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Abstract: We propose and demonstrate, numerically and experimentally, use of sparsity as 
prior information for extending the capabilities and performance of techniques and devices 
for laser pulse diagnostics. We apply the concept of sparsity in three different applications. 
First, we improve a photodiode-oscilloscope system’s resolution for measuring the intensity 
structure of laser pulses. Second, we demonstrate the intensity profile reconstruction of 
ultrashort laser pulses from intensity autocorrelation measurements. Finally, we use a sparse 
representation of pulses (amplitudes and phases) to retrieve measured pulses from incomplete 
spectrograms of cross-correlation frequency-resolved optical gating traces. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

During the past decade, it has been demonstrated that using sparsity as prior knowledge 
(henceforth “prior”) can be very powerful in extending and improving the performance of 
many optical measurement devices [1–9]. Essentially, sparsity refers to the fact that the 
sought information can be expressed in a compact form in some mathematical representation 
or dictionary [10]. The dictionary is typically assumed to be known in advance, but more 
generally, can be learned from the measurements under certain conditions [11] or from data 
with similar features that are often available from other sources [12]. In this sense, sparsity 
corresponds to the fact that the sought signal has some characteristic structure. Sparsity has 
been applied in many applications in optics, including single-pixel camera [4], super-
resolution [1–3], compressive holography [5], compressive ghost imaging [6], diagnostics of 
coherent modes [7], un-mixing of spectral measurements [8], and Ankylography for 
recovering 3D structures of complex molecules [9]. A field in which the sparsity prior has not 
been extensively utilized yet is diagnostics of ultrashort laser pulses. 

Multiple techniques were developed over the years for diagnostics of short and ultrashort 
laser pulses. In direct measurement techniques, e.g., photodiode-oscilloscope systems that are 
used for measuring nanosecond to picosecond pulses [13] and streak cameras that can 
measure pulses with down to 100fs pulse duration [14], only the intensity profile of the pulse 
can be measured. Intensity Auto-Correlation (AC), which is an industrial standard for 
ultrashort pulse diagnostic, is used for estimating the pulse duration. Unfortunately, intensity 
AC cannot be used to characterize the full electromagnetic field of the laser pulse. During the 
last 25 years a whole “zoo” of advanced techniques to characterize both the amplitude and 
phase of the field complex envelop were developed. The most popular among these methods 
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include Frequency-Resolved Optical Gating (FROG) [15], Spectral Phase Interferometry for 
Direct Electric-field Reconstruction (SPIDER) [16], and d-scan [17]. Still, there is always 
motivation to improve these techniques as there are pulses that are too complicated, too weak, 
or too short to be measured. 

Here, we utilize sparsity-based information processing in diagnostics of ultrashort laser 
pulses. We develop and demonstrate, numerically and experimentally, the use of sparsity in 
three different applications. In Section 2, we demonstrate improvement of the resolution of a 
photodiode-oscilloscope system for measuring the intensity profiles of laser pulses when the 
profile can be represented compactly in a Gauss Hermite (GH) basis. As there is an infinite 
number of GH bases (Gaussian center and width are free parameters), our reconstruction 
algorithm uses only the measured signal to find the GH basis in which the sought pulse is the 
sparsest. In Section 3, we exploit sparsity for reconstructing profiles of pulses from intensity 
auto-correlator measurements. In this application, we explore pulses with Gaussian power 
spectra and low-order polynomial spectral chirp. We show that such pulses can be represented 
compactly using an over-complete set of GH functions. In Section 4, we apply sparsity-based 
information processing to improve XFROG: a technique for recovering the amplitude and 
phase of ultrashort laser pulses from cross-correlation frequency-resolved optical gating 
measurements. 

2. Sparsity-based super-resolution in photodiode detection 

High-speed photodiodes are widely used for direct measurements of pulse intensity profiles 
because of their simplicity, robustness, wide spectral bandwidth, small size, and low cost. The 
temporal resolution of high-speed photodiodes can get down to the picosecond (ps) regime. 
Intensity profile measurements at sub-ps resolution require more complex devices such as 
streak cameras and cross or autocorrelation techniques. The Radio Frequency (RF) spectral 
response function of photodiodes, acts as a low-pass filter (LPF), with a characteristic cutoff-
frequency fc (where fc~1/Tc, and Tc is the response time of the photodiode). If the laser pulse 
contains features at a time-scale that is close to (or shorter than) Tc then the output electronic 
signal deviates from the actual laser pulse waveform. In this case, de-convolution may extract 
the fast features in the pulse-shape by amplifying the RF high-frequency components of the 
output signal with the aim of “undoing” the LPF operation. However, the resolution of de-
convolution is fundamentally limited by noise, which is present in all detectors, because a 
large factor amplifies small errors in the high-frequency spectral regions of the output signal. 
Consequently, deconvolution processes cannot recover information that is contained in 
spectral regions in which the signal to noise ratio is smaller than the LPF spectral response 
function (typically corresponding to the f>fc spectral region) [18]. 

Here we propose and demonstrate a scheme for reconstructing the temporal shape of laser 
pulses that can be represented compactly using a Gauss Hermite (GH) basis at a resolution 
that exceeds the resolution limit of deconvolution processes. In particular, we recover the 
information at frequencies way beyond the cutoff frequency, fc. Our reconstruction algorithm 
uses only the direct output signal of the photodiode and the prior knowledge that the sought 
signal is sparse in one (unknown) member of the GH bases. The reconstruction scheme 
implements the Basis Pursuit (BP) algorithm, which is a well-known method for recovering 
sparse data from an under-determined linear system of equations [19]. Importantly, the BP 
algorithm is robust to noise in the measured data and thus is very attractive for short pulse 
measurements. Our reconstruction scheme relies on the fact that the laser pulse can be 
represented compactly in a GH basis. However, GH functions, given by GHn = Hn(t)exp(-(t-
t0)

2/Δt) where Hn is a Hermite polynomial of order n, in fact, are an infinite family of bases, 
when the center position t0 and the width of the Gaussian function Δt are free parameters. Our 
algorithm includes a stage for automatic determination of a GH basis from the measured 
signal only. Specifically, the center position t0 is determined by the “center of mass” of the 
blurred pulse obtained by deconvolution. Then, to determine the width parameter Δt, we run 
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our algorithm for a set of admissible width values and choose the solution in which the 
reconstructed pulse is represented most compactly. 

An experimental demonstration of our scheme is presented in Fig. 1(a). A “slow” 
photodiode detects a laser pulse with 1000 ps rise time and an oscilloscope samples the 
electronic signal. For comparison only, we also detect the same pulse with a “fast” 
photodiode (175 ps rise time). To characterize our measurement system, we first measure the 
impulse response function (IRF) (and calculate from it its spectral transfer function) of the 
photodiodes by detecting a 30-fs pulse [Figs. 1(b) and 1(c)]. 

 

Fig. 1. Experimental setup: a laser pulse is probed by slow (1000 ps rise-time) and fast (175 ps 
rise-time) photodiodes and an oscilloscope with 6 GHz bandwidth. Impulse response functions 
(b) and corresponding spectra (c) of the slow (red) and fast (blue) photodiodes. 

Next, to demonstrate our technique, we construct a structured laser pulse containing three 
peaks by splitting and recombining three delayed replicas of the laser pulse (FWHM = 150 
ps). Figure 2(a) shows a measurement of the structured pulse by the slow and fast 
photodiodes, with their associated Fourier spectra shown in Fig. 2(b). Next, we apply Wiener 
deconvolution to the output signals from the “slow” and “fast” photodiodes (Fig. 2(c) red 
dashed and blue dashed curves respectively). The de-convolved pulse from the fast 
photodiode serves as a reference pulse for comparison purpose only. Clearly, the de-
convolution approach completely fails to reconstruct the structures of the pulse when it is 
applied to the measured signal from the slow photodiode. Next, we apply our sparsity-based 
approach. We first determine the center of the GH functions according to the “center of mass” 
of the deconvolved pulse (Fig. 2(c) red dashed curve). Then, we run our sparsity-based 
reconstruction algorithm while scanning the width parameter: Δt, Fig. 2(d) shows the number 
of non-zero elements in each such reconstruction (elements that are larger than 0.01) as a 
function of Δt. Importantly, the similar scheme of 1D signal retrieval was implemented in [2], 
and it was shown to be robust to noise and applicable to signals constructed from unit-cell 
(Gaussians or rectangles) with variable width. The final reconstructed pulse, which 
corresponds to the pulse with a minimal number of elements (Δt = 25ps in Fig. 2(d)), is shown 
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in Fig. 2(e). For comparison, that plot also shows the reference pulse as well as the pulse 
obtained by applying our sparsity-based reconstruction algorithm using the measured signal 
by the fast photodiode. The sparsity-based reconstructed pulse-shape using the signal from 
the slow photodiode matches very well the measured pulse through Wiener de-convolution 
and sparsity-based using the signal from the fast photodiode. This correspondence shows that 
our sparsity-based reconstruction accomplishes super-resolution, significantly better than 
Wiener deconvolution. The power spectra of these pulses 

 

Fig. 2. Direct signals (a) and corresponding spectra (b) when the laser pulse is probed by the 
slow (red) and fast (blue) photodiodes. (c) Reconstructed pulse-shapes by implementing 
Wiener de-convolution. (d) The number of non-zero elements in each sparsity-based 
reconstruction (see text above). (e) The sparsity-based reconstructions with the slow (solid 
black) and the fast (solid blue) photodiodes as well as the Wiener de-convolution with a fast 
photodiode (dashed red) are all quite similar: the three-peak waveform is well captured, and 
their spectra (f) nicely match up to 5 GHz. On the other hand, without utilizing sparsity, the 
Wiener de-convolution with the slow photodiode ((c) (dash red) does not capture the peaks of 
the waveform and its associated spectrum starts to deviate from the other spectra at 1 GHz. In 
these experiments, the sparsity-based reconstruction with the slow photodiode exhibits super-
resolution of up to 5 times relative to the Wiener de-convolution. 
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are shown in Fig. 2(f), indicating that the resolution of the sparsity-based reconstruction from 
the slow photodiode is ~5 times better than Wiener deconvolution.  

In this section, we demonstrated that sparsity can significantly increase the resolution of 
photodiodes for pulse-shape measurements, by at least a factor of 5. Thus, our technique may 
be used for measuring sub-picoseconds pulses with current ultrafast photodiodes. Similarly, 
our approach can be implemented in various other types of pulse-measurement techniques, in 
which the measured pulse is correlated with a response function of the device (e.g., streak 
cameras). 

3. Intensity waveform reconstruction from intensity autocorrelation 

Intensity autocorrelators have been used for estimating the pulse duration of ultrashort laser 
pulses since the 1960s [20]. The AC trace of a pulse is given by IAC(τ) = I(t)I(t-τ)dt where I(t) 
is the intensity profile (waveform) of the pulse. The AC signal is obtained by nonlinear 
interaction (typically second harmonic generation (SHG) or two-photon absorption) between 
the laser pulse and its replica with a tunable delay, τ. While advanced methods for 
characterization of ultrashort laser pulses were developed in the mid-1990s [21], intensity AC 
is still often used because the measurement is relatively simple, fast and efficient. However, 
pulses with significantly different intensity profiles can produce indistinguishable AC traces, 
i.e. intensity AC has non-trivial ambiguities [22]. Adding the measurement of the power 
spectrum helps but does not entirely remove the ambiguity [22]. Using the positivity of the 
intensity profile and the support (localization) as prior information also do not remove the 
ambiguity in this problem [17]. Here, we utilize a sparsity prior together with the positivity of 
the intensity for reconstructing the intensity profiles of pulses from their intensity 
autocorrelations. Specifically, we assume that the intensity waveforms of the pulses are sparse 
in a set of GH functions. We also show that this assumption is valid for pulses with Gaussian 
power spectra and low-order polynomial chirps, which is often the case with many ultrafast 
laser pulses [23]. 

Reconstruction of intensity profiles from their autocorrelation function is equivalent to a 
1D phase retrieval problem, as the Fourier transform of the autocorrelation corresponds to 
|Î(ω)|2 where Î(ω) is the Fourier transform of the intensity profile. Thus, one needs to retrieve 
the spectral phase of Î(ω) to decipher I(t) from its autocorrelation measurement. In this 
application, we use the sparsity-based phase retrieval algorithm termed GESPAR (GrEedy 
Sparse PhAse Retrieval) for reconstructing intensity profiles from their AC measurements 
[24], the same algorithm that we used for reconstructing 1D images from their diffraction 
intensities [3]. In addition to sparsity, we use positivity of intensity as a constraint. 
Accordingly, we slightly modify the original GESPAR algorithm by replacing the damped 
Gauss-Newton step by a more general step involving minimization of constrained nonlinear 
multivariable function [25]. In practice, this step is performed by using the MATLAB 
Optimization Toolbox and Constrained Nonlinear Optimization function (fmincon) with an 
interior-point algorithm. 

First, we show that the intensity profiles of ultrashort laser pulses with Gaussian power 
spectra and low-order polynomial spectral chirp can be represented compactly using an over-
complete set of GH functions. In this work, we use the frame, Ψn,m,q = Hn(t)exp(-(t- tm)2/Δtq) 
where Hn (n = 0,1,2,3…N) is the nth-order Hermite polynomial, Δtq (q = 1,2…Q) are width 
parameters and tm (with m = 1,2,3…M) are center parameters. We choose N = 17, M = 10 and 
Q = 1, which means that the frame consists of only 180 functions. We construct the 
appropriate frame for each pulse separately using only its measured (or calculated) AC trace. 
For each AC trace, we use a width parameter that corresponds to 0.7 times the FWHM of the 
AC trace while the center parameters are distributed uniformly on the interval of the sampled 
(or calculated) AC. 
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We now examine the range for which GESPAR with the above frame of GH functions 
gives reliable reconstructions. We start by randomly forming 100 intensity profiles, and their 
autocorrelations, for each sparsity level, s (the sparsity level of an intensity profile 
corresponds to the minimal number of GH functions from the frame that are required for its 
representation). Then, we use our phase-retrieval algorithm on the autocorrelations with 
added noise (45dB SNR). We consider the recovery to be successful if the Normalized Mean 
Square Error (NMSE) between the original and recovered pulses is smaller than 0.02. For 
example, the original and reconstructed electric field profiles of a pulse with s = 16 are shown 
in Fig. 3(a). The calculated probability for successful recovery is shown in Fig. 3(b). It 
indicates that the probability for successful reconstruction of pulses with s≤17 is very high 
(practically equal to one) and it then drops fast with increasing sparsity. Figure 4 
demonstrates the successful reconstruction of electric field profiles from their ACs under the 
assumption that the electric field profiles are sparse in a frame of GH functions. However, it 
is important to study whether this assumption is general, characterizing most ultrafast laser 
pulses generated in experiments. To address this important issue, we show that indeed 
ultrashort laser pulses with low-order polynomial spectral phase and corresponding ACs with 
limited support tend to be sparse in our frame of GH functions. Furthermore, we demonstrate 
that there is a range of parameters in which our method reconstructs the electric field profile 
with practically 100% probability and reliability. We present this feature through an example. 

 

Fig. 3. Calculated sparsity-based reconstruction of electric field profiles from their 
autocorrelations using GESPAR under the assumption that the pulse is sparse in the GH frame. 
(a) Original (blue solid) and reconstructed (dashed red curve) electric field profiles. The 
original electric field profile is comprised of 16 GH functions. The inset shows the 
autocorrelation signal of the original pulse. (b) Reliable recovery probability using the 
sparsity-based method versus sparsity level, i.e. the minimum number of GH functions that can 
represent the electric field profile of the pulse. The recovery is certain (~100%) for s≤17. 

We start by numerically producing sets of laser pulses with a Gaussian power spectrum, as 
displayed in Fig. 4(a). Each set is characterized by a support range of the autocorrelation 
function of the pulses: SAC ± 0.02SAC, where we define the support length, SAC, as the 
longest distance between delays for which the AC function is 0.001 of the AC peak. Of 
course, the AC support is directly related to the pulse duration. For comparison, the AC 
support and the FWHM pulse duration of the transform limited pulse (which has flat phase) 
are 93 fs and 34 fs, respectively. Each set of pulses consists of 5000 pulses with 5th-order 
polynomial spectral chirps with randomly produced coefficients. An example of a pulse with 
AC support length of 700 fs and the specific spectral chirp plotted in Fig. 4(a) is shown in 
Fig. 4(b). Next, we calculate the most compact representation in our frame for each pulse in 
every set, by solving an L1 minimization problem with up to 1% NMSE [19]. Figure 4(c) 
shows the distributions of pulses in three sets (AC support lengths 400, 600 and 800 fs) as a 
function of their sparsity level. Clearly, almost all the pulses are sparse in our frame of 180 
GH functions. Recall that according to Fig. 3(b), our algorithm reconstructs pulses with s≤17 
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at 100% certainty. We therefore calculate and plot in Fig. 4(d), the fraction of pulses in each 
set with s≤17. As shown there, there is a significant range (AC support length ≤ 500 fs) for 
which accurate reconstruction is granted. The probability for correct reconstruction then 
decreases with increasing AC support. To summarize this section, Figs. 3 and 4 presented 
reliable sparsity-based pulse recovery. In Fig. 3, we do not assume a given (known) sparsity 
basis for all relevant pulses, instead, we calculate the range of appropriate GH functions by 
spanning the tm parameter from limits defined by the measured data. In doing that, we 
accomplish sparsity-based phase-retrieval of 1D information, without prior knowledge of the 
exact basis in which the information is sparse. Then, in Fig. 4 we show that sparsity in this 
flexible GH frame is related to prior knowledge that the measured pulse has a low-order 
polynomial chirp. We envision implementing our reconstruction method whenever it is 
known in advance that the spectral phase of the pulse is polynomial. If the power spectrum of 
the pulse is measured, then one can use the procedure presented in Fig. 4 for calculating the 
probability that the reconstruction is correct. Finally, we note that the probability for correct 
reconstruction should improve by increasing the number of functions in the frame (i.e. by 
increasing N, M, or Q). 

 

Fig. 4. A demonstration that pulses with low-order polynomial spectral chirps can be 
represented compactly in our GH frame. (a) Gaussian power spectrum used in the current 
simulation (blue curve) and a specific example of a 5th-order polynomial spectral phase (green 
curve). (b) Waveform (pulse intensity profile in time) that corresponds to the spectrum and 
spectral phase in (a). (c) Sparsity level of pulses - all with the same power spectrum shown in 
(a), and all with 5th-order polynomial spectral chirps, as a function of sparsity, for three AC 
support lengths (see text). (d) The fraction of pulses with s≤17 as a function of AC support 
length. As shown here, correct reconstruction of all pulses with AC support length ≤ 500 fs has 
almost 100% certainty. 

Next, we demonstrate the experimental implementation of our sparsity-based 1D phase 
retrieval for reconstruction of the intensity profile of a pulse from its AC measurement. We 
construct a pulse with a structured intensity profile by passing, through a 10mm thick sample 
of fused silica, an approximately transform-limited ultrashort laser pulse with a pulse duration 
of ~30 fs. Generally, the spectral chirp of a pulse generated in this way should be well 
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approximated by a 5th-order polynomial expression. We measure the AC of this pulse (Fig. 
5(a)) using an SHG autocorrelator. For reference, we also measure the pulse using an SHG 
FROG system [15]. The measured and reconstructed spectrograms (FROG traces) are shown 
in Figs. 5(b) and 5(c), respectively. Figure 5(d) shows the pulse (in the frequency domain) 
reconstructed by the standard (singular value decomposition) FROG recovery algorithm. The 
reconstruction is very good (the NMSE between the measured and reconstructed 
spectrograms is 8.3 × 10-6). The reconstructed intensity profiles using the sparsity-based 
algorithm from the measured intensity AC trace and the FROG method are depicted in Fig. 
5(e), clearly demonstrating that the sparsity-based reconstruction is very good (the NMSE 
between the intensity profiles is 2%). Figure 5(f) shows the representations of the two 
reconstructions in the frame of GH functions. As seen in Fig. 5(f), the discrepancy between 
the two recovery methods results from several GH functions with coefficients that are smaller 
than the threshold parameter in GESPAR, which corresponds to the noise level in the 
measurement ~38 SNR. That is, decreasing the noise in our experimental system should lead 
to increased accuracy of the reconstruction. 

Finally, it is worth noting how one can gain confidence in the sparsity-based 
reconstruction from the AC measurement, without assuming in advance that the pulse is 
sparse in the set of GH functions. For example, assuming that the power spectrum of the pulse 
(shown in Fig. 5(d)) is measured, we apply the procedure described in Fig. 4 and calculate the 
distribution of pulses with 5th-order polynomial chirps and AC support length of 600 fs (as 
derived from the measured AC trace) as a function of sparsity level. The distribution is 
displayed in Fig. 5(g), shows that almost all of the possible pulses are indeed sparse. For 
example, the sparsity level of 96.4% of the pulses is s≤17. Notably, if the power spectrum of 
the pulse is Gaussian, then by recalling that our algorithm reconstructs such pulses with s≤17 
at practically 100% certainty (Fig. 3(b)), we could assign a >96.4% reconstruction certainty. 

 

Fig. 5. Experimental demonstration of reconstructing the laser intensity profile from its 
autocorrelation trace. For comparison, we also characterize the pulse using SHG FROG. (a) 
Measured intensity autocorrelation trace. (b) Measured SHG FROG interferogram. (c) 
Reconstructed interferogram (NMSE is 8.3x10-6). (d) Reconstructed pulse (blue curve) and 
spectral phase (green curve) - using the standard (singular value decomposition) FROG 
recovery algorithm. (e) The reconstructed intensity profiles using the sparsity-based algorithm 
from the measured intensity AC trace (blue dashed line) and the FROG method (solid red line), 
clearly showing that the sparsity-based reconstruction is very good (the NMSE between the 
intensity profiles is 2%). (f) The population of the reconstructed pulses in the GH basis (g) The 
distribution of pulses with power spectrum in plot (d), 5th-order polynomial spectral phase and 
intensity autocorrelation support length of 600 fs as a function of sparsity-level. 

                                                                    Vol. 27, No. 6 | 18 Mar 2019 | OPTICS EXPRESS 8927 



4. Sparsity in XFROG 

Cross-correlation frequency-resolved optical gating (XFROG) is used for measuring the 
amplitude and phase of ultrashort laser pulses [26]. This technique is especially effective for 
measuring weak pulses, because it relies on sampling the unknown pulse with a much 
stronger known pulse through a sum frequency generation process, overall having reasonable 
SNR. Other techniques, such as FROG [27, 28], SPIDER [16], and d-scan [17] (an 
increasingly popular method for all-inline pulse retrieval), measure signals that are square-
proportional to the power of the unknown pulse, thus obtaining low SNR at acquisition. In 
XFROG, the reconstruction algorithm retrieves the pulse (amplitude and phase) from a 
measured spectrogram, i.e., a two-dimensional intensity map, which is obtained by frequency 
resolving the nonlinear intensity cross-correlation between the measured pulse and a known 
reference pulse. The current retrieval algorithm is based on the generalized projections 
method [29], thus requiring to measure all non-zero frequency components of the 
spectrogram. This condition sets an upper limit on the length of the nonlinear crystal due to 
the phase matching window. 

Here, we propose and demonstrate an XFROG trace inversion algorithm that utilizes the 
compact representation of an ultrashort (femtosecond) laser pulse. First, we show that 
ultrashort pulses can often be represented compactly in the Von-Neumann (VN) basis [30–
32]. Then, we modify the GESPAR algorithm [24] to utilize the sparse representation of 
pulses in the VN basis in an XFROG reconstruction. We demonstrate the robustness to noise 
and super-resolution (i.e. reconstruction from spectrally filtered XFROG spectrograms) of 
this reconstruction algorithm. Finally, we demonstrate the technique in experiments. 

The method is based on the utilization of prior information, in the VN basis [30], a feature 
that was used for optimizing pulse shaping [31], 2D electronic spectroscopy [33] and pulse 
characterization using angular streaking [34]. The VN basis [35] represents a discrete 
complex signal in a 2D complex joint time-frequency (JTF) domain. The main advantage of 
this basis is the localization of the base functions in the JTF domain. This is a direct result of 
the time and frequency Gaussian intensities of the base functions, that are centered around a 
single point in the JTF space, i.e. (ωn, tm). 

In the frequency domain, VN base functions are given by: 

 ( ) ( ) ( ){ }
1

4 2

,

2
exp

n mt n m nitω
αα ω α ω ω ω ω
π

 = − − − − 
 

  (1) 

where α = T/2Ω, T and Ω, are the total time and frequency spans. The Fourier transform of 
each such base function is a Gaussian in the time domain, centered around tm. Here, we 
choose the centers of these Gaussians (ωn, tm) to be equally spaced points in the JTF domain, 
such that (n,m)∈ [1,√N], hence ωn = nΩ/√N, tm = nT/√N where N is the number of sampled 
points of the pulse. To demonstrate that ultrashort pulses can indeed most often be 
represented compactly in the VN basis, we calculate the sparsity level of three sets of pulses 
in the VN representation and time basis. We create these sets of pulses by adding random 
spectral phase to a Gaussian spectral amplitude S(f)∝exp(-(f-fc)

2/2σ2
f) with bandwidth σf = 80 

THz and central frequency fc = 751 THz, when the total number of samples N is 256, over a 
spectral range Ω = 800 THz. Then, we sort the pulses into three groups according to their 
pulse duration (or time-bandwidth product, TBP): 40-70 fs (3.2-5.6), 70-150 fs (5.6-12), and 
150-300 fs (12-24). We define the pulse duration by the full width at 10% of the pulse peak. 
We also define the sparsity level Sbasis of a specific pulse in a certain basis as the minimal 
number of coefficients needed to represent a pulse with less than 0.01 variation from the 
original one in the time domain. In this definition of sparsity, the variation is required because 
we deal with general pulses that were not specifically constructed from several VN basis 
functions. The variation is calculated by the L2 distance between the original and the sparsely 
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represented pulses. The sparsity of our pulses in the frequency basis is equal to 142 
coefficients on a grid of 256N =  (easily calculated by removing the smallest samples in the 
frequency domain until 0.01 of the total power is lost), which is generally not considered 
sparse. Figure 6(a) displays the cumulative histogram for the sparsity in time St and in the VN 
base is SVN for the three different sets. Clearly, the pulses can be represented more compactly 
when the VN basis is used. 

The efficiency of using the VN basis is more significant for pulses with larger TBP, up to 
a limit, when the number of VN coefficients exceeds the minimum number of coefficients 
needed in the frequency domain. Figures 6(b)-6(j) show three specific examples, one from 
each set. The time-varying intensity and phases of the pulses are shown in the left column. 

 

Fig. 6. Compactness of ultrashort laser pulses in the Von-Neumann (VN) representation. (a) 
Normalized cumulative histogram for obtaining good representations of pulses as a function of 
the minimal number of non-zero coefficients using VN basis (solid lines) and time basis (dash 
lines) for sets of pulses with pulse duration in the range 150-300 fs (blue lines), 70-150 fs 
(green lines) and 40-70 fs (red lines). (b-j) examples of three pulses with significantly different 
pulse durations showing: (b,e,h) time-varying intensities (blue line) and phases (red line), 
(c,f,i) VN representations in the VN basis and (d,g,j) representations in the STFT basis. St, SVN 
and SSTFT correspond to the sparsity levels in the time, VN and STFT bases. 

The central column displays the VN representation of the pulses while, for comparison, 
their representation in the short time Fourier transform (STFT) - a popular JTF basis [36] - is 
shown in the right column. The sparsity levels St, SVN and the sparsity level of the STFT 
transform SSTFT are denoted in Figs. 6(b)-6(j) (The STFT is less compact than the VN and 
time representations, thus we do not add the STFT method to the comparison in Fig. 6(a)). 

Next, to reconstruct the pulse from its XFROG trace, we adapt the GESPAR algorithm 
and explore the complex nature of the VN coefficients. Specifically, GESPAR obtains a 

vector of the XFROG trace measurements tN Ny ω⋅∈  ( ,tN Nω are the number of samples in 
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time and spectrum, respectively), while the reconstructed signal, tP , and its representation 

coefficients in the VN basis, ν , are complex: N
tP ∈ and Nν ∈ . We denote by

tN N NrF ω⋅ ×∈  the matrix that satisfies rF LD= , where tN N NL ω⋅ ×∈  is the XFROG operator 
matrix and N ND ×∈  denotes the transform operator from the frequency domain to the VN 
basis. We use the bi-orthogonal form of VN, therefore D  is the pseudo-inverse of the VN 
basis matrix A , whose columns are base vectors ( ),n mtωα ω  (see ref [37] for more details). 

We also require the sparsity level of ν  to be smaller than some value s . Using the notation 
above, the GESPAR minimization problem becomes. 

 
( )

( ) { }

2 22
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ˆ arg min

. . , 1, 2,..., .
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i i
i
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s t s supp n

νν ν

ν ν
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
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To deal with the fact that the VN coefficients are complex, we modify GESPAR by using 
complex differentiation tools [38]. After this adjustment, we apply the GESPAR algorithm to 
recover complex field vectors from XFROG measurements. 

We first investigate our sparsity-based reconstruction algorithm using numerical data. We 
specifically explore super-resolution, i.e. the recovery of pulses from partial XFROG traces. 
One can define a complete XFROG trace as NˣN measurements for which the delay step 

 

Fig. 7. Numerical demonstration of sparsity-based XFROG reconstruction when 20 
coefficients describe the unknown pulse in VN basis, SVN = 20. (A) XFROG trace (B) the gate 
pulse, amplitude (blue) and phase (red). (c)-(f) reconstructions of the unknown pulse, 
amplitude (blue) and phase (red), under different values of SNR and incompleteness, compared 
to the original pulse, amplitude and phase (black curves). The SNR, incompleteness parameter 
η, and reconstruction error, δ1, are denoted in each plot. 

and spectral resolution product should be 1/N. Also, the bandwidth of the XFROG trace 
should be ~1.4 times larger than the bandwidth of the pulse power spectrum autocorrelation 
[39]. In this context, we define the incompleteness parameter [40] by  
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#of pixels in theincomplete trace

#of pixels in thecomplete trace
η =  

We specifically remove high-frequency data points, imitating the action of a low pass filter. 
Examples of reconstructions of pulses with SVN = 20 and SVN = 25 with different conditions 
of SNR and η are shown in Figs. 7 and 8, respectively. 

 

Fig. 8. Numerical demonstration of sparsity-based XFROG reconstruction when 25 
coefficients describe the unknown pulse in VN basis, SVN = 25. (a) XFROG trace (b) the gate 
pulse, amplitude (blue) and phase (red). (c)-(f) reconstructions of the unknown pulse, 
amplitude (blue) and phase (red), under different values of SNR and incompleteness, compared 
to the original pulse, amplitude, and phase (black curves). The SNR, incompleteness 
parameter, η, and reconstruction error, δ1, are denoted in each plot. 

Next, to test the performance of our algorithm at different SNR and η values, we construct 
500 different pulses and their XFROG traces (with a fixed gate pulse) for three different 
sparsity levels SVN = 20, 25 and 30. This is shown in Fig. 9. The pulses have a Gaussian 
spectrum with bandwidth σf = 80 THz and central frequency fc = 751 THz, with a total 
number of samples N = 64 over a spectral range Ω = 800 THz. We use a gate pulse G(t), with 
the same spectrum and a time duration of FWHM = 10fs, to create XFROG traces. Then, we 
add White Gaussian Noise (WGN) to the XFROG traces to obtain simulated data at different 
SNR values. Finally, we reconstruct the pulses from their noisy and incomplete XFROG 
traces using our modified GESPAR algorithm relying on the VN basis. Figure 7 shows the 
reconstruction error δ2(P,Ṗ) = arccps(|<Ṗ |P>|/(√< Ṗ | Ṗ >√<P|P>)) [41], as a function of the 
incompleteness parameter for the three different sparsity values and three different SNR 
levels. It shows that for small sparsity values, the reconstruction error can be quite low, even 
at low SNR and low η. For example, at SVN = 20 and SNR = 50, SVN = 20 and SNR = 40, as 
well as SVN = 25 and SNR = 50 all yield reconstructions with ~0.1 error. 

Finally, we demonstrate sparsity-based XFROG reconstruction in an experiment. We use 
pulses from a Ti:Sapphire laser and our home-made SHG FROG/XFROG system. We split a 
pulse using a beam-splitter (BS), and use one pulse for the gate pulse G(t) and the other one, 
which is passed through a glass of 1cm thickness, as the unknown pulse P(t). For reference, 
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we measure each of these pulses independently using FROG. The measured gate pulse is 
shown in Fig. 10(a). The measured complete XFROG trace is shown in the inset of Fig. 10(b) 
which consists of 14 fs sampling delay with 64 samples in time and 64 samples of the 
spectrum, conserving the Fourier relation Δω·Δt = 1/N. Figure 10(b) shows the spectrally 
filtered XFROG trace after 48 spectral lines were zeroed, yielding an  η = 0.25 trace, that we 
use for reconstruction. Figure 10(c) shows the XFROG trace recovered that was reconstructed 
by using the measured and filtered XFROG trace (Fig. 10(a)). Clearly, the sparsity-based 
algorithm retrieves the non-sampled parts of the XFROG trace (the discrepancy between the 
recovered and measured traces is δ1 = 0.19). The FROG and filtered XFROG reconstructions 
of the unknown pulse are shown in Fig. 10(d), showing good correspondence. 

 

Fig. 9. Numerical investigation of sparsity-based XFROG reconstruction versus 
incompleteness, η, SNR values 30, 40 and 50 and VN sparsity levels 20, 25, and 30. 

 

Fig. 10. Experimental demonstration of sparsity-based XFROG reconstruction using an 
incomplete XFROG trace. (a) amplitude (blue) and phase (red) of the gate pulse. (b) Measured 

                                                                    Vol. 27, No. 6 | 18 Mar 2019 | OPTICS EXPRESS 8932 



XFROG trace with η = 0.25, (i.e., 16 frequencies out of 64 in the complete XFROG trace 
shown in the inset). (c) Recovered XFROG trace using the spectrally filtered XFROG trace 
and the sparsity-based reconstruction algorithm. (d) The recovered unknown pulse (amplitude 
in blue and phase in red) on top of the amplitude and phase curves measured through FROG. 
The error between the reconstructions is 0.19. 

5. Conclusions 

We introduced the concept of using sparsity as prior information in the characterization and 
shape recovery of ultrashort laser pulses and specifically applied it in three very different 
techniques: enhancing the resolution of photodiodes, recovering intensity profiles from 
intensity auto-correlation measurements and XFROG reconstruction from incomplete 
spectrograms. Although neural network techniques exist and can automatically extract 
suitable bases from the data, they require more than tens of thousands of measurements and 
their pulse reconstructions [42], which is practically unreasonable. Hence, we believe that 
obtaining and exploiting the sparsity prior will be useful in many more methods for 
diagnostics of ultrashort laser pulses. We anticipate that this would allow decreasing the 
minimum number of spectral lines required for complete reconstruction of pulses from their 
FROG traces [40,43]. Likewise, using the sparsity prior increases the maximum number of 
recovered pulses in multiplexed FROG [44], and generally leads to improved algorithmic 
recovery of pulses from indirect measurements at low SNR values. We believe that future 
works will find more examples of sparsifying bases/frames that will open new possibilities 
for improved diagnostic methods for a variety of different applications. 
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