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The field of quantum information relies on the crucial issue of characterizing quantum states frommeasurements. This
is performed through a process called quantum state tomography (QST). However, QST requires a large number of
measurements, each derived from a different physical observable corresponding to a different experimental setup.
Changing the setup results in unwanted changes to the data, prolongs the measurement, and impairs assumptions
made about noise. Here, we propose to overcome these drawbacks by performing QST with a single observable.
A single observable can often be realized by a single setup, thereby considerably reducing the experimental effort.
However, the information contained in a single observable is insufficient for full QST. To overcome the lack of
sufficient measurements in a single observable, we increase the system dimension by adding an ancilla that couples
to the information in the system and exploit the fact that the sought state is often close to a pure state. We demonstrate
our approach on multiphoton states by recovering structured quantum states from a single observable in a single
experimental setup. © 2017 Optical Society of America
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1. INTRODUCTION

The fields of quantum information and quantum computation
have attracted considerable interest in recent years. From funda-
mental quantum mechanics (the measurement process [1],
description [2], the role [3] of entanglement, and the information
content of quantum measurements [4]) to applied physics
(molecular energy calculations [5] and experimental quantum
key distribution [6]), quantum information and computations
have helped raise questions and aid in the investigations of many
topics in physics and related fields. Rooted in Feynman’s ideas [7],
the concept of a quantum computer has scaled and evolved,
yielding programmable computation units [8,9]. In particular,
optical quantum computations, based on the concepts of
Knill, Laflamme, and Milburn [10] and cluster states [11–14],
have recently witnessed experimental realizations of larger and
more complex systems in terms of photon numbers [14,15].
Alternatives to the common quantum circuit model have also
been suggested [11,16], among them a recent linear nonuniversal
scheme for quantum computing [17–21], which is thought to
yield a real quantum advantage over classical information process-
ing already with near-future technology.

Whether exploring fundamental quantum mechanics or
advancing quantum computations, the ability to characterize a
quantum state from measurements is a principal component in
the fields of quantum information and computation. As the
fundamental description of a quantum system is given by the

density matrix, the characterization amounts to identifying all
elements of this matrix. The density matrix, a positive semidefin-
ite, trace-normalized matrix, allows for the prediction of every
experimental result, thus providing the full description of a quan-
tum system. To recover the density matrix, quantum state tomog-
raphy (QST) is usually performed. In this process, the density
matrix is measured by a large number of observables, each cor-
responding to a different experimental setup. Each observable
is associated with a Hermitian operator, whose eigenvalues are
the outcome of the measurements, whereas their probabilities
are derived from the eigenstates. By choosing a suitable set of
observables, known as a “tomographically complete set of observ-
ables,” the elements of the density matrix can be recovered from
the measurements. However, the process of QST requires a large
number of measurements, realized in multiple experimental set-
ups. Generally, for a system of dimension d , the density matrix is
described by d 2 − 1 real parameters. Since each observable yields
at most d measurement outcomes, a tomographically complete set
of observables consists of at least d observables, each correspond-
ing to a different experimental setup. Naturally, the need to
change the physical setup (even by rotating a wave plate or a
polarizer) increases the duration of the experiment and hampers
the integrity of the state. Perhaps even more importantly, the need
to carry out many variations of the experimental setup often
impairs the assumptions made on the noise. That is, in all
quantum optics experiments, the flux of entangled states is
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low. Hence, the integration times are long (minutes and longer).
Consequently, the detection process always assumes that the noise
does not change during the experiment. Clearly, varying the ex-
perimental setup due to the need to measure multiple observables,
as well as having to carry out a large number of measurements,
hampers these assumptions. Naturally, it would be highly desir-
able to be able to recover quantum states using a single observable
in a single experimental setup. However, as we explain below,
measurements obtained from a single observable are known to
be insufficient for full QST. Therefore, the recovery of quantum
states from a single observable has never been realized
experimentally.

Here, we propose recovering the quantum state using a sin-
gle observable, corresponding to a single experimental setup.
Since a single observable of dimension d can only yield d mea-
surement outcomes, whereas d 2 − 1 are needed for the complete
recovery of the density matrix, relying on a single observable im-
plies that information will be missing. To overcome this lack of
information while keeping the measurement number to the nec-
essary minimum, we may rely on prior information, which should
be as generic as possible in order to maintain the applicability of
our approach to a large class of settings. With this in mind, we
exploit generic prior information: that the sought quantum states
are close to pure states. This prior is natural in quantum infor-
mation because many of its applications deal with mapping pure
states onto other pure states. Of course, in a physical system, the
states are not ideally pure due to noise in the generation, manipu-
lation, and detection of the quantum states. Nonetheless, the
states are in most cases still close to pure states. Hence, the density
matrix has a small number of nonzero eigenvalues, i.e., the eigen-
values are sparse.

Exploiting sparsity is at the heart of the field of compressed
sensing (CS) [22–24], a very active area of research within signal
processing, which enables reconstruction of information from
incomplete measurements by exploiting sparse priors. More
recently, CS has been brought into the quantum domain for the
purpose of reducing the number of measurements necessary in
QST [25] and in quantum process tomography [26], enabling
much more efficient tomography. Other approaches to reduce
the number of measurements required for QST come in the form
of adaptive QST [27–30] and utilizing artificial neural networks
[31,32]. CS was further used in wave function measurements
[33,34], measurements of complementary observables [33], weak
measurements [35,36], characterization of incoherent light [37],
holography [38] and ghost imaging [39]. The general concept of
using sparsity to solve underdetermined inverse problems has
opened the door for a wide range of applications in various fields,
ranging from sub-Nyquist sampling [40], subwavelength imaging
[41–44], phase retrieval [42,43,45–47], to ankylography [48],
ptychography [49], and quantum state recovery from low-order
correlations [50].

The sparsity naturally arising in quantum information comes
in the form of the quantum states, which, for most applications,
tend to be pure states or close to pure states. Such states are of
interest for a variety of reasons. First, pure states have zero en-
tropy. Thus, as a random variable, they contain the most infor-
mation and many theoretical results in quantum information are
derived for these states. Second, the purity P�ρ� of a state ρ is
invariant under unitary transformations. The purity is defined
as P�ρ� � Tr�ρ2� (ρ being the density matrix), with P � 1

for a pure state and P < 1 for mixed states. Thus, under time
evolution of a closed system, pure states always remain pure
states. These are the reasons that most applications of quantum
information ideally deal with mapping pure states onto other pure
states. Of course, a realistic experimental scenario also contains
uncertainties and imperfections, and the system is not always
closed. Thus, the resulting states in experiments are not perfectly
pure, but they nevertheless can often be described by states that
are close to pure states. Finally, some quantum channels, describ-
ing noise processes and open system evolution, map pure states to
states that can be approximated by relatively pure states. In the
language of the density matrix, a pure state is described by a
rank-1 density matrix, whereas a relatively pure state is described
by a low-rank density matrix, having a small number of nonzero
(sparse) eigenvalues relative to the system dimension. Accordingly,
a state that can be approximated by a relatively pure state has a
small number of significant eigenvalues. All these states fall under
the category of sparse (or compressible) states and are addressed
by our method.

An essential requirement for CS recovery to work well is that
each measurement carries information. This is achieved by per-
forming measurements in a basis that is least correlated (so-called
the “least coherent” in the language of CS) with the basis provid-
ing the sparse representation. In the field of optics, for example,
two such bases naturally occur in the form of real space and
Fourier space. For a sparse signal in real space, measurements per-
formed in Fourier space are good for CS and vice versa. Thus, in
the spirit of CS, we introduce mixing between the physical modes
in the system. In the context of indistinguishable photons in dis-
crete spatial modes, the mixing is realized by a random, linear
coupler, which can be experimentally realized by beam splitters
[51] or by coupled modes in integrated photonics [8,20,52,53].
The coupler corresponds to the single observable and describes
the single experimental setup in this scenario. By using a single
coupler, the disadvantages of changing the experimental setup are
avoided.

However, measurements taken with a single observable do not
contain enough information for recovering the state of a quantum
system (the density matrix). This is because a single observable of
dimension d yields at most d different measurement outcomes,
whereas even a pure state has more degrees of freedom �2d − 1�,
let alone relatively pure states, which require even more measure-
ments. To overcome the lack of measurements, we add an ancilla
in a known state to the state we wish to recover. This requires a
short explanation about ancillas in quantum information.

Using known inputs to a system to improve its probing is a
widely used concept in optical detection, from spectral interfer-
ometry [54] to optical homodyne detection [55,56] and inte-
grated photonic schemes [57–59]. In the quantum context,
consider a quantum system ofmmodes carrying information with
a coupler that couples (mixes) the information in the modes. An
ancilla is the addition of m 0 new modes with known inputs (say,
zero input), but the evolution in the system couples these modes
with the modes of the original system. The total number of modes
where the measurements take place is therefore M � m� m 0.
The input state of the extended system is a tensor product of the
original state ρ0 and the ancilla state ρancilla, such that ρin �
ρ0 ⊗ ρancilla. Because the input is a simple product state, its
mutual information �I�A:B� � S�A� � S�B� − S�A; B�, where
S�ρ� � −Tr�ρ log ρ� is the von Neumann entropy] is zero:
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S�ρ0 ⊗ ρancilla� � S�ρ0��S�ρancilla�⇒I in�original:ancilla� � 0.
However, after the evolution, the state is ρout � Uρ0 ⊗ ρancillaU†,
where U is the evolution operator in the system. Whenever the
evolution couples between the ancilla and the original system,
such that the output state is not a pure tensor product anymore,
ρout ≠ ρout0 ⊗ ρoutancilla, the mutual information at the output is
larger than zero. Physically, this means that the ancilla effectively
increases the number of measurements (see Supplement 1). In our
system specifically, the dimension of the ancilla should be large
enough so as to account for the missing information to facilitate
the recovery of the input state from a single observable. In
photonics, the ancilla is conveniently realized by adding vacuum
ports at the input. Surely, increasing the system dimension to the
full d 2 − 1 degrees of freedom (for a generic density matrix of
dimension d ) is possible, such that a single observable accounts
for all the measurements required for QST. However, for large
values of d , the number of required measurements and the
number of required ancilla modes for full QST can be very large.
Here, using the prior knowledge that the input state is sparse
allows us to considerably reduce the required dimensional increase
of the ancilla.

2. METHODS

With the notions of sparsity, the addition of the ancilla, and the
mixing between the degrees of freedom in mind, we can formulate
the problem. Our goal is to recover a density matrix ρ0 of dimen-
sion d and rank r (unknown but small relative to d ) from mea-
surements of a single observable A. Consider a system of N
photons in m ports [Fig. 1(a), with N � 3 and m � 4], having

dimension d �
�m − 1� N

N

�
[in Fig. 1(a), d � 20]. We add

vacuum ports [Fig. 1(b)], realizing the ancilla in the state
jψ ancillai � j0i, such that the total number of ports is M > m
(M − m vacuum ports are added, in Figs. 1(b) and 1(c), where
M � 8 and M − m � 4). The dimension of the system is now

D �
�M − 1� N

N

�
> d , and the state of the joint system is

described by the D-dimensional density matrix ρ �
ρ0 ⊗ ρancilla � ρ0 ⊗ j0ih0j. The mixing is realized by a linear,
random coupler U of M ports, introduced between the input
and the number-resolving detectors at the output [Fig. 1(c)],
causing the state to evolve according to

ρ0 ⊗ j0ih0j ↦ U�ρ0 ⊗ j0ih0j�U†; (1)

where U ∈ U �D� is the evolution of the entire system, original
state, and ancilla, dictated by the coupler U ∈ U �M�, such that
U ≠ Uoriginal ⊗ Uancilla. See Supplement 1 for further details.

The measurements performed are correlation measurements
of N photons. This set of measurements, along with the linear
coupler, define the observable that we use:

A �
X
i
iU†jfngiihfngijU ∈ CD×D; (2)

where A† � A is the single observable and jfngii � jni1ni2…niM i
is the ith Fock state with niq photons in port q (see the details in
Supplement 1). Experimentally, these measurements describe the
N -fold correlation measurements after the linear coupler. The
problem now translates into finding ρ0 ∈ Cd×d , a positive semi-
definite matrix ρ†0 � ρ0, ρ0 ≥ 0 (an Hermitian matrix with non-
negative eigenvalues) with unit trace Tr�ρ0� � 1, having the
lowest rank and conforming to the measurements

yi � Tr�ρU†jfngiihfngijU�
� hfngijUρU†jfngii; i ∈ f1;…; Dg: (3)

We emphasize that the number of measurements here is

D �
�M − 1� N

N

�
, and each measurement is repeated

N repeat times to obtain an approximation of the value of
Tr�ρjfngiihfngij�. However, since they are all derived from a
single realization of the coupler, all of these measurements can be
realized in a single experimental setup.

The density matrix we wish to find is the solution to the
problem

minρ0 rank�ρ0�
subject to ρ†0 � ρ0; ρ0 ≥ 0; Tr�ρ0� � 1

jTr�ρ0 ⊗ j0ih0jAi� − yij ≤ ε; i � 1;…; D: (4)

Here, Ai � U†jfngiihfngijU is the spectral decomposition of the
single observable [Eq. (2)]. This optimization problem is related
to the matrix completion problem [60–62] with the additional
constraints stemming from the physical nature of the object that
we wish to recover and the measurements derived from the single
observable. This problem is not convex due to the rank objective.
Thus, to find the density matrix ρ0, we utilize the logdet [63]
approach, in which the nonconvex rank is replaced by the loga-
rithm of the matrix determinant, which in turn is linearized to
yield the following iterative algorithm:

minX k
Tr�X k−1 � δI�−1X k;

subject to X k ≥ 0; Tr�X k� � 1; X †
k � X k;

jTr�X k ⊗ j0ih0jAi� − yij ≤ ε; i � 1;…; D: (5)

Here, in iteration k, we look for the matrix X k, where X k−1 is the
solution of the previous iteration and δ is a small regularization
parameter. The parameter ε is related to the measurement noise.
The algorithm step described in Eq. (5) is a semidefinite program.
The result of the minimization of the linearized objective is the
minimization of the logdet function at each iteration, since logdet
is concave, meaning that the function curve lies beneath its tan-
gent. Therefore, logdet�X k � δI� converges to a local minimum
of logdet�X � δI� [63]. Other methods can be utilized as well;
see the details in Supplement 1.

Fig. 1. (a) A system ofN photons inm ports, withN � 3 and m � 4.
The input state is assumed to be sparse, that is close to a pure state. (b) In
our scheme, the dimension is increased by the addition of an ancilla,
taking the form of vacuum ports in a photonic system. (c) The mixing
between the degrees of freedom is realized by a random, linear coupler in
the larger system.
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The information evolves in our setting as follows. Consider an
ensemble of quantum states of varying ranks r ∈ f1;…; dg. Each
state undergoes a depolarization channel ρ0 ↦ �1 − μ�ρ0 � μ

d I d ,
realizing noise in the state. The resulting state has r significant
eigenvalues. Then, the density matrix evolves in the linear cou-
pler, which has a large dimension and provides mixing between
the ports. The information propagates to the output ports, which
are where the measurements of the single observable are taken.
The measured single observable includes noise added to it.
This is the “hardware” defining our system.

Next, we demonstrate the power of our scheme to recover
quantum states of rank r (unknown but small relative to the di-
mension of the system). The input to our recovery procedure is
the noisy single-observable measurements yi; i ∈ f1;…; Dg. The
algorithm (described in Supplement 1) results in the recovered
density matrix ρrec. To evaluate the recovery performance, we
compare ρrec to the original density matrix ρ0 by means of the

fidelity between the two states F �ρ0; ρrec� � Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1∕20 ρrecρ

1∕2
0

q
.

An example of the original and recovered density matrices is
presented in Fig. 2(a). The density matrix of rank 2 describes
three photons in three input ports. The ancilla used consists
of four vacuum ports, yielding a total of seven output ports.
The original and recovered density matrices match very well, with
a fidelity of 0.96. To test the performance of our methodology, we
generate an ensemble of mixed density matrices of various ranks.

The matrices are sampled from a product measure of the eigen-
values and eigenvectors, where the uniform measures on the unit
simplex and the unitary group are used, respectively (see the
details in Supplement 1). The recovery fidelity without measure-
ment noise, averaged over 200 random realizations of the density
matrix for each rank and 10 realizations of the random coupler, is
shown in Fig. 2(b) (solid lines). For each recovery, measurements
from a single coupler are used, as the different realizations are
employed for the sake of averaging (see Supplement 1). The dif-
ferent solid curves correspond to a varying number of output
ports M ∈ f7; 9; 11g. As expected, the fidelity is very high for
low ranks, describing states that are relatively close to pure states.
The fidelity grows with the increase of the system dimension
through the ancilla (which also increases the dimension of the
single observable). The fraction of measurements used, out of
the total number of measurements required for full QST, is
21%, 42%, and 71% for M � 7, 9, and 11, respectively. For
example, for rank 2 (almost pure states), we can recover the quan-
tum state with only 21% of the total measurements, while for
rank 6, we would need 71% in this small system.

The dotted lines in Fig. 2(b) describe the average recovery
fidelity in a noisy scenario. Here, depolarization noise of 2% is
added to the state, and measurement noise of 25 dB is added
to the measurements. Once again, the recovery from a single
setup works well for low-rank density matrices describing states
that are close to pure states. Importantly, the recovery does not
depend on the exact realization of the coupler, as long as it is
sampled from the correct distribution (see Supplement 1 for de-
tails). Motivated by boson sampling [17], the theory and exper-
imental realization of such Haar random linear optical couplers
have been developed significantly [52,64]. In Fig. 2(c), the mean
recovery fidelity is shown for a state of a larger dimension. Here,
the density matrices describe N � 3 photons in m � 7 input
ports and M � 16 output ports. The dimension of the system
is d � 84, meaning that the number of measurements required
for full QST is d 2 − 1 � 7055. However, as Fig. 2(c) shows, we
recover the state with D � 816, meaning that high-fidelity
reconstruction is achieved with only 11% of the measurements
required for full QST. In Fig. 2(d), we compare the recovery
fidelity of a Haar random coupler to that of a simpler coupler,
consisting of uniform, evanescently coupled waveguides with
nearest-neighbor coupling only. The simple waveguide array
(1D photonic lattice) offers some mixing between the degrees
of freedom but at a level considerably lower than the Haar
random coupler. As evident in the figure, the simpler coupler
fails to allow the recovery from a single observable, in a single
setup, whereas the Haar coupler performs perfectly up to rank
6. As seen in the results for a large dimension [Fig. 2(c)] compared
to the results in Fig. 2(b), as the dimension of the original state
increases, low-rank states become amenable for recovery from a
smaller portion of the measurements required for complete QST
(∼0.11 of the measurements for d � 84 comparing to
∼0.21–0.71 of the measurements for d � 20). This result is
expected from the theory of CS, where for ideal measurement
matrices, the number of measurements required to recover
a rank-r state is Nmeasurements ≥ O�rdpoly�log d �� [25,65],
where poly�log d � is a polynomial in log d . In our case,

Nmeasurements � D �
�M − 1� N

N

�
, where M is the number

of output ports and N is the number of photons. Therefore,

Fig. 2. (a) Recovery example of a rank-2 density matrix describing
N � 3 photons in m � 3 input ports and M � 7 output ports. The
state is recovered with fidelity 0.96. (b) Mean fidelity of the state recov-
ered from measurements of a single observable versus rank of input state.
Solid curves: recovery with practically no noise (SNR of 100 dB) using 7,
9, and 11 output ports. Dotted curves: same as the solid curves but with
depolarization noise added to the state and measurement noise of 25 dB
added to the measurements. The plots show the average over 200 real-
izations of the density matrix and 10 realizations of the random coupler
for each point. The measurements used here are only a portion (21%–
71%) of the measurements required for full QST. (c) Mean fidelity versus
rank of input state, describing N � 3 photons in m � 7 input ports and
M � 16 output ports, averaged over 15 realizations of the density ma-
trix. Here, the dimension of the system is large, d � 84. The number of
measurements in a single setup in this scenario is 11% of the measure-
ments required for full QST. (d) Comparison between a fully mixing
coupler (randomly sampled from the Haar measure) and a simpler
coupler, consisting of identical evanescently coupled waveguides. The
simpler coupler does not facilitate recovery from a single observable,
whereas the Haar coupler performs well up to rank 6.
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we expect that as the dimension increases, the sparsity will enable
recovery of the state from a single observable measurement with a
smaller portion of the measurements required for full QST.

The recovery fidelity in Figs. 2(b)–2(d) is obtained using the
input state, known in simulations, and comparing it to the recov-
ered state. However, in experiments, the input state is not known.
Thus, some method is required to assess the correctness of the
obtained solution as well as make sure that sufficient measure-
ments have been taken. We suggest the following procedure to
assess whether the obtained solution can be trusted—given the
coupler (which determines the number of measurements), would
that coupler suffice to recover the quantum state at high fidelity,
or would a larger coupler be required. To that end, after the mea-
surements are recorded (using an upper bound on the expected
rank to fully harvest the reduction in the number of degrees of
freedom) and a solution is obtained, we artificially discard a small
portion (5%) of the measurements. Then, we attempt to recover
the density matrix from the smaller sample. If the two solutions
are similar (in the Frobenius norm sense, for example), then we
consider the solution trustworthy. This method is based on the
observation that if enough measurements are used, the solution
should not be sensitive to a small reduction in the number of
measurements.

This method for evaluating the correctness of the recovery
does not require using the input state or taking more measure-
ments for the evaluation process. The results are presented in
Fig. 3. By following this approach, the yellow areas are those
for which the solution can be trusted. They are obtained without
any averaging, only using the measurements and the measure-
ment matrix, both of which are at the hands of the experimen-
talist. The solid lines are taken from Fig. 2(b). Comparing the
two, this method captures the ranks for which the recovery is per-
fect, without using the input state. In particular, for each coupler
size [7 in Fig. 3(a) and 9 in Fig. 3(b)], a single density matrix
realization has been generated for every rank. The measurements
are calculated (with a single coupler realization), and a recovery is
obtained with all the measurements and with a reduced set of
measurements, where the discarded 5% of the measurements
are chosen randomly. Then, the norm difference (normalized)
is calculated. If it is smaller than 10−2, the solution is considered
trustworthy (the corresponding rank is shaded). See Supplement 1
for further details and extensions.

3. RECOVERING QUANTUM STATES WITH CLICK
DETECTORS

Following the success of our methodology to recover the quantum
states from a single observable, we wish to tackle another problem
having to do with recovering quantum states from partial mea-
surements: recovering the quantum state using click detectors
(i.e., detectors that cannot resolve the number of photons
detected). Generally, photon-number-resolving detectors are re-
quired for performing QST of multiphoton states. However, such
detectors often exhibit poor performance (primarily in terms of
sensitivity and fall times, which affects the sampling rate), and
currently the majority of quantum optics experiments are carried
out with click detectors. One possible avenue for optical QST
with click photodetectors is to mimic their functionality by
the addition of beam splitters [66]. However, this method intro-
duces further losses to the system and is not scalable to larger
numbers of modes and photons. A different approach has recently
been shown to obtain the counting statistics of light [57,58].

As we now show, our scheme works even in the extreme case of
combining a single-observable with click detectors. That is, we
recover the full density matrix of a multiphoton state with a fixed
number of photons, from a single observable and without num-
ber-resolving detectors. For an N photon state in m ports and
m > N , we use regular click detectors, detecting the presence
of more-than-zero photons in each detection event. We use only
the detection events involving N different clicks. In these
events, counting and detecting are the same. Now, we use a partial
set of measurements: yi � hfngijUρU†jfngii, as before, only
with i ∈ I , such that I � fi ∈ f1;…; Dgjniq ∈ f0; 1g∀ q ∈

f1;…; Mgg and jI j �
�M
N

�
. Naturally, these events do not

contain all the information [67] needed for quantum state
reconstruction. However, by using our scheme, we can overcome
this deficit and recover the full density matrix from such very
partial measurements.

Figure 4(a) shows an example of a rank-2 state describing
N � 3 photons in m � 3 input ports. Noise of 25 dB is added
to the measurements, and the state is recovered from a single
observable, without number-resolving detectors. In Fig. 4(b),
the recovery fidelity versus the rank of the density matrix describ-
ing N � 3 photons in m � 4 input ports,M � 11 output ports,
and measurement noise of 25 dB, without number-resolving

Fig. 3. Fidelity of the recovery of the quantum states from Fig. 2(b) in
settings with (a) seven and (b) nine output ports. Solid lines: recovery
fidelity obtained by comparing to the original states, known in our sim-
ulation but not available in experiments. Shaded areas: the ranks for
which our scheme to gain confidence in the solution yields the answer
“trustworthy” without knowing the input state. Without knowledge of
the original state, the shaded areas match the ranks for which perfect
recovery is achieved from only a fraction of the measurements, using
the single observable, in a single setup.

Fig. 4. (a) Recovery example of a rank-2 density matrix describing
N � 3 photons in m � 3 input ports, M � 8 output ports, and with
25 dB of measurement noise. The state is recovered with 0.93 fidelity
from measurements using click detectors. (b) Recovery fidelity with click
detectors of density matrices of N � 3 photons in m � 4 output ports
and M � 11 output ports, corresponding to 41% of the measurements
required for QST, in a single setup.
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detectors. Low-rank states are recovered from the noisy measure-
ments, in a single setup, without number-resolving detectors.

In the state recovery using click detectors, the number
of measurements depends on the system characteristics as

Nmeasurements �
�M
N

�
, where M is the number of output ports

and N is the number of photons. Here as well, we expect that the
sparsity will reduce the portion of measurements required to
recover the state with click detectors as the dimension of the
original state d increases.

4. DISCUSSION AND CONCLUSIONS

In our scheme, to obtain state reconstruction with a single observ-
able, in a single experimental setup, a larger system is required.
This fact raises the question of a possible increase in the total loss
(absorption) in the system. However, we reduce the number of
measurements, relative to the full number required for tomogra-
phy, by using sparsity. Hence, the number of added ports, as well
as the absorption increase, is kept low. Furthermore, recent exper-
imental advances have demonstrated a random Haar coupler with
9 ports, which is nearly unitary, having total transmissivity of
more than 99%—including insertion loss, which is irrelevant
for the vacuum ports [53]. In addition, a new decomposition
method of Haar unitaries is expected to reduce the losses even
further [68].

Finally, the two aspects of our approach, namely, performing
tomography with a single observable and in a single setup, are
augmented by a third point of view. Often, QST is formulated
in the language of positive operator valued measurements
(POVMs) [69], which are generalized quantum measurements.
In POVM language, measurements are described not by observ-
ables but rather by a set of positive semidefinite operators
fEig; E†

i � Ei; Ei ≥ 0, which sum up to the identity
P

iE i � I.
The probability for each result is given by p�ijρ� � Tr�ρEi�. This
is a generalization of the observables-related measurements since
the POVM elements need not be orthogonal. Our method can be
thought of as an efficient approach to the Neumark theorem
[70,71], using CS to reduce the dimension of the ancilla, which
is used to realize general quantum measurements (POVMs) using
projective measurements. See Supplement 1 for further details.

In conclusion, we showed that the generic prior knowledge of
having a low-rank density matrix (sparsity) can be used to recover
the complete quantum state from measurements of a single
observable, often corresponding to a single experimental setup,
in an efficient manner. This is achieved by adding an ancilla
to the original state and introducing a random linear coupler
between the input state and the measurements. We further used
these ideas to recover the complete density matrix of a state (with
a fixed number of photons) with click detectors. We have shown
how the main ideas of the scheme can be implemented in a system
of N photons in m input modes. However, these ideas can be
extended to any system supporting the addition of an ancilla
and enough mixing between the degrees of freedom in the form
of interactions. A natural development of our scheme would be to
try to optimize the linear coupler, such that it is ideal in the sense
of CS. A further development is the addition of mixing between
fixed photon number subspaces in the Hilbert space, aiding in the
recovery of density matrices describing multiphoton states with a
varying photon number, with click detectors.

Funding. ICORE Excellence Center “Circle of Light,” Israel
Science Foundation (ISF); Proof of Concept (PoC), H2020
European Research Council (ERC).

See Supplement 1 for supporting content.
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