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Localization by virtual transitions in correlated disorder
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Anderson localization is fundamentally relevant to all physical systems where coherent waves evolve in the
presence of disorder. Physically, any disorder must have a finite spectral bandwidth, hence the disorder is always
correlated. Here, we study the regime of localization mediated by virtual transitions in correlated disorder. We
find that wave packets centered outside of the spectral extent of the disorder can localize, with localization length
almost as short as for localization via first-order transitions. In this regime, virtual transitions lead to phenomena
with profound significance, such as mobility edges, and strong localization in regions of momentum space where
otherwise localization would be extremely weak. Remarkably, in two-dimensional systems, we show localization
can occur in directions that cannot be reached by direct scattering from the disordered potential.
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Naively, random scattering is expected to produce diffu-
sive transport. Yet coherent waves can behave differently:
disorder can transform all the modes of the system into
localized modes, bringing transport to a complete halt [1].
This discovery, known as Anderson localization, has become
a cornerstone in the understanding of waves in random media.
Over the years, localization has been studied in a variety of
systems, ranging from light in scattering dielectric media [2,3]
and in photonic lattices containing disorder [4,5] to sound
waves [6], microwaves [7,8] and cold atoms [9–11], and has
evolved into a rich field of research.

The hallmark of Anderson localization is that the eigen-
modes of the system are exponentially localized, with local-
ization length lloc, which is the mean inverse decay rate of
the modes. In infinite 1D or 2D disordered systems, all states
are localized [12]. However, in systems of finite extent, some
modes have localization length lloc larger than the system
size L, hence considered extended, whereas the modes with
lloc smaller than L are localized. Generally, the localization
length depends on the strength of the disorder and on spatial
correlations in the potential that are always present when the
spectrum of the disorder has a finite extent.

To understand the effect of correlated disorder, it is in-
structive to consider localization from a spectral perspective.
Consider first a 1D system with a disordered potential V (x).
The spatial power spectrum |FT {V (x)}|2, which is also the
Fourier transform (FT) of the two-point correlation function
of the potential, CV (x, x′), determines the range of possible
scattering processes due to momentum exchange between the
waves and the disorder [13–15]. Essentially, every spectral
component of the disorder behaves as a diffraction grating that
scatters one plane wave component into another.

In all of the above systems [2–11], the largest contribution
comes from first-order (direct) transitions, where a single
component from the spatial spectrum of the disordered po-
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tential is used during the scattering process [16]. The strength
of localization, at a certain wave number �k, is characterized
by a localization length lloc(�k) [17]. For first-order transitions,
lloc is inversely proportional to the FT of the correlation
function at �k. These localized states possess a spatial spectrum
that is strongly confined within the extent of the spectrum
of the disordered potential. However, in a finite system the
localization length can be much larger than the physical extent
of the system, leading to modes that are effectively extended
[8,13,18–20]. The cutoff between localized and extended
states (for any finite systems in 1D or 2D) is referred to as
the effective mobility edge [18,21–23], and it exists for all
physical disordered systems.

It has been known for some time now that localization, as
discovered by Anderson [1], is generally mediated by first-
order (direct) transitions [16,17]. But, do first-order transi-
tions describe all possible localization processes? In principle,
second-order (virtual) transitions—mediated by two spectral
components of the disorder—may also exist, but these are
much less efficient than first-order ones [24] and are typically
of negligible importance [9,22,23,25]. But what if first-order
transitions are somehow forbidden and only second order ones
are allowed?

Here we study Anderson localization induced by only
second-order virtual transitions, second-order transitions with
an intermediate virtual state, in correlated disordered. We find
that the virtual transitions give rise to additional localized
states at wave numbers much higher than the spectral cut-
off, where localization should have otherwise been absent
altogether. Likewise, we find that virtual transitions cause
localization at low frequencies even when the spectrum of
the disorder is completely shifted from zero. Specifically,
we study the photonic scheme of transverse localization in
disordered dielectrics, and find that, varying the incidence
angle transforms the outcome from ballistic transport (as if
the disorder was absent) to first-order localization, then again
to a ballistic regime, followed by a regime of localization
by solely second-order scattering. Finally, we explore 2D
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spectrally shaped disordered potentials and show that they
support localization at wave numbers where direct scattering
from the disordered potential is impossible.

We follow the scheme of transverse localization
[4,5,26,27], which is especially suitable for electromagnetic
waves, where localization is manifested in arresting
diffraction by multiple scattering from disorder. The system
is described by

∂A

i∂z
= 1

2k
∇2

⊥A + k

n0
�nA, (1)

where A(�r) is the slowly varying envelope of the field
E (�r, t ) = Re[A(�r)ei(kz−ωt )] with frequency ω and wave num-
ber k = ωn0/c, c is the vacuum light speed, n0 and �n(x, y, z)
are the ambient and the disordered local variation in the
refractive index, respectively. Equation (1) is mathematically
equivalent to the Schrödinger equation, where the z coordi-
nate plays the role of the time, and (−�n/n0) acts as the
potential. Generally, for Anderson localization to occur the
potential should be frozen in time, thus transverse localization
requires that the random index change, �n, would be z
independent. Because Eq. (1) is linear, �n(x, y) can be written
as a superposition of periodic functions, each acting as a
grating component causing the spectral components of A(�r)
to experience diffraction off this grating. Hence, localization
may be viewed as an average over an ensemble of waves
experiencing diffraction from randomly shifted gratings of
multiple periodicities [16].

It is instructive to examine the system in momentum space.
The evolution of a wave packet in k space is defined by the FT
in the x − y plane of Eq. (1)

∂Ak

i∂z
= − 1

2k
k2
⊥Ak + k

n0
�nk ∗ Ak, (2)

where Ak (kx, ky, z) and �nk (kx, ky) are the 2D-FT of A(x, y, z)
and �n(x, y), with wave numbers kx and ky. Here, k⊥ is
the modulus of �k⊥ = (kx, ky), and ∗ marks convolution. In
the right-hand side of Eq. (2), when the contribution of the
right (potential) term is much smaller than the left (kinetic)
term, we can treat plane waves as eigenmodes of the system,
coupled by convolutions with components in the spectrum of
the disorder. These “transitions” in momentum space are natu-
rally described by the coupled-mode formalism. The coupling
between two different plane waves can occur if the potential
contains a suitable disorder component that can momentum-
match between the incident and scattered waves. Employing
this coupled mode formalism is fully equivalent to solving
Eq. (1) in real space, and therefore has analogies in other
types of wave physics. It relies on phase-matched interactions,
which in Eqs. (1) and (2) represent transitions that conserve
momentum in z, while in the (analogous) Schrödinger equa-
tion such transitions are interpreted as energy conserving. A
common example is a Laue equation governing x-ray diffrac-
tion, which states that for the diffraction condition to occur, it
is required that kin · K̂ = |K|/2, K being the crystalline wave
vector and kin is the incident wave. This is also known as the
Bragg condition.

Consider first a simple example of a 1D correlated
disorder. For concreteness, consider a 1D photonic struc-

ture with some random variation of the refractive index,
�n(x), whose spatial FT, �nk (kx ), consists of two re-
gions in momentum space where the amplitude is uniform
but the phase is random. Let us assume that spectral re-
gions of the disorder are nonzero only in a small region
�k around some wave vector k0x̂ [Fig. 1(a)]. The two-
point correlation function is CV(x, x′) ∝ FT−1{|�nk|2} =
sinc((x − x′)�k) cos(k0(x − x′)). For a plane wave incident
upon this potential with wave number kx,in ∼ −k0/2, there
are many possible phase-matched first-order transitions to
the spectral region around kx,1 ∼ k0/2 [Fig. 1(b)], obeying
�kz(kx,in ) = �kz(kx,1), where �kz(kx ) = −kx

2/2n0k0. This
plane wave undergoes many sequential first-order transitions,
from positive to negative and back, leading to the buildup of
Anderson localization [16].

However, our primary interest in this work is plane waves
for which no phase matched first-order transitions exist; there
are only second-order ones. Specifically, for a wave with
spatial wave number kx,in ∼ −k0, the first-order transitions

−k0
−k0−−→ −2k0 and −k0

+k0−−→ 0 are not phase matched, but the

second transition 0
k0−→ k0, which makes the complete second-

order transitions −k0
k0−→ 0

k0−→ k0, is matched [Fig. 1(b)]. We
call the overall transition “virtual” because energy does not
accumulate in the intermediate state at kx = 0, similar to the
role played by virtual levels in atomic systems. This transition
requires two scattering events mediated by two spectral com-
ponents (two random gratings), which may have the same or
different wave numbers, as long as both have nonzero ampli-
tudes, i.e., they are contained within the spectral extent of the
disorder. For multiple scattering from disorder components
with random phases, we expect the overall process to induce
strong localization solely by virtual transitions, a phenomenon
that was not yet observed in experiments.

To witness this effect, we first simulate the propagation
dynamics of a Gaussian beam incident at various angles in
a realistic photonic system with disorder in a 1D setting,
described by the �nk in Fig. 2(a) and in further detail in
the Supplemental Material [28]. The power spectrum of the
disorder is concentrated in two narrow regions around k0

and −k0.
Figures 2(b)–2(f) show a top view of the wave propagating

in this single realization of the disorder, for several angles of
incidence. For some incidence angles there are no matched
transitions and transport is nearly ballistic [e.g., Figs. 2(c) and
2(e)]. However, there are several ranges of incidence angles,
for which transport is clearly localized. That is, they exhibit
on-axis propagation, and do not expand in the transverse
plane even after large distances—the hallmark of localization
in the transverse localization scheme [4,26]. Physically, this
is a consequence of scattering from the disorder, interfering
destructively outside the center of the wave packet.

Localized behavior, i.e., on-axis propagation at zero trans-
verse velocity without spatial expansion, is seen in Figs. 2(b),
2(d), and 2(f). In Fig. 2(d), for kin = k0/2, localization is due
to first-order transitions, which are phase-matched. However,
the localization seen in Fig. 2(b) for kin = 0 and in Fig. 2(f) for
kin = k0 is due to second-order virtual transitions (involving
an intermediate virtual state). For kin = 0 the overall virtual

transitions are 0
k0−→ k0

−k0−−→ 0 and 0
−k0−−→ −k0

k0−→ 0, both are
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FIG. 1. Scattering transitions in momentum space. (a) Power spectrum SV(kx ) of a 1D disordered potential concentrated in two finite bands.
The arrows represent transitions in k space, kt . The blue arrow represents a possible scattering process mediated by a spectral component
with kt = k0x̂. The red arrows show transitions that are not supported by this potential. (b) Examples of scattering processes mediated by
the k0x̂ spectral component of the disorder (blue arrow). The green curve is the phase mismatch |�kz(kx )| = k2

x /2n0k. First-order phase-
matched transition: a wave of wave number −k0/2 scatters into a wave at k0/2, so that �kz(−k0/2) = �kz(k0/2). Second-order phase-matched
transition: first, a wave scatters from −k0 to a wave at kx = 0. This transition alone is not efficient due to high phase mismatch. However, a
subsequent second transition from kx = 0 to a wave at k0 makes the overall transition efficient, which eventually leads to localization by
second-order virtual transitions. The intermediate state at kx = 0 is called “virtual” because it cannot be reached by a single phase-matched
scattering event in this scheme.

phase-matched, while for kin = k0 the transitions are −k0
k0−→

0
k0−→ k0 and back k0

−k0−−→ 0
−k0−−→ −k0 around k = 0.

For all localized beams, the wave packet initially expands,
but after some distance the expansion stops, in accordance
with the evolution of the spatial spectrum [29]. The width
of the beam, corresponding to the localization length, is best
characterized by examining an ensemble average over many
realizations of the disorder [4]. Hence, Fig. 2(g) shows the
calculated effective width of the wave packet, weff = 〈P〉−1,

where P = [
∫

I2(x, L)dx]/[
∫

I (x, L)dx]2 is the inverse partic-
ipation ratio, for an ensemble average over 100 realizations of
disorder with power spectra in the region defined in Fig. 2(a).
As marked by the red line in Fig. 2(g), the beam incident at
k0/2 < kin < k0 expands linearly as an undisturbed Gaussian
beam. On the other hand, as highlighted by the blue line
in Fig. 2(g), at kin = k0/2 the wave packet initially expands
slightly and then its effective width becomes constant, i.e., the
wave packet has become localized by first-order processes.

FIG. 2. Simulations of beam propagation and localization in correlated disorder. (a) Power spectrum of disorder concentrated in two narrow
regions �k around wave numbers k0 and −k0. (b)–(f) Simulated propagation of an initially Gaussian beam launched at various incidence angles
corresponding to different kin values. The dashed-dotted yellow line marks the x = 0 line, while the dashed-dotted orange line marks the
propagation direction in the absence of disorder (homogeneous medium). (b) At kin = 0 the beam propagates on the z axis without expanding
due to a second-order process. (c) At 0 < kin < k0/2, the transitions are phase mismatched, so the beam propagates ballistically, unaffected by
the disorder. (d) For kin = k0/2, multiple first-order transitions are phase matched, hence the beam is localized and exhibits on-axis propagation
(e) k0/2 < knew < k0, same as (c): the beam evolves ballistically on its initial trajectory, unaffected by the disorder. (f) Evolution in the regime
of localization by virtual transitions. Initially, the wave packet expands but after some distance the expansion stops. (g) Effective width weff as
a function of propagation distance, representing an ensemble average over 100 realizations of disorder with a power spectrum as in (a). The
beam incident at k0/2 < kin < k0 expands linearly as an undisturbed Gaussian beam. At kin = k0/2 the wave packet initially expands slightly
and then its weff becomes constant as the beam localizes. At kin = k0, the beam experiences intense expansion, but after some distance it
eventually becomes localized, marking localization by virtual transitions.
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FIG. 3. Left: Ensemble average of the output intensity distribu-
tion for various input wave numbers, kin. Right: beam cross sections
for input wave numbers for which first-order and second-order
localization occur, with the ballistic regimes in between. At k0/2,
the beam is localized by first-order phase-matched transitions, but
localization occurs also at k0, induced by virtual transitions only. At
other incidence angles the wave packet stays Gaussian (polynomial
in the log-scale). The centers of output beams that would have
propagated in the same system, but with a homogenous refractive
index, are marked with a red dashed line.

Curiously, we observe that at kin = k0, which is completely
outside the immediate extent of the potential, the beam is
also localized [yellow line in Fig. 2(g)], although at a broader
cross section than in the “natural” localization regime by
first-order transitions. This is the regime of localization by
second-order virtual transitions. The effective width of the
ensemble average beam first undergoes expansion, but after
this initial expansion the beam becomes localized.

Next, we examine the cross-section of the evolving
ensemble-average beams. Figure 3 shows the ensemble-
average beam profile after propagating 26mm, for the inci-
dence angle range 0 � kin � 1.2k0. Here, for example, if a
beam is incident at x = 0 and kx,in ∼ k0, and propagates ballis-
tically in a homogenous medium, the output beam will follow
its initial trajectory and will be centered around x = 1.7 mm.
The centers of output beams that would have propagated
in this system but with a homogenous refractive index are
marked with a red dashed line. The ensemble average beam

displays a log-linear (exponential) decay at both kin = k0/2 ≡
kloc and at kin = k0, the hallmark of Anderson localization. At
other angles, the wave packet remains Gaussian, expressed as
a polynomial in the log-scale.

Having found localization by virtual transitions for an
initially incident Gaussian beam at kin = k0, we proceed
to calculate the localized modes. We calculate these in the
presence of the same correlated disorder used for Figs. 2 and 3
(modes shown in the Supplemental Material), and compare it
to disorder with a finite uniform spectrum. Figure 4 shows weff

for various strengths of disorder (�n) and system sizes L, for
two types of disorder: one with an upper cutoff in the power
spectrum at 2kloc = k0 [Fig. 4(a)], and another with a narrow
power spectrum around k0 [Fig. 4(b)]. The horizontal axis
corresponds to the central momentum of the mode, defined
as kx,c = |

√
k2n2 − β2 |, where β is the propagation constant

of the mode. It is clear that the lower limit of weff is mainly
defined by the power spectrum at specific wave numbers,
hence lc sets the minimum value of weff , while the upper
limit is set by the system size L. Figures 4(a) and 4(b) show
first-order localization with short lc, below and in the vicinity
of kloc, respectively. However, Fig. 4(b) also presents second-
order localization at 2kloc, induced by virtual transitions,
with relatively small lc (compared to L). Likewise, Fig. 4(b)
displays second-order localization at 0. In fact, Fig. 4(b)
shows mobility edges that, to our knowledge, have never been
observed: one mobility edge slightly above kin = 0 and two
more mobility edges near 2kloc − �k/2 and 2kloc + �k/2.
These effective mobility edges arise (in our system of finite
width L) when the disorder becomes strong enough, causing
all transport to stop above (or below, according to the edge
position) certain wave numbers, when lc becomes smaller
than L.

Finally, we study second-order localization under 2D cor-
related disorder. To date, correlated disorder in systems with
a finite spectrum was studied for radially symmetric spec-
tra [20] or for trivially anisotropic spectra [30,31], where
localization mediated by high-order was not shown. In 2D
potentials, the localization length is expected to be very
sensitive to the incidence angle. Specifically, disorder com-
ponents can mediate transitions (of any order) only on a

FIG. 4. Effective beam width weff for two types of correlated disorder: (a) when the disorder spectrum has a cutoff frequency at 2kloc, and
(b) when the disorder spectrum has two narrow spectral bands around 2kloc, shifted from zero. The blue region marks the spectral extent of
the disorder for each type (2kloc in the spectrum corresponds to kloc in the spectral extent). The plots in (a) and (b) are calculated for various
strengths of disorder (�n) and system sizes L. The upper bound on the inverse effective width is mainly defined by lc (determined by the
strength of the disorder at specific wave numbers), while the lower bound is set by L. (b) Localization of the first-order with short lc, in the
vicinity of kloc ≡ k0/2 and localization induced by virtual transitions at 2kloc and at 0 with an lc relatively small compared to L.
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FIG. 5. Localization on the x axis strictly by virtual transitions in 2D correlated disorder. (a),(b) Example of a disordered potential �n(x, y)
whose FT is the spectrum in (b). The features consist of small scale and large scale structures (enlarged in the inset). The spectrum consists
of finite regions of random coefficients located symmetrically on the vertices of a rectangle in k space with size [−k0, k0] × [−√

3k0,
√

3k0].
Yellow arrows mark possible transitions. (c) Effective beam width weff , for 20 disorder realizations, for incidence angles: at (red), below (blue)
and above (yellow) the angle associated with localization by virtual transitions. (d),(e),(f) Spectra of beams after 10 cm of propagation, (e) the
angle where second-order virtual transitions are phase matched, (d),(f) lower and higher incidence angle, where both first and second-order
transitions are phase mismatched. Red circles mark the central wave number at incidence and blue dashed circles mark the phase-matched k.
Insets: intensity cross section in the x direction of the ensemble-averaged beam for 100 realizations of disorder in log scale for the three angles
[inset (e) shows exponential decay, while (d) and (f) stay mainly Gaussian].

phase-matched circle of radius |kin|, and localization will oc-
cur around the symmetry axis of the overall transition. Having
phase-matched second-order transitions allows localization to
occur in different spectral regions, which otherwise would
not occur. Here, we choose a disordered potential that has
roughly rectangular symmetry in k space [Fig. 5(a)]. We
create the 2D disorder by defining nonzero Fourier coeffi-
cients in small regions located on vertices of a rectangle with
size [−k0, k0] × [−√

3k0,
√

3k0] [Fig. 5(b)]. We simulate the
propagation of a 2D Gaussian beam with spectral width ap-
proximately half of the width of the k-space regions of the dis-
order, launched at different incidence angles, corresponding
to kin = k0(0.6, 0), k0(1, 0) and k0(1.2, 0). Figure 5(c) shows
the effective width of these 2D beams. We find that for kin =
k0(1, 0), the second-order transitions are phase matched and
allow for localization in the direction of the x-axis [Fig. 5(e)],
a direction for which first-order localization does not exist
whatsoever. That is, the spectrum of the disorder does not
support first-order transitions that would lead to localization
in the x direction, yet this system does exhibit localization
strictly by second-order scattering processes via virtual states.
Moreover, as shown here, transitions at intermediate angles,
such as kin = k0(0.6, 0) or k0(1.2, 0), are not phase matched,
hence cannot induce localization; instead the beam incident at
these angles experiences ballistic-like propagation [Figs. 5(d)
and 5(f)]. Clearly, for beams launched at kin = k0(1, 0), where
phase-matched second-order virtual transitions are allowed,

diffraction is arrested [Fig. 5(c)], while beams launched at the
other angles experience ballistic transport (weff proportional
to z). We find that virtual transitions bring the beam expansion
to a halt, the hallmark of localization. The insets in Figs. 5(d),
5(e), and 5(f) show the cross section of the ensemble-averaged
beam for 100 realizations of the disorder: Fig. 5(e) is linearly
decaying in log scale, meaning it is exponentially localized,
while Figs. 5(d) and 5(f) display roughly a Gaussian shape.

Examining the scattering processes of coherent wave pack-
ets in systems containing disorder of a finite spectral extent led
us to find localization caused solely by virtual transitions. We
have shown that the outcome is indeed Anderson localization,
with exponentially decaying tails. This type of localization,
induced by second-order phase-matched transitions, exists in
any system at least for zero momentum (e.g., amorphous
structures with an effective gap [32,33] or high-density hy-
peruniform materials [31]), and is therefore observable in
experiments. Definitely, localization induced by third-order
transitions or higher is also possible, but the localization
length increases with increasing order, and might extend
beyond the scale of the system. Interestingly, we have shown
that already second-order transitions can cause localization in
directions that are not directly supported by the disordered
potential. Altogether, it is now clear that, although Anderson
localization is a linear phenomenon, the processes involve
deep physics that offers new surprises even 60 years after it
was originally discovered.
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