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We present the first experimental observation of accelerating beams in curved space. More specifically,
we demonstrate, experimentally and theoretically, shape-preserving accelerating beams propagating on
spherical surfaces: closed-form solutions of the wave equation manifesting nongeodesic self-similar
evolution. Unlike accelerating beams in flat space, these wave packets change their acceleration trajectory
due to the interplay between interference effects and the space curvature, and they focus and defocus
periodically due to the spatial curvature of the medium in which they propagate.
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In 1979, Berry introduced a unique solution to the
potential-free Schrödinger equation: a propagation-invariant
wave function, shaped as an Airy function, that accelerates in
time in a shape-preserving fashion [1]. This idea remained
dormant for almost 30 years, until Christodoulides and his
team demonstrated, theoretically and experimentally [2,3],
the existence of an accelerating electromagnetic (EM) wave
packet: the Airy beam—a paraxial beam that propagates
along a parabolic trajectory while preserving its shape. Since
the Airy function is not square integrable, it carries infinite
power and ideally such beams should be launched from an
infinite aperture. Physically, as shown in Ref. [3], truncated
Airy beams still exhibit shape-preserving acceleration but
for a finite distance only. These results were subsequently
generalized to two dimensions, where additional solutions,
accelerating parabolic beams, are also possible [4,5].
However, since the Airy beams are exact solutions of the
paraxial wave equation, their shape-invariant acceleration is
limited to small angles, and their features must be much
larger than the optical wavelength. This limitation pushed
researchers to search for beams that have nonparaxial
features and can accelerate to large angles. Indeed, accel-
erating beams that are exact solutions of Maxwell’s equa-
tions were discovered in 2012 [6] and observed soon
thereafter [7–10]. These beams follow circular trajectories
and can exhibit shape-invariant acceleration up to angles as
large as 180° (asymptotically). Shortly thereafter, nonpar-
axial accelerating beams were generalized to new families in
two and three dimensions [11–15]. All these discoveries

opened a new route in optics and were followed by addi-
tional ideas of accelerating beams in arbitrary convex
trajectories [16,17], accelerating beams in photonic crystals
[18–20], and in nonlinear media [21–24].
The main feature of all accelerating beams carrying finite

power is that, although their center of mass follows a straight
trajectory—as expected from conservation of momentum—
their main lobe follows a curved path in a shape-preserving
manner, up to large distances. This has major consequences,
since all light-matter interactions depend on the local
intensity of the beam, not on the center of mass (which is
an average quantity). For example, the optical forces of
radiation pressure and the gradient force depend on the local
intensity; likewise, stimulated emission, ionization, and
nonlinear optics effects such as frequency conversion and
self-focusing all depend on the local intensity. Thus, even
though the “center of mass” of the finite accelerating beams
moves on a straight line, still, their accelerating main lobe
gives rise to effects occurring on curved trajectories.
Naturally, this enabled a variety of applications ranging
from curved plasma channels using femtosecond Airy beams
[25], manipulation of microparticles in nonconventional
ways [26–28], and laser micromachining along a curve
[29], to single-molecule imaging using the curved point-
spread function [30], light-sheet microscopy using Airy
beams [31], among many others. In recent years, it became
clear that the concept of accelerating wave packets does not
belong only to optics; rather, it is a general phenomenon that
appears in any wave system. For example, accelerating wave
packets were introduced in sound waves [32,33], electron
beams [34], and even for relativistic fermions [35]. More
recently, the concept of accelerating beams was proposed
into curved-space optics [36]. This paper presents the first
experimental observation of shape-preserving accelerating
wave packets in curved space.
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Let us briefly explain the ideas underlying optics in
curved space. Perhaps the best-known example of electro-
magnetism in curved space comes from general relativity,
where light is propagating in the presence of the curved
space in the proximity of a massive object, which bends the
trajectory of the light. However, gravitational effects are
extremely weak in a laboratory setting. On the other hand,
research on optics in curved-space enables curved-space
experiments in the lab, by utilizing the equivalence between
the curved-space landscape for EM waves induced via GR
effects and the curved space created by space-dependent
electric and magnetic perambilities [37]. Most certainly, it is
intriguing to have the ability to observe curved-space
phenomena in the laboratory in a controllable system, where
the physical parameters can be modified at will. Exactly for
this cause various experimental systems suggest analogous
phenomena that can be demonstrated in laboratory experi-
ments, ranging from cold atoms [38–41] to optical systems
[42–46] and metamaterials [47]. One example is using a
moving dielectric medium that acts as an effective gravita-
tional field on the light [44]. Another route for such studies
is to create curved space by engineering the geometry of the
space itself. This idea was first demonstrated by Batz and
Peschel [48],who explored the dynamics of light propagating
within a thin-film waveguide covering the curved surface
area of a three-dimensional body [49,50], effectively creating
2Dcurved space for the light.However, thus far, in all of these
experiments on curved-space optics, the wave packets were
propagating on geodesic trajectories, which are naturally the
shortest paths, analogous to straight lines in flat geometry.On
this background, we proposed shape-preserving accelerating
beams in curved space [36], where the acceleration of beams
is manifested in nongeodesic trajectories within the curved
space. Thus far, however, no experiments have ever been
carried out on shape-preserving accelerating beams in any
curved-space system.
Here, we present the first experimental observation of

accelerating beams in curved space. We demonstrate
accelerating beams propagating within a thin spherical
waveguiding layer, which forms a spherical-space setting
for the EM wave. We find closed-form solutions for
the wave equation in curved space that exhibit shape-
preserving propagation along nongeodesic trajectories.
Each of the lobes comprising these beams propagates
along a different nongeodesic trajectory. These accelerating
curved-space beams offer several features that are unique to
curved-space settings: for example, they focus down in a
scaled nongeodesic self-similar fashion, up to a plane
where they break up, and subsequently undergo mirror
reflection and start expanding again. This characteristic
behavior occurs repeatedly as the accelerating (non-
geodesic) beam travels around the surface of the sphere.
We begin by finding the accelerating shape-preserving

beams propagating in a thin spherical dielectric shell. Since
the problem is linear, we describe these solutions as a

specific superposition of the eigenmodes of the EM field in
this geometry. Consider the propagation of a monochromatic
beam in a thin-film waveguide of curved spherical shape: a
thin spherical dielectric shell. We begin with Maxwell’s
equations in spherical coordinates ðr; θ;ϕÞ, consider the
wave polarized within the spherical shell (TM polarization),
and derive the scalar wave equation for the electric field
following Ref. [48]. When the radius of curvature is much
larger than the wavelength, 2=R2 ≪ 1=λ2 (recalling that
2=R2 is a Gaussian curvature of a sphere), the longitudinal
(ϕ component) of the TM field can be neglected [48]. The
field is therefore scalar, E ¼ ðEr; Eθ; EϕÞ ¼ ð0; ζ; 0Þ. We
further assume that the spherical shell is thin and can support
only one guided mode in the radial direction. This yields

−∇2
γζ − ∂2

rζ ¼ k2ζ; ð1Þ
where ∇2

γ is the 2D Laplacian in the coordinates tangent to
the surface, γ is the metric of the surface, ∂r is the derivative
with respect to the radial coordinate, and k ¼ k0n0, where k0
is the free-space wave number and n0 is the refraction index
of the spherical shell. The metric of a sphere is

ds2 ¼ R2dθ2 þ cos2ðθÞR2dϕ2;

γ ¼
�
R2 0

0 R2cos2ðθÞ

�
; ð2Þ

whereR is the radius of the shell and θ ¼ 0 is on the equator.
Substituting in Eq. (1) yields

− 1

R2
∂2
θζ þ

1

R2
tanðθÞ∂θζ − 1

R2cos2ðθÞ ∂
2
ϕζ − ∂2

rζ ¼ k2ζ:

ð3Þ
Under the above assumptions, the electric field can be

written as ζ ¼ ψðθ;ϕÞξðrÞ, which decouples Eq. (3) into
two equations,

∂2
rξðrÞ þ k2RξðrÞ ¼ 0; ð4Þ

− 1

R2
∂2
θψðθ;ϕÞ þ

1

R2
tanðθÞ∂θψðθ;ϕÞ

− 1

R2cos2ðθÞ ∂
2
ϕψðθ;ϕÞ ¼ k2Tψðθ;ϕÞ; ð5Þ

where kR and kT are the wave numbers in the radial and the
transverse directions, respectively, such that k2 ¼ k2R þ k2T .
Equation (4) describes the field dependence on the radial
direction and Eq. (5) describes the tangential part. In the
radial direction, the field is guided by the thin shell, whose
guided modes are ξðrÞ. For the tangential direction, we use
separation of variables, defining ψðθ;ϕÞ ¼ XðθÞZðϕÞ, and
derive two equations,

∂2
ϕZðϕÞ þ ðkϕRÞ2ZðϕÞ ¼ 0; ð6Þ
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− 1

R2
∂2
θXðθÞ þ

1

R2
tan θ∂θXðθÞ ¼

�
k2T − kϕ2

1

cos2θ

�
XðθÞ;

ð7Þ
where kϕ is the wave number in the ϕ direction (jkϕj ≤ jkT j).
The solutions XðθÞ of Eq. (7) are the associated Legendre
polynomials Ym

l , which serve as a complete orthogonal basis
of eigenmodes for the EM field within the spherical shell.
The solutions of Eq. (6) are forward and backward propa-
gating waves. Henceforth, we consider only for the forward
propagating solutions, as we are interested in a beam
launched from ϕ ¼ 0. Getting back to the full solution, a
propagating (nonevanescent) TM mode is given by
ζ ¼ XðθÞZðϕÞξðrÞ ¼ Ym

l ðθ;ϕÞξðrÞ, where the radial func-
tion ξðrÞ is the guided mode of the radial shell (acting as a
dielectric waveguide), whose actual structure [51] bears no
importance henceforth (except for setting the value of kT)
and Ym

l ðθ;ϕÞ is a spherical harmonic. The integer order and
degree of Ym

l , in Eqs. (6) and (7), are determined by thewave
numbers l ¼ kTR and m ¼ kϕR, respectively. A general
beam propagating in this setting can be described as a
superposition of eignemodes,

ψ lðθ;ϕÞ ¼
X
m

AmPm
l ðcos θÞe−imϕ; ð8Þ

where Pm
l ðcos θÞ is the associated Legendre polynomial and

Am is the complex amplitude of the mth mode. These
solutions are eigenmodes; that is, each one of them accu-
mulates only phase as it evolves on the spherical shell. An
example of the transverse structure of a mode is depicted in
Fig. 1(a); this mode has two intense lobes and a weaker

oscillating tail in between. Being an eigenmode, this mode is
shape invariant; however, a superposition of modes does
experience diffraction effects, as beams generally do. That is,
an arbitrary initial beam ψ lðθ;ϕ ¼ 0Þ experiences diffrac-
tion effects because its eigenmodes accumulate different
phases as they evolve in ϕ, according to Eq. (8). An example
of such superposition of modes is the beam shown in
Fig. 1(b), and its modal power spectrum (absolute values
of the modal amplitudes) is shown in Fig. 1(e).
Next, we construct a localized beam that propagates

along a nongeodesic trajectory in a self-similar fashion. A
convenient way to construct such a beam is by truncating a
single transverse eigenmode in the spirit of Ref. [52], which
proposed a method of finding accelerating beams in flat
space by truncating a high-order Hermite-Gauss beam. For
the truncated beam to be approximately shape preserving,
the truncation has to be done in such a way that the beam
bears close resemblance to the truncated eigenmode. Under
such conditions, the truncation of an eigenmode projects
onto multiple eigenmodes, with the largest projection on
the original eigenmode whose truncation forms the beam.
Specifically in our problem, we find that truncating an
eignemode in an exponential fashion produces a beam that
is propagating self-similarly for a finite distance, whose
extent is determined by the spatial truncation. Even more
importantly, each of the individual lobes of this beam
follows nongeodesic trajectories in a self-similar fashion,
for a finite distance (with the following single exception:
the eigenmode with l ¼ m has only a single lobe, and its
trajectory follows a geodesic line).
An example of a beam formed by exponential trunca-

tion of the eigenmode l0 ¼ 1000, m0 ¼ 950 is shown in

FIG. 1. (a)–(c) Calculated intensity cross sections of (a) a single transverse eigenmode (mode number l ¼ 1000, m ¼ 950) of the
spherical shell, (b) the beam formed by abruptly cutting this mode, and (c) the shape-preserving accelerating beam constructed from a
Gaussian superposition of modes of the same phase centered around l0 ¼ 1000, m0 ¼ 950; the lobes of this mode propagate in
nongeodesic trajectories in a self-similar fashion. Experimentally, this beam can be generated by truncating the l0 ¼ 1000, m0 ¼ 950
eigenmode with an exponential density filter. The transverse coordinate is given in units of the radius R. (d)–(f) Corresponding spatial
power spectra of the beams depicted in (a)–(c) as a function of mode number.
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Fig. 1(c). This accelerating beam can be written as a
Gaussian superposition of associated Legendre polynomials:

ψm0;l0ðθ;ϕÞ ¼
X
m

e−ðm−m0Þ2=N2

Pm
l0
ðcos θÞe−imϕ: ð9Þ

This construction yields accelerating beam with lobes
that are evolving on different trajectories, whose parameters
are set by m0 and l0. The integer m0 is the degree of
transverse mode that was truncated to form the accelerating
beam. m0 also defines the center of the modal spectrum
of the beam, and can vary in the range 0 ≤ m0 ≤ l0.
The integer l0 is a constant associated with the radial
wave number ðkRÞ of the mode of the waveguide formed
by the dielectric shell [defined by Eq. (4)], which yields
l0 ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2R

p
. For simplicity, we shall henceforth

assume that the waveguiding shell is thin enough to support
a single radial guided mode, with a propagation constant
kR, as schematically shown in Fig. 2(a). The summation
over m defines the modal spectrum of the accelerating
beam. This construction yields a highly asymmetric beam:
the field decays quickly to zero on one side of the main
lobe, whereas the other side has multiple lobes propagating
in different parallel trajectories (latitudes) on the surface of
the sphere. This asymmetry in the beam structure is the
curved-space manifestation of the intimate relation between
Airy beams and caustics [1,52]. The trajectory of the
accelerating beam (as a whole) changes according to the
choice of m0. Namely, each of the lobes of an accelerating
beam is evolving on a trajectory of constant θ; the higher
the integer ðl0 −m0Þ, the larger the curvature of this

trajectory, and the closer it gets to the pole of the sphere.
For a given radial mode l0, the highest acceleration is
obtained by truncating the transverse mode with the lowest
m0. An example of an accelerating beam constructed in
this way—as a Gaussian superposition of modes—is shown
in Fig. 1(c).
Next, we simulate the propagation of such accelerating

beams, within the spherical shell forming the curved-space
environment, Fig. 2(a). To do that, we develop a non-
paraxial beam propagation method for EM waves propa-
gating on the surface of the sphere. Figure 2(b) displays
the propagation evolution of three different accelerating
beams, highlighting that their trajectories deviate consid-
erably from the geodesic line. The main lobe of each beam
accelerates on a different nongeodesic trajectory marked by
the red dashed lines. Each of these beams has additional
lobes, located on a single side of their main lobe, while the
field on the other side quickly decays to zero (forming a
caustic). These sidelobes also evolve on nongeodesic lines,
which are parallel to the trajectory of the main lobe of each
of the beams, respectively. The accelerating trajectories
with higher l0 −m0 have higher curvatures. Moreover, as
l0 −m0 becomes larger, the transverse momentum carried
by these beams increases, manifested by the increased
density of the lobes for larger l0 −m0.
These beams have several interesting properties. Most

notably, it is easy to see that the main lobe of these beams
propagates on a nongeodesic trajectory, which is different
from the trajectory of “center of mass” (see simulations
in Figs. 2 and 3). To study this nongeodesic acceleration,
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FIG. 2. (a) Sketch of a spherical shell with the coordinate system marked. The beams propagate in the ϕ direction and their transverse
structure, shown in Fig. 1(c), extends in the θ direction. The thickness of the spherical shell is marked by the red arrows. In this region the
refractive index n0 is higher than in the surrounding medium n, and therefore the mode is confined within the shell. The structure of the
beams in the radial direction is dictated by Eq. (4). (b) Three accelerating beams that follow three different nongeodesic trajectories. A
beam with a larger l0 −m0 index follows an acceleration trajectory with a higher curvature. The larger l0 −m0, the higher the density of
the lobes, which corresponds to higher transverse momentum. The red dashed lines are the acceleration trajectories of the beams, while
the white dashed line shows the geodesic trajectory, which is the trajectory that a Gaussian beam propagating on a sphere would follow.
Notice that each of these beams forms a caustic: the field on one side of the main lobe quickly decays to zero, while the other side of the
beam consists of multiple lobes propagating in parallel on nongeodesic trajectories.
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we compare the trajectory of the accelerating main lobe of
this beam with the trajectory of a Gaussian beam whose
position and width is the same as of the main lobe of the
accelerating beam, when both beams are launched from the
same position (say, the ϕ ¼ 0 meridian). The trajectories
are marked by the arrows in Fig. 3(a). The difference
between the trajectories yields a cosine function, which,
within the range drawn here, is well approximated by
quadratic dependence on the propagation distance. Second,
the transverse structure of the beams, ψ l0;m0

ðθ;ϕ ¼ 0Þ, flips
every 180° of propagation, namely, jψ l0;m0

ðθ;ϕ ¼ 0Þj2 ¼
jψ l0;m0

ð−θ;ϕ ¼ πÞj2, as shown in Fig. 3(b). This effect is
due to the fact that the curvature of the spherical shells acts
as a lens for the propagating beam: the propagation maps
the beam to its modal spectrum after propagating a quarter
of a sphere (at ϕ ¼ π=2), and then the beam is recovered
mirror-reflected. Third, the direction of the main lobe
relative to the geodesic direction (which is what the center
of mass follows) can be varied by scaling the transverse
shape of the beam. For a narrow launch beam, the direction
of the main lobe is moving away from the geodesic line,
similar to an Airy beam in flat space. But in addition, the
curvature affects the propagation dynamics, acting like an
effective potential. When the beam width is increased
the trajectory of the main lobe is closer to the geodesic
line [Fig. 3(c)], but never crosses over to the other side.
Actually, in the limit of very broad lobes, the trajectories
of the accelerating beams in curved space coincide with
those in flat space, as one may expect. Altogether, in flat
space, paraxial and nonparaxial, making the beam narrower
always makes the trajectory steeper, but in curved space—
as we notice here—what matters is the interplay between
the width of the accelerating beam and the curvature of

space which acts as an effective potential. The trajectory of
the beam varies as a function of the width of its main lobe
and as a function of the radius of the sphere. Acting in this
fashion, the trajectory manifests the interplay between
interference effects causing the acceleration and the curva-
ture of the surface upon which the beam is propagating.
Hence, unlike the Airy beam of flat space where the beam
width uniquely defines the trajectory, here the acceleration
trajectory is not unique: the same trajectory can be followed
by beams propagating on spheres of different radii, by
properly engineering the widths of its lobes. Thus, the
trajectory of a shape-preserving accelerating beam on a
sphere is affected not only by the width of its lobes (as all
accelerating beams do) but also by the curvature of the
surface upon which it is propagating.
Finally, we demonstrate these shape-preserving accelerat-

ing (nongeodesic) beams in experiments, using the setup
sketched in Fig. 4(a). Our thin spherical shell is a crown-
glass hemisphere of 3 cm radius and 550 μm thickness
[Fig. 4(b)]. It is the shell of an incandescent light bulb cut in
half. We form the structured beam by reflecting a 532 nm
laser beam off a spatial light modulator that generates the
desired Gaussian modal superposition forming the accel-
erating beam. The structure of the accelerating beam in real
space is formed at the focal plane of the cylindrical lens. This
structured beam is coupled into the waveguiding layer of the
spherical shell. The surface of the shell is painted so as to
produce scattering, to make the propagation of the beam
visible. The scattered light is image onto a CCD camera
through a microscope objective [Fig. 4(c)].
The experimental results are shown in Fig. 5(a). First, we

launch the accelerating beam, which is a Gaussian super-
position of eigenmodes centered around the mode with

FIG. 3. (a) Simulated propagation on the surface of a sphere of radius R ¼ 1 cm, for the accelerating beam of l0 ¼ 1000, m0 ¼ 950
(red lines) whose structure is shown in Fig. 2(b), and for a beam composed of the main lobe only (blue lines). The accelerating beam
follows a nongeodesic path, whereas the isolated main lobe follows the expected geodesic line. The trajectories are marked by gray
arrows. (b) Propagation evolution of the accelerating beam over a hemisphere (180° on the sphere). The spatial profile of the beam flips
after propagating over half the sphere. (c) Angle difference ΔΘ between the geodesic line and the trajectory of the main lobe of the
accelerating beam of (a), as function of the main lobe width, in angular units (deg). When the lobes are very narrow, ΔΘ has a large
absolute value and therefore the acceleration is highly visible, whereas when the width of the lobes is increased, the lobes tend to
approach geodesic trajectories. The same principle holds if the size of the input beam is kept fixed but the radius of the sphere is varied.
Namely, increasing the radius of the shell has the same effect on the accelerating beam as decreasing the beam’s transverse size.
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l0 ¼ 567 000 and l0 −m0 ¼ 50; the value of l0 ≈ 2πRn0=λ
is defined by the radius of the sphere and the wavelength. In
the radial direction, this mode is approximately solely the
lowest radial mode, the solution of Eq. (4). We observe the

expected behavior during propagation—the beam propa-
gates in a nongeodesic trajectory in a self-similar fashion as
presented in Fig. 5(a). Second, for comparison, we also
launch a Gaussian beam, which is basically the isolated
main lobe of the accelerating beam (as the rest of the beam
is truncated). As shown in Fig. 5(a), the Gaussian beam
experiences diffraction broadening and follows a geodesic
trajectory, whereas the accelerating beam maintains its
shape for a considerable distance (at least up to 50° of
propagation), and its main lobe clearly follows a non-
geodesic trajectory up to 75° of propagation. The other
lobes of the accelerating beam also evolve on nongeodesic
lines, although they seem to maintain their shape for
distances shorter than that of the main lobe [Fig. 5(a)].
With the curved-space setting used in this experiment (the
light bulb), it is not possible to observe the beam profile for
longer propagation distances since the amplitude of the
beam decreases due to propagation losses (mostly scatter-
ing from surface roughness). To summarize the experi-
mental results, when we launch only the main lobe, the
beam evolves on a geodesic trajectory [blue profiles in
Fig. 5(a)], essentially conforming to the propagation of a
Gaussian beam on a sphere. In order to observe accel-
eration, we add the rest of the lobes, and observe that the
main lobe is now following a trajectory that is very different
than the geodesic line [red profile in Fig. 5(a)]. By
measuring the difference between these trajectories, we
experimentally evaluate the deviation from the geodesic
line, which gives the spatial acceleration of the accelerating
beam. As shown is Fig. 5(b), the observed experimental

FIG. 4. (a) Experimental setup. A collimated laser beam
(λ ¼ 532 nm) is reflected off a spatial light modulator to generate
the desired 1D spectrum (Gaussian modal superposition) of the
beam, which is then Fourier transformed by a cylindrical lens to
form the predesigned shape-preserving accelerating beam. This
beam is then coupled to the hemispherical thin glass shell (3 cm
radius, 550 μm width). (b) Experimentally observed propagation
trajectory of the beam accelerating on the surface of a spherical
shell. The propagation inside the shell is visible as a green beam
thanks to the scattering from the red paint of the shell. (c) Zoom-
in photograph of the lobes of the accelerating beam, as it
propagates within the spherical shell.
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FIG. 5. (a) Experimentally measured intensity profiles of the self-similar accelerating beam (red lines) and of the single-lobe beam
(blue lines), at various propagation stages on the spherical surface. The single-lobe beam is generated by taking just the main lobe of the
accelerating beam at the input plane. This beam experiences diffraction broadening while propagating on a geodesic line. On the other
hand, the accelerating beam is shape preserving up to 50°, while it propagates on a nongeodesic trajectory. This is clearly observed by
the increasing shift between the main lobe of the accelerating beam and the single-lobed beam. (b) The experimentally measured angular
difference between the single-lobed beam and the main lobe of the accelerating beam, as a function of angular propagation distance on
the spherical surface. The parabolic relation of this distance, and the fact that our structured beam maintains its shape for a large distance,
experimentally confirm the accelerating shape-preserving nature of our beam.
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deviation from the geodesic line is quadratic with propa-
gation distance, as predicted by the simulation.
In conclusion, we find shape-preserving accelerating

beams on spherical surfaces. The lobes of these beams
propagate along nongeodesic trajectories in a self-similar
fashion. We simulate their propagation and compare it to
the propagation of beams that follow geodesic trajectories.
Finally, we observe these accelerating beams in experi-
ments. To our knowledge, this is the first observation of
shape-preserving accelerating beams in curved space. In
this vein, we envision shaping and manipulating the
propagation of beams in curved-space environments, and
use such beams to manipulate nanoparticles in nonplanar
settings such as microchannels, blood vessels, etc.
Likewise, accelerating plasmonic beams in curved-space
settings can be designed for metallic bodies such as gold
spheres and ellipsoids, and used for various applications
that require transfer of power from a broad area to a small
region upon a nonplanar surface. Finally, designing shape-
preserving beams in curved space will be very helpful in
emulating 3D general relativity phenomena in optical
settings, expanding the vision of Ref. [46] into 3D.
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