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Phason dynamics in nonlinear photonic
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We study the dynamics of phasons in a nonlinear photonic quasicrystal. The photonic quasicrystal is formed by optical induction,
and its dynamics is initiated by allowing the light waves inducing the quasicrystal to nonlinearly interact with one another. We show
quantitatively that, when phason strain is introduced in a controlled manner, it relaxes through the nonlinear interactions within the
photonic quasicrystal. We establish experimentally that the relaxation rate of phason strain in the quasicrystal is substantially lower
than the relaxation rate of phonon strain, as predicted for atomic quasicrystals. Finally, we monitor and identify individual ‘atomic-
scale’ phason flips occurring in the photonic quasicrystal as its phason strain relaxes, as well as noise-induced phason fluctuations.

Quasicrystals are a phase of solid matter, with long-range positional
order and no periodicity1,2. This geometry means that quasicrystals
may have symmetries, and show other physical characteristics,
that cannot exist in periodic crystals3. Phasons, for example, are
collective excitations that are unique to quasiperiodic crystals.
They owe their existence to the fact that it is possible to carry
out non-trivial global rearrangements of the atomic positions in
a quasicrystal without affecting its free energy, thus leaving it
in its ground state. In contrast, in a periodic crystal, the only
non-trivial transformations that leave it in its ground state are
rigid-body translations by vectors u, taken from within the unit
cell (and rotations that are irrelevant in this context). When the
translation is allowed to vary slowly as a function of position r,
defining a strain field u(r), the free energy slightly increases. Such a
strain field is described in terms of phonons—low-energy collective
excitations of the crystal—that arise as a direct consequence of
Goldstone’s theorem4. Similarly, the global rearrangements of the
atomic positions in a quasicrystal, that do not change its free energy,
may be parameterized by another vector, w. When this vector is
allowed to vary slowly in space, we obtain a so-called phason-strain
field w(r), described in terms of different low-energy collective
excitations of the crystal, called phasons.

The existence of phasons as fundamental degrees of freedom,
affecting the physical behaviour of quasicrystals, has been clearly
established over the years. Their role in a generalized elasticity or
hydrodynamic theory of quasicrystals2 was developed in a series
of papers5–12 immediately following the discovery of quasicrystals1.
Phasons have been observed in numerous experiments, whether
directly or indirectly, throughout the past two decades13–18, yet
they are still a source of interesting analytical puzzles19 and
ongoing debate20. In this article, we shed new light on the
understanding of phasons by studying their dynamics in a new
form of quasicrystalline medium—an optically induced nonlinear
photonic quasicrystal—which we have recently demonstrated21.
This optically induced photonic quasicrystal serves as an excellent
means for studying linear and nonlinear wave phenomena in

quasicrystals, ranging from wave tunnelling and solitons to
dislocation dynamics21. As such, it joins a host of soft-matter
systems22–27 and artificially constructed metamaterials28–33 in which
the relatively large ‘inter-atomic’ separation facilitates direct
observations of the internal dynamics of a quasicrystal at its own
‘atomic’ scale. The typical distance between crystal sites in our
photonic quasicrystal is 15−30 µm.

Here, we concentrate on two types of experiment,
demonstrating that the dynamics governing the nonlinear photonic
quasicrystal relax any phonon-strain fields or phason-strain fields
that are initially imposed on it, that is, that a perturbed quasicrystal
tends towards a perfectly ordered quasiperiodic structure without
any strain. Furthermore, we clearly establish that the relaxation
rate of phason strain in the photonic quasicrystal is substantially
slower than the relaxation rate of phonon strain, as expected from
theory5–9,11, even though this is not a solid-state quasicrystal in
which phason strain relaxes through the actual diffusion of matter
through the crystal. Finally, we monitor the individual phason flips
occurring in our photonic quasicrystal as the phason strain relaxes,
and visualize elementary noise-induced phason fluctuations. These
noise-induced phason fluctuations are analogous to the thermally
induced phason fluctuations seen in atomic quasicrystals, as
recently observed by Edagawa et al.16,17.

We produce two-dimensional photonic quasicrystals by using
the optical induction technique34,35 that has recently become a
useful tool in studying solitons in two-dimensional nonlinear
optical lattices36–39 and Anderson localization phenomena40. This
technique relies on the interference of several monochromatic light
beams, whereby the resulting intensity pattern is translated into
a (periodic or quasiperiodic) change in the refractive index of a
photosensitive nonlinear material, in this case a photorefractive
SBN:60 (Sr0.6Ba0.4Nb2O6) crystal. This spatially varying index
of refraction affects only light that is polarized in a certain
direction (extraordinary polarization in our SBN:60 sample).
Light that is polarized in the orthogonal direction (ordinary
polarization in SBN:60) propagates through the medium as if its
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Figure 1 Numerically constructed photonic quasicrystals, with and without a static linear phason-strain field. a, Real-space image of a perfect decagonal photonic
quasicrystal, as defined by equation (2) and as expected at the output face of the SBN:60 sample for non-interacting ordinarily polarized lattice-forming beams. b, The black
spots comprise the Fourier transform of the real-space image. Superposed are five red spots representing the five optical waves inducing the structure. The black spots are
the Bragg peaks of the quasicrystal itself. c, A single intensity wave, obtained by filtering only the two inner spots within the blue rectangle shown in b. d, Image obtained by
filtering the four Bragg peaks contained within the blue rectangle. This corresponds to two intensity waves whose wavevectors are related by a factor of the golden ratio.
Consequently, the distances between the stripes follow the Fibonacci sequence. e–h, The same as a–d respectively after adding a static linear phason-strain field as
described by equation (3). One of the lattice-forming beams is shifted so that it lies outside the original circle. Phason strain is visible as ‘jags’ in h, as explained in the text.

refractive index were homogeneous. To study phason dynamics,
we ‘turn on’ the interaction between the lattice-forming beams
by using extraordinary polarization, thus allowing the beams to
interact through the spatial variations in the refractive index that
the beams themselves induce. The structure we obtain can be
thought of as a quasicrystal of solitons, interacting with one
another. In the low-intensity limit of the photorefractive screening
nonlinearity41, this interaction in our photonic quasicrystal gives
rise to complex nonlinear dynamics21,40, which is governed by the
so-called nonlinear Schrödinger equation42,

i
∂ψ

∂z
+

1

2k

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+1n0|ψ|

2ψ= 0, (1)

where ψ is the extraordinarily polarized light field inducing
the quasicrystal and interacting with the nonlinear refractive
index change it induces, k = k0ne is the optical wavenumber in
the medium, k0 is the vacuum wavenumber, ne is the relevant
refractive index and 1n0 = k0n3

e r33V/(2L), with V being the
voltage applied to the crystal between electrodes separated by a
distance L, and r33 the relevant electro-optic coefficient. Here, the
intensity of the light beams inducing the lattice |ψ|

2 is measured
compared with the intensity of a uniform background illumination,
which is copropagating with the lattice-forming beams41. In
this setting, the two-dimensional quasicrystalline ordering is in
the xy plane, whereas the evolution of the system is in the
propagation coordinate z; hence, the time variable t known from
the quantum-mechanical version of the nonlinear Schrödinger
equation is replaced in equation (1) by the propagation distance
z. Thus, our measurements are limited by the propagation length
through our SBN:60 samples, which is equivalent to observing
the temporal dynamics of the quasicrystal after a finite evolution
time40. Nevertheless, we have the ability to increase the strength
1n0 of the nonlinear interaction by varying the applied voltage V ,

effectively viewing later ‘times’ (optical path lengths (n0 +1n0)d)
in the dynamics, for a fixed propagation distance d within the
sample. In the discussion that follows, we refer to the SBN:60
crystal as the ‘sample’, and to the dynamical field-intensity pattern
|ψ(x,y)|2 as the ‘photonic structure’, or when appropriate as the
‘photonic quasicrystal’.

As in ref. 21, we generate a decagonal photonic quasicrystal
by overlapping five coherent monochromatic laser beams with
wavevectors km = (cos(2πm/5),sin(2πm/5)), m = 0, . . . ,4. The
induced field-intensity pattern is given by

|ψ(r)|2
=

∣∣∣∣∣ 4∑
m=0

ei km ·r

∣∣∣∣∣
2

, (2)

consisting of a d.c. k = 0 component, and exactly 20 harmonic
components with wavevectors of the form ki − kj , where
i, j = 0, . . . ,4. A numerical image of the quasicrystal generated
in this manner is shown in Fig. 1a and its 2D Fourier transform
in Fig. 1b, with red dots added to mark the wavevectors of
the lattice-forming beams. We have shown in ref. 21 that for
extraordinary polarization the nonlinear interactions between the
lattice-forming beams generate additional harmonics beyond the
initial 20, thus producing a fully fledged quasicrystal. Furthermore,
we have established in ref. 21 that the crystal shown in Fig. 1a
remains stable throughout the propagation length of the SBN:60
sample when the nonlinear interactions are ‘turned on’. Thus, when
we introduce strain or defects into the quasicrystal, it evolves, under
the dynamics imposed by the nonlinear Schrödinger equation (1),
to recover a perfect quasicrystal ground state, as the one shown
in Fig. 1a. For comparison with the phason-strained quasicrystal,
which we discuss next, we show in Fig. 1c one of the field-intensity
waves, making up the perfect quasicrystal, after a pair of Bragg
peaks (making up a single intensity wave) have been filtered
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Figure 2 Experimental observation of the relaxation of a linear phason-strain field in a photonic quasicrystal. I. A non-interacting photonic quasicrystal where the
induced strain field remains unaffected all the way to the output face of the sample. II. A photonic quasicrystal with nonlinear interactions turned on by changing the
polarization of the lattice-forming beams to extraordinary. The phason-strain field is partially relaxed as seen by a smaller density of jags. III. A photonic quasicrystal with
stronger nonlinear interactions. The strain field is further relaxed. In each row a shows the real-space image of the quasicrystal at the output face of the sample, b shows the
stripe pattern obtained by filtering two intensity waves, approximately related by a factor of the golden ratio τ , c shows an integration of the data in b along the direction of
the stripes and d shows a histogram of stripe lengths in the patterns in b, with the fraction of stripes of length other than zero or unity giving a quantitative indication of the
remaining degree of phason strain at the output face.

out of the Fourier transform in Fig. 1b and transformed back
to real space (as in ref. 43). The same is done in Fig. 1d, with
some contrast enhancement, but for two pairs of Bragg peaks
at τ-related wavevectors, where τ = (1+

√
5)/2 is the golden

ratio. The distances between the stripes in Fig. 1d follow the
well-known Fibonacci sequence of long (L) and short (S) distances,
LLSLLSLSLLSLS. . . .

It is now essential to recall7,10 that one of the signatures of a
quenched linear phason-strain field in a quasicrystal—a phason-
strain field w(r) that varies linearly with r—is the appearance
of anisotropic shifts in the positions of Bragg peaks in the
diffraction pattern of the quasicrystal, with weak-intensity peaks
showing greater distortion than brighter peaks. In our first set of
experiments, we mimic such a quenched phason-strain field by
introducing a slight shift 1k in the position of one of the lattice-
forming beams k0. This leads to a field-intensity pattern given by

|ψ(r)|2
=

∣∣∣∣∣ei(k0+1k)·r
+

4∑
m=1

ei km ·r

∣∣∣∣∣
2

. (3)

We produce this effective shift in the position of one of the five
writing beams by altering its input angle into the SBN:60 sample.
In Fig. 1e–h we show a numerical image of such a quasicrystal with
an exaggerated 1k, along with its Fourier transform and filtered
intensity waves. Phason strain is evident in Fig. 1h by the existence
of points where the distances between the Fibonacci stripes change

from LS to SL and vice versa, reflecting a position-dependent
change in the relative phase of the two τ-related waves. These ‘jags’
in the pattern of stripes indicate the existence of local ‘atomic’
rearrangements in the full quasicrystal—local phason flips—with
respect to the perfect quasicrystal. The greater the phason strain,
relative to the perfect quasicrystal, the larger the density of these
jags. Note that the pattern of lines of a single intensity wave, shown
in Fig. 1g, is perfectly straight, indicating that there is no phonon
strain present in the quasicrystal, even though it has phason strain.

Figure 2 shows an experimental phason-strained photonic
quasicrystal, where the strain is formed as described above. Each
row of plates corresponds to a different experimental situation,
ranging from no nonlinear interaction to strong interaction
dynamics. Consider first columns a and b of Fig. 2, showing the
real-space images of the photonic quasicrystals, and the patterns
of stripes obtained after filtering pairs of intensity waves related
approximately by a factor of the golden ratio τ (as shown above
for the numerical images in Fig. 1). In the first row, phason strain
is introduced using non-interacting ordinarily polarized lattice-
forming beams. The strain persists throughout the propagation
distance within the sample and is observed at the output face,
as is evident from the relatively high density of jags. The second
row depicts the output face of the sample, after changing the
polarization of the same input beams, thus turning on the
dynamics. We can qualitatively see that the phason-strain field has
partially relaxed by noting a reduction in the density of jags. In
the third row, a stronger nonlinear interaction is applied, rendering
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Figure 3 Experimental observation of phonon-strain and phason-strain relaxation following the injection of a dislocation into a photonic quasicrystal.
a, Non-interacting photonic quasicrystal with an embedded (1,0,0,0) dislocation. b, The dislocation is made visible by filtering one intensity wave in the Fourier spectrum.
Notice that the lines are distorted, indicating the existence of phonon strain. c, Phason strain is made visible by jags that appear after filtering two τ-related intensity waves
from the Fourier spectrum. d, The same quasicrystal with the interaction turned on, showing that the dislocation has been removed. e, Filtering one intensity wave shows
straight lines, indicating the healing of the dislocation as well as the relaxation of phonon strain. f, Filtering of two τ-related intensity waves shows that phason strain still
remains in the structure, establishing that its relaxation rate is lower than that of phonon strain.

faster relaxation and fewer jags as the beams propagate down the
sample. The output face in this case shows further relaxation of the
strain field, indicated by even fewer jags in the striped pattern.

To obtain statistically meaningful quantitative data that can
clearly establish the relaxation of phason strain due to nonlinear
interactions, as the waves propagate through the sample, we repeat
each measurement 30 times. To calculate the degree of phason
strain efficiently, we integrate each contrast-enhanced pattern of
stripes along the stripe direction, as shown in column c of Fig. 2,
and calculate a histogram (representing an averaging over 30
experiments) of stripe lengths, shown in column d. The histogram
of a perfect quasicrystal, lacking any strain, would show stripes only
of zero or unit length. The degree of phason strain is given by the
relative number of partial stripes in the pattern, filling the bins
between zero and unity. Although this is not an absolute measure
of phason strain, it enables a quantitative comparison between
the different experimental situations (replacing the perpendicular-
space analysis of refs 16,17). Averaging over 30 realizations of
each situation, we find that the mean values have only 2.5%
standard deviation, thus indicating the significance of the result. As
manifested by the histograms in column d, we clearly observe the
relaxation of phason strain in our dynamical photonic quasicrystal
due to the nonlinear interactions, which eventually take it to its
ground state.

In our second set of experiments, we induce a more natural
strain field, containing both phason and phonon components, by
injecting a dislocation into the photonic quasicrystal21,43. This is
achieved by converting one of the writing beams into a vortex
beam44, and obtaining a field-intensity pattern given by

|ψ(r)|2
=

∣∣∣∣∣ei(k0 ·r+ϕ(r))
+

4∑
m=1

ei km ·r

∣∣∣∣∣
2

, (4)

where ϕ(r) is the usual azimuthal polar coordinate. In ref. 21 we
have shown that such a dislocation, with Burgers vector (1,0,0,0),
eventually disappears when nonlinear interactions are turned on.
Here, we examine what remains of the quasicrystal after the healing
of the dislocation.

Recall that in an atomic quasicrystal the relaxation of phonon
strain via the propagation of sound waves is expected to occur
relatively quickly. On the other hand, the relaxation of phason
strain is a process that requires atomic rearrangements. It is
therefore expected to be a much slower process, on the basis
of the diffusive motion of atoms relative to one another. For
soft-matter quasicrystals, or the photonic quasicrystals studied
here, we might expect the wave-dynamics situation to be
different. Here, owing to the softness, different density waves
could presumably move through one another to relieve phason
strain without the need for diffusive rearrangements of atomic
positions. Such a process is impossible in the case of ‘hard-core’
atoms that cannot penetrate one another. Nevertheless, coarse-
grained density-wave and hydrodynamic theories of quasicrystals
also predict that the process of phason-strain relaxation should
be diffusive and therefore slower than that of phonon-strain
relaxation. It is therefore important to determine experimentally
whether phason relaxation in quasicrystals is generically slower
than phonon relaxation, regardless of the actual physical realization
of the quasicrystal.

This question is resolved in the set of experiments depicted in
Fig. 3. Figure 3a–c shows an experimental image of a decagonal
quasicrystal with the (1,0,0,0) dislocation given by equation (4),
produced by non-interacting ordinarily polarized lattice-forming
beams. Figure 3b reveals the existence of the dislocation at the
output face of the sample by filtering a single field-intensity wave,
clearly showing the discontinuation of one of the stripes at the
position of the dislocation. Phonon strain is evident from the
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Figure 4 Effect of nonlinear interactions on phason density—measurements
showing the exponential decay of the phason density. The duration of the
interaction was controlled by changing the voltage applied to the photorefractive
crystal. A higher voltage corresponds to a stronger interaction, which is effectively a
longer interaction time. The results show an exponential decay of phason density
(red, experiment; blue, best fit to the solution of the diffusion equation), which is
consistent with diffusive behaviour.

distortion of the lines in this figure. Phason strain is evident from
the existence of jags in the striped pattern in Fig. 3c, obtained, as in
the first set of experiments, by filtering a pair of τ-related intensity
waves. Figure 3d–f shows the same quasicrystal after interaction
has been turned on by changing the polarization of the lattice-
forming beams. Figure 3e shows that the dislocation has been
removed, and that the duration of the interaction was sufficiently
long to remove all phonon strain, yielding perfectly straight lines
(as in the theoretical images in Fig. 1). On the other hand, Fig. 3f
shows that some phason strain is still present, although to a
lesser degree than in the non-interacting quasicrystal in Fig. 3c.
This clearly establishes that phason strain relaxes at a significantly
lower rate than phonon strain, even in our photonic quasicrystal,
and therefore that this is very likely a generic property of all
physical quasicrystals.

The results presented in Fig. 3 establish that phasons relax
more slowly than phonons, but do not determine that the
phason relaxation is indeed diffusive. Ideally, we would do this
by propagating the dynamics for progressively longer distances
(times), imaging the output and analysing the wave-number
dependence of phason-strain relaxation. However, our crystal
has a fixed length, and we cannot image the structure (or the
optical intensity) within it, because the refractive index in the
medium is homogeneous, as it contains the quasicrystal structure.
Instead, we effectively simulate longer propagation dynamics by
observing the output face of the sample (z = d) as we increase
the applied voltage V , thus increasing the effective optical path
length36

[n0 +1n0(V )]d. This effectively increases the duration of
the dynamics (the evolution distance z) and yields structures at the
output face that come closer and closer to the perfect ground state
as the interaction is increased. This behaviour is demonstrated in
Fig. 4, which shows the experimental measurement of the phason
density ρphason that remains at the output face of the sample as
a function of the strength of the nonlinear interaction (applied
voltage, ref. 36), while keeping all other parameters unchanged. The
blue line in Fig. 4 shows the best fit of the experimental results
to the solution of the diffusion equation. These results clearly
show an exponentially decreasing phason density with effective
propagation length. That is, we establish quantitatively that as the

a

b

30 30 µm

Figure 5 Direct observation of phason flips that occur as a phason-strained
photonic quasicrystal relaxes to its ground state. Two frames taken from
Supplementary Information, Movie M1, in which the nonlinear interaction is gradually
increased to simulate the temporal evolution towards the perfectly ordered ground
state. The two images contain many unchanged spots, or fixed atomic positions, as
well as shifted spots indicating atomic rearrangements. One typical example is
marked by a set of three tiles that change their mutual orientation as a single spot at
the centre shifts its position. Note that the internal decorations of the two types of
rhombic tile also adjust according to the reorientation of the tiles. Similar phason
flips can be observed throughout the quasicrystal by comparing the two frames.

structure approaches the perfect ground state the decay in phason
density is exponential, consistent with the hydrodynamic theory
of quasicrystals6.

Finally, we show the actual local ‘atomic’ rearrangements,
or phason flips, that occur in our photonic quasicrystal by
making direct comparisons of real-space images of the quasicrystal.
To do so, we produce a movie of the intensity field at the
output face of the sample. We use a strained quasicrystal,
gradually increasing the strength of the nonlinear interaction,
again effectively simulating the temporal dynamics of the system
(see Supplementary Information, Movie M1). Figure 5 shows
two frames from this movie, where a number of phason flips
can be identified. One such flip is marked with a set of tiles
that change their configuration during the corresponding phason
flip. We emphasize that the field-intensity spots, visualized in
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these frames, are the smallest ‘atomic’ features in our photonic
quasicrystals. Thus, our photonic quasicrystal—owing to its
micrometre structure—lends itself more naturally to the direct
observation of ‘atomic-scale’ dynamics in a quasicrystal.

As the last experiment in this article, we demonstrate noise-
driven phason flips in our photonic quasicrystal. Such flips occur
when we intentionally stop stabilizing the phase noise in the optical
system that induces the quasicrystal. If we do not control the
stability of our lasers, the induced pattern continuously jiggles
around. Because most of the experimental noise in our system
comes from fluctuations in the relative phases of the writing beams,
the jiggling pattern is dominated by phason fluctuations. These
phason fluctuations resemble thermal phason fluctuations in finite-
temperature solid-state quasicrystals, although in our case they
fluctuate in time while maintaining spatial uniformity throughout
the quasicrystal (see Supplementary Information, Movie M2).

The dynamics of our photonic quasicrystals, as observed in
our set of experiments, belongs to a large class of relaxational
dynamical systems, in which interactions drive the field in question
to a ground state of some effective free energy. Unlike the
dissipative case, which includes collisional atomic systems, the
wave system of our photonic quasicrystals obeys the dissipationless
nonlinear Schrödinger equation (1). As such, the observed phason
behaviour is representative of a more general hamiltonian dynamics
commonly found in non-equilibrium pattern-forming systems45.
The beauty of our results is in highlighting the universal features
associated with phasons in systems with quasiperiodic ordering,
irrespective of the specific details of a particular realization.
Thus, even though our studies here were carried on photonic
quasicrystals, they have general and broad implications for a wide
range of quasiperiodically ordered matter. We therefore expect our
system to continue providing valuable insight into the physics of
quasicrystals in the coming years.

Received 31 December 2006; accepted 10 July 2007; published 12 August 2007.
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	Figure 3 Experimental observation of phonon-strain and phason-strain relaxation following the injection of a dislocation into a photonic quasicrystal. a, Non-interacting photonic quasicrystal with an embedded ({1,0,0,0}) dislocation. b, The dislocation is made visible by filtering one intensity wave in the Fourier spectrum. Notice that the lines are distorted, indicating the existence of phonon strain. c, Phason strain is made visible by jags that appear after filtering two tau -related intensity waves from the Fourier spectrum. d, The same quasicrystal with the interaction turned on, showing that the dislocation has been removed. e, Filtering one intensity wave shows straight lines, indicating the healing of the dislocation as well as the relaxation of phonon strain. f, Filtering of two tau -related intensity waves shows that phason strain still remains in the structure, establishing that its relaxation rate is lower than that of phonon strain.
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