
Synthetic-Space Photonic Topological Insulators
Utilizing Dynamically Invariant Structure

Liat Nemirovsky , Moshe-Ishay Cohen , Yaakov Lumer, Eran Lustig , and Mordechai Segev *

Solid State Institute, and Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel

(Received 14 September 2020; accepted 1 July 2021; published 25 August 2021)

Synthetic-space topological insulators are topological systems with at least one spatial dimension
replaced by a periodic arrangement of modes, in the form of a ladder of energy levels, cavity modes, or
some other sequence of modes. Such systems can significantly enrich the physics of topological insulators,
in facilitating higher dimensions, nonlocal coupling, and more. Thus far, all synthetic-space topological
insulators relied on active modulation to facilitate transport in the synthetic dimensions. Here, we propose
dynamically invariant synthetic-space photonic topological insulators: a two-dimensional evolution-
invariant photonic structure exhibiting topological properties in synthetic dimensions. This nonmagnetic
structure is static, lacking any kind of modulation in the evolution coordinate, yet it displays an effective
magnetic field in synthetic space, characterized by a Chern number of one. We study the evolution of
topological states along the edge, and on the interface between two such structures with opposite synthetic-
space chirality, and demonstrate their robust unidirectional propagation in the presence of defects and
disorder. Such topological structures can be realized in photonics and cold atoms and provide a
fundamentally new mechanism for topological insulators.
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Topological insulators (TIs) [1] attract an abundance of
research in many different fields. These materials are
insulators in the bulk but perfectly conduct on the edge.
Their edge states are defined by discrete topological invar-
iants, and their transport is robust against disorder if the
topological band gap is large enough. In the past decade, TIs
were demonstrated in a variety of systems such as electron-
ics [2],microwaves [3], photonics [4–9], cold atoms [10,11],
acoustics [12,13], and mechanics [14,15]. The major
progress with topological phenomena in electromagnetic
(EM)waves has led to the new field of topological photonics
[16], enabled exploring the physics of topological systems in
settings that are impossible in solid state physics [17], and
offered novel contexts, such as nonreciprocal EM devices
[3], radiation-free sharply bent waveguides [18], and an
avenue to forcemany semiconductor lasers to lock and act as
a single laser source [19].
TIs usually rely on spatial lattices, with the wave packets

therein subjected to gauge fields that give rise to the
topological phenomena. However, lattices do not neces-
sarily have to be a spatial arrangement of sites. Rather, a
lattice can also be ladders of atomic states [20–23], cavity
modes [24–27], waveguide array modes [28], judiciously
interconnected photonic systems [29–32], or the states
arising from shaking harmonic traps [33] (See recent review
on topological photonics in synthetic dimensions [34]). In
this vein, spatial lattices can be augmented by one or more
synthetic dimensions. With this concept, one can engineer
geometries with gauge fields that are not available in spatial

lattices [35] and produce lattices with unusual features such
as topologically protected states in the real-space bulk [28],
protected transport utilizing the frequency domain as the
synthetic dimension [24,27], or inducing an artificial
magnetic field which does not break time-reversal sym-
metry in real-space [36]. In addition, synthetic dimensions
enable one to explore physics in a space with a dimension-
ality higher than the apparent geometrical dimension of
these structures [28,37]. This concept provides a promising
basis for new topological photonic structures, such as a
mode-locked topological insulator laser [38]. However, thus
far, all suggestions and experiments on photonic topological
insulators (PTIs) in synthetic dimensions relied on modu-
lation to couple the modes and facilitate transport in the
synthetic dimensions. Such modulation has to be in the
evolution dimension and can be either in time [24,25] or
along the propagation dimension [28].
Here,we propose synthetic-spacePTIs relying ondynami-

cally invariant topological photonic structure. This structure
is the first evolution-invariant system which is a synthetic-
space TI [36]. We show that this structure is characterized by
a real-space Chern number of þ1 and demonstrate robust
one-way edge propagation in synthetic dimensions without
breaking time-reversal symmetry in real-space.
Creating nonmagnetic PTIs that do not require any

modulation, neither in time nor along the propagation axis,
is valuable, because these systems do not involve coupling
to unbound states (which inevitably introduce loss) [39].
For example, in Ref. [4], the helicity of the waveguides
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introduces considerable coupling to radiation modes, which
sets a limit on the propagation distance. Likewise, spatial
modulation involves backscattering, and temporal modu-
lation in cavities leads to coupling to low-Q modes. Thus,
having PTIs without any modulation makes them appealing
for photonic devices.
The photonic structure is based on the fact that the

Hamiltonian of a charged particle confined to a plane in the
presence of a perpendicular uniform magnetic field is
equivalent to a set of harmonic oscillators with shifted
centers. Consider a 1D spatial lattice, composed of an array
of evanescently coupled planar (slab) waveguides,
engraved in a 3D dielectric medium (Fig. 1a). The wave-
guides have their propagation axis in the z direction, and
they are periodically spaced in x by a distance d. The
waveguides are labeled with an (integer) indexm, such that
−∞ < m < ∞. The contrast of the refractive index defin-
ing the waveguides is varied in the y direction in the form
Δn ¼ −ðm − αyÞ2. Namely, Δn depends on the waveguide
number (m), such that the largest index contrast moves in
the x-y plane at an angle cot−1ðαdÞ [Fig. 1(b)].
The evolution of EM waves in this photonic structure is

governed by the paraxial wave equation

i
∂ψðr; zÞ

∂z ¼ − 1

2k0
∇2⊥ψðr; zÞ − k0

n0
Δnðr; zÞψðr; zÞ: ð1Þ

This equation is mathematically equivalent to the
Schrödinger equation with the coordinate z playing the
role of time, and Δnðr; zÞ=n0—the fractional change in
the refractive index—acting as the effective potential [40].
ψðr; zÞ is the slowly varying envelope of the wave, k0 ¼
2πn0=λ is the wave number in the medium (λ is the
wavelength), n0 is the ambient refractive index, and ∇2⊥ ¼
∂2
x þ ∂2

y is the Laplacian in the transverse plane ðx; yÞ. The
equivalence between Eq. (1) and the Schrödinger equation
has been exploited in experimenting with a variety of
phenomena, from Anderson localization [41] and bound
states in the continuum [42] to Floquet TIs in real space [4]

and in synthetic dimensions [28]. Thus, with the refractive
index structure Δnðxm; yÞ (xm ¼ md being the position of
the mth waveguide) and under tight binding, Eq. (1) takes
the form
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where φm is the wave function in the mth waveguide
and κ is the coupling constant between adjacent wave-
guides. Since φm is discrete in x, we can write ψ ¼P

m φmðyÞeikxmd and express Eq. (2) in a synthetic domain
of ðkx; yÞ, where the evolution is described by
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where kx is the wave number along the x direction.
Equation (3) is equivalent to the Schrödinger equation
for a charged particle in a magnetic field [36], under

i
∂ψðr;zÞ

∂t ¼
�
1

2m
½p̂x−qÂxðyÞ�2þ

p̂2
y
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�
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ℏ ¼ c ¼ q ¼ 1, and using the kinetic momentum operator
p̂ ¼ −iℏ∇. The magnetic field is induced by the term ðαyÞ,
acting as a vector potential AxðyÞ ¼ αyx̂ in the ðkx; yÞ
domain. Using this 1D transformation, we obtain an
artificial uniformmagnetic field,Hart ¼ −αẑ, perpendicular
to the synthetic-space plane of ðkx; yÞ.
Intuitively, the refractive indexΔn ¼ −ðm − αyÞ2 means

that each waveguide has a parabolic envelope; hence, the
structure acts as a system of coupled harmonic oscillators,
with the center of each oscillator translated linearly in y,
depending on the position of the waveguide indexm. In this
picture, α is the parameter affecting the curvature of the
harmonic potential in each waveguide and the translation
in the center of the harmonic potential in y [Fig. 1(b)].
These waveguides (shifted harmonic oscillators) are
coupled by proximity. Importantly, this structure is com-
pletely uniform along the z direction. Namely, this structure
is propagation invariant. In the equivalent Schrödinger
picture, where z plays the role of time, this means that
the time-reversal symmetry in this system is conserved.
This structure, which is invariant under translations in the
propagation axis z, displays dynamics similar to that of a
time-independent Hamiltonian: It conserves energy pre-
cisely for different z plane cuts; i.e., there is no coupling to
unbound modes. Likewise, the z-invariant Hamiltonian also
conserves momentum; hence, there is no backreflection.

(a) (b)

FIG. 1. (a) Sketchof the judiciously shaped slabwaveguide lattice
in real space,with a refractive index structure ofΔn ¼ −ðm − αyÞ2.
The evanescently coupled waveguides are aligned along the x
direction, labeled with the integer m. The refractive index does not
depend on the propagation axis z; namely,Δn remains invariant for
all z. (b) Side view of the waveguide array (gray) with the shape of
the refractive index (blue): Each waveguide has a translated para-
bolic “effective potential” (refractive index).
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The topological properties in our system are manifested
in synthetic space, which consists of one spatial axis (y) and
one synthetic axis of the momentum kx, obtained by
converting a spatial dimension (x) to a synthetic dimension
(kx). Our 2D synthetic space is, therefore, a hybrid real-
momentum space. While this transformation does not
change the eigenvalues of the problem, it introduces a
vector potential AxðyÞ of an artificial magnetic field
perpendicular to the new transverse coordinates ðkx; yÞ.
This effective magnetic field, induced in the synthetic
domain, exhibits properties of a quantum Hall effect: In
the presence of a uniform magnetic field normal to the
plane, the energy spectrum breaks up into discrete Landau
levels. In our structure, the light is influenced by this
artificial magnetic field perpendicular to the hybrid real-
momentum space ðkx; yÞ. Therefore, the spectrum of our
2D system exhibits Landau levels, with spacing between
the levels of ωc ¼

ffiffiffiffiffiffiffiffiffiffi
2=n0

p
α, the cyclotron frequency (see

the derivation in Supplemental Material [43]). We empha-
size that the κ cosðkxdÞ term in Eq. (3) removes the
degeneracy of the Landau plateaus. However, as long as
the coupling coefficient remains small, namely, κ < ωc,
one can still distinguish between the equally spaced
plateaus, even if the shape of the plateaus is somewhat
modified. The spectrum of Landau levels can be viewed as
the “band structure” of the system, as used henceforth. In
our photonic structure, the spectrum is defined by the
evolution of the eigenmodes ψn ¼ φneiβz, β being the
propagation constant. Since the potential in this system
does not obey translational symmetry, we arrange the
spectrum in ascending values of β, which displays
Landau levels [Fig. 2(a)]. When we take our structure to
be finite in the y direction, we find (using periodic
boundary conditions in y) edge states in the gaps of the
Landau levels [inset in Fig. 2(a)]. These edge states are

natural candidates for being topological edge modes.
Figure 2(b) shows the uniform artificial magnetic field
oriented along the (−z) direction.
Having shown that our evolution-invariant system has an

artificial magnetic field, the immediate question is whether
it is topological. Conventionally, the topology of a system
is represented by the Chern number, reflecting the winding
number accumulated over a full cycle in momentum space.
However, since our 2D system is not periodic in its spatial
dimensions (x and y), there is no unit cell nor Brillouin
zone; hence, we resort to the real-space Chern number
[44,45]. As described in Supplemental Material [43], we
find the Chern number to be þ1, indicating that the system
has nontrivial topology.
It is important to emphasize again that our topological

structure is completely invariant in the z direction. Thus, in
the analogous Schrödinger picture, our system of shifted
coupled harmonic oscillators is fully time invariant. In our
synthetic space, however, time-reversal symmetry is bro-
ken. Namely, since our hybrid real-momentum space
consists of a momentum dimension kx and a spatial
dimension y, time-reversal symmetry in the synthetic
domain is broken, because time-reversal flips the sign
of the momentum Tfk̂x × ŷg ¼ −k̂x × ŷ. This is what
enables the creation of the artificial magnetic field in the
synthetic space.
Next, we study the propagation of wave packets within

the bulk and on the edge of the synthetic-space structure
using simulations of Eq. (1). We begin with the evolution in
the bulk (of synthetic space): We launch a wave packet of
the form ψðkx; yÞ · eivkx , where ψðkx; yÞ is a Gaussian wave
packet and v is a real number playing the role of “wave
number in synthetic space” (not to be confused with the
group velocity; see Supplemental Material [43]). We first
launch the wave packet at the center of the bulk with a
v > 0 and let it evolve in z by solving Eq. (1) numerically.
Supplemental Video A [43] shows the evolution. The wave
packet moves in a circular motion, with group velocity vg,
in an anticlockwise fashion [as expected from Fig. 2(b)].
The motion direction is determined by the artificial
magnetic field, which is determined by α (the shift of
the parabolic envelope of the refractive index defining the
waveguides). For a given α, the magnetic field is always in
the same direction; hence, the circular motion of a wave
packet in the bulk is always in the same direction. In our
example in Supplemental Video A and in Supplemental
Material [43], the beam launched in the bulk always moves
anticlockwise regardless of its initial synthetic-space wave
number v, even if we launch it with v < 0. The anticlock-
wise motion is in accordance with the positive value Chern
number þ1. Thus, our synthetic-space system features
distinct chiral properties: circular motion for any wave
packet launched in the bulk, with the rotation direction
depending on the direction of the artificial magnetic field.
This circular motion in synthetic space—common to all

(a) (b)

FIG. 2. . (a) Landau level spectrum: propagation constants in
ascending order. The eigenvalues congregate at discrete, highly
degenerate plateaus, with level spacing conforming to the cyclo-
tron frequency ωc ¼

ffiffiffiffiffiffiffiffiffiffi
2=n0

p
α. Λ is an interval of eigenvalues

encompassing the first plateaus. Inset: spectrum of the region
marked by a dashed red line, when the structure is finite in y. The
Landau levels are connected by edge modes. (b) Motion of an
eigenstate wave function in synthetic plane ðkx; yÞ. The wave
function evolves in an anticlockwise cyclotron motion resem-
bling the motion of a charge in the presence of a uniform
magnetic field.
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wave packets launched in the bulk—means that there is no
transport in the bulk of our synthetic space—conforming
the notion of TIs.
The chirality in the synthetic-space bulk leads to com-

plex behavior in real space. The evolution of the beam in
the real space shows that it experiences oscillatory evolu-
tion around the y direction (without any motion in the x
direction), with some broadening (being a superposition of
eigenmodes), but it always returns to the same (mean)
position where it was launched, after each cyclotron
period. The synthetic-space wave number varies through-
out evolution: For a beam launched at kx ¼ 0, the wave
number oscillates around 0, whereas for kx > 0 the wave
number ascends until reaching π and then returning (via
Bragg reflection) from −π and starting to ascend again
(Supplemental Video B [43]). This dynamics is present as
long as 0 < κ < ωc.
Next, we study the evolution of a wave packet along the

edge, by taking a ribbon in the synthetic domain with a
finite width in y. We launch a Gaussian wave packet with
synthetic-space wave number v > 0 at the upper edge
[Figs. 3(a)–3(d) and Supplemental Video C [43] ] and
with v < 0 at the bottom edge [Figs. 3(e)–3(h) and
Supplemental Video D [43] ] of this ribbon. For the upper
edge, the beam propagates in a unidirectional manner, from
left to right, while remaining confined to the edge, without
penetrating into the bulk. Likewise, a beam launched at the
lower edge with v < 0 evolves in the same fashion, only in
the opposite direction: unidirectionally from right to left,
always staying at the bottom edge. We emphasize that the
eigenstates comprising the wave packet are associated with
the energies in the gaps of the Landau levels spectrum [inset
in Fig. 2(a)]. This synthetic-space evolution is exactly the
characteristic behavior of the topological quantum Hall
effect.
It is important, however, to know how this dynamics

looks also in real space, where the evolving beam can be
directly imaged. When viewed in real space, the wave
packet remains localized at the launch position at all times.

Namely, when we launch the wave packet at the lower edge
of the synthetic-space ribbon with kx > 0, in real space the
wave packet remains at the same position and only the
wave number is modified, as can be seen in Supplemental
video E [43]. This real-space evolution of the synthetic-
space edge modes is completely different from the real-
space dynamics of the synthetic-space bulk modes: The
cyclotron motion of the bulk modes makes oscillatory
evolution along the y direction while maintaining its
position only in the x coordinate. That is, the kx motion
in the synthetic space affects the envelope of the wave
packet, but its center remains at the same x coordinate
value. Altogether, the real-space evolution of wave packets
associated with synthetic-space edge modes is highly
distinct from that of synthetic-space bulk modes. This is
visualized in the simulations presented in Supplemental
Video E [43], which serves as an indicator for the dynamics
expected in laboratory experiments.
One of the key features of topological insulators is

robustness of transport against scattering from defects
and disorder. Here, our structure is a synthetic-space
TI; hence, the robustness should be tested in synthetic
space. As shown in Supplemental Material, Sec. C, and in
Supplemental Video H [43], edge wave packets are able to
bypass defects without scattering back or into the bulk. This
serves as a strong confirmation that our system is indeed a
synthetic-space TI. However, for most applications, robust-
ness for synthetic-space defects is less important than
robustness against real-space scattering, especially against
disorder—which is always inevitable in any physical sys-
tem. To this end, we study the robustness of the edge
transport against scattering disorder in real space. We
randomly change the refractive index of several waveguides
in our structure and simulate the propagation of wave
packets on the synthetic-space edge. As shown in
Supplemental Videos F and G [43] (which show the
evolution in synthetic space and in real space, respectively),
the wave packet remains confined to the synthetic-space
edge,without being scattered orwithout coupling to the bulk

FIG. 3. (a)–(d) Intensity of the beam at four planes in synthetic space. We launch a beam with v > 0 at the upper edge of a synthetic-
space ribbon. The beam follows the edge from left to right, without scattering into the bulk. (e)–(h) The same as (a)–(d), but with v < 0
at the lower edge of the synthetic-space ribbon, displaying evolution from right to left. We use the parameters d ¼ 12.566 ½μm�,
λ ¼ 0.5236 ½μm�, and α ¼ 12.5664 ½cm−1�. The y values vary between −125 and 125 ½μm�.
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modes—even when we increase the magnitude of the
disorder, as long as it is smaller than the half of our band gap.
Finally, we explore the evolution of the edge states at the

y ¼ 0 interface between two systems of opposite chirality
and launch awave packetwith v > 0 along this interface. For
y > 0, the bulk has a refractive index Δn1 ¼ −ðmþ αyÞ2,
and, for y < 0, the bulk hasΔn2 ¼ −ðm − αyÞ2. Namely, the
bulk with positive y has artificial magnetic fieldHart ¼ þαẑ,
while the adjacent bulk has the opposite artificial magnetic
field Hart ¼ −αẑ. Thus, the y ¼ 0 line signifies an interface
between a region with Chern number þ1 and a region with
Chern number −1. As such, the edge states at this interface
correspond to a difference in the Chern number of 2, which
implies that their dispersion relation and wave functions are
fundamentally different than those in Fig. 3 (where the
interfacial change in Chern number was 1). The Chern
number also dictates the number of chiral edge states residing
at the interface of the coupled structures. The spectrum of
these coupled structures is presented in Supplemental
Material [43]. Figures 4(a)–4(d) and Supplemental Video I
[43] show the simulated dynamics of a beam (made up of the
proper edge states) launched with v > 0 at this topological
interface of difference in the Chern number of 2. The beam
remains confined to the interface throughout propagation,
without coupling into any of the bulks. On the other hand,
whenwe launch the samewave packet butwith v < 0, which
is opposite to the direction of the one-way propagation
induced by the chiralities of the two coupled bulks, the beam
remains at the same (mean) position where it was launched.
The beam splits in two, each half making circular motion in
the chiral direction of its bulk (Supplemental Material and
Supplemental Video J [43]).
In conclusion, we proposed an evolution-invariant 2D

structure which is a synthetic-space TI. This structure is the
first evolution-invariant topological insulator in a bosonic
wave system. It is characterized by an artificial magnetic
field displaying Landau levels and a positive Chern number
þ1, even though time-reversal symmetry is not broken in
real space. Accordingly, the topological edge states in
this structure move unidirectionally in the hybrid real-
momentum space, without scattering into the bulk or
backscattering, even in the presence of real-space disorder.

This evolution-invariant TI, which does not require any
kind of modulation, makes it appealing to experiments in
photonics (as described above) and in cold atom systems
(where laser beams induce a 1D lattice superimposed with
parabolic envelopes of translated centers, as in Fig. 1).
These would be the first experimental realization of an
evolution-invariant TI in synthetic dimensions, highlight-
ing a fundamentally new mechanism for TIs that creates
chiral edge states without breaking time-reversal symmetry
in their real space.

Note added.—Recently, a related work appeared [47],
demonstrating a similar structure to ours—also evolution
invariant, which exhibits chiral edge states.
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