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We find that waves propagating in a 1D medium that is homogeneous in its linear properties but spatially
disordered in its nonlinear coefficients undergo diffusive transport, instead of being Anderson localized as
always occurs for linear disordered media. Specifically, electromagnetic waves in a multilayer structure
with random nonlinear coefficients exhibit diffusion with features fundamentally different from the
traditional diffusion in linear noninteracting systems. This unique transport, which stems from the
nonlinear interaction between the waves and the disordered medium, displays anomalous statistical
behavior where the fields in multiple different realizations converge to the same intensity value as they
penetrate deeper into the medium.
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Anderson localization is a universal phenomenon, occur-
ring in all linear disordered wave systems. It was proposed to
describe the absence of diffusion of electrons in the presence
of disorder. Rather than exhibiting diffusion, as expected
from particles in a scattering medium, the electron wave
becomes localized with an exponentially decaying wave
function [1]. Anderson localization is now known to occur in
a variety of systems, including electromagnetic (EM) waves
[2–7], acoustic waves [8], water waves [9], and ultracold
atoms [10]. Among these, localization of light became a
popular experimental platform because photons have long
coherence times, and unlike electrons, they do not interact
with one another [11]. Importantly, disorder in one- and two-
dimensional settings always leads to localization, whereas in
three dimensions the transport can also be diffusive [12–15].
One of the assumptions Anderson made was that the

system is linear; i.e., the waves in the random potential do
not interact. For transverse localization of optical waves in
dielectrics [5,6,16], as well as for matter waves in the mean-
field regime, interactions are manifested as a nonlinear
potential term in the Schrödinger-type equation, which is
mathematically equivalent to self-focusing of paraxial
optical beams [11]. Indeed, localization in the presence
of nonlinearities has been observed for optical beams
[5,6,11], although its asymptotic behavior is still not fully
resolved [17–20]. Despite this extensive research, all
studies on waves in disordered systems investigated set-
tings in which the linear potential is disordered, and the
nonlinearity is an additional effect. To our knowledge, there
have been no studies about a system that is disordered only
in its nonlinear (NL) properties, e.g., a system that has a
spatially randomKerr coefficient, but is homogeneous in its
linear properties.
Here, we study a system that is linearly homogeneous

but contains disorder in its NL coefficients and find that the

nonlinearly induced disorder gives rise to a unique type of
diffusion with unusual statistics and characteristic wave
functions. Namely, waves decay in a fundamentally differ-
ent fashion than the exponential decay characteristic of
localization and have completely different statistics. We
study a 1D multilayer dielectric system, where each layer
has a nonlinear coefficient drawn randomly, with zero mean.
Here, the propagating field induces the disorder in the
refractive index, and consequently, the disorder level
becomes dependent on the (local) intensity. We show that
the EM field decays as it penetrates into the disordered
medium, but exhibits diffusivelike behavior instead of
becoming localized as expected for 1D linear disordered
systems. We analyze the statistics of an ensemble of
disorder realizations and find that the transmission in all
realizations tends to converge to a single value, unlike linear
disordered systems which display an increasing variance in
transmission [21]. Finally, we examine the case of a
saturable NL material and find that it exhibits a distinct
transition from exponential decay to diffusivelike transport.
Our system is a 1Dmultilayer structure [Fig. 1(a)], where

the medium has the same linear refractive index n0 every-
where, but a spatially random n2 Kerr coefficient drawn
from a uniform distribution, n2 ∈ ½−Δ;Δ�. The refractive
index in the mth layer is nðzÞ ¼ n0 þ n2ðmÞIðzÞ, with IðzÞ
as the EM field intensity. While all layers are of equal
width, the system is not periodic because the refractive
index varies in a random fashion (with a zero mean) in the
presence of light, due to the nonlinearity. The zero mean of
the NL coefficient ensures that the effects arise from the
nonlinearly induced disorder and not from a change of the
average refractive index.
The electric field of the light propagating in a linear 1D

multilayer can be found through the transfer matrix method
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[22]. This method was developed for linear media, where it
accounts for all the scattering between the different layers.
However, this formalism is ill-suited to handle nonlinearity.
Here, the presence of the field changes the refractive index
according to the local intensity, and in turn, the field itself is
affected (backscatters and decays) due to the self-induced
disorder. The problem needs to be solved self-consistently:
finding the field structure that induces the exact nonlinear
variations in the refractive index that, in turn, give rise to
the same field structure. We use a numeric iterative
algorithm, where in each iteration the field of the previous
iteration is used to calculate the refractive index at each
location. Then, the refractive index is used to recalculate
the fields inside the system, and we again calculate the
induced refractive index until convergence to a self-
consistent solution. This procedure is similar to the method
of finding solitons [23].
The strength of the effect depends on the size of the

index variation Δn. Physically, the optical Kerr effect in the
transparent wavelengths range of bulk dielectrics is weak;
hence, the index change can realistically only reach values
of Δn ≈ 5 × 10−3, typically lower. We overcome this by
using an angle of incidence close to the critical angle for total
internal reflection [Fig. 1(b)], where localization becomes
substantially stronger [24,25]. In this regime, the effects
presented here can be studied in the laboratory [25].
Examples of transport in a nonlinearly disordered multi-

layer system are shown in Fig. 2, along with comparison to
localization via linear random variation of the refractive
index in a multilayer of the same layer width d. For
concreteness, we take d ¼ 0.25 μm and λ ¼ 1 μm.
Let us begin with recalling the established results of

Anderson localization. Figure 2(a) shows the linear case of
a random index variation drawn from Δn ¼ ½−5; 5� × 10−3
on the background of an ambient refractive index n0 ¼

ffiffiffi

3
p

.
The figure shows the intensity as a function of propagation
distance for two specific realizations of the disorder (two
specific cases of randomly chosen Δn in the specified
range). As expected from waves in linearly disordered
media, the fields decay exponentially as they penetrate into

the disordered structure. Figure 2(a) also shows (black
curve) the ensemble-average intensity (averaged over
10 000 realizations of the disorder), from which the exact
decay rate can be extracted.
Next, we examine the nonlinear system, where the

nonlinear coefficient varies randomly in the range n2 ¼
½−5; 5� × 10−3 cm2=W and the initial intensity of the wave
is Iðz ¼ 0Þ ¼ 1 W=cm2. The intensity is chosen to yield at
the input face of the structure a mean index change of
hjΔnNLji ¼ hjn2ðz ¼ 0ÞjIðz ¼ 0Þi ≈ 5 × 10−3, to facilitate
a comparison with the linear case of Fig. 2(a). Figure 2(b)
shows two examples of nonlinear transport and the ensem-
ble average. The field in all realizations decays as it
penetrates into the multilayer and so does the ensemble
average. We find that the decay rate of the intensity in this
nonlinear self-induced disorder scheme is much weaker
than in the linear disorder case and does not have an
exponential dependence. Rather, the decay here has a
power-law dependence, which highlights a major differ-
ence between the transport via nonlinear disorder and
localization. Clearly, the transport in our system does
not exhibit the main feature associated with Anderson
localization: exponential decay. In our system, as the light
intensity decays while penetrating into the structure, so
does the magnitude of the random light-induced variations
in the refractive index. This interplay between the NL and
the decaying intensity introduces a negative feedback
mechanism. The disorder becomes weaker as the wave
penetrates deeper: a higher disorder therefore causes a more
rapid decay in the intensity as the wave propagates, leading
to lower levels of disorder in the subsequent layers.

FIG. 2. Propagation of waves in multilayer structures with
disorder in their nonlinear properties results in evolution strik-
ingly different than in linear disordered systems. This figure
shows the evolution of waves in (a) linear and (b) nonlinear
disordered systems, for waves entering from the left. Red and
blue lines: light intensity as a function of propagation distance z
for two specific realizations of disorder. Black line: ensemble-
averaged intensity. Yellow line: power-law fit to the ensemble-
average results. The decay of the ensemble-averaged intensity in
the linear system (a) is exponential, conforming to Anderson
localization, whereas the decay in the nonlinear system (b) is of a
power law. The nonlinear system is also different than linear
diffusive systems [purple dashed line in (b)].

FIG. 1. (a) The 1D dielectric multilayer system and the electric
field therein. The nonlinear n2 coefficient of each layer (black)
varies randomly, inducing a random change in the refractive
index proportional to the local intensity. This nonlinear disorder
induces decay in the field amplitude (red). (b) 3D illustration of
the system with the light (red) incident at an angle slightly below
the critical angle for total internal reflection.
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Consequently, the backscattering mechanism becomes
weaker deeper into the structure, resulting in power-law
decay, as shown in Fig. 2(b).
Our finding of a power-law decay rate in our nonlinear

system calls for a comparison with disordered systems
where the transport of waves is diffusive. Generally, in
linear systems giving rise to diffusive transport of light, the
intensity transmission has a power-law dependence on the
propagation distance, with transport inversely proportional
to the length of the diffusive medium [26]. Our nonlinear
system is fundamentally different—not only in its physical
origins (being strictly nonlinear as opposed to fully linear,
as diffusive systems generally are), but also in its most
important features: decay rate and statistics.
To better understand these findings, we investigate an

analytic toy model, using the WKB approximation. In a
linear disordered system with a fixed level of disorder A
(real positive number), localization predicts exponential
decay with a rate that depends on A [12]. Hence, the mean
intensity ĪðzÞ ¼ hjEðzÞj2i (h� � �i denoting ensemble aver-
age) obeys ½dĪðzÞ=dz�¼−AĪðzÞ⇒ ĪðzÞ¼I0expð−AzÞ. In
our case of strictly NL disorder, the level of disorder is no
longer fixed, but depends on the intensity, and through it on
z: AðzÞ ¼ A0n2ĪðzÞ, where the intensity decays with z and
affects the level of disorder. Under WKB, we assume that at
every position z the wave function experiences (for some
short distance) a constant level of disorder and therefore
exhibits decay according to the “local disorder level.” This
approximation is valid while the length scale on which the
disorder AðzÞ varies is much larger than the wavelength of
the light. The mean intensity in this NL system is therefore
governed by ½dĪðzÞ=dz� ¼ −AðzÞĪðzÞ ⇒ ½dĪðzÞ=dz� ¼
−A0Ī Ī ⇒ ĪðzÞ ¼ ½1=ðA0zþ CÞ�.
This solution is a power-law decaying wave function,

with a power law of (−1). Indeed, in our simulations, we
find a mean (ensemble-averaged) power-law decay [yellow
curve in Fig. 2(b)]. The exact power-law decay found in the
analytic toy model agrees with the mean intensity found in
simulation [black curve in Fig. 2(b)]. The only significant
discrepancy between the curves is near the entrance plane,
where the nonlinear index change varies rapidly, violating
WKB approximation. Consequently, the power transmis-
sion through such a NL disordered medium also decays as a
function of the structure length with the same power law
as the intensity. The longer the structure is, the lower the
transmission through it.
The observation of a power-law decay can also be

explained through a nonlinear diffusion argument.
Diffusion is a measure of the strength of the disorder
and the diffusion coefficient D is inversely proportional to
the variance of the refractive index D ¼ D0varðΔnÞ−1.
In ordinary diffusive systems, D is constant, and the mean
intensity decays linearly with distance. In our case, the
diffusion coefficient is dependent on the variance of the
refractive index and through it on the light intensity:

D ¼ D0=varðΔnÞ ≈D0Ī−2. If we insert this intensity de-
pendent diffusion coefficient into the 1D steady-state
diffusion equation, we get DðĪÞ∂zĪ¼const⇒D0Ī−2∂zĪ¼
const⇒ ĪðzÞ¼ð1=c1þc2zÞ, where the constant is propor-
tional to the power flux through the medium (see details in
the Supplemental Material [27]). Thus, when considering
the dependence of the disorder on intensity, the diffusion
equation yields a power-law solution, identical to the result
of our toy model, and describing our simulation results
[Fig. 2(b)].
This result is surprising because 1D systems with linear

disorder cannot be described through diffusion or the
diffusion equation. Rather, localization “triumphs,” and
the result always is absence of diffusion. Our finding
highlights that the self-induced disorder in our nonlinear
system results in diffusion rather than localization of light.
The nonlinear self-induced diffusion is also fundamentally
different than diffusion in a linear disordered system,
because the NL process relies on the negative feedback
between the wave and the disorder. To demonstrate that, we
studied what happens in our system when we disconnect
that feedback: we examined light propagation in a linear
system for which the disorder magnitude decays in the
exact same fashion as our NL system [Fig. 2(b)]. As
shown in [27], without the feedback mechanism, the field
intensity does not decay as the nonlinearly induced diffusion
of Fig. 2(b). Rather, it decays at a much lower rate.
Fundamentally, it is the interplay between the field intensity
and the induced refractive index that gives rise to this special
kind of nonlinear diffusion, which was never studied before.
Next, we study the statistical features of the self-induced

diffusion. While the ensemble average yields the typical
behavior [Fig. 2(b)], the wave function in each disorder
realization decays in a different fashion, and as the light
propagates, the difference between the decay of the wave
functions in each realization can grow considerably.
Figure 3 shows the histogram of the transmission logarithm
and the variance for an ensemble of realizations, at different
positions along the z axis. In a linear disordered system
[Fig. 3(a)], the histograms are shaped as a Gaussian, from
which the variance of the transmission can be calculated.
After propagating a short distance, the histogram is relatively
narrow (blue line), indicating low variance between the
transmission of different realizations in the ensemble. But as
the light penetrates deeper, the histograms becomewider and
their center shifts to lower levels of transmission. The
widening of the histograms indicates a larger variance in
the ensemble realizations. In the linear systems, the variance
of the transmission increases linearly with z [Fig. 3(c)], as
known from 1D Anderson localization [21], indicating an
increasing difference between realizations.
In sharp contrast to linear disordered systems, the non-

linearly disordered medium exhibits completely different
statistics. Surprisingly, from our simulations we find that
not only does the variance not increase linearly, but it
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actually decreases as a function of propagation distance z.
Figure 3(b) shows the histograms for the ensemble in the
NL disordered multilayer. In contrast to the linear case, the
histogram describing the ensemble after a short propagation
distance (blue) is the widest, indicating the largest variance.
As the light penetrates deeper into the medium, the histo-
grams become narrower, indicating a decrease in variance.
The dependence of the variance on z in the NL multilayer is
shown in Fig. 3(d). There is an initial “jump” of the
variance at the very beginning of propagation, but from
there on the variance in transmission decreases. This is
another consequence of the negative feedback mechanism:
the variance in transmission decreases because realizations
with strong initial decay experience less disorder and
localization henceforth, and vice versa. In stark contrast
to the divergence of the variance in the linear system, the
NL disordered multilayer displays a convergence of all
realization to a single value.
It is now interesting to examine the dependence of the

diffusive transport on the optical wavelength. In linear
disordered Anderson-localized systems, the decay length
L (distance after which the intensity decays to 1=e of its
initial value) in the long wavelength limit is usually
proportional to λ2, while near the critical angle this
dependence is linear or close to it [24]. Our simulations
show that near the critical angle the power of the wave-
length dependence is 1.2, as shown by the red curve in
Fig. 4(a), together with a power-law fit of LðλÞ ¼ Aλ1.2

(blue). This result is similar to the results from 1D linear
disordered systems near the critical angle [24,25,35]. It is
yet unknown exactly why these results are similar, as they
arise from different origins (linear vs nonlinear disorder),
while the only common aspects are that both systems are
one-dimensional and near critical angle. In a similar vein,

we examine the effect of the initial light intensity on the
decay length in our nonlinear multilayer [also defined as
IðLÞ ¼ Ið0Þe−1]. The magnitude of the disorder is propor-
tional to the intensity; hence, it is expected that as the
initial intensity decreases, so will the disorder magnitude.
Figure 4(b) shows the decay length as a function of the
initial light intensity: as the intensity increases, the decay
length decreases, because the magnitude of the disorder
increases, and the scattering process becomes more
prominent. However, even though a high intensity beam
decays faster than a low intensity beam, the output power
of the high intensity beam is still higher than that of the
low intensity beam.
Finally, we study the transport in a multilayer system

where the nonlinearity is saturable,ΔnðzÞ¼Δn0I=ðIþIsatÞ,
with Δn0 being the maximum index change (which varies
randomly from layer to layer) and Isat is the saturation
intensity (kept constant). This is an important class of
nonlinearity, which appears in many physical systems [36].
In this kind of disordered nonlinearity, we find a distinct
transition between localization and diffusive transport, as
the light intensity crosses Isat. As we show in [27], if
I ≫ Isat, the nonlinearity is saturated and therefore the
refractive index change is independent of the value of the
intensity, and thus the disorder level remains constant. As a
result, in this regime the system undergoes localization with
exponential decay of the wave function. Because of this
decay, I decreases, until eventually the system undergoes a
transition to the I < Isat regime, where the refractive index
change and the disorder levels depend again on the value of
the intensity. There, we once again find the anomalous
negative feedback mechanism that results in diffusive
transport with power-law decay. The details, statistics,
and transition from the high to low intensity regimes are
described in [27].
In conclusion, we analyzed the transport of light in a new

kind of system, where only the nonlinear coefficients are
disordered. The unique interplay between the light intensity
and the induced disorder creates negative feedback, causing
the linear localization process to break down and the decay
of the wave functions to change from exponential to power

FIG. 3. (a),(b) Histogram of log10ðTransmissionÞ, for an
ensemble of linear and nonlinear (respectively) disordered multi-
layer structures of different lengths L. For both the linear and the
NL cases, the histograms are Gaussian, and their centers shift to
lower values as the structure becomes longer. However, in the
linear case the distribution becomes wider as L increases (a),
whereas in the NL case it becomes narrower (b). (c),(d) Variance
of log10ðTransmissionÞ (red) and intensity (blue) as a function of
L, for linear (c) and nonlinear (d) disorder. For linear disorder the
variance increases linearly, whereas for NL disorder the variance
first jumps from 0 to 0.08 very close to the entrance face, but then
starts to decrease, reaching zero asymptotically. Consequently,
the intensities of the optical field in all realizations of NL disorder
coalesce to a single value asymptotically.

FIG. 4. (a) Decay length as a function of wavelength (for layer
width of 250 nm) found from simulations (red points) showing
best fit to a power-law dependence (blue), LðλÞ ≈ Aλ1.2, near the
critical angle. (b) Decay length as a function of initial light
intensity. As the initial light intensity increases, the magnitude of
disorder increases as well, and the scattering process becomes
more prominent.
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law, manifesting self-induced diffusion. The statistical
attributes of an ensemble of multilayer structures of differ-
ent realizations of the disorder are dramatically different
from those of linear systems: the variance and the light
intensity in all realizations of disorder coalesces to a single
value. These results raise interesting questions. Is this type
of self-induced diffusive transport possible in higher-
dimensional systems, e.g., for transverse localization in
the paraxial regime [5,6] or in full 3D? This kind of self-
induced diffusion will also occur for Bose-Einstein con-
densation in the mean-field regime (e.g., as in [10]), but
would it also occur for disordered quantum systems
displaying many-body interactions [37,38]?
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