
the original frequency again. More detailed analysis of the data
revealed additional weak speckles earlier in the original 6-UT hour,
at about 06:20 UT, when the transmitter was operated at a lower
frequency (and lower effective power), and some of the brightest
speckles were also identified in data from one of the other lower-
resolution camera systems operated from a separate building,
eliminating any doubt that the speckles represent actual light
from the sky.

Although visible levels of artificial optical emissions have not
been reported previously, there have been other attempts made to
stimulate the auroral E layer with radio waves. A similar experiment
that used low-light television cameras and a 2-s on–off cycle but
different polarization reported an estimated modulation of less than
10 R, interpreted as radio-induced decreases in the green line
emission7. Large-scale structural changes in the overhead aurora
have been reported in conjunction with E-layer heating8, but the
extremely small number of cases and the close similarity of the
observed effects to naturally occurring processes make it difficult to
assess the true influence of the radio waves on the auroral events. In
contrast, the recent HAARP observations demonstrate clear on-off
control of the speckles over 50 or more complete cycles.

Potential sources of the observed bright speckles fall into two
categories: production in the local E-region ionosphere by the
transmitter beam, or indirect creation by modification of the
auroral particle precipitation, which then produces the optical
speckles in the same way as the background aurora. If the speckles
are locally generated, the role of the natural aurora would probably
be limited to creation of the E layer for the radio waves to interact
with, and it might be possible to generate similar phenomena in
non-auroral E layers independent of any specific on-off cycling, a
potentially desirable condition for creation of visible artificial light.
If, on the other hand, the speckles result from modification of the
auroral particle population, perhaps through perturbations to
currents flowing in the E layer or a wave resonance, we expect
that the specific frequency of the on–off cycling relative to the
natural pulsation frequencies might be a critical parameter, and
experiments of this type could potentially become a new tool for
exploration of time-dependent processes in the aurora and
magnetosphere. A
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The coherence of waves in periodic systems (lattices) is crucial to
their dynamics, as interference effects, such as Bragg reflections,
largely determine their propagation. Whereas linear systems
allow superposition, nonlinearity introduces a non-trivial inter-
play between localization effects, coupling between lattice sites,
and incoherence. Until recently, all research on solitary waves
(solitons) in nonlinear lattices has involved only coherent waves.
In such cases, linear dispersion or diffraction of wave packets can
be balanced by nonlinear effects, resulting in coherent lattice (or
‘discrete’) solitons1,2; these have been studied in many branches
of science3–11. However, in most natural systems, waves with only
partial coherence are more common, because fluctuations (ther-
mal, quantum or some other) can reduce the correlation length to
a distance comparable to the lattice spacing. Such systems should
support random-phase lattice solitons displaying distinct fea-
tures12. Here we report the experimental observation of random-
phase lattice solitons, demonstrating their self-trapping and local
periodicity in real space, in addition to their multi-peaked power
spectrum in momentum space. We discuss the relevance of such
solitons to other nonlinear periodic systems in which fluctuating
waves propagate, such as atomic systems, plasmas and molecular
chains.

Wave propagation in periodic potentials exhibits universal
characteristic features, such as Bragg reflections, bandgaps (stop
bands) and alternating regions of normal and anomalous dis-
persion. In solid-state physics, this leads to regions where the
effective mass is positive or negative13, whereas in optical settings
such as waveguide arrays1 the same processes correspond to regimes
of normal/anomalous diffraction. These effects all result from
interference among waves propagating in the lattice, and as such
they critically depend on the degree of coherence of the waves
involved. The propagation dynamics of incoherent waves in non-
linear periodic potentials depend on the threefold interplay between
interference effects, nonlinearity and the statistical (coherence)
properties of the waves. As a result, many fundamental physical
phenomena occurring with coherent waves, such as solitons1–10,
modulation instability6,14 and Bloch oscillations15,16, are expected to
exhibit new features with incoherent (random-phase) waves. Like-
wise, potential applications will offer new possibilities when partial
coherence plays a role and is used as an additional degree of
freedom. For example, using random-phase waves as a statistical
probe may provide a valuable tool for exploring general dynamics in
nonlinear lattices17. Another example is the extension of our current
experimental findings to obtain Brillouin zone spectroscopy. To
date, the only work in this direction has been the theoretical
prediction of one-dimensional random-phase lattice solitons
(RPLSs)12. We report the experimental observation of incoherent
optical lattice solitons in a nonlinear waveguide array.

Before discussing the new features introduced by the partial
coherence of waves, we will highlight the most relevant physical
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processes associated with the lattice. As periodicity and Bragg
reflections dominate the linear properties, and as the spatial
power spectrum characterizes the probe beam, it is best to consider
the lattice properties through its k-space (momentum space)
representation. Figure 1a shows the first and second Brillouin
zones of a two-dimensional square lattice with the high-symmetry
points (G, X and M) marked with white dots. The first two bands in
the transmission spectrum are shown in Fig. 1b, and the dispersion
curves between the symmetry points of the first two bands are
plotted in Fig. 1c. Negative curvature in these figures corresponds to
normal diffraction; that is, a narrow beam with its power spectrum
centred in a normal diffraction region acquires a convex phase front
during linear propagation, in a fashion similar to diffraction in
homogeneous media. On the other hand, positive curvature in the
dispersion relation corresponds to regions of anomalous diffrac-
tion, in which a beam (wave packet) acquires a concave phase front
while propagating linearly. A self-focusing nonlinearity can only
counteract the broadening tendency of a narrow beam experiencing
normal diffraction. Hence, a bright soliton in a self-focusing non-
linear photonic lattice should significantly populate those regions in
k-space where the diffraction is normal. Consequently, the power
spectrum of random-phase lattice solitons in self-focusing media is
expected to have multiple humps, with the humps located in regions
of negative (normal) curvature12. Specifically, for a self-focusing,
square, nonlinear photonic lattice, Fig. 1b and c indicates that the
power spectrum of a two-band RPLS should consist of a central
hump centred on the G-point of the first band together with four
humps centred on the vicinity of the X-points of the second band.

Our experiments were carried out in optically induced nonlinear
photonic lattices18, recently used for the experimental observations
of two-dimensional lattice solitons19, spatial gap solitons19,20, vortex
lattice solitons21,22, dipole-mode discrete solitons23 and ‘optical
polarons’24. In this system, plane waves interfering in a photo-
refractive crystal induce a photonic lattice (Fig. 1d), while voltage
applied across the crystal controls the strength of the photorefrac-
tive screening nonlinearity25,26. We photograph the light leaving the

output face of the crystal both in real space and in k-space (for the
latter we use a lens, and monitor the intensity at the focal plane). A
quasi-thermal (partially spatially coherent) quasi-monochromatic
source is established by focusing a laser beam onto a rotating
diffuser27,28, and then imaging 1:1 with a telescopic (so-called ‘4f ’)
imaging system onto the input face of the crystal (Fig. 1e). We
control the degree of spatial coherence and the power spectrum of
the exciting beam by a spatial filter in the Fourier plane of the 4f
system. Finally, we note that the nonlinear response time of the
medium is much longer than the fluctuation time of the incoherent
beam; hence, it can support incoherent solitons27,29.

Figure 2a shows a real-space photograph of the induced square
lattice and of a probe beam launched into the lattice, at the input
face of the crystal. The lattice period is ,11.5 mm, and the probe
beam has a width of 26mm (full-width at half-maximum, FWHM).
Hence, the probe beam covers an area of several (,10–12) channels.
Figure 2b shows the Fourier power spectrum when the probe beam
is incoherent (wide blue circle) and of the lattice-forming waves
(four dots; ‘delta functions’). Because the inducing array beams
form Bragg angles in our system, the corresponding square defined
by the four dots outlines the first Brillouin zone (Fig. 1a). The wide,
blue circle shows that the power spectrum of the incoherent probe
beam covers all the first Brillouin zone and significant parts of the
second zone. For comparison, Fig. 2c shows the power spectrum of a
coherent probe beam (with the diffuser removed) possessing the
same size (envelope) in real space as the incoherent probe. The
spectral width of such a coherent probe beam is much less than that
of the incoherent probe (by a factor greater than 3), and covers only
a small portion of the first Brillouin zone. Going back to Fig. 2b, the
width indicates that the average speckle size in the incoherent beam
is less than one-third the size of the envelope of the beam, and that
the spatial correlation distance of this random-phase beam is
approximately equal to the lattice period.

The incoherent beam is focused into the lattice with the real-
space distribution and power spectrum shown in Fig. 2a and b,
respectively, and propagates through a 5-mm nonlinear photonic

Figure 1 Experimental scheme for producing random-phase solitons in an optically

induced square lattice. a, First (green square) and second (four yellow triangles) Brillouin

zones of a two-dimensional square lattice with the high-symmetry points (G, X, and M)

marked with white dots. b, Transmission spectrum of the first two bands of a two-

dimensional square lattice with a lattice period d. c, Dispersion curves between the

symmetry points of the first two bands. Negative curvature in these curves corresponds to

normal diffraction regions. d, Diagram of the optical induction technique used to obtain

the two-dimensional, square photonic lattice. The blue planes with heavy black arrows

indicate the plane waves used to optically induce the lattice. The red arrow indicates the

direction of a probe beam entering the lattice. The orange circle indicates the width of the

probe beam. e, Diagram of our set-up for obtaining a spatially incoherent (quasi-thermal),

quasi-monochromatic beam.
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lattice. As in ref. 19, each array beam has ,15 mW of power, while
the nonlinearity is set by applying 1 kV across the crystal. Typical
experimental pictures taken at the output face are shown in Fig. 3.
Figure 3a shows linear diffraction for a low-intensity probe beam,
characterized by a 1:50 intensity ratio between the probe and array
beams. Note that the diffracted output is roughly 2.5 times the input
width of the probe. At 10 £ higher intensity (1:5 ratio), the
incoherent probe beam self-traps and forms an RPLS. Figure 3b
shows an RPLS centred on a lattice site (a waveguide), while
Fig. 3c and d shows RPLSs centred between 2 lattice sites and 4
lattice sites, respectively. Figure 3e depicts the power spectrum of the
RPLSs. As before, the four dots represent the array beams, defining
the M-symmetry points at the corners of the first Brillouin zone.
The power spectrum of the solitons takes on the square symmetry of
the lattice and is clearly multi-humped, with well-separated peaks
located in the normal diffraction regions of the first two Brillouin
zones. For comparison, we monitor the linear and nonlinear
propagation of the probe beam with the index lattice removed
(that is, in a homogeneous medium). To do this, we block the lattice
beams, while maintaining all the other experimental parameters
(applied bias field and intensity). We observe that the beam under-
goes self-focusing, yet the nonlinearity is too weak to fully balance
the linear diffraction broadening of the beam, and thus cannot form
an incoherent soliton. Figure 3f shows the power spectrum of the
output probe beam. In a sharp contrast to the RPLS spectrum, the
self-focused, incoherent beam propagating in the homogeneous (no
lattice) nonlinear crystal retains its homogeneity, exhibiting no
multi-hump structure.

Next we study the formation of an RPLS with a beam that is more
coherent than that of Fig. 3, under similar self-focusing conditions.
Figure 4a and b shows respectively the real-space photograph and
the power spectrum of the beam, at the input face of the crystal. In
this case, the input power spectrum covers (approximately) the first

Brillouin zone only. Figure 4c shows linear diffraction in the lattice
for a low-intensity probe beam, while Fig. 4d shows the RPLS when
the beam intensity is sufficiently increased. As a consequence of the
increased coherence, the linear broadening of the beam is smaller
and the formed RPLS is tighter (relative to Fig. 3b). Finally, Fig. 4e
depicts the power spectrum of the RPLS. Interestingly, this spec-
trum is also multi-humped, populating the normal diffraction parts
of the first and the second (initially unexcited) Brillouin zones. That
is, the input beam with a power spectrum in the first band only
reshapes into the RPLS, and in doing so transfers part of the power
to the normal diffraction region of the second band while leaving
the anomalous diffraction region of the first band unpopulated.

We note that originally, while planning these experiments, we
believed that we would have to ‘engineer’ the power spectrum of the
initial probe beam to match the multi-humped k-distribution of the
RPLS12. Unexpectedly, we found experimentally that a probe beam
with a homogeneous k-space distribution (a single hump with a
proper width) self-adjusts its spectrum and evolves naturally, under
proper nonlinear conditions, into an RPLS. This cannot be seen
using real-space imaging, but the Fourier imaging technique

Figure 2 Experimental images at the input face. a, Real-space picture of the induced

square lattice (with lattice period d ) and a probe beam. b, Power spectrum of the

incoherent probe beam (blue circle) and lattice beams (four dots), which define the

corners of the first Brillouin zone. The power spectrum resides in the first and second

Brillouin zones. c, Same as b but with a coherent probe beam that has the same size in

real space (as in a).

Figure 3 Experimental images at the output face. a, Linear lattice diffraction of the

incoherent beam. b–d, Real-space pictures of random-phase lattice solitons (RPLSs)

centred on a site (b), between two sites (c), and between four sites (d). The insets show

three-dimensional perspectives of the solitons. Note that a–d have the same scale, and

the linearly diffracted beam of a is at least 2.5 times the width of the soliton. e, Power

spectrum of an RPLS, displaying its square symmetry and multi-humped structure with

the peaks located in the normal diffraction regions of the first two bands. The four dots

correspond to the power spectrum of the array beams. f, Power spectrum of the self-

focused incoherent probe beam at the output face of the crystal without the lattice. Red

(blue) colour indicates high (low) intensity.

Figure 4 An RPLS with a lower incoherence than the RPLS of Figs 2 and 3. a, Real-space

photograph of induced square lattice and the probe beam. b, Power spectrum of the

incoherent input probe beam (blue circle) and lattice beams (four dots); the input spectrum

resides in the first band only. c, Linear lattice diffraction of the incoherent beam.

d, e, Real-space image (d) and power spectrum (e) of the emerging RPLS under proper

self-focusing conditions.
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presented here clearly shows the difference between the simple
spectrum of the input (Fig. 2b) and the complex multi-hump
spectrum of the output (Fig. 3e). During propagation, then, there
is a k-space evolution in which energy transfers from regions of
anomalous diffraction to regions of normal diffraction. Moreover,
Fig. 4b and e clearly shows that energy transfers between bands.
Because different k-vectors correspond to different Bloch modes,
this energy transfer corresponds to an inherently nonlinear coupling
between modes of the linear lattice. In this sense, our measurements
are related to the Fermi–Pasta–Ulam problem30. In the Fermi–
Pasta–Ulam system, a lattice mode was excited, and it was expected
that nonlinearity would redistribute the energy to a homogeneous
state, that is, lead to equipartition. Instead, energy recurred to the
initial mode, exhibiting energy oscillations between the initial mode
and a finite group of modes, in an almost periodic fashion. In our
system, an initially homogeneous k-space distribution evolves into a
steady-state multi-humped soliton power spectrum. The focus of
this Letter has been on the observation of these RPLSs, but the rich
dynamics underlying this energy transfer suggests many appli-
cations. For example, the spatially incoherent input beam can be
used as a probe with given statistics, and the imaging techniques
outlined here allow the observation of nonlinear effects, in both real
and Fourier space.

Our experiments open up new possibilities in other nonlinear
periodic systems beyond optics. For example, one can think of
random-phase matter-wave lattice solitons in Bose–Einstein con-
densates, where the periodic potential is also optically induced.
Similarly, one can envision random-phase solitons occurring with
vibrational waves propagating along periodic molecular structures,
finite-temperature plasma waves, or with charge-density waves in
polymers or in crystalline conductors. In a more general sense,
RPLSs should exist in any nonlinear periodic system, because
fluctuations (quantum, thermal, and so on) are always present
and the propagating waves are never fully correlated. A
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Gaining insight into the nature and dynamics of the transition
state is the essence of mechanistic investigations of chemical
reactions1, yet the fleeting configuration when existing chemical
bonds dissociate while new ones form is extremely difficult to
examine directly2. Adiabatic potential-energy surfaces—usually
derived using quantum chemical methods3 that assume mutually
independent nuclear and electronic motion4—quantify the fun-
damental forces between atoms involved in reaction and thus
provide accurate descriptions of a reacting system as it moves
through its transition state5,6. This approach, widely tested for
gas-phase reactions7, is now also commonly applied to chemical
reactions at metal surfaces8. There is, however, some evidence
calling into question the correctness of this theoretical approach
for surface reactions: electronic excitation upon highly exo-
thermic chemisorption has been observed9, and indirect evidence
suggests that large-amplitude vibrations of reactant molecules
can excite electrons at metal surfaces10,11. Here we report the
detection of ‘hot’ electrons leaving a metal surface as vibration-
ally highly excited NO molecules collide with it. Electron emis-
sion only occurs once the vibrational energy exceeds the surface
work function, and is at least 10,000 times more efficient than the
emissions seen in similar systems where large-amplitude
vibrations were not involved12–18. These observations unambigu-
ously demonstrate the direct conversion of vibrational to elec-
tronic excitation, thus questioning one of the basic assumptions
currently used in theoretical approaches to describing bond-
dissociation at metal surfaces.
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