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We study the propagation of electromagnetic waves in disordered photonic time crystals: spatially
homogenous media whose refractive index changes randomly in time. We find that the group velocity of a
pulse propagating in such media decreases exponentially, eventually coming to a complete stop, while
experiencing exponential growth in intensity. These effects greatly depend on the Floquet band structure of
the photonic time crystal, with the strongest sensitivity to disorder occurring in superluminal modes.
Finally, we analyze the ensemble statistics and find them to coincide with those of Anderson localization,
exhibiting single parameter scaling.
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A photonic time crystal (PTC) is a spatially homo-
geneous medium with a refractive index varying periodi-
cally in time, nðtÞ [1]. It was shown [2–6] that a temporal
change in the wave impedance causes temporal reflection
and refraction for any wave propagating within the time-
varying medium. Such time reflections become dominant
when the temporal change is both fast (on the timescale of
the cycle of the wave propagating in the medium) and
strong (refractive index change on the order of at least
∼0.1). The time-reflected waves interfere with one another,
and if the temporal modulation is periodic, the interference
gives rise to Floquet modes with a band structure in
momentum space [7–9] and topological properties
[10,11]. In one spatial dimension (1D), PTCs seem to be
the temporal analogue of 1D photonic crystals. However,
despite the similarity, PTCs are profoundly different from
(spatial) photonic crystals. First, PTCs—being spatially
homogeneous—conserve momentum, whereas dielectric
photonic crystals conserve energy. Second, PTCs display
momentum band gaps [8–10,12], rather than the energy
gaps in photonic crystals. Fundamentally, the differences
between PTCs and spatial photonic crystal arise from the
arrow of time. Namely, while Bragg reflection from a
spatial 1D lattice deflects the wave in space, for PTCs, a
temporal change in permittivity cannot cause backreflec-
tion in time (unfortunately, for mankind); rather, causality
implies that the time reflection also occurs in space. Thus
far, PTCs have been demonstrated only in transmission
lines [9]. However, recent advances with nonlinear effects
in epsilon-near-zero materials [13] have enabled very large
femtosecond variations in the refractive index on the
order of ∼1 [14,15] and the observation of time refraction
[16,17]. With these in mind, studying electromagnetic
(EM) waves in photonic time crystals is becoming acces-
sible to experiments.
PTCs, the temporal analogue of photonic crystals, are

periodic by definition, but many wave systems are not

completely periodic and contain an element of disorder.
The dynamics of waves in disordered media have been
a major research topic since Anderson suggested that
scattering from disorder can bring transport to a halt
[18]. Localization is now known to be a ubiquitous wave
phenomenon occurring for EM waves [19–24], acoustic
waves [25], cold atoms [26], and other wave systems.
Optics, specifically, became a popular experimental plat-
form for studying Anderson localization due to the non-
interacting nature of photons and the long coherence times
[27]. An important prerequisite for Anderson localization
is that the disorder remains constant (frozen) in time. For
years, it was believed that waves in systems that vary in
time, even if they remain spatially disordered at all times,
are not only nonlocalized [28], but can even display
hypertransport [29,30]. However, this view was changed
by a recent suggestion that a time-varying system modu-
lated by a properly disordered pseudoperiodic driving force
may display localization in the time domain [31–33]. These
studies examined a spatially periodic system governed by
the Schrödinger equation and found that its Floquet
eigenmodes are localized in space and periodic in time.
However, those dynamic disordered systems were studied
in the context of the Schrödinger equation, where time
reflections are impossible; i.e., the temporal dynamics are
described by the first derivative of the wave function.
In sharp contrast, systems governed by a wave equation
with a second derivative in time, such as Maxwell’s
equations, do allow time reflections and therefore enable
a plethora of phenomena, many of them completely new
[34]. One important manifestation of such fast variations is
the PTCs described above.
The similarities and differences between PTCs and

spatial photonic crystals raise fundamental questions
regarding waves in PTCs containing disorder: Will such
waves localize, as waves in a disordered photonic crystal
do, or will we witness new phenomena? Will an optical
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pulse launched into a disordered PTC undergo complete
reflection, as its spatial analogue does, or will the funda-
mental difference between time and space result in different
dynamics?
Here, we study the dynamics of light propagating in

disordered PTCs—PTCs to which random fluctuations
are added. We find that the velocity of a pulse propagating
in a disordered PTC slows down exponentially once the
temporal disorder begins, eventually coming to a complete
stop. The dynamics and the slowing down rate depend on
the specific band structure of the PTC and the momentum
spectrum of the pulse. In contrast to Anderson localiza-
tion, here, the amplitude of the pulse grows exponentially,
and the modes with the highest group velocity are the most
susceptible to disorder, displaying the greatest deceler-
ation. Finally, we examine the ensemble statistics of
waves in disordered PTCs and underpin the similarities
and differences with Anderson localization including
single parameter scaling. Conceptually, the results pre-
sented here are not restricted to the realm of PTCs, but
rather apply to all wave systems that include a second
time derivative and therefore experience time reflection,
such as acoustics, water waves [6], and other classical
wave systems.
We begin by considering a laser pulse propagating in a

spatially homogeneous mediumwhose refractive index varies
in time. Figure 1(a) illustrates a Gaussian pulse (blue), which
is entirely contained in the medium (gray) and propagating
within it. Consider now what happens when the medium
changes its properties in time, due to an external force acting
on it, such as time-dependent stress or an external high
intensity light pulse inducing permittivity change.
The EM waves inside the medium experience time

reflection and refraction when a temporal change occurs.
Let us assume that the temporal permittivity variations
are abrupt, occurring in time segments, as illustrated in
Fig. 1(b). As shown in [35], for such a temporal boundary,
the reflection and transmission (for D) are

r ¼ ðZ1 − Z2Þ=2Z1; t ¼ ðZ2 þ Z1Þ=2Z1;

Zi ¼ Di=Bi ¼
ffiffiffiffiffiffiffiffiffiffi

εi=μi
p

; ð1Þ

where Zi is the wave impedance in temporal segment i [36].
Consider a plane wave with wave number k of the form
Dðt; zÞ ¼ D0 exp½iðω1t − kzÞ�x̂ propagating in a medium
with ε1, μ1 (where k ¼ ω

ffiffiffiffiffiffiffiffiffi

ε1μ1
p

). At some point in time, the
parameters of the medium change abruptly to ε2, μ2. This
temporal interface results in two plane waves: the trans-
mitted wave Dtðt; zÞ ¼ tD0 exp½iðω2t − kzÞ�x̂ propagating
in the same direction, and the backreflected wave
Drðt; zÞ ¼ rD0 exp½iðω2tþ kzÞ�x̂ propagating in the oppo-
site direction (but not reflected back in time), with
ω2

ffiffiffiffiffiffiffiffiffi

ε2μ2
p ¼ k. Because of the translational symmetry

(the medium is spatially homogenous at all times), the
momentum is conserved; thus k is conserved through all
temporal changes. On the other hand, the frequency ω
changes with each temporal change of parameters, to fulfill
the dispersion relation ω

ffiffiffiffiffi

εμ
p ¼ k. The temporal variations

(induced by the external force) change the EM energy
density stored within the medium. If the variations are
periodic, εðtÞ ¼ εðtþ TÞ, the cumulative effect of time
reflections and refractions form a PTC, endowed with
bands and band gaps in momentum. This raises the
question, what will be the cumulative effect of such time
reflections when they are random?
For simplicity, we study here a binary PTC comprised

of equal “time segments,” each lasting T, corresponding to
a modulation frequency of Ω ¼ 2π=T (the permittivity
function, however, has an infinite spectrum of frequen-
cies). This binary PTC has ambient permittivity of 2 with
a periodic modulation of magnitude 0.1, resulting in
two alternating segments with permittivities ε1 ¼ 1.9,
ε2 ¼ 2.1. On top of this periodic variation, for each time
segment, we add a random value, drawn from
Δε ¼ A × U½−1; 1�, with A indicating the disorder mag-
nitude and U½−1; 1� describing uniform distribution. An
example of one such realization of temporal disorder is
sketched in Fig. 1(b), showing the permittivity εðtÞ in a
disordered PTC. During each segment, the permittivity is
constant, but with an abrupt change at the boundary
between segments. Such disordered PTCs are a temporal
analogue of a disordered multilayer medium, i.e., a one-
dimensional photonic crystal.
To understand the dynamics of a light pulse in such a

disordered PTC, we simulate the system using finite-
difference time domain simulations adjusted to include
the temporal variations. In addition, we verify our results,
using spectral decomposition analysis, where we decom-
pose the pulse to its momentum components, evolve each
one of them in time, and recombine them at each time point.
In random disordered systems such as ours, it is necessary
to use a large ensemble of disorder realizations and
calculate the mean value for each feature [24]. Through
such ensemble averaging, we reveal the characteristic
behavior of the system as a whole. In our simulations
here, we use an ensemble of 105 realizations for each data
point in our figures.

(a) (c)(b)

FIG. 1. (a) Gaussian light pulse propagating in the spatially
homogenous medium of a disordered PTC. The pulse is fully
contained within the PTC. (b),(c) Time-dependent permittivity
in a single realization of a disordered PTC showing the time
segments of equal duration T, under disorder magnitude A ¼ 0.1,
(b) with and (c) without, underlying periodicity.
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We begin by studying the simplest form of a temporally
disordered medium: the case where no periodic modulation
exists and both segments of the PTC have the same
permittivity value, to which disorder is added. This system
forms a temporally disordered dielectric medium with
no underlying temporal periodicity (this is, in fact, not
even an actual PTC, since it has no underlying periodic-
ity):ε ¼ 2þ A ×U½−1; 1�. An example of one realization
is shown in Fig. 1(c). Here, the pulses have 200T
FWHM and central frequency of Ω=5, propagating
in a homogenous medium with relative permittivity of
ε ¼ 2, until at t ¼ 0, temporal disorder begins with
ε ¼ 2þ A ×U½−1; 1�.
We find that, as the pulse propagates in the temporally

disordered medium, its velocity decreases, its energy
grows, and its shape is distorted. This is a direct result
of the random time reflections it experiences. An example
of a pulse envelope evolving in a single disorder realization
is shown in Fig. 2(a), demonstrating how its envelope
changes after propagating for 2000T. Figures 2(b) and 2(c)
show the mean pulse group velocity and the mean pulse
energy, respectively, both calculated from ensemble aver-
age. To highlight the specific effects the temporal disorder
has on the pulse, we compare three different cases with
different disorder magnitudes. The first system is the trivial
case in which A, the disorder magnitude, is zero (blue plots
in Fig. 2), representing ordinary propagation in a time-
invariant homogeneous medium. In the second case, we
introduce temporal disorder of low magnitude, A ¼ 0.1
(red plots in Fig. 2). And in the third case, we increase the
magnitude of the temporal disorder to A ¼ 0.25 (yellow
plots in Fig. 2).

We find that once the temporal disorder begins, the mean
group velocity of the pulse (calculated from center of mass)
decreases exponentially to zero, and the exponential decay
becomes steeper as the disorder magnitude increases. These
results are shown in Fig. 2(b), displaying the mean group
velocity of pulses propagating in the three systems: A ¼ 0
in blue, A ¼ 0.1 in red, and A ¼ 0.25 in yellow.
Next, we examine the pulse energy as a function of time

[Fig. 2(c)]. For the system with no disorder (blue), we again
find ordinary propagation with the pulse energy remaining
constant. In the disordered systems (yellow and red), we
find exponential growth of the pulse energy, as indicated by
the linear growth in the log-scale plots in Fig. 2(c), with the
faster growth in the system with the stronger disorder
(A ¼ 0.25, yellow).
Up to this point, we examined the simple case of

temporal disorder with no underlying time periodicity,
thus leaving out the effects of the PTC band structure.
We now move on to study the more interesting case of
disordered PTCs. We find that localization in temporally
disordered PTCs is related to Anderson localization in 1D
spatially periodic systems, but also displays some impor-
tant differences. Generally, the light pulses in the disor-
dered PTCs slow down exponentially, and their amplitude
grows accordingly, but the potency of these effects greatly
depends on the PTC band structure as we explain next.
Let us first recall some features of Anderson localization

in spatially disordered 1D systems. When disorder is
introduced into a 1D system, all waves become localized
with exponentially decaying tails, and all wave packets
come to a complete halt. However, dispersion (effective
mass) has a profound impact. In spatially periodic systems,
the group velocity is proportional to the ∂ω=∂k relation
derived from the band structure and generally drops to zero
at the band edges. In spatially periodic systems containing
disorder, the modes on the band edge, which also have the
lowest group velocity, are the most susceptible to disorder
and are the first to become localized [37]. The wave
functions of these band-edge modes also exhibit the
steepest exponential decay (described by the Lyapunov
exponent) [21,38]. Following similar logic, we find that in a
disordered PTC, the effects of disorder are also dependent
on the band structure, with the modes on the band edge
being the most susceptible to it. Interestingly, in PTCs,
these modes on the band edges are the ones with the highest
group velocity, which can even be superluminal (the
information velocity, however, is of course not super-
luminal). Nevertheless, despite their high group velocity,
the band-edge modes are the first to slow down and their
wave functions display the steepest exponential growth.
This phenomenon is shown in Fig. 3, where we simulate
pulse propagation for 200T, at the edge of the first band
of the PTC, the region where the variation in the group
velocity is the steepest. In this example, the unit cell of the
PTC consists of two time segments of equal duration

(a) (b) (c)

FIG. 2. Pulse propagation in a temporally disordered medium
without underlying temporal periodicity. (a) A single disorder
realization, displaying the pulse envelope just before the disorder
begins (t ¼ 0, blue) and after propagating 2000T (red, A ¼ 0.25).
The temporal disorder slows the pulse, increases the amplitude,
and causes ripples is the trailing tail. (b) Group velocity of the
pulse (log scale) as a function of time. In the system with no
modulation (blue), the velocity remains constant. In the system
with low disorder magnitude (red), the velocity decays exponen-
tially to zero. In the system with high disorder magnitude
(yellow), the decay is steeper. (c) Pulse energy as a function
of time. The system with no modulation (blue) conserves the
pulse energy, while in the systems with temporal disorder (red
and yellow) the pulse energy grows exponentially, with a faster
rate when the disorder magnitude is larger (yellow).

PHYSICAL REVIEW LETTERS 126, 163902 (2021)

163902-3



T with modulation amplitude of 0.1, resulting in a PTC
with ε ¼ 1.9 and 2.1. The disorder is introduced by
adding a random element of uniform distribution and
A ¼ 0.25 magnitude: 0.25 ×U½−1; 1�, to the permittivity
of each time segment. The simulations are carried out
for 10T FWHM pulses, with central momentum of
k ¼ 0.33½Ω=c�, just on the band edge.
Figures 3(a) and 3(b) show the band structure of this

PTC without disorder (blue), displaying a band gap
(between 0.35 and 0.36½Ω=c�) with two band edges.
Figure 3(c) presents an enlargement of the left band-edge
region and displays the energy growth of each momentum
component of the pulse separately (log scale, blue), rather
than the total energy, to highlight the large impact of the
band structure. Figure 3(c) also shows the group velocity
near the band edge (red), displaying an increase into
superluminal values. We emphasize that the group velocity
cannot be numerically calculated for each momentum
component separately, as it is derived from the motion
of the pulse center of mass; but just as is the case of
temporal disorder without underlying periodicity, here too,
it decays exponentially to zero. Another interesting case is
when the momentum spectrum of the pulse fully resides
inside the band gap of the disordered PTC. In this case, the
disorder reduces the band gap effects of the PTC such as
the exponential growth of energy, as we further discuss in
the Supplemental Material [39].
The relation to Anderson localization in 1D systems calls

for analyzing additional statistical properties of the ensem-
ble, such as the distribution and variance. It has been shown
[38] that the ensemble of such systems displays a distinct
statistical signature of the intensity logarithm: the distri-
bution is always Gaussian and the variance is proportional
to the evolution distance. Figure 4 presents these statistical
properties for our disordered PTC. Figure 4(a) shows four

histograms of the intensity logarithm conforming to four
different propagation times. All the histograms are
Gaussian shaped (i.e., the distribution of the intensity
logarithm remains Gaussian at all times); however, as
the propagation duration increases, the Gaussian distribu-
tions become wider, indicating a growing variance, and
their centers shift to higher values, indicating the higher
(mean) intensity. These results resemble the intensity
distribution in Anderson systems with one difference-in
our system, the Gaussian centers shift to higher values,
while in spatial Anderson systems they always shift to
lower values. Figure 4(b) shows how the variance of the
intensity logarithm is proportional to the propagation time,
increasing linearly, exactly like 1D spatially disordered
(Anderson) systems.
These statistical features are part of the single param-

eter scaling theory, which explains how both the intensity
mean value and distribution in Anderson systems are
governed by a single parameter [38]. Both the mean
exponential decay rate (Lyapunov exponent) and the
ensemble variance growth rate can be derived from the
same parameter. An easy way to identify single param-
eter scaling is a constant ratio between the mean intensity
and the variance of the intensity logarithm across
systems with different parameters. Figure 4(c) displays
this ratio for two levels of disorder. The ratio quickly
converges to a constant value of ∼0.44 for both values of
disorder magnitude, indicating the existence of single
parameter scaling in our system.
To summarize, we studied the evolution of light pulses in

disordered PTCs and found that their group velocity slows
down exponentially until they all eventually stop, while
their energy grows exponentially. Additionally, we studied

(a) (b) (c)

FIG. 3. (a) Band structure of a PTC without disorder, displaying
the two momentum bands (blue) and band gaps as well as the
corresponding group velocity (red). (b) Same as (a) with a focus
on the band gap region. The PTC band structure (blue) and the
group velocity (red) on the two band edges, clearly display a band
gap at 0.35–0.36½Ω=c�. (c) Enlargement of the dashed region of
(b) highlighting just the first (left) band edge, showing the group
velocity (red) and the power increase of each momentum
component after propagating for 200T in log scale (blue). The
closer the momenta are to the edge, the higher the group velocity,
and therefore the larger the exponential growth in that region.

(b)(a) (c)

FIG. 4. (a) Histograms of the intensity logarithm at different
propagation times (indicated by different colors), normalized to
describe probability. All of the distributions are Gaussian shaped,
and as time progresses, the Gaussians become wider, with their
centers shifting to higher values, indicating a growing variance
and growing mean intensity. (b) Variance of the intensity
logarithm as a function of time for disorder magnitudes
A ¼ 0.1 (blue) and A ¼ 0.25 (red), showing a variance value
proportional to propagation time, exactly like in Anderson
systems. (c) Ratio between the ensemble variance and mean
value, as function of time, for disorder magnitude A ¼ 0.1 (blue)
and A ¼ 0.25 (red dots). The ratio quickly converges to the
same constant value, as should happen in a system with single
parameter scaling.
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how the underlying band structure of disordered PTCs
affects the localization, and the relation to group velocity.
For the sake of generality, we used the parameter Ω to
describe the modulation frequency and expressed the other
important parameters of the system, such as the wave
number and time ðk and tÞ throughΩ. This allows us to not
limit these findings to a specific system, material, or
frequency regime, but describe the general concepts and
arising phenomena. Naturally, this calls for discussing the
experimental feasibility of experimental observations. In
the radio frequency regime, techniques for creating such
temporal disorder have existed for over a decade [46], and
in the optical regime, we suggest an experimental system
based on epsilon-near-zero materials, with details provided
in the Supplemental Material [39]. The underlying physics
is closely related to Anderson localization, but has some
important differences arising from the fundamental differ-
ence between spatial and temporal reflections (namely,
causality prohibits time reflections from being reflected to
earlier times).
This Letter suggests a new direction of research on

transport phenomena in disordered PTCs, which thus far
has been uncharted territory. For example, is it possible to
identify Levy flights [47] in these new systems? Can these
systems support hypertransport [29]? What will happen in
photonic time quasicrystals? Will they support localization
or enhanced transport, as happens in their spatial counter-
parts [48]? Undoubtedly, PTCs, with and without disorder,
offer a new and exciting avenues of research. We are
currently experimenting with ultrafast time-varying optical
media, hoping to demonstrate photonic time crystals in the
near future.
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