are shown in Fig. 3b. For simplicity,
F̃(z) is taken to be a linear function of z and, consequently the
lobes maintain approximately the same distance from one to the
other as they propagate. Counterintuitively, we find that the effect of
the tidal forces on the beam, modelled by a z-dependent F̃(z) and
which is expected to deform the beam, actually supports the shape-
preserving property of the accelerating beam.

Finally, we exploit the control over the accelerating beam and
conduct experiments to observe gravitational redshift and blueshift.
From GR, we know that gravitational redshift occurs when light
is propagating from a high gravitational potential to a lower
gravitational potential (vice versa for blueshift). In the experiment,
we observe interaction between a soliton (‘star’) and an accelerating
beam in two different regimes: when the accelerating beam is
escaping from the potential well induced by the soliton and when
the accelerating beam is approaching the potential well. Following
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Figure 4 | Experimental observations of redshift and blueshift. a,b, Structure of the accelerating beam at the exit face of the lead glass sample under the
influence of a change in the refractive index induced by a soliton. The main lobe is shifted owing to the interaction with the soliton, with the shift direction
depending on the direction of the attracting force. For an accelerating beam approaching the soliton the main lobe is shifted towards the soliton,
demonstrating the gravitational lensing e�ect giving a 11 µm shift (a). For the beam escaping the soliton there is a−7 µm shift (b). c,d, Same beams as a,b,
but with the main lobes centred at x=0 to emphasize structural e�ects on the beam. At high power (large gravitational field), tidal forces and gravitational
redshift/blueshift a�ect the structure of the accelerating beam: pushing the tail lobes away from the main lobe (c) or pulling them towards it (d).
Illustrations of the two schemes are shown at the top of the figure, where the intensity of the powerful beam is reduced by orders of magnitude for
better clarity.
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the analogy between z (in equation (2)) and t (in equation (3)),
a shift in kz is analogous to a shift in the temporal frequency,
and we can expect a change in kz that depends on the relative
motion of the wavepacket and the ‘star’ (soliton). We can use the
equation from GR describing the gravitational redshift/blueshift20,
by replacing the gravitational potential with the change in the
refractive index and the frequency with the spatial frequency (see
Supplementary Information):

1kz
kz
=1n(x2)−1n(x1) (5)

where x1,x2 are two positions of the main lobe (in 2D). We model
the gravitational redshift/blueshift by the known relation between
the spatial frequencies in the paraxial regime: kz=k− (k2x+k2y)/2k,
and substitute into equation (5). In the experiment, we measure
the intensity distribution of the optical beam at the exit face of
the sample, which reveals the evolution of the spatial frequencies
kx , ky due to the nonlinear effects. The blueshift and redshift are
observed as a change in kz . The gravitational redshift can even cause
a stretching effect, where the lobes are pulled away fromone another,
as shown in Fig. 4.

To conclude, we have presented a nonlinear optical scheme to
demonstrate gravitational dynamics whose description necessitates
a highly nonlocal nonlinearity. We launched specifically shaped
beams into a nonlocal nonlinear medium to observe, and also to
affect, nonlinear gravitational effects that have thus far never been
demonstrated. Perhaps even more interesting are the possibilities
our system offers in the study of foundational principles combining
GR and quantummechanics. As our system is analogous to theNSE,
it simulates gravity in the Newtonian limit together with quantum
mechanics. Earlier studies of the NSE were strictly theoretical32,39,
and mostly with spherically symmetric conditions and Gaussian
initial profiles of the wavefunctions. Evidently, exploring other
systems with especially shaped beams has shown that unique beam
profiles can reveal interesting new physics48. It is therefore very
interesting to explore this NSE system in experiments, while having
control over the initial wavefunctions, as we achieved here. Clearly,
it would be extremely interesting to explore this kind of setting for
simulators of quantum field theory together with post-Newtonian
gravity in a nonlinear theory.We believe this is actually possible and
it is exactly what we plan to do next.
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