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Observation of Soliton Tunneling Phenomena and Soliton Ejection
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We study, theoretically and experimentally, the nonlinear dynamics of a wave packet launched inside a
trap potential. Increasing the power of the wave packet transforms its dynamics from linear tunneling
through a potential barrier, to soliton tunneling, and eventually, above a well-defined threshold, to the

ejection of a soliton from the potential trap.
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Tunneling is one of the most characteristic features of
wave dynamics, manifesting itself in fascinating ways,
from tunneling of charge-carriers [1], superconducting
[2,3] and superfluid states [4], to tunneling of matter waves
[5,6], and even quantum phase transitions [7], and
Josephson effects in BEC [8]. In optics, tunneling has
made its way into commercial devices, such as the direc-
tional coupler [9]. Solitons, on the other hand, are highly
nonlinear creatures, whose entire existence stems from
nonlinear waves. Although these two phenomena seem
completely unrelated, recent theory papers [10,11] sug-
gested the possibility of matter-wave (BEC) solitons tun-
neling through a potential barrier. These predictions are
conceptually related to propositions made a decade ago, in
the context of temporal solitons in optical fibers, suggest-
ing that solitons can tunnel in the temporal domain through
a longitudinal junction [12], and in the frequency domain
across a forbidden normal-dispersion barrier [13]. The
recent prediction of matter-wave soliton tunneling
[10,11] has direct implications for optical spatial solitons.
Thus far, however, soliton tunneling has never been studied
experimentally, in any physical system.

Here, we demonstrate soliton transport phenomena
through a potential barrier. We study the nonlinear dynam-
ics of an optical beam launched into a trap potential. At low
power levels, the light tunnels linearly out of the trap. As
we increase the initial power level, the tunneled power
accumulates and forms a bright soliton, while most of the
initial power remains inside the potential trap. When the
initial power is further increased, the beam overcomes the
potential barrier, and a narrow soliton is ejected out of the
trap, carrying within most of the power. To our knowledge,
this is the first experimental observation of soliton tunnel-
ing and of soliton ejection, in any system in nature.

To conform with our experiments, we analyze the prob-
lem in the framework of the photorefractive screening
nonlinearity [14], where we employ the optical induction
technique to make the potential trap [15,16]. However, the
ideas involved are general, irrespective on how the poten-
tial is made (or induced), and irrespective on whether the
nonlinearity is Kerr type [10,11] or saturable (e.g., the
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photorefractive screening nonlinearity [14], or the nonline-
arity in homogeneously-broadened two-level systems [9]).
The problem is formulated by the (2+1)D NLSE with a
saturable nonlinearity [14], describing the propagation of a
paraxial monochromatic beam launched in a trap potential,
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Here, ¢ is the envelope of the propagating field, and Ipgy
is the intensity that induces the trap potential (|¢/|? and Ipor
are normalized to the background illumination), k, = 27\”"
is the wave number,n,, is the linear refractive index in the
medium, and A is the vacuum wavelength. Also, Ang =
Indrs;E is the nonlinear refractive-index change, where
r33 is the relevant electro-optic coefficient, and E is the
applied field. We use A =488 nm, ny = 2.35,
1200 pm V™1,
experiments.

We analyze the nonlinear dynamics of a wave packet
launched inside the trap by simulating Eq. (1). We launch a
35 uwm FWHM Gaussian beam, into the trap, as shown in
Fig. 1(a). When the barrier is much wider than the width of
the beam, there is almost no power transport through the
barrier: the beam oscillates inside the trap for many periods
[Fig. 1(b)]. When we decrease the width of the barrier to be
comparable to the width of the beam, power starts to tunnel
linearly across the barrier, and the power remaining in the
trap decays exponentially with the propagation distance
[Fig. 1(c)]. The light that has tunneled out of the trap
propagates mostly linearly, forming a broad nonlocalized
wave. As we increase the power of the launched beam, the
tunneled power accumulates at the external margins of the
barrier and forms a soliton (of 15 um FWHM) that con-
tinues to propagate without broadening, over many diffrac-
tion lengths [Fig. 1(d)]. Under these conditions, most of the
initial power remains inside the trap. When we further
increase the initial power, the index change induced by
the beam is high enough to overcome the potential barrier,
and the transport out of the trap is no longer through
tunneling. Rather, the beam is attracted towards the region

r33 =
and E=1200Vcem~!, as in our
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FIG. 1 (color online). Cross sections of (2+1)D beam propa-
gation under different initial conditions. (a) The intensity profile
of the initial wave function (dotted red), and of the light inducing
the trap potential. (b) Propagation of the beam in the presence of
a wide barrier. (c) Linear tunneling of low-intensity beam
[¢(0,0,0) = 0.3]. (d) Soliton tunneling from the potential trap
[(0,0,0) = 1.35]. (e),(f) Soliton ejection at increasingly higher
input intensities (0, 0, 0) = 2, (0,0, 0) = 3, respectively.

of higher refractive index, and a soliton is ejected from the
trap [Fig. 1(e)]. The ejected soliton carries more than 90%
of the power contained in the initial beam, and it has a
20 um FWHM. We find that the ejection process exhibits a
sharp intensity threshold that clearly distinguishes between
two generically different regimes: linear tunneling of a
soliton and the ejection of a soliton. The intensity threshold
and the dynamics of the soliton at the vicinity of this
threshold will be analyzed in details later on. Finally,
when we increase the power even further, it is easier for
the beam to overcome the barrier, and the soliton ejection
process occurs earlier [Fig. 1(f)].

Experimentally, the formation of the trap relies on the
optical induction technique, in which a refractive-index
profile is induced in a nonlinear medium [15,16]. We use
a 1 cm long SBN:75 crystal, with 33 = 1200 pm V~!. The
refractive-index profile (the potential trap) is generated by
the intensity superposition of two mutually uncorrelated
ordinarily polarized beams. The first induction beam is of
35 wm FWHM and is used to induce the trap. This width
has negligible diffraction over the 1 cm propagation dis-
tance, hence the induced trap is effectively propagation-
invariant. By changing the width of this first induction
beam and its intensity, we control the trap width and its
depth. The second induction beam creates the external
region outside the trap, to which the soliton is ejected.
This beam has a step-function structure, generated by a
sharp knife-edge, cutting half of a broad beam (0.5 cm
FWHM). The step-beam is passed through a spatial filter,
facilitating control over the slope of the step, while the
intensity of this beam controls the strength of the index
change in the external region. We set the step to increase
from 0% to 100% within ~40 um, making its diffraction-
broadening negligible. Hence, the induced potential is
propagation-invariant. Figures 2(a) and 2(b) show the in-
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FIG. 2 (color online). Experimental intensity photographs at
the input plane of the sample. (a),(b) The intensity profile
inducing the trap potential and its cross section. (c),(d) Total
intensity at the input plane: sum of the intensities of the (ordi-
narily polarized) beam inducing the trap potential and of the
(extraordinarily polarized) launched beam, for [¢(0, 0, 0)|> = 4,
and its cross section. The total intensity reflects the overall
potential: linear + the nonlinear part induced by the launched
beam.

tensity profile of the beams inducing the overall potential at
the input face of the crystal.

After forming the trap potential, we launch a 35 um
FWHM extraordinarily polarized beam at the center of the
trap, as shown in Figs. 2(c) and 2(d). When no external
field is applied, there are no noticeable nonlinear effects:
the beam diffracts (broadens) linearly, while propagating
on-axis in the homogenous medium, exiting the sample
with ~45 um FWHM [Fig. 3(a)]. Next, we apply a field of
1000 V/cm, and create a wide barrier, separating the ““po-
tential well” and the ‘“‘external region” by a barrier of
120 wm. Under the action of nonlinearity, the beam nar-
rows, while propagating on-axis inside the trap without
changing its trajectory [Fig. 3(b)]. We then reduce the
width of the barrier to be on the order of the width of the
beam, but keep the power of the launched beam low. Under
these conditions, power starts to linearly tunnel out of the
trap [Fig. 3(c)]. However, a bright soliton does not form,
since the tunneled power and the tunneling rate are not
high enough to support a soliton. When we increase the
power of the launched beam, the tunneling rate increases,
and the beam that has tunneled out of the trap has sufficient
power to form a narrow (13 um FWHM) soliton outside
the trap. Consequently, the output intensity structure in this
case consists of two well-separated narrow, self-localized,
beams [Fig. 3(d)]. The beam with the higher power still
resides inside the trap and forms a soliton there.
Nevertheless, the beam that has tunneled out of the trap,
albeit having a lower power, forms a soliton right outside
the barrier. Next, we further increase the power of the
launched beam, and now the whole power that was initially
launched into the trap crosses the barrier. This indicates
that the beam has induced an index change that overcomes
the potential barrier, hence a soliton is ejected out of the
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FIG. 3 (color online). Experimental photographs of the inten-
sity structure at the output face of the sample, under various
conditions. The vertical line marks the maxima of the external
barrier. (a) Linear propagation, displaying on-axis propagation in
a homogeneous system. (b) Nonlinear propagation of the beam
when the barrier is too wide to observe tunneling effects; the
beam forms a soliton propagating on-axis within the trap.
(c) Linear tunneling of a low power beam through a narrow
barrier [¢(0, 0, 0) = 0.3]. (d) Soliton tunneling: the power tun-
neled out of the trap forms a soliton moving away from the trap
[£(0,0,0) = 1]. (e),(f) Soliton ejection at increasing power
levels [¢(0,0,0) = 2, (0, 0,0) =~ 8, respectively]. The higher
the initial power, the earlier the soliton ejection process occurs.

trap. Finally, as we further increase the input power, the
ejected soliton exits the sample further away from the
barrier [Figs. 3(e) and 3(f)], displaying a maximal deflec-
tion of 80 um away from the trap center [Fig. 3(f)].

We find experimentally and numerically that the process
of soliton transport through the barrier displays two distinct
regimes, separated by a sharp intensity threshold. When the
intensity of the soliton is below threshold [|(0, 0, 0)|*> <
|pru]?], most of the power ( > 70%) stays in the trap, and
soliton ejection does not occur. However, when the initial
intensity is above threshold [|#(0, 0, 0)|?> > |¢y|?], a nar-
row soliton is ejected from the trap, carrying most of the
initial power. This threshold arises from the nonlinear
interaction between the soliton and the external potential:
the soliton induces a change in the initial potential, which
“liberates” the soliton from the trap. One can identify the
threshold quantitatively, assuming that the external poten-
tial varies slowly, such that the soliton does not change its
shape until it is ejected. Hence, we may analyze the inter-
action between the soliton and the total potential (as a fixed
term and a nonlinear term) at the vicinity of the threshold
intensity, by an effective particle model. This model de-
scribes the motion of X, the average position of the soliton
in the x direction, by [17]

d’x [ [ OF
2 =2p! — ¢t dxdy, 2
Rl f_m f_w oy VW dxdy 2

where p = [®_ [®, ¥y*dxdy is the normalized soliton
power, and F represents the total refractive index change
(linear + nonlinear). Here, F arises from the saturable
—Any/(2ng)

1+ Ipor+yl*
both on the soliton shape, and on the external (linear)

nonlinearity, yielding F = which depends

potential. Similarly, the motion of y, the average y position
of the soliton, can be described. However, since F and
are symmetric with respect to y, no optical force is exerted
on the beam in the y direction, and the dynamics of the
beam is solely in x. The expression on the right-hand side
of Eq. (2) represents the effective force acting on the
equivalent particle, which can be expressed as minus the
gradient of an effective potential, ¢(x):
dx _ _de(®)

@ @

Equation (3) describes the motion of a particle under the
influence of a nonlinear effective potential, which depends
on the position of the particle. We find the threshold
intensity, by calculating the effective potential for different
solitons powers, as shown in Fig. 4(a). As in the experi-
ments, we launch a Gaussian beam of an intensity value at
the vicinity of the threshold, and simulate its dynamics
[Figs. 4(b)—4(d)]. The Gaussian beam sheds some of its
power to radiation (via tunneling through the barrier) while
forming a soliton within the trap. The beam remaining in
the trap behaves as if it is a soliton (albeit after a long
propagation distance it will eventually tunnel out of the
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FIG. 4 (color online). (a) Effective induced potential for differ-
ent values of #(0,0,0). Simulated propagation of a beam
launched inside a potential trap with (b) (0,0, 0) = 0.9¢y,
(c) ¥(0,0,0) = ¥y, (d) (0, 0,0) = 1.1¢ry. (¢) Experimentally
measured (black circles) and numerically calculated (smooth
blue line) values of the power ejected from the trap (normalized
by the total power) vs amplitude of the launched beam, for near-
threshold values.
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trap), and its intensity determines whether ejection occurs
or not. Below threshold [blue-dashed line in Fig. 4(a)], the
initial energy of the particle is lower than the potential
barrier. This indicates that the soliton cannot pass the
barrier, but instead it oscillates inside the trap, as shown
in Fig. 4(b). Exactly at threshold, the initial energy of the
particle is equal to the peak of the potential barrier [black-
smooth line in Fig. 4(c)]. Under this condition, the particle
does arrive to the peak of the barrier, but, since the equiva-

lent force acting on it at that point is zero (§gp = 0), it
remains there indefinitely. This is equivalent to the soliton
arriving at the peak of the potential barrier, yet never
crossing it, but instead remaining at the barrier, and prop-
agating on-axis as a surface wave at the barrier [Fig. 4(c)].
This surface wave is unstable, and will eventually divert
from its course. Finally, as we increase the initial intensity
to above the threshold, the peak of the potential barrier
drops below the initial energy of the particle and the
particle is free to pass the barrier [red-dotted-dashed line
in Fig. 4(a)]. In this case, a soliton is ejected from the trap,
as shown in Fig. 4(d). Note that in the ejection process, all
of the power launched into the trap is ejected, and, con-
sequently, the features of the ejected soliton (width, inten-
sity) are predetermined, irrespective of the structure of the
trap. The experimental results corroborate this intuitive
theory. Figure 4(e) displays the experimentally measured
(black circles) and numerically calculated (smooth blue
line) power (normalized to the launched power) ejected
from the trap vs peak amplitude of the launched beam, at
the vicinity of the threshold. As in the theory, below
threshold (Wry = 1.5), most of the launched power re-
mains inside the trap, whereas above threshold most of
the launched power is ejected from the trap as a soliton.
The phenomenon of soliton ejection is worth further
discussion. In the current study, the launched wave packet
forms a soliton inside the trap, and above the threshold
intensity it is ejected through the barrier. This process is
inherently different from previous studies of “‘soliton emis-
sion”, which have been proposed [18,19] and demon-
strated [20,21] in optical waveguides. Those previous
studies on soliton emission refer to the generation of a
soliton from a nonsoliton wave packet. As such, they are
fundamentally different from the soliton ejection effects
described here, which have never been addressed before.
In conclusion, we presented the first experimental study
of soliton tunneling and soliton ejection through potential
barriers. We have introduced a simple general method for
identifying the threshold for soliton ejection. These ideas
of soliton transport through potential barriers raise many
new ideas in soliton physics. For example, it is possible to
engineer a ‘‘soliton gun”’, emitting a sequence of solitons
through the barrier [10,18]. Likewise, it is possible to
design a ‘“‘soliton ejector”’, where the ejection process is
controlled either by the structure of the potential barrier, or
in real time via interaction with another wave. The equiva-

lence between the spatial and temporal domains makes
these results relevant for the studies of short pulses dynam-
ics in waveguides, which leads to fascinating phenomena
such as supercontinuum generation [22]. Another intrigu-
ing possibility has to do with “environment engineering.”
Recent papers suggested altering linear tunneling effects
(specifically, designing nonexponential tunneling) by mod-
ulating the coupling to continuum and engineering the
potential of the “environment” outside the trap [23,24].
In this vein, it should be possible to engineer the nonlinear
process of solitons tunneling through barriers and of soli-
ton ejection, by properly designing the potential outside the
trap. We emphasize that these results are general, and the
ideas developed here can be implemented in other soliton-
supporting systems beyond optics.
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