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Random-Phase Solitons in Nonlinear Periodic Lattices
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We predict the existence of random phase solitons in nonlinear periodic lattices. These solitons exist
when the nonlinear response time is much longer than the characteristic time of random phase
fluctuations. The intensity profiles, power spectra, and statistical (coherence) properties of these
stationary waves conform to the periodicity of the lattice. The general phenomenon of such solitons
is analyzed in the context of nonlinear photonic lattices.
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Nonlinear systems with inherent periodicity are abun-
dant in nature. Examples may be found in biology [1],
chemical physics [2], nonlinear optics [3], Josephson-
junction ladders [4], Bose-Einstein condensates (BEC)
[5], etc. Optics especially has provided important ad-
vances and holds great promise for applications. Recent
results in nonlinear waveguide arrays include the obser-
vation of discrete solitons [6], diffraction management
[71, Bloch oscillations [8], the use of the optical induc-
tion technique to create nonlinear photonic lattices [9—
11], the observation of spatial gap (staggered) solitons
[10,11], higher band Floquet-Bloch (FB) solitons [12],
the prediction of multiband vector lattice solitons [13],
etc. (for a recent review, see Ref. [14]). Theoretically,
nonlinear waveguide arrays have been mostly treated
with the coupled mode theory, where dynamics is well
approximated with the discrete nonlinear Schrodinger
equation (NLSE) [3]. In a more general approach, the
FB theory is used to analyze a continuous differential
equation with a periodic potential term (e.g., the NLSE/
Gross-Pitaevskii equation in the context of nonlinear
optics/BEC). The main feature of wave propagation in
periodic systems is the interference of waves reflected
from the lattice, which drives the propagation dynamics.
These interference effects depend crucially on the coher-
ence of the waves. However, in nonlinear periodic lat-
tices, only coherent waves have been considered thus far.
Since most waves encountered in nature are only partially
coherent, theories assuming perfectly coherent waves are
idealizations, which are nevertheless accurate when the
characteristic length describing the coherence of waves
greatly exceeds the characteristic dimension of the sys-
tem (e.g., the lattice spacing). However, when the two
length scales are comparable, the interference effects,
and consequently the dynamics, will depend on the inter-
play between the statistical (coherence) properties of the
waves and the lattice periodicity. Here we consider the
propagation of partially coherent waves in nonlinear
periodic lattices.

223901-1 0031-9007/04/92(22)/223901(4)$22.50

PACS numbers: 42.65.Tg

The propagation of partially coherent light waves in
homogeneous noninstantaneous nonlinear media was
studied extensively in recent years [15—20]. It has been
shown that the statistical properties of light greatly influ-
ence the dynamics (e.g., the properties of incoherent
solitons [15-18,20] and modulation instability [19]).

In this Letter, we predict the existence of random phase
solitons (RPS) in nonlinear periodic lattices. These soli-
tons are found in media where the nonlinear response
time is much longer than the characteristic time of ran-
dom phase fluctuations. An RPS forms when the time-
averaged intensity of an incoherent wave packet induces a
defect in the periodic potential which has multiple bound
states; the wave packet “binds” itself to that defect by
randomly populating these states in a self-consistent
fashion (on the time average). For RPSs to exist, their
intensity profiles, power spectra and coherence properties
must conform to the lattice periodicity.

The problem of partially coherent wave propagation
in nonlinear periodic systems is general. However,
for concreteness we analyze RPSs in the context of optics
and use the corresponding terminology. The description
of the physical system is as follows. A quasimonochro-
matic yet partially spatially incoherent cw beam is in-
cident upon a noninstantaneous nonlinear medium (e.g.,
photorefractives, liquid crystals, etc.) with periodically
modulated index of refraction. The characteristic time
scales involved are the response time of the medium
T, the characteristic time of random fluctuations (the
coherence time) 7, and the traveling time of light
through the medium 7,. When these time scales are
related as 7,, > 7, > 7, the amplitude of the electric
field E(x, z, t) exp(ikz — iwt) obeys (see Refs. [18,21] for
derivation in homogeneous media):
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where the potential V(x,z) = p(x) + én(I) contains a
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nonlinear &n(I) and a periodic term p(x) =
p(x + D) with period D; the nonlinear index change
6n depends on the time-averaged intensity / and is
in temporal steady state, don(I)/dt = dI/dt = 0. Here
k = nyw/c, where ng is the linear part of the refractive
index. The statistics describing random fluctuations of the
electric field is expressed with the mutual coherence
function B(xy, x5, 2) = (E(x}, 2, ) E* (x5, 2, 1)) [18], where
brackets (- - -) denote the time average over 7,,. Instead
of analyzing the evolution equation for the mutual co-
herence function [18], it is more convenient, but equiva-
lent, to use the modal theory [17,21]. Within the modal
theory, the field is expressed as a superposition of
coherent waves with randomly varying coefficients:
E(x, z, 1) = > ¢, (), (x, z) [17]. The statistical properties
of the light follow from {c,(?)c},(1)) = d,8,,/; that is,

B(xy, x2,2) = Y dyih,(xy, D (x2, 2), 2

while I(x,z) = Y, d,|,(x, 2)|>. The functions ,(x, z)
form an orthonormal set, and d,, denotes the power within
the nth wave [21]. By inserting £ = >, c,#, in Eq. (1),
and using {(c,c’) = d,8,,, one finds the set of evolution
equations for coherent waves ¢,:
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where V = p(x) + én[>,d, |, (x, 2)I*].

Evolution Eq. (3) describes the dynamics of the system.
In the absence of nonlinearity [V(x) = p(x)], the eigen-
modes of the system are FB waves, ¢ ,;(x, z) =
fp(x)explik,x + iBz], which are extended (not localized)
states, organized into bands separated by gaps. Here,
fp(x) = fg(x + D) denotes the spatial profile of the FB
wave. Its propagation constant 3 is a function of the Bloch
wave vector k, [see Figs. 1(a) and 1(b)]. When an incoher-
ent beam enters such a linear system, each coherent wave
i, excites many FB waves ¢ g, and the beam experiences
diffraction in periodic medium [14]. In a nonlinear sys-
tem, a stationary incoherent beam (RPS) can form if
diffraction is exactly balanced by the nonlinearity.
Stationary propagation occurs when the self-consistency
loop is closed, i.e., when an incoherent beam consisting
of randomly excited coherent waves ¢, induces a defect
in the lattice Sn[I(x)], which creates multiple localized
(defect) states, some (or all) of which are identical to
coherent waves ¢, themselves. In this case, the propaga-
tion constants of the coherent waves (i.e., defect states)
are in the gaps of the spectrum of the linear system, and
it is convenient to expand the notation: ¢, — ¢, =
u, (x)exp(ik, z). The propagation constant k,; of the
coherent wave i, ; resides in the gap above the nth band
[see circles in Figs. 1(a) and 1(b)], while / describes the
hierarchy within a single gap: if [ <1’ then «,; > k.
The spatial profiles u, ;(x) of the coherent waves obey

h,(x,2) =0, 3)
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FIG. 1 (color online). The propagation constants and the
power spectra of the RPSs. (a),(b) The diffraction curves
0.58kx%,8 vs k.D/m (solid curves) of the linear lattice, and
the propagation constants 0.58kx%;<n_1 (circles) of the (a) first
band RPS and (b) three-band RPS. The Fourier power spec-
trum of the (c) first band RPS and (d) three-band RPS. The
power spectra in the FB basis for the (e) first band soliton and
(f) three-band soliton. The lattice is formed as p(x) =
poS, e LammD/xF o /pg < 1.74 X 1074, and xo/D = 0.37.

U du, | Apl) + SnlIWTE
2k dx? ng

nl = Kn,lun,l(x)r (4)

where I(x) = Y, ,d, |lu, (x)|*. The localized eigenmodes
i, are randomly excited; their time-averaged occupancy
is given by the modal weights d,;, while the time-
averaged intensity I(x) =Y, d, lu, (x)|* induces the
defect dn[I(x)] which creates the localized eigenmodes
i, themselves. The statistical properties of the solitons
described above are stationary during propagation as
B(xy, x2) = Y, 1dy 1ty 1(x1)u, (x5) is independent of z.

The statistical and diffraction properties of the RPS are
intimately related to its spatial power spectrum [16], that
we express in terms of the Fourier transform,

2
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and by projecting the coherent waves onto the FB waves
of the linear waveguide array,

2

Jep(ky) = Zdn,l (6)
n,l

f_oo dxity, ) (x) fp(x)e ™

The power spectra of RPS have generic features that
follow from the qualitative analysis of diffraction in
periodic media. Consider a wave packet exciting the FB
waves around some transverse momentum value &,. The
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diffraction of such a wave packet depends on the curva-
ture of the diffraction curve at k,, D ,(k,) = 9?B(k,)/0k3.
In 1D periodic media, the diffraction coefficient D ,(k,)
oscillates around zero, and the regions of normal
[D,(k,) < 0] and anomalous diffraction [D,(k,) > 0] al-
ternate. The nth Brillouin zone (n = 1,2, ...) is split into
the normal [(n — 1)7r/D, «,), and anomalous diffraction
interval (a,, n7/D], where D ,(a,) = 0. If the beam is
more incoherent, the width of its power spectrum is
broader and may extend over a wide region in the k, space
[16], in which D, (k,) significantly varies. As the self-
focusing effect balances normal diffraction, we come to
the following conclusion: If the nonlinearity is self-
focusing, the power spectrum Jgg(k,) of an RPS must
be supported mainly in the (disjoint) normal diffraction
intervals. The opposite occurs for the self-defocusing
nonlinearity, where the power spectrum Jpg(k,) covers
mainly the anomalous diffraction intervals. This charac-
teristic property of the FB power spectrum Jgg(k,) is
immediately reflected onto the Fourier power spectrum
Jer(k,). Figures 1(c)—1(f) illustrate the power spectra of
RPS (exact parameters are given below).

Up to this point, the analysis is general and applicable
to different types of nonlinearities and periodic po-
tentials. From now on we assume that the nonlinearity
is self-focusing and saturable, dn(I) = yI/(1 + 1/Iy),
and the lattice is constructed in the form p(x) =
Po>., exp—[(x — mD)/xy]® (m integer). The lattice sites
(centers of the waveguide channels) are located at points
x = mD, while the proximity of points x = (m + 1/2)D
corresponds to interstitial regions. The parameters used
in the calculations are ny = 2.3, py =4 X 1074, x, =
3.7 um, D =10 um, and k = ny27/A, where A =
488 nm, yIg = 1.5 X 10~*. We seek for RPS numerically
and solve Eq. (4) with the iterative self-consistency
method [17]. We restrict the analysis to symmetric solu-
tions I(x) = I(—x), where the mode profiles u, (x) are
real functions constructed from waves with opposite
transverse momenta *k,,;, so that the total transverse
momentum is zero. The power is distributed to the local-
ized modes as d,,; « exp[—12/(2w?)] for [ = 1,; I, is the
number of excited modes in the gap above the
nth band. The characteristic features of RPS are illus-
trated in two examples, where the localized modes origi-
nate (i) solely from the first band [[; = 11, w; = 4.34,
Figs. 2(a) and 2(b)], and (ii) from the first three bands
[[, =11,1, = 6,1 =3, w; =434, w, = 2.36,and wy =
3.55, Figs. 2(c)-2(f)]. The propagation constants k,
of the first and the three-band soliton are displayed as
circles in Figs. 1(a) and 1(b), respectively. The total
power within each soliton is P = 94.313x,. For the
three-band RPS, the amount of power within the
modes from the first, the second, and the third band is
47%, 47%, and 6%, respectively. These solitons are
stable in a wide parameter regime, as has been checked
numerically by evolving them for many diffraction
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lengths with initial noise that contained 10% of the
RPS power.

Let us analyze the common features and differences of
the intensity, statistical, and diffraction properties of
these RPS examples (see Fig. 2). In all cases, the envelope
of the intensity profile encompasses several waveguide
channels. Superimposed on this envelope there are oscil-
lations in the intensity which conform to the lattice
periodicity. From Fig. 2(a) we see that the intensity
profile of the first band RPS has peaks that coincide
with the lattice sites. In contrast, the three-band RPS
has a large amount of power (~50%) in the interstitial
regions [Fig. 2(c)]. We explain these differences by noting
that the FB waves of the second and the third band
contain a large amount of power in the interstitial re-
gions, and from the fact that the localized modes origi-
nating from FB waves inherit their properties [13]. The
intensity structure of the RPS induces a defect in the
periodic potential, which is illustrated in Fig. 2(f) for
the three-band RPS. The defect and the RPS are broad due
to the fact that many localized modes are excited.

The coherence properties are described by (i) the

complex coherence factor, u(x, x') = B(x, x')//I(x)I(x"),
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FIG. 2 (color online). The intensity profiles, diffraction,
and spatial coherence properties of the RPSs. First band
RPS: (a) the intensity profile I(x)/Ig (solid line) and [,(x)/D
(dashed line); (b) diffraction after 8.29 mm of propagation
(solid line), and I(x)/Is at z = 0 (dashed line). Three band
RPS: (c) I(x)/Ig (solid line) and [,(x)/D (dashed line);
(d) diffraction after 8.29 mm (solid line), and I(x)/I; at
z=0 (dashed line). (¢) The complex coherence factors
u(x,0) (solid line) and wm(x + D, D) (dashed line) of the
three-band RPS. (f) The normalized induced potential V(x)
(defect) of the three-band RPS containing the periodic and
nonlinear term. Vertical lines denote the lattice sites.
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which expresses the degree of correlation between the
field values at points x and x’, and (ii) the spatial corre-
lation distance [ (x) = [, dx'| u(x, x')|?, which gives the
characteristic length scale describing spatial coherence;
the region of integration R is several times larger than the
soliton region. The common feature of the RPSs is that
I,(x) exhibits oscillations that follow lattice periodicity
and increases at the RPS tails [Figs. 2(a) and 2(c)]. The
latter feature occurs because only the slowly decaying
modal constituents are present at the tails, thereby in-
creasing the spatial coherence. From Figs. 2(a) and 2(c)
we observe that the spatial correlation distance /,(x) is
approximately invariant under translations by D within
the soliton region. The property [ (x) = [,(x + D) is a
consequence of an underlying approximate invariance
law: w(x, x') = w(x + D, x’ + D). This is illustrated in
Fig. 2(e) that shows w(x, x'), and u(x + D, x' + D), for
x' = 0; the graphs appear almost identical. We also ob-
serve that as [,(x) follows the lattice periodicity, it is
lower at the lattice sites and increases in the interstitial
regions. To explain this, consider modes originating from
some band; the modes with smaller propagation constants
extend further towards the RPS tails and also have more
power in the interstitial regions. This increases /;(x) in the
interstitial regions.

Diffraction of coherent waves in periodic media has
been well studied [7,14]. Because diffraction is funda-
mentally a linear phenomenon, diffraction of an in-
coherent beam can be represented as a superposition of
independently diffracting coherent waves i, ;. The over-
all result depends on different weights d,,;, transport
directions, and diffraction coefficients associated to
each coherent wave ¢, ;. Figures 2(b) and 2(d) display
the diffraction of the first and the three-band RPS after
8.29 mm of propagation (nonlinearity is off).

From the analysis above it follows that properties of an
RPS are determined by the modal structure of the inco-
herent light. This is also valid for the power spectra. The
Fourier power spectrum of the first band RPS [Fig. 1(c)] is
single humped covering mainly the normal diffraction
region of the first Brillouin zone, whereas the spectrum of
the three-band soliton [Fig. 1(d)] is multihumped cover-
ing the normal diffraction regions of the first three
Brillouin zones (for self-defocusing nonlinearity anoma-
lous diffraction regions would be covered). The FB power
spectra have similar properties, yet we numerically ob-
serve that the FB spectra of the localized modes origi-
nating from the nth band occupy only the nth Brillouin
zone [Figs. 1(e) and 1(f)]. For example, the FB power
spectrum of the first band RPS is located only within the
first Brillouin zone [Fig. 1(e)].

In conclusion, we have presented random phase soli-
tons in nonlinear periodic lattices. For RPSs to exist, their
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intensity profiles, power spectra, and coherence proper-
ties must conform to the lattice periodicity. We find
equivalent conclusions to hold in lattices with Kerr non-
linearity, and in optically induced arrays with saturable
nonlinearity [9-11]. Finally, we emphasize that the dy-
namics of partially coherent waves in nonlinear periodic
lattices is a general problem, occurring in contexts be-
sides spatial beams in waveguide arrays, e.g., partially
coherent temporal pulses in nonlinear photonic crystals,
or weakly correlated BEC systems in periodic traps, etc.
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