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Abstract. In traditional optical imaging systems, the spatial resolution is limited by the physics of diffraction,
which acts as a low-pass filter. The information on subwavelength features is carried by evanescent
waves, never reaching the camera, thereby posing a hard limit on resolution: the so-called diffraction
limit. Modern microscopic methods enable super-resolution, by employing fluorescence techniques.
State-of-the-art localization based fluorescence subwavelength imaging techniques such as PALM and
STORM achieve subdiffraction spatial resolution of several tens of nanometers. However, they require
tens of thousands of exposures, which limits their temporal resolution. We have recently proposed
sparsity based super-resolution correlation microscopy (SPARCOM), which exploits the sparse nature
of the fluorophore distribution, alongside a statistical prior of uncorrelated emissions, and showed
that SPARCOM achieves spatial resolution comparable to PALM/STORM, while capturing the data
hundreds of times faster. Here, we provide a detailed mathematical formulation of SPARCOM, which
in turn leads to an efficient numerical implementation, suitable for large-scale problems. We further
extend our method to a general framework for sparsity based super-resolution imaging, in which
sparsity can be assumed in other domains such as wavelet or discrete-cosine, leading to improved
reconstructions in a variety of physical settings.
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1. Introduction. Spatial resolution in diffractive optical imaging is limited by one half
of the optical wavelength, known as Abbe’s diffraction limit [5, 15]. Modern microscopic
methods enable super-resolution, even though information on subwavelength features is absent
in the measurements. One of the leading subwavelength imaging modalities is based on
fluorescence (PALM [4] and STORM [30]). Its basic principle consists of attaching fluorescent
molecules (point emitters) to the features within the sample, exciting the fluorescence with
short-wavelength illumination, and then imaging the fluorescent light. PALM and STORM
rely on acquiring a sequence of diffraction-limited images, such that in each frame only a sparse
set of emitters (fluorophores) is active. The position of each fluorophore is found through a
superlocalization procedure [31]. Subsequent accumulation of single-molecule localizations
results in a grainy high-resolution image, which is then smoothed to form the final super-
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resolved image. The final image has a spatial resolution of tens of nanometers.

A major disadvantage of these fluorescence techniques is that they require tens of thou-
sands of exposures. This is because in every frame, the diffraction-limited image of each
emitter must be well separated from its neighbors, to enable the identification of its exact
position. This inevitably leads to a long acquisition cycle, typically on the order of several
minutes [30]. Consequently, fast dynamics cannot be captured by PALM/STORM.

To reduce acquisition time, an alternative technique named super-resolution optical fluc-
tuation imaging (SOFI) was proposed [10], which uses high fluorophore density, to reduce
integration time. In SOFI, the emitters usually overlap in each frame, so that superlocal-
ization cannot be performed. However, since the emitted light from each emitter, which are
uncorrelated between different emitters, are captured over a period of several frames by the
camera, consecutive frames contain information in the pixelwise temporal correlation between
them. The measurements are therefore processed such that correlative information is used,
enabling the recovery of features that are smaller than the diffraction limit by a factor of /2.
By calculating higher order statistics (HOS) in the form of cumulants [20] of the time-trace
of each pixel, a theoretical resolution increase equal to the square root of the order of the
statistics can in principle be achieved. Using the cross-correlation between pixels over time,
it is possible to increase the resolution gain further, to an overall factor that scales linearly
with the order of the statistical calculation [11].

SOFT enables the processing of images with high fluorophore density, thus reducing the
number of required frames for image recovery and achieving increased temporal resolution
over localization based techniques. However, at least thus far, the spatial resolution offered
by SOFI does not reach the level of super-resolution obtained through STORM and PALM,
even when using HOS. The use of HOS can in principle increase the spatial resolution, but
higher (than the order of two) statistical calculations require an increasingly large number
of frames for their estimation, degrading temporal resolution. Moreover, SOFI suffers from
a phenomenon known as dynamic range expansion, in which weak emitters are masked in
the presence of strong ones. The effect is worsened as the statistical order increases, which in
practice limits the applicability of SOFI to second order statistics and a moderate improvement
in spatial resolution.

Recently, we proposed a method for super-resolution imaging with short integration time
called sparsity based super-resolution correlation microscopy (SPARCOM) [33]. In [33], we
have shown that our method achieves spatial resolution similar to PALM/STORM, from only
tens/hundreds of frames, by performing sparse recovery [12] on correlation information, lead-
ing to an improvement of the temporal resolution by two orders of magnitude. Mathematically,
SPARCOM recovers the support of the emitters, by recovering their variance values. Sparse
recovery from correlation information was previously proposed to improve sparse recovery
from a small number of measurements [26, 12, 8]. When the nonzero entries of the sparse sig-
nal are uncorrelated, support size recovery can be theoretically increased up to O(M?), where
M is the length of a single measurement vector. In SPARCOM, we use similar concepts to
enhance resolution and improve the signal to noise ratio (SNR) in optical imaging. By per-
forming sparse recovery on correlation information, SPARCOM enjoys the same features of
SOFT (processing of high fluorophore density frames over short movie ensembles and the use of
correlative information), while offering the possibility of achieving single-molecule resolution
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comparable to that of PALM/STORM. Moreover, by relying on correlation information only,
SPARCOM overcomes the dynamic range problem of SOFI when HOS are used and results
in improved image reconstruction.

In this paper, we focus on three major contributions with respect to our recent work.
The first is to provide a thorough and detailed formulation of SPARCOM, elaborating on its
mathematical aspects. Second, we extend SPARCOM to the case when super-resolution is
considered in additional domains such as the wavelet or discrete cosine transform domains.
Third, we show how SPARCOM exploits structural information to achieve a computationally
efficient implementation. This goal is achieved by considering the SPARCOM reconstruction
model in the sampled Fourier space, which leads to fast image reconstruction, suitable for
large-scale problems, without the need to store large matrices in memory.

The rest of the paper is organized as follows. Section 2 explains the problem and the key
idea of SOFI. In section 3, we formulate our proposed solution. A detailed explanation of our
algorithm, implementation, and additional extensions to super-resolution in arbitrary bases
are provided in sections 4 and 5. Simulation results are presented in section 6.

Throughout the paper, x represents a scalar, x represents a vector, X represents a matrix,
and Iy n represents the N x N identity matrix. The notation || - ||, represents the standard
p-norm, and || - || is the Frobenius norm. Subscript z; denotes the /th element of x, and x;
is the Ith column of X. Superscript x(®) represents x at iteration p, T* denotes the adjoint of
T, and A is the complex conjugate of A.

2. Problem formulation and SOFI. Following [10, 11], the acquired fluorescence signal
in the object plane is modeled as a set of L independently fluctuating point sources, with
resulting spatial fluorescence source distribution

L-1

J(r,t) = Z d(r —ry)si(t).

k=0

Each source (or emitter) has its own time-dependent brightness function s (¢) and is located
at position r, € R?, k=0,...,L — 1. The acquired signal in the image plane is the result of
the convolution between J(r,¢) and the impulse response of the microscope u(r) (also known
as the point spread function (PSF)),

T
)

(2.1) flrt) =) ulr—rp)sp(t).

0

B
Il

We assume that the measurements are acquired over a period of ¢ € [0,7]. Ideally, our goal
is to recover the locations of the emitters, ry, and their variances with high spatial resolution
and short integration time. The final high-resolution image is constructed from the recovered
variance value for each emitter.

To proceed, we assume the following:

A1. The locations ry, K =0,...,L — 1, do not depend on time.

A2. The brightness is uncorrelated in space; namely, E{3;(t1)5;(t2)} = 0 for all i # j and
for all t1,te, where §x(t) = sp(t) — Ey, with By, = E{sx(t)}.
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A3. The brightness functions si(t), k = 0,...,L — 1, are wide sense stationary so that
E{5,(t)$x(t + 7)} = gi(7) for some function g (7).

Using assumptions A2 and A3, the autocorrelation function at each point r can be com-
puted as

L1
(2‘2) Gf(rv T) = E{f(r7 t)f(r, t+ 7)} = Z u2(r —15) 9k (7)),
k=0
where f(r,t) = f(r,t) — E{f(r,t)} = é;(} u(r — ry)8k(t). Assumption A1l indicates that

r; are time-independent during the acquisition period. The final SOFI image is the value
of Gy(r,0) at each point r, where g;(0) represents the variance of emitter s;. We see from
(2.2) that the autocorrelation function depends on the PSF squared. If the PSF is assumed
to be Gaussian, then this calculation reduces its width by a factor of /2. However, the final
SOFT image retains the same low-resolution grid as the captured movie. Similar statistical
calculations can be performed for adjacent pixels in the movie, leading to a simple interpolation
grid with an increased number of pixels in the high-resolution image, but at the cost of
increased statistical order using cumulants [20]. HOS reduce the PSF size further but at the
expense of degraded SNR and dynamic range for a given number of frames [11].

In the next section, we provide a rigorous and detailed description of our sparsity based
method, first presented in [33], for estimating ry and g¢x(0) on a high-resolution grid. We
rely on correlation only, without resorting to HOS, thus maintaining a short acquisition time,
similar to correlation based SOFI. In contrast to SOFI, we exploit the sparse nature of
the emitters’ distribution and recover a high-resolution image on a much denser grid than the
camera’s grid. This leads to spatial super-resolution without the need to perform interpolation
using HOS [11].

3. SPARCOM.

3.1. High-resolution representation. To increase resolution by exploiting sparsity, we
start by introducing a Cartesian sampling grid with spacing Ap, which we refer to as the
low-resolution grid. The low-resolution signal (2.1) can be expressed over this grid as

L-1
(3.1) fImAL,nAL,t] = Zu[mAL —my, nAr — nglsg(t), m,n=10,...,.M —1],
k=0

where rj, = [my, ;)T € R2. We discretize the possible locations of the emitters ry, over a
discrete Cartesian grid i,/ =0,...,N — 1, L < N, with resolution Ay, such that [mg,ng] =
[ik, lg) A for some integers ix,l; € [0,..., N — 1]. We refer to this grid as the high-resolution
grid. For simplicity, we assume that Ay = PAjp for some integer P > 1, and consequently
N = PM. As each pixel [mg,ng] is now divided into P times smaller pixels, the high-
resolution grid allows us to detect emitters with a spatial error which is P times smaller than
on the camera grid. Typical values of camera pixels sizes can be around 100nm, which is
typically half the diffraction limit. Thus, recovering the emitters on a finer grid leads to a
better depiction of subdiffraction features.
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The latter discretization implies that (3.1) is sampled (spatially) over a grid of size M x M,
while the emitters reside on a grid of size N x N, with the ilth pixel having a fluctuation
function s;(¢) (only L such pixels actually contain fluctuating emitters, according to (3.1)).
If there is no emitter in the ilth pixel, then s;(t) = 0 for all t. We further assume that the
PSF w is known.

Rewriting (3.1) in Cartesian form with respect to the grid of emitters yields

r
i

(3.2) fImAL, nAp,t] = ulmAL —iAg,nAp — IAg]s;(t),

S
Il
o
—
I
=)

and additionally it holds that
mAp —i1Ag = (mP —i)Apg.
Omitting the spacing Ap, we can rewrite (3.2) as

N-1
(3.3) flmP,nPt] =Y " ulmP —i,nP — I]sy(t).
,1=0

3.2. Fourier analysis. We next present (3.3) in the Fourier domain, which will lead to an
efficient implementation of our method.

Since y[m,n,t] = flmP,nP,t] is an M x M sequence, denote by Y [k, kn,t] its M x M
two-dimensional (2D) discrete Fourier transform (DFT). Performing an M x M 2D-DFT on
y[m, n,t] yields

M1
Y [k, ki, ] = flmP,nP, e arkmme=ittknn
m,n=0
N-1 MP—P
= sult) uliiv — i, 7 — l]e I 3rpkmie=infphnh,
i,1=0 1,A=0,P,
where we defined m = mP and 7 = nP and ky,, k, = 0,..., M — 1. Next, consider 7, n =

0,...,N —1 and define the N x N sequence,

ulm,n], mn=0,P,...,N — P,
(3.4) a[m,n] =
0 else,

where u is the discretized PSF sampled over M x M points of the low-resolution grid. We
can then equivalently write

N-1 N-1
(3.5) Yk ko t] = > sa(t) Y il — i, — e ¥ hnmemi S,
i,1=0 M, =0
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By defining p = m — i and ¢ =7 — [, (3.5) becomes

N-1
(36) Y[kﬂ% km t] = l?][klmy kn] Z Sil (t)e_j%rkmie_j%k"l’
1,l1=0
with
. N-1 . .
P,q=0

Note that l~][km, k] is the N x N 2D-DFT of the N x N sequence @, evaluated at discrete
frequencies ky,, kp =0,..., M — 1. From (3.4) and (3.7), it holds that ﬁ[e‘j%km,e_ﬁﬁﬁk"] =
Ule 43 km e=357%n] for Ky, kp = 0,...,M — 1 (N = PM), where U is the M x M 2D-DFT
of u sampled on the low-resolution grid.

Denote the columnwise stacking of each frame Y [k, ky,,t] as an M? long vector y(¢). In

a similar manner, s(¢) is a length-N? vector stacking of s;(t) for all il. We further define the
M? x M? diagonal matrix H = diag {U[0,0],...,U[M — 1, M — 1]}. Vectorizing (3.6) yields

(3.8) y(t) = H(Fy @ Far)s(t) = As(t), A e CM**N?
where s(t) is an L-sparse vector and F s denotes a partial M x N DFT matrix whose M rows

are the corresponding M low frequency rows from a full N x N discrete Fourier matrix.
Define the autocorrelation matrix of y(t) as

(3.9) Ry (1) = E{(y(t) - E{y(O)}N(y(t + 1) — E{y(t +7))"}.
From (3.8),
(3.10) R, (1) = AR4(7)A".

Under assumption A2, R,(7), the autocorrelation matrix of s(), is a diagonal matrix. There-
fore, (3.10) may be written as

N2
(3.11) Ry (1) =) aa’r,(r),
=1

with a; being the Ith column of A, r(7) = diag {Rs(7)}, and r,(7) being the Ith entry of
ry(7). By taking 7 = 0, we estimate the variance of s;;(t), ¢,7 = 0,..., N — 1 (as written
in assumption A3). It is also possible to take into account the fact that the autocorrelation
matrix R, (7) may be nonzero for 7 # 0; for simplicity, we use 7 = 0. The support of ry(7)
is equivalent to the support of s(¢), which in turn indicates the locations of the emitters on a
grid with spacing Ag. Thus, our high-resolution problem reduces to recovering the L nonzero
values of 74, (0) in (3.11).
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3.3. Sparse recovery. SPARCOM is based on (3.11), taking into account that x = r(0)
is a sparse vector. We therefore find x by using a sparse recovery methodology. In our
implementation of SPARCOM, we use the LASSO formulation [35] to construct the following
convex optimization problem:

2
N2
) 1
(F-LASSO) min A[[x|f1 + 5 || Ry (0) - > aaflz||
- =1
F

with a regularization parameter A > 0 and z; denoting the Ith entry in x. We note that it
is possible to write a similar formulation to (F-LASSO) accounting for 7 > 0 (without the
nonnegativity constraint). Other approaches to sparse recovery may similarly be used.

We solve (F-LASSO) iteratively using the FISTA algorithm [27, 1, 36], which at each
iteration performs a gradient step and then a thresholding step. By performing the calculations
in the DFT domain, we can calculate the gradient of the smooth part of (F-LASSO), that
is, the squared Frobenius norm, very efficiently. We discuss this efficient implementation in
detail in section 5.

To achieve even sparser solutions, we implement a reweighted version of (F-LASSO) [6],

2

N2

1

(3.12) xD = argmin WP + 2 ||Ry(0) = Y~ avaf’ 2P
x(P)>0 =1 »

where W is a diagonal weighting matrix and p denotes the number of the current reweighting
iteration. Starting from p = 1 and W = I, where I is the identity matrix of appropriate
size, the weights are updated after a predefined number of FISTA iterations according to the
output of x as .

W‘(P'i‘l) _
|x£p)| +e

; i=1,...,N?
where € is a small nonnegative regularization parameter. After updating the weights, the
FISTA algorithm is performed again.

In practice, for a discrete time-lag 7 and total number of frames T, R, (7) is estimated
from the movie frames using the empirical correlation

T—1
Ry(r) = 7ot Sy ()~ 5yt +7) )",
t=1
with
(3.13) v = % 3y ().

t=1

In the following sections, we elaborate on our proposed algorithms for solving F-LASSO
and the reweighted scheme (3.12). In particular, we explain how they can be implemented
efficiently and extended to a more general framework of super-resolution under assumptions of
sparsity. Table 1 provides a summary of the different symbols and their roles for convenience.
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Table 1
List of symbols.

n

=
=)
E
3
o

Description

Kronecker product

Hadamard (elementwise) product

Number of pixels in one dimension of the low-resolution grid
Number of pixels in one dimension of the high-resolution grid
Ratio between N and M

Low-resolution grid sampling interval

High-resolution grid sampling interval

Number of acquired frames

Number of emitters in the captured sequence

my,ny  Possible positions of emitters on the high-resolution Cartesian grid

=~

h’ﬂED"UZZ@@

Ly Upper bound on the Lipschitz constant

Ta() Soft thresholding operator with parameter o defined in (4.2)

A Regularization parameter

s Smoothing parameter for Algorithm 4.4

u(+) M x M discretized PSF

y(¢) Vectorized M x M input frame at time ¢, after FFT

s(t) Vectorized N x N emitters intensity frame at time ¢

Fur Partial M x N DFT matrix of the M lowest frequencies

H Diagonal M? x M? matrix containing the (vectorized) DFT of the PSF
A A = H(Fy ® Far), known as the M? x N? sensing matrix, as defined in (3.8)
a; ith column of A

y Empirical average of the acquired low-resolution frames defined in (3.13)
Ry(7) Autocovariance matrix of input movie’s pixels for time-lag 7

R, (7) Autocovariance matrix of the emitters for time-lag 7

rs/x Diagonal of Rs(7)

M M =|ATAJ]?

v v =[af'Ry(0)ay,...,alRy(0)ay:]"

VIQ) Gradient of f given by (4.4)

Kmax Maximum number of iterations

M(-) Vector to matrix transformation, defined in (5.1)

V() Matrix to vector transformation, defined in (5.2)

4. Proximal gradient descent algorithms.

4.1. Variance recovery. Problem (F-LASSO) can be viewed as a minimization of a de-
composition model

;nzig Ag(x) + f(x),

where f is a smooth, convex function with a Lipschitz continuous gradient and g is a possibly
nonsmooth but proper, closed, and convex function. Following [1, 36], we adapt a fast-
prozimal algorithm, similar to FISTA, to minimize the objective of (F-LASSO), as summarized
in Algorithm 4.1. Solving (F-LASSO) iteratively involves finding Moreau’s prozimal (prox)
mapping [22, 34] of ag for some v > 0, defined as

) 1
(4.1) Prox,,(x) = argmin {ag(u) + iHu - xH%} .
ucRkn
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For g(z) = [[x]|1, prox,,(x) is given by the well-known soft-thresholding operator,
(4.2) ProXy||.||, (x) = Ta(x) = max{[x| — «, 0} - sign(x),

where the multiplication, max, and sign operators are performed elementwise. In its simplest
form, the proximal gradient method calculates the prox operator on the gradient step of f at
each iteration.

Denoting
1 A 2
(4.3) f(x) = 3 R,(0) — Zalaf[wl
=1 P
and differentiating it with respect to x yields
(4.4) Vfix)=Mx—v,
where v = [a{’Ry(0)ay, ...,ak, Ry (0)ay2]", M = [A”AJ?, and we have used the fact that

x is real since it represents the variance of light intensities. The operation | - |? is performed
elementwise. The (upper bound on the) Lipschitz constant L; of f(x) is readily given by

Ly = ||M]|2, corresponding to the largest eigenvalue of M, since by (4.4)

IV () = V@)l < [IM]l2][x = yll2-

Calculation of (4.4) is the most computationally expensive part of Algorithm 4.1." Since
M is of dimensions N2 x N2, it is usually impossible to store it in memory and apply it
straightforwardly in multiplication operations. In section 5 we present an efficient implemen-
tation that overcomes this issue, by exploiting the structure of M. We also develop a closed
form expression for Ly.

Algorithm 4.1. Fast proximal gradient descent for SPARCOM.

Input: Ly, Ry(0), A > 0, Knax

Initialize z; = x9=0,¢t; =1, and k=1

while k < K.« or stopping criteria not fulfilled do

1: Vf(zr) = Mz, —v
X — T% (Zk - %fo(Zk))
f

Project to the nonnegative orthant x;(x; < 0) =0
thy1 = 0.5(1 + 4/ 1+ 415%)

—1
?ZH (Xk N Xk*l)

AN

Zjy1 = X +
6: k< k+1

end while

return xg, ..

!SPARCOM code is available online from http://webee.technion.ac.il/people/ YoninaEldar /software.php.
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Implementing the reweighted [ minimization of (3.12) involves calculation of the following
elementwise soft-thresholding operator:

A
(4.5) TﬁWi (x;) = max {|xz| - LfWi’O} - sign(z;),

with W; being the current value of the ¢th entry of the diagonal of the weighting matrix W.
The reweighting procedure is summarized in Algorithm 4.2.

Algorithm 4.2. Iterative reweighted fast proximal gradient for (F-LASSO).

Input: Ly, Ry(0), A >0, € > 0, Ppax
Initialize Set iteration counter [ =1 and W' =1
while p < Py, or stopping criteria not fulfilled do
1: Solve (F-LASSO) using Algorithm 4.1 with (4.5)
2: Update weights for i = 1,..., N?

1

(+1) _ 4. 1
W.p — dlag { ‘xgp)

)

1
it (p)
+€ ’mNQ

J:p+—p+1
end while
return xp

max

4.2. Regularized super-resolution. Recall that to achieve super-resolution we assumed
that the recovered signal is sparse. Such an assumption arises in the context of fluorescence
microscopy, in which the imaged object is labeled with fluorescing molecules such that the
molecular distribution or the desired features themselves are spatially sparse. In many cases,
the sought after signal has additional structure which can be exploited alongside sparsity,
especially since attaching fluorescing molecules to subcellular organelles serves as a means
to image these structures, which are of true interest. Thus, when considering sparsity based
super-resolution reconstruction, we can consider a more general context of sparsity within the
desired signal.

4.2.1. Total variation super-resolution imaging. We first modify (F-LASSO) to incor-
porate a total variation (TV) regularization term on x [29, 7]; that is, we assume that the
reconstructed super-resolved correlation image is piecewise constant:

2
N2
1
(F-TV) min ATV (x) + = | Ry (0) - > aafx
- =1 F

We follow the definition of the discrete TV(x) regularization term as described in [2] for both
the isotropic and the anisotropic cases. The proximity mapping prox,rv(x) does not have
a closed form solution in this case. Instead, the authors of [2] proposed to solve prox,rv(x)
iteratively. The minimizer of (4.1) is the solution to a denoising problem with the regularizer
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ag(-) on the recovered signal. In particular, prox,pv(x) is the denoising solution with TV
regularization. Many TV denoising algorithms exist (see, e.g., [29, 7, 24, 13]), and thus any
one of them can be used to calculate the proximity mapping iteratively. In particular, we chose
to follow the fast TV denoising method suggested in [2] and denoted as Algorithm GP. The
algorithm accepts an observed image, a regularization parameter A which balances between
the level of sparsity and compatibility to the observations and a maximal number of iterations
Npaz- The output is a TV denoised image. Thus, as summarized in Algorithm 4.3, each
iterative step is composed of a gradient step of f and a subsequent application of Algorithm
GP.

Algorithm GP already incorporates a projection onto box constraints, which also includes
as a special case the nonnegativity constraints of (F-TV). Hence we have omitted the projec-
tion step in Algorithm 4.3.

Algorithm 4.3. Fast proximal gradient descent for (F-TV).
Input: Ly, Ry(0), A > 0, Knax, Nmax
Initialize z; = x0=0,t1 =1, and k=1
while k£ < K.« or stopping criteria not fulfilled do
1: Vf(zr) =Mz, —v
2: xp = GP(Zk - %fvf(zk)? A, Nmax)

3: tpy1 = 0.5(1+ /14 4t3)

4: Zp4q = Xg + ii: (XK — Xp—1)
5: k+k+1
end while

return xg .

4.2.2. Analysis type super-resolution imaging. In many scenarios, additional priors can
be exploited alongside sparsity, to achieve subwavelength resolution. Examples include wavelet
transforms and the discrete cosine transforms (DCTs). In general, the problem we wish to

solve is )

NQ
m)in )\||T*x||1 + % Ry(()) - Zala{{ml s
=1 F
where T € CM*V is some known transformation. The prox mapping of the regularization term
||T*x||; does not admit a closed form solution. The authors of [34] suggested to approximate
the generally nondifferentiable function f(x)+¢g(T*x) with a surrogate differentiable function,

thus alleviating the need to calculate the prox mapping of the nondifferentiable term g(T*x).
The smooth surrogate function used is the Moreau envelope of g [22], given by

) =i { ) + 51l x .
We therefore propose a smooth counterpart to (F-LASSO),
(F-SM) min f(x) + gu(T"x),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/28/19 to 132.68.68.224. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SPARCOM 403
with f(x) given by (4.3) and g,(x) given by
1
") =i {Nfulls + 5l ~ T'x13 ).

The gradient of (F-SM) is now a combination of the gradients of f(x) and g, (x), with

1
(4.6) Vg (T*x) = ;T(T*X — T (T7x)).
Using (4.6), we have modified the SFISTA algorithm in [34] to solve (F-SM), as summarized
2
in Algorithm 4.4. Note that the Lipschitz constant of f(x) + g,(T*x) is given by Ly + %

Algorithm 4.4. Fast proximal gradient descent for (F-SM).
Input: Ly, p, Ry(0), A > 0, Kpax
Initialize z; = x9=0,¢t; =1, and k=1
while k < K.« or stopping criteria not fulfilled do
1: Vf(zr) =Mz, —v
2: Vg (Trxp—1) = iT(T*Xk_l — T (T*xp_1))
3: Vi = Z — %f(Vf(Zk> + VQH(T*qu))
4: by = 0.5(1+ (/14 482)

tr—1 t
A= (k= xpm1) + 525 (Ve — X)

5t Zpt1 = X +

6: k<« k+1
end while
return xg, ..

5. Efficient implementation. Solving (F-LASSO), (F-TV), and (F-SM) in practice can
be very demanding in terms of numerical computations, due to the large dimensions of the
reconstructed super-resolved image. Consider, for example, an input movie with frames of size
64 x 64 pixels and a reconstructed super-resolved image of size 512 x 512 pixels (an eight-fold
increase in the density of the high-resolution grid compared to the low-resolution captured
movie). Calculating R,(0) yields a covariance data matrix of size 642 x 642, and R(0) is of
size 5122 x 5122 pixels (though in practice it is a diagonal matrix with a diagonal of length 5122
pixels). The exponential growth in the problem dimensions on the one hand and the diagonal
structure of the covariance matrix of the super-resolved image on the other prompts the search
for an efficient implementation for Algorithms 4.1-4.4. We now show that by considering the
signal model in the spatial frequency domain as in (3.6), an efficient implementation based on
FFT and IFFT operations is possible.

5.1. Frequency domain structure. Recall that
Vfix)=Mx—v,

with M = [AFA2, A = H(Fy ® Fuy), and v = [aRy(0)ay, ..., all,R,(0)ay:]’. Recon-
struction of a super-resolved image of size N x N dictates that M will be of size N2 x N2. In
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10 20 30 40 50 60

(a) Image space domain (b) Discrete Fourier domain

Figure 1. Comparison of the structure of M for two possible formulations: image space domain (a) and
spatial discrete frequency domain (b).

most cases, it is impossible to store M in memory or perform matrix-vector multiplications.
Instead, we exploit the special structure of M to achieve efficient matrix-vector operations
without explicitly storing it.

Figure 1 illustrates the structure of M for two formulations: Figure 1(a) shows the struc-
ture of M if we do not consider performing an FFT on (3.3). In this case, the nth column of A
contains the vectorized M x M PSF centered at the high-resolution pixel ij, 7,5 € [0,..., N—1].
Figure 1(b) illustrates the structure of M in the spatial-frequency domain, derived from (3.6).
In both cases, M is of size 64 x 64 pixels and is generated from a PSF of size 4 x 4 pixels.
Both panels represent a reconstruction of a 64 x 64 super-resolved image.

Figure 1(b) implies that the spatial-frequency formulation of M has a cyclic structure. This
special structure will play a crucial role in our algorithm, as it leads to efficient implementation
of matrix-vector multiplications. More specifically, in Appendix A we show that M is block
circulant with circulant blocks (BCCB) [17]. Figure 1(b) can be divided into 8 x 8 blocks (the
different blocks are marked with rectangles of different colors to illustrate the block circular
structure of the matrix), each block of size 8 x 8 pixels. As can be seen, M is circulant with
respect to the blocks and each block is also circulant.

Similar to circulant matrices which are diagonalizable by the DFT matrix, BCCB matrices
are diagonalizable by the Kronecker product of two DFT matrices of appropriate dimensions.
Such structure allows the implementation of a fast matrix-vector multiplication using FFT
and inverse FFT operations without the need to store M in memory. In the following sections,
we describe the implementation of (4.4) in detail, by defining several operators which play a
crucial role in its calculation.
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5.2. Efficient implementation of Mx. We first define M(x), which takes x € CN* and
transforms it into a matrix X € CV*V_ that is,

(5.1) X = M(x).

This operation is performed using a columnwise division from top to bottom of x. Upon
dividing x into N subvectors of length N each, the ith column of X corresponds to the ith

subvector of x. Similarly, we denote the vectorization of X € CN*¥ which stacks the columns
of X by
(5.2) x = vec(X) = V(X).

Here, x is a vector of length N2, whose ith subvector of length N corresponds to the ith
column of X.

In Appendix A, we show that M is an N? x N2 BCCB matrix with blocks of size N x N.
It is well known that such a matrix is diagonalizable by the Kronecker product of two discrete
N x N Fourier matrices Fo = F ® F [17], so that

(5.3) M = F¥AF,,

with A a diagonal matrix containing the eigenvalues of M on its diagonal. To compute Mx,
we therefore need to calculate the eigenvalues of M and apply Fy and FI on a given vector.
Now,

(5.4) Fox = (F® F)x = V(FM(x)FT).

The matrix FM(x)FT corresponds to applying the FFT on each column of M(x) and then
again over the rows of the result. In MATLAB, Fox is easily performed by reshaping x to
M(x), applying the ££ft2 command on M(x), and vectorizing the result. Similarly, calcu-
lation of the 2D inverse FFT of an N x N matrix Xy is equivalent to #FH XfF and is
easily implemented in MATLAB with the ifft2 command. To compute the eigenvalues of
M efficiently, we first need to be able to compute Ax and AHx for some x € CV .

5.2.1. Calculation of Ax. Recall that
A = H(FM X FM),

where Fj; € CM*N denotes a partial Fourier matrix, corresponding to the low-pass values of
a full N x N Fourier matrix. The operator Ax corresponds to taking X = M(x), calculating
F MXF}\Q, vectorizing the result, and multiplying by H. Denote

(5.5) Fu,(X) = Fy XF],.

The application of Fj; on an N x N matrix X can be implemented by computing an FFT
on each column of X and taking only the first M rows of the result. Similarly, calculation of
XF:']\;[ = (FXT)T is achieved by performing an FFT on each row of X, taking the first M
rows of the result, and performing the transpose operation.
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Equation (5.5) implements a partial 2D-FFT operation on X, where the full 2D-FFT
operation is written as FXFT with an N x N discrete Fourier matrix F. The multiplication
Ax can then be summarized as follows:

(5.6) Ax =H - V(Fup,(M(x))).

Since H is a diagonal matrix, the matrix-vector multiplication in (5.6) corresponds simply
to multiplying the diagonal of H and the corresponding vector. If instead of a vector x we
perform AZ on some matrix Z € CV *xL , then the operation is performed on each column
of Z.

5.2.2. Calculation of AHx. For x € CMQ,
Aflx = (FIL @ FIHHY X = (Fi, @ Fi)z.
Upon reformulating z as an M x M matrix Z = M(z), we have
M(ATx) = FEZF),.

Since F7 = NF~!, FﬁZ corresponds to performing an inverse FFT on the zero-padded
columns of Z and multiplying by N. We denote the result as Y. Next, notice that YF; =
(F1,Y7)H Since the DFT matrix is a symmetric matrix, the second step involves computing
an FFT on the zero-padded columns of Y and finally taking the Hermitian operation. By
denoting }"ﬁQ (X) = FILXF)y, we can write

(5.7) Afx = V(Ff (M(HTx))).

If instead of a vector x we perform AY(Q) on some matrix Q € CM 2XL, then the operation
is performed on each column of Q.

5.2.3. Calculation of the eigenvalues of M. To calculate the eigenvalues of M, denoted
by A, note that from (5.3), %FQM = AF5, which implies that %Fgml = Af}, with m; and
f; being the first columns of M and Fs, respectively. Since fj is a vector of ones, we have

1
NFle = A,

with A = diag {A}. To compute mj, we note that since M = |[A7 A|?2, m; = |Afa;|?, where
a; is the first column of A. From the definition of A, a; = h, where h = diag {H}, and
therefore m; = |(F4, ® F]\H/[)|h\2‘2. In MATLAB, this can be implemented using £ft / ifft
operations, as noted by the first two steps of Algorithm 5.1. By denoting the M x M DFT of the
PSF as U, it follows straightforwardly that M(m;) =Z = ‘fﬁQ(\U|2)|2, where the operation

| - |2 is performed elementwise. After the calculation of my, finding A is straightforward since

M(M\) =B = FZF7T,

which can be computed using the 2D-FFT.
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Algorithm 5.1. Calculation of Mx.

Input: The DFT of the PSF U and x
Eigenvalues calculation:
1: Calculate T = Nifft{|UJ?} of length N
2: Calculate E =f £t {TH} of length N
3: Eigenvalues calculation B = F|E |?F7 using £ft2
Application of Mx:
4: Calculate Q = B © (FM(x)FT)
5: Calculate Y = ﬁFHQF using ifft2
return V(Y) = Mx.

We can summarize the application of M on x in Algorithm 5.1, with A ® B representing
the Hadamard elementwise product of two matrices A and B and with the fft / ifft
operations performed columnwise.

Algorithms 4.1-4.4 require the Lipschitz constant Ly of M. This constant is readily given
by noting that

Ly = |IM|5 = max \;, i= 1,...,N?%

with A; being the ith entry of A. The value max; \; is calculated as part of Algorithm 5.1 and
is given by
Ly =maxb;;, 4,7=1,...,N,
Z?]

where b;; is the ijth entry of B from line 2 in Algorithm 5.1.

5.3. Efficient calculation of v. The vector v in (4.4) is the input data to Algorithms
4.1-4.4. Tts ith element is given by

v; =afR,(0)a;, i=0,...,N*—1,

with a; representing the ith column of A. Since v is an N2 long vector, calculating its entries
strictly by applying A” and A on R,(0) and taking the resulting diagonal is impractical as
N increases. Instead, it is possible to calculate its entries in two steps as follows.

The application of a; on a matrix is very similar to the application of A, only for a specific
index 7. We may write a; more explicitly as

a; = H(fy, ® fi,),
with k; = LﬁJ and l; = i mod N. By using the previously defined operations, v can be
calculated as summarized in Algorithm 5.2. This calculation needs to be performed only
once, at the beginning of Algorithms 4.1-4.4.

5.4. Algorithm run-time. In this section, we compare the average run-time of our Fourier
based formulation, i.e., using the structure depicted in Figure 1(b) against the spatial domain
formulation (Figure 1(a)). Figure 2 shows the average run-time for a single iteration of
Algorithm 4.1 (left panel) and Algorithm 4.4 (right panel), performed on a 64GB RAM, Intel
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Algorithm 5.2. Calculation of v.

Input: H and R,(0)
Calculation of Z = AR, (0):
1: Calculate Q = H¥R,(0)
For each column of Q, q;, i =0,...,M? — 1:
2: Calculate T; = Nifft{M(q;)} of length N
3: Calculate E; =£ft{TH} of length N
4: Take the ith column of Z¥ as V(EH)
Calculation of each element in v:
For each i =0,...,N? — 1:
5: B = F/ M(H"z;), with z; the ith column of Z
6: Calculate u = Fby,, with b, the /;th row of B
7: Take v; = uy,, the k; entry of u.
return v.

Algorithm 4.1 Algorithm 4.4

-]
[
[==]

[y

—

Run-time [msec]

2

8 16 32 64
Patch size [pixels] Patch size [pixels]
(a) 1 based recovery. (b) Wavelet based recovery.

Figure 2. Algorithm run-time as a function of patch size. Left panel shows run-time for a single iteration of
Algorithm 4.1. Right panel shows run-time for a single iteration of Algorithm 4.4 (Daubechies wavelet filter with
eight taps and decomposition level of 2). Solid lines correspond to the frequency domain formulation (exploiting
the BCCB structure of AT A ), while the dashed curves correspond to the spatial domain formulation. All values
were averaged over 2000 iterations. The vertical axis is in logarithmic scale, but the values are given in linear
scale.

i7-5960X@3GHz machine and implemented in MATLAB. Each value is the average over 2000
runs. The eigenvalues of M and v are calculated a priori.

As expected, run-time increases as patch size increases and as the value of P increases.
All curves are roughly linear, indicating an exponential growth in complexity as patch size
increases, as the vertical axis is displayed in logarithmic scale (numerical values are given in
linear scale). For the frequency domain formulation (solid lines), Figure 2 shows that the
execution time of each iteration is very fast for patches of sizes 8 x 8, 16 x 16, and 32 x 32.
On the other hand, run-time curves for the spatial domain formulation (dashed curves) are
between one to two orders of magnitude higher, especially for higher values of P, such as 8
and 16. The value of P needs to be increased, as smaller features are needed to be resolved.
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These curves clearly motivate the use of our frequency domain formulation. Moreover, it is
recommended to divide the entire field of view to patches of 8-32 pixels and process each
patch independently. Since each patch is processed independently, the entire computational
process can be parallelized for additional gain in efficiency.

6. Simulations. In this section, we provide further examples and characterization of
SPARCOM. We start by providing an additional simulation to the results given in [33],
showing the ability of SPARCOM in recovering fine features absent in the diffraction limited
movie, as well as providing additional comparisons to an improved SOFI formulation, termed
balanced SOFI (bSOFI) [14], and high emitter density STORM, implemented with the freely
available ThunderSTORM software [25]. This subdiffraction object and its corresponding
SPARCOM recovery serve as a basis for an additional sensitivity analysis of SPARCOM to
inexact knowledge of the PSF, presented in Figures 7 and 8. The next simulation presents
the key advantages of SPARCOM in scenarios where assuming sparsity in domains other than
the image domain leads to improved recovery results. We finish by providing experimental
reconstruction results of SPARCOM, with our general super-resolution framework. These as-
pects complement the demonstration and analysis performed in [33], thus providing a more
comprehensive understanding of SPARCOM and its applications.

6.1. Comparison of different super-resolution methods. We numerically simulated a
movie of subwavelength features over 1000 frames, contaminated by additive Gaussian noise
with SNR = 14.95dB, | |

anovie F

SNR = 20 - logy, Noovicl 7
where Yovie is an M? x T matrix representing the entire blurred movie (each movie frame
is column stacked as a single column in Ypovie) and Npovie is the added noise to all the
frames (same dimensions as Ymoevie). The movie also includes the simulation of out-of-focus
filaments, which simulate unwanted fluorescence from objects outside the focal plane. Thus,
they appear much wider than the in-focus simulated filaments. For both the in-focus and
out-of-focus objects, we used the same Gaussian PSF, generated using the freely available
PSF generator [18, 19], but with focal depths of Onm and 1um, respectively.

In Figure 3(a), we show the simulated ground truth of the image with subwavelength
features of size 512 x 512 pixels. The imaging wavelength is 800nm with a numerical aperture
of 1.4. We simulated two movies. The first is composed of 1000 high emitter density frames,
while the second is composed of 5000 low emitter density frames of the same features.

Figure 3(b) illustrates a single frame from the high density movie (each frame size is 64 x 64
pixels, and the pixel size corresponds to 160nm), while Figure 3(c) shows the diffraction limited
image (a sum of all 1000 frames).

Figure 3(d) shows a smoothed ThunderSTORM [25] reconstruction (freely available code)
from the low emitter density movie. This image serves as a reference for the best possible
reconstruction, when there are no temporal considerations. On the other hand, Figure 3(e)
depicts smoothed ThunderSTORM reconstruction, performed with the high density movie of
1000 frames. Since the ground truth is of size 512 x 512 pixels, the raw localizations image
was resized to a 512 x 512 image and smoothed with a Gaussian kernel. Figures 3(f) and 3(g)
show the second and fourth order SOFI images, respectively (absolute values, zero time-lag).
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Figure 3. Reconstruction performance comparison of different methods. Upper row: (a) Ground truth:
high resolution image of simulated subwavelength features. (b) Single diffraction limited frame from the movie,
created by convolving the movie of fluctuating point emitters according to the locations in (a) with the PSF
and adding Gaussian noise. (c) Diffraction-limited image, taken by averaging all the frames in the movie. (d)
ThunderSTORM recovery from 5000 low density frames. Lower row: recovered images from a noisy sequence
of 1000 frames. (e) Smoothed ThunderSTORM. (f) Correlations SOFI (zero time-lag). (g) fourth order SOFI
(in absolute value, zero time-lag). (h) SPARCOM recovery.

SOFTI reconstructions were performed using the freely available code of bSOFT [14], which also
includes a Richardson—Lucy deconvolution step with the discretized PSF used in our method.
Last, Figure 3(h) displays the SPARCOM reconstruction (512 x 512 pixels) after smoothing
with the same kernel used in Figures 3(d) and 3(e). Reconstruction was performed over 2000
iterations and with A = 1073,

Note that the SOFI reconstructions do not compare in resolution to the ThunderSTORM
and SPARCOM recoveries. This additional comparison shows that, even when consider-
ing more advanced implementations of SOFI, such as bSOFI, the resolution increase does
not match that of SPARCOM. Furthermore, it is evident that the SPARCOM recovery
(Figure 3(h)) detects the “cavities” within the hollow features, similar to low density Thun-
derSTORM (Figure 3(d)). When high emitter density is used, Figure 3(e) illustrates that
ThunderSTORM recovery fails and no clear depiction of these features is possible.

In order to further quantify the performance of SPARCOM, Figure 4 presents selected
intensity cross-sections along two lines. In both profiles (solid and dashed yellow lines in
the panels of Figure 3), several observations can be made. First, there is a good match be-
tween the locations and width of the SPARCOM (solid red) and low density ThunderSTORM
(dash dot green) recoveries with the ground truth (dashed blue), indicating that SPARCOM
achieves spatial resolution comparable to that of ThunderSTORM when there are no tempo-
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Figure 4. Normalized cross-sections along the solid yellow line (left) and the dashed yellow line (right)
of Figure 3, comparing the ground truth (dashed blue, Figure 3(a)), diffraction-limited image (solid yellow,
Figure 3(c)), ThunderSTORM wusing 5000 low density frames (dash dot green, Figure 3(d)), ThunderSTORM
using 1000 high density frames (solid thin purple, Figure 3(e)), fourth order SOFI (dot black, Figure 3(g)),
and SPARCOM (solid red, Figure 3(h)).

ral constraints. Second, if temporal resolution is critical, i.e., it is essential to capture only a
small number of high emitter density frames, then high density ThunderSTORM fails (solid
thin purple), detecting only a single, misplaced peak, compared with the two peaks of the
ground truth. Finally, in this scenario, SOFI reconstruction (dot black) failed in achieving
good recovery.

Figures 3 and 4 demonstrate that sparse recovery in the correlation domain achieves
increased resolution with increased temporal resolution (five times in this example) and detects
the cavities within the subwavelength features which are absent in the low-resolution movie,
high density ThunderSTORM, and SOFI reconstructions. This simulation adds upon the
simulations presented in [33], by comparing SPARCOM with bSOFI, which provides additional
steps to the original SOFI scheme, such as a deconvolution step, as well as demonstrating the
disadvantages of localization based methods in the high density scenario (which can lead to a
reduction in the total acquisition time).

6.2. Super-resolution under different regularizers. Next, we tested our more general
framework for super-resolution reconstruction. We simulated a movie of thick subdiffraction
filaments over 1000 frames with Gaussian noise (SNR = 17.72dB). In Figure 5(a), we show
the simulated ground truth of size 512 x 512 pixels. The imaging wavelength is 800nm with a
numerical aperture of 1.4. Figure 5(b) shows the positions of the emitters for the first frame
in the movie, while Figure 5(c) shows the diffraction limited image (a sum of all 1000 frames).
Figure 5(d) shows a single frame from the simulated movie, where each frame size is 64 x 64
pixels and the pixel size corresponds to 160nm. We used the same PSF as before.

Figure 5(e) shows reconstruction in the 2D wavelet domain, while Figure 5(f) considers
reconstruction under the assumption of a sparse distribution of molecules (Algorithm 4.1,
2000 iterations, A = 10~*, and smoothed with the same kernel as before). For the wavelet
reconstruction, we used Algorithm 4.4 with 2000 iterations, A = 8 - 1074, and p = 107°. The
wavelet and inverse-wavelet transform were implemented using the Rice Wavelet Toolbox?
V.3, with two decomposition levels and a Daubechies scaling filter of 32 taps produced by the
function daubcgf [9]. Figure 5(g) considers reconstruction in the 2D-DCT domain, while
Figure 5(h) shows reconstruction under an isotropic TV assumption. The DCT reconstruction
used Algorithm 4.4 with 2000 iterations, A = 5- 1074, and u = 107°, and the isotropic total

2https://github.com/ricedsp/rwt
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Figure 5. Regularized super-resolution. Upper row: unprocessed data. (a) Ground truth: high-resolution
stmulated image. (b) Positions of emitters in the first frame. (¢) Diffraction-limited image. (d) Single diffrac-
tion limited frame. Lower row: recovered images from a noisy sequence of 1000 frames. (e) 2D wavelet
reconstruction. (f) l1 reconstruction. (g) 2D-DCT reconstruction. (h) Isotropic TV reconstruction.

variation recovery was performed using Algorithm 4.3 with 500 iterations and A = 10~%. Each
denoising step (Algorithm GP from [2]) used 100 iterations.

In Figure 6, we show the normalized intensity profiles of the yellow lines in Figure 5,
comparing the reconstruction performance of the various algorithms used previously. It is clear
that the diffraction limited profile (dashed yellow) conceals two filaments (solid blue curve),
which are distinguishable in all methods. However, the [; based reconstruction (i.e., sparsity
assumption in the positions of the emitters) results in artifacts which give the reconstructed
image a grainy appearance and do not capture the true width of the filaments. On the other
hand, the wavelet and TV based images show the filaments’ width more precisely, while the
DCT recovers a blurrier image of them.

Though this example is artificial, it serves to demonstrate that in some cases assuming
sparsity in domains other than the original sparsity assumption may help produce reconstruc-
tions which are more faithful to the desired object and have smoother textures.

6.3. Sensitivity of reconstruction to the PSF. Knowledge of the PSF is crucial for all the
algorithms presented in this work. In practice, this knowledge is often imperfect and the PSF
is usually estimated from the data [11] or from a specific experiment used to determine it [28].
When measuring the PSF of the microscope in an experiment, the position of the emitters or
beads may not be exactly in the focal-plane but rather a few hundreds of nanometers above or
below it. Hence, we tested the reconstruction performance of Algorithm 4.1 when used with
different out-of-focus PSFs, to assess its sensitivity to inexact knowledge of the PSF. We used
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Figure 6. Normalized cross-sections along the solid yellow line of Figure 5, comparing the ground truth
(solid blue, Figure 5(a)), diffraction-limited image (dashed yellow, Figure 3(c)), 2D wavelet reconstruction
(dashed green, Figure 3(e)), l1 reconstruction (blu