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Recovery of quantum states from measurements is an essential component in quantum information processing. In
quantum optical systems, which naturally offer low decoherence and easy manipulation, quantum states are charac-
terized by correlation measurements. When the states comprise more photons so as to encode more qubits, high-order
correlation measurements are required. However, high-order correlations are hard to measure in experiments, as the
rate of high-order coincidences decreases very fast when increasing the correlation order. This results in a poor signal-
to-noise ratio. Likewise, the number of measurements required to characterize a quantum state increases exponentially
with the increase in the number of qubits. Here, we use structure, present in most quantum states of interest
(for quantum computing, cryptography, boson sampling, etc.), to recover the full quantum state of three photons
from two-fold correlations in a single experimental setup. © 2016 Optical Society of America
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1. INTRODUCTION

The field of quantum information has been growing fast over the
past decade. The concept of a quantum computer, dating back to
Feynman’s quantum simulator [1], gained much momentum two
decades ago, when Shor proposed a quantum algorithm offering
exponential speedup of prime factoring [2]. Ever since, qubits and
quantum gates, the basic building blocks of a universal quantum
computer, have been proposed and realized experimentally in a
variety of physical systems ranging from trapped ions [3] and pho-
tons [4] to nuclear magnetic resonance [5]. In particular, optical
quantum computation, utilizing the concepts of KLM [6] and
cluster states [7], has witnessed experimental realizations of larger
and more complex systems in terms of the number of photons [8].
Quantum optical systems, which offer long coherence times and
easy manipulation of single qubits and photons, allow probing
quantum properties of the light itself [9] and of the physical sys-
tems in which it is propagating [10]. In this vein, recently, a linear
scheme for quantum computing, relying on the bosonic nature of
particles, has been proposed [11] and realized experimentally with
up to five photons [9,12–16]. Clearly, the ability to efficiently
measure superpositions of quantum states consisting of several
photons is essential for the characterization of the prepared states;
for the demonstration of computational units, for the operation of
certain quantum key distribution protocols [17]—and, finally, it
is useful in formulating quantum algorithms [18,19].

To reveal the quantum state, quantum state tomography (QST)
is performed. In this process, a measurement corresponding to

every single element in the densitymatrix, describing the full quan-
tum state, is repeated many times. However, QST suffers from two
main drawbacks: (i) the number of required measurements is very
large, and (ii) different physical realizations of measurement sys-
tems are necessary. For example, characterizing m qubits requires
22m different measurements. In an optical system, this requires
rotation of wave plates and polarizers or a complex network of
beam splitters and phase shifters. When considering photonic
quantum systems, coincidences and correlation functions are being
used for characterizing the states. As the number of photons in the
system grows, higher-order coincidences and correlation functions
are needed [9,12,13,16,20]. However, high-order correlations are
hard to measure, as their rate decreases significantly with the order
of correlation (see explanation below), which results in a lower
signal-to-noise ratio (SNR). Furthermore, as the correlation order
increases, more measurements are required.

The issues described above raise a natural question: do low-
order correlations hold sufficient information about the high-
order correlations to enable the recovery of the complete quantum
state? In some special cases—for example, in the context of low-
entanglement many-body systems—computing high-order corre-
lations from low-order ones has been recently demonstrated both
theoretically [21] and experimentally [22]. Thus, we are moti-
vated to ask, can a quantum state of N photons be fully char-
acterized from lower-order correlations? Furthermore, can this
goal be achieved in a single experimental setup, without changing
the physical system?
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Here, we utilize structure, inherent to many physically inter-
esting quantum states of light, to reduce the complexity in the
recovery of a quantum state. We devise a method enabling the
recovery of three-photon quantum states (including entangled
states) from only two-fold correlation measurements in a single
setting. The ability to take two-fold coincidences in a single setup
instead of three-fold measurements enables recovery of the quan-
tum states from far fewer measurements and in a considerably
higher SNR, due to the fact that two-photon events occur at
much greater rates than three-photon ones. For example, in a
system with detection quantum efficiency of 10%, for every thou-
sand triplets injected into the system, only one is detected,
whereas 27 pairs are recorded within the same acquisition time.
This increase in rate improves the SNR of the measurement (in a
given integration time), and provides some protection from loss,
since not all photons need to be detected. The concept suggested
here paves the way to further ideas on structure-based recovery of
quantum states, such as recovering a quantum state in an un-
known basis in a single setup and recovering the state of several
photons without number-resolving detectors.

The concept we devise relies on the fact that, in many cases of
interest, the quantum information processed in the system has
some characteristic structure (i.e., it is not random). This struc-
ture stems from the physical nature of the state and from the fact
that, often, we are interested in states that are either pure states or
close to pure states (e.g., pure states that have undergone some
degradation but are still close to pure states). In this context,
having structure in a signal implies that this signal has a sparse
representation in some basis; that is, it can be represented in this
basis by only a small number of coefficients [23]. Such a signal is
then said to be sparse in that basis. For such cases, where the
quantum states are close to pure states, we demonstrate the re-
covery of three-photon states solely from two-fold correlation
measurements in a single setup, without the need to change
the physical system. We propose a general algorithmic technique
to recover the state, provide specific examples with photon-
number states and with entangled states, and evaluate the perfor-
mance of our methodology with respect to sparsity (the number
of nonzero eigenvalues of the density matrix) and noise. Finally,
we discuss future ideas on how to utilize structure-based concepts
even when the sparsity basis is unknown, and related ideas where
additional information can be unraveled algorithmically from a
partial set of measurements.

We demonstrate the concept of structure-based quantum state
recovery on a specific photonic system: an array of Nw evanes-
cently coupled optical waveguides [Fig. 1(a)]. This system has
been used extensively to study fundamental concepts in both
the classical and quantum domains (e.g., Bloch oscillations
[24,25], Zener tunneling [26], Shockley states [27], bound states
in the continuum [28], Anderson localization [29,30], and topo-
logical insulators [31], in mean-field limit, and also in the single-
photon regime [10,32–34]). In the context presented here, we use
this system due to the following reasons: (1) the field forms an
inherently discrete set of modes, which is most suitable for quan-
tum information schemes; (2) the waveguide array is lossless and
exhibits low decoherence; (3) the system is simple and experimen-
tally realizable; and (4) the waveguides are coupled to each other,
which means that measuring light at the output of any waveguide
reveals information about other waveguides as well [Fig. 1(b)]. As
will be explained below, the spreading of information among the

modes is essential for our approach. A similar technique utilizing
measurements at the output facet of such an array of a coupled
waveguide to recover the field at the input of the array has been
recently demonstrated in the classical realm [35]. It is important
to emphasize that, even though we illustrate the idea on this spe-
cific system, the concept of structure-based quantum state recov-
ery is completely general and could be implemented in other
quantum systems where coupling between the modes exists.

2. METHODS

The system is sketched in Fig. 1(a). Photons are injected to the
input of the array, are allowed to propagate, and are then mea-
sured by detectors at the output facet of the array. The propaga-
tion and coupling between the waveguides are modeled by the
Hamiltonian [10]

H � β
X

a†nan � C
X

�a†n−1an � a†n�1an�: (1)

Here, a†n, an are the creation and annihilation operators in wave-
guide n, respectively, β is the propagation constant (identical to all
waveguides), and C is the coupling constant between adjacent
waveguides. This Hamiltonian leads to the following Heisenberg
equation of motion, which describes the propagation along
the z axis:

iℏ
∂
∂z

a†n � −βa†n − C�a†n−1 � a†n�1�: (2)

The simplest case of propagation in the array occurs when the
input is strictly into a single waveguide, say, for example, the
waveguide at the middle. For this input, the classical solution
has a closed form [36], which coincides with the quantum case
when a single photon is injected into the middle waveguide [10].
The expectation value of observing that photon after propagating
a distance z (which can be thought of as the “impulse response” of
the quantum system for a single photon input) is shown in
Fig. 1(b).

Throughout this article, we are interested in recovering an ini-
tial quantum state with a fixed number of photons, N . These
states, which are frequently used in most quantum information
experiments [8,9], can be generated by parametric downconver-
sion in heralded schemes. For simplicity, consider the case in
which the input state consists of three photons. The quantum

Fig. 1. Physical system and its “quantum impulse response.”
(a) Physical system: an array of evanescently coupled optical waveguides.
The quantum state is launched at z � 0. The photons propagate in the
array a distance much larger than the coupling length, such that the in-
formation is sufficiently spread among thewaveguides in themeasurement
plane. (b) Probability distribution tomeasure a photon hbnk�z�i. Here,C is
the coupling constant between adjacent waveguides, when a single photon
is injected into the middle waveguide. It serves as the “impulse response”
of the system when the number of waveguides approaches infinity.
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state is described by the density matrix of the system. We assume
that the basis in which the state is diagonal is known, and this
basis will serve as the “sparsity basis.” In general, the sparsity basis
can be extracted (learned) from the measurements under certain
conditions, or from data with similar features that are often avail-
able from other sources [37].

As a first example, consider a state that is diagonal in the Fock
basis (another example of an entangled state is given later on).
Fock states are often very appealing, both for their nonclassical
properties and because common experimental processes [10,13]
yield states that are well described by them. The density matrix
takes the form

ρ �
X
i

pijfngiihfngij: (3)

Here, jfngii is a Fock state with configuration fngi �
fni1; ni2;…; niNw

g, where the lower index indicates a waveguide
number and the upper index i refers to the ith configuration
(so-called configuration index). This means that for the ith con-
figuration there are ni1 photons in the first waveguide, ni2 photons
in the second waveguide, and nik photons in waveguide k.
The coefficient pi describes the probability of that configuration
to occur. Since the coefficients pi are probabilities, they obey
0 ≤ pi ≤ 1, in agreement with the general characterization of
quantum states. Accordingly, the density operator satisfies
ρ ≥ 0. An example of such a state is

ρ � pj121517ih121517j � �1 − p�j23116ih23116j: (4)

This density matrix describes the convex sum of two configura-
tions. The first configuration is of probability p, and it consists of
one photon in waveguide 2, one in waveguide 5, and one in wave-
guide 7, whereas the second configuration is of probability 1 − p,
and has two photons in waveguide 3, and one photon in wave-
guide 16. Note that this state consists of three photons.

The problem at hand is to recover the initial state at z � 0,
namely the coefficients pi [Eq. (3)], from measurements carried
out at the output facet after propagating a distance z in the array,
by using photon counting detectors. Generally, characterization
of the three-photon state requires three-fold coincidence measure-
ments, which correspond to all possible coefficients of the basis
states j1i1j1ki; j2i ; 1ji; j3ii. These represent the cases where a
single photon is launched into each of the waveguides i; j; k,
or where two photons were launched into waveguide i and
one photon into waveguide j, or where the three photons were
all launched into the same waveguide i, respectively. Such mea-
surements are described by Γ�3�

q;r;k � Tr�ρa†qa†r a†kakaraq�, where
q; r; k are the waveguide indices and the creation and annihilation
operators are evaluated at the output facet at distance z.
Instead, in what follows, we will use only two-fold coincidence
measurements, Γ�2�

q;r � Tr�ρa†qa†r araq�, which have the advantages
described earlier but are missing considerable information.
Substituting Eq. (3) into the expression for two-fold coincidences,
Γ�2�
q;r , we obtain the relation between the probabilities pi and the

measurements

Γ�2�
q;r �

X
i

pihfngija†qa†r araqjfngii: (5)

If we gather the measurements in all the waveguide pairs, casting
the problem in a matrix form, then we obtain

Γ � Mp: (6)

In this formulation, Γ ∈ RNm holds all the two-fold measure-
ments, Nm is the number of waveguide pairs, p ∈ RNb is the
sought coefficient vector (of probabilities), Nb is the number
of basis vectors, and M ∈ RNm×Nb is the “sensing matrix” repre-
senting the propagation in the array and the relation between the
input state and the measurements.

The number of coefficients, Nb �
�Nw � 2

3

�
, which is the

total number of possible configurations, is derived from the num-
ber of photons (three, in this case), and the number of waveguides
in the system Nw. Unlike the number of basis vectors, which
grows with the number of photons, the number of two-fold

coincidences Nm �
�Nw � 1

2

�
depends only on the number

of waveguides. Upon examination of the dimensions of the ob-
jects in Eq. (6), we learn that Nm < Nb always; hence the prob-
lem is inherently noninvertible. For example, if we consider three
photons in an array of 20 waveguides, then we obtainNm � 210,
whereas Nb � 1540. This is a manifestation of using only two-
fold coincidences (instead of the three-fold coincidence, which
would have made the problem invertible).

To summarize this section, the problem at hand is to find the
vector p in Eq. (6), which consists of Nb terms, from the mea-
surement vector Γ, consisting of Nm < Nb (real) terms, given the
matrixM . To solve this ill-posed mathematical problem, we need
some prior knowledge, which ideally should be rather general.
The concept we propose is based on sparsity: the prior knowledge
that the initial state has a small number of nonzero elements pi,
which physically means that the state is close to a pure state. Such
states are common in many experimental scenarios. For instance,
a pure state subject to local noise results in a low-rank density
matrix [38]. Furthermore, whenever a pure state is subject
to a low level of “depolarizing noise” (defined as ρ↦
�1 − λ�ρ� λ

Nb
I for some λ ∈ �0; 1�), it is described by a compress-

ible density matrix. Such a compressible density matrix is not
sparse, but it does have one (or several, in the case of almost pure
states) significant eigenvalues. Compressible states, albeit not
being sparse in the strict sense, do fall under the scope of our
method as well. Finally, bipartite states with low enough rank
are also appealing theoretically, since they hold a usable entangle-
ment resource, the so-called distillable entanglement [39]. When
the basis in which the low-rank state is diagonal is known, the
resulting coefficient vector p is sparse.

The usage of sparsity has been intensively explored in the field
of signal processing, typically under the title of compressed sens-
ing (CS) [23,40]. For classical signals, CS is a field in information
science aimed at reducing the number of measurements required
for recovering a signal, given that it is sparse in some basis [41].
An essential condition for CS recovery to work well is that each
measurement has to carry information; i.e., an impulse input sig-
nal should get ‘smeared’ as much as possible in the measurement
domain. More recently, CS has been brought into the quantum
arena for the purpose of reducing the number of measurements
necessary in QST [38] and in quantum process tomography [42],
enabling much more efficient tomography. The idea of using
sparsity to solve underdetermined inverse problems has opened
the door for a wide range of applications in various fields, from
sub-Nyquist sampling [43], to subwavelength imaging [44–46],
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phase retrieval [35,45,47–49], Ankylography [50], holography
[51], characterization of incoherent light [52], ghost imaging
[53], weak measurements [54,55], measurements of complemen-
tary observables [56], and more. To distinguish from these, in this
work we use sparsity of the sought quantum state in order to
recover a three-photon state from two-fold correlations.

Returning to the problem at hand, we would like to invert
Eq. (6): find the vector of probabilities p given the measurement
vector Γ (which often also contains noise) and the matrix
describing the propagation in the waveguide array M. In order
to overcome the singularity of the problem, we assume that
the state is sparse in a known basis, which translates to having
a small number of nonzero coefficients pi. It is important to stress
that we do not need to know their locations or even their number.
The only requirement is that there are few in comparison to the
total length of the vector. The recovery of the coefficients is
performed algorithmically, based on the coupling between the
waveguides and propagation in the array. As is known from
the field of CS, sparsity-based signal recovery works well if the
measurements are carried out in a basis that is least correlated with
the basis in which the signal is sparse. It is therefore important to
notice that, for sufficiently long propagation (large value of Cz ),
the input signal is smeared by the impulse response of the system
[Fig. 1(b)]. This means that performing measurements at the
output of a sufficiently long waveguide array facilitates the use
of sparsity-based methods.

Our algorithm is based on orthogonal matching pursuit [57],
which is commonly used in sparsity-based approaches, with some
modifications derived from our constraints. We note that the
standard technique of l1 minimization is not suitable for this
problem since we require that every feasible solution has l 1 norm
of unity, as p is a probability vector. Other common methods that
utilize sparsity in various ways are applicable here, such as
weighted l1 (see further detail in Supplement 1).

3. RESULTS

Examples of sparsity-based reconstructions in the basis of Fock
states are presented in Figs. 2(a) and 2(b). The (simulated) mea-
sured data in these examples include SNR of 20 dB Poisson noise
in each measurement; that is, the coincidence signal in each
measurement has Poissonian statistics with SNR of 20 dB
(SNR of 100). In addition, we assume that the original state
(the “sought information”) includes 2% depolarizing noise, which
simulates many physical cases when the preparation of quantum
states is imperfect. Figures 2(a) and 2(b) show the original signal
with the bias resulting from the depolarization noise (inset),
which makes the signal compressible (see Supplement 1). In the
recovery process, we wish to obtain the clean signal (without the
bias), which is sparse. In a different scenario, where the charac-
terization of the noise is of interest, the goal may be achieved in an
identical setting but using the weighted l 1 minimization pro-
cedure. The figures show the original elements of p in bars,
and the coefficients recovered by our sparsity-based method from
two-fold correlations in circles. The number of elements (sparsity)
in the original clean signal is seven, as in the recovered one. Thus,
our method deals with the compressible signal and recovers a
clean (and sparse) one. These examples highlight the fact that
our technique enables virtually perfect recovery of three-photon
states from two-fold coincidence measurements, in the presence
of measurement noise and also even when the original quantum

state is imperfect. In other words, our sparsity-based method
displays robust recovery.

Figure 2(c) shows the recovery probability for different sparsity
levels (number of degrees of freedom) in a noiseless scenario. The
recovery probability, p � #�f >0.95�

N r
, is defined as the number of

recoveries with fidelity higher than 0.95, out of Nr � 700 ran-
dom realizations of the original quantum state (the signal we wish
to recover). The fidelity, defined as f � P �pibpi �12, where pi andbpi
are the elements of the original and recovered signals, respectively,
is evaluated between the recovered state and the original clean
state, without the noise. As expected, the recovery probability de-
creases as the number of nonzero elements in the signal increases;
that is, the more sparse the quantum state, the higher the recovery
probability. Figure 2(d) shows the performance of our method in
terms of fidelity of the two signals in the presence of various noise
levels. The same figure also shows the dependence of the fidelity
on sparsity. The method works better when the signal is more
sparse, but it yields high fidelity recovery (better than 90%)
for up to 20 nonzero terms (out of 1540 possible configurations),
under 20 dB noise.

We have thus far demonstrated sparsity-based recovery of three-
photon states from two-fold coincidence measurements for basis
functions that are Fock states. However, the field of quantum in-
formation relies heavily on entangled states. It is therefore essential
to examine our sparsity-based reconstruction method when the
basis includes entangled states. Figure 3 presents exactly that:

Fig. 2. Sparsity-based recovery of Fock states: examples and perfor-
mance analysis. (a), (b) Examples for the recovery of a state in Fock basis.
The original signal has sparsity of 7 (seven nonzero elements in unknown
locations and of unknown magnitudes). The state is subject to depolari-
zation noise of 2% (shown in the zoom-in inset). Thus, the state is not
sparse, but it is compressible, which allows us to use sparsity in the
recovery process. Other types of noise display similar features of compress-
ibility, with similar recovery performance. The “measured data” include
the clean measurements at the output facet of the array, with Poisson noise
of constant SNR. We wish to recover the true original signal (without the
bias noise), which is sparse. As seen in the examples, the recovered signal is
indeed practically identical to the true original signal. (c) Recovery prob-
ability as a function of the number of nonzero elements in the signal.
(d) Dependence of the fidelity of recovery on measurement noise.
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Figs. 3(a) and 3(b) show examples where the basis consists of spa-
tially entangled states. As an example, we divide the waveguides
between two parties such that “Alice” gets waveguide 7 and the rest
of the waveguides belong to “Bob.” The basis now consists of the
entangled vectors jψi � j2317i�j1327iffiffi

2
p , jψ⊥i � j2317i−j1327iffiffi

2
p , while

the rest of the basis terms are Fock states of all the waveguides other
than the pair 3,7. A sparse state in this basis is of the form
ρ � p1jψihψ j � p2jψ⊥ihψ⊥j �P

i≠1;2pijfngiihfngijwith a small
number of nonzero coefficients pi. This basis has 1540 configura-
tions, which is also the number of possible terms in the “sought
signal.” In the examples presented in Figs. 3(a) and 3(b), the mea-
surement noise, depolarization noise, and sparsity are the same as in
the examples in Fig. 2. The performance of our method, in this
basis that includes entangled states, is presented in terms of recov-
ery probability in a noiseless scenario [Fig. 3(c)] and the average
fidelity in various noise levels and sparsity values [Fig. 3(d)].
Clearly, our sparsity-based technique, when employed on settings
that include entangled states [58], performs as well as it does for the
Fock state basis.

It is important to emphasize that using the sparsity-based
methodology presented here is conceptual, not specific to a par-
ticular algorithm. Our method is based on using very general
(generic) prior knowledge—namely, that a state is sparse or
compressible—in order to solve a noninvertible problem, which
is recovering a three-photon state from two-fold correlations.

Naturally, other algorithms utilizing sparsity could be used to
solve the problem, possibly performing even better than ours
(see discussion in Supplement 1).

4. CONCLUSION

In conclusion, we showed that prior knowledge in the form of
sparsity can be used in order to recover a three-photon state from
two-fold correlation measurements. This is achieved by coupling
the spatial modes through an array of waveguides, in the spirit of
CS, and using a sparsity-based algorithm. The recovery of the
quantum state shows high fidelity and excellent robustness to
noise (both in the initial state, in the form of depolarization noise,
or in the measurement). We also simulated our methodology
when the exact number of photons in the state is not known
accurately—for example, when the initial state is 90% a three-
photon state, and 10% a four- or two-photon state. The perfor-
mance of our technique remains very high when we use a random
coupler (such as the one used in Fig. S2 in Supplement 1), as the
initial state is sufficiently sparse (see Supplement 1 for discussion
and figure). Finally, the idea of recovering three-photon states
from two-fold correlation measurements is readily extendable
to recover N -photon states from N − 1 coincidence measure-
ments, because the mathematics is similar (see Supplement 1
for details). Can this idea be extended to cases in which the mea-
surements are even more incomplete, for example, to recover a
four-photon state from two-fold coincidence? We leave that
for future work, although our preliminary simulations show that
indeed this is possible, with high fidelity and robustness to noise,
when the initial states are sufficiently sparse. Moreover, we pro-
pose extending the sparsity-based ideas to other, closely related,
scenarios. For example, in many experiments, number-resolving
photon detectors are needed in order to characterize a state. Such
detectors are less available and allow lower detection efficiencies.
If we replace the number-resolving detectors with ordinary, sim-
ple “bucket” detectors, then the problem becomes noninvertible.
Our preliminary results on this problem indicate that sparsity
(i.e., having some structure in the sought state) can be used in
order to overcome this problem and allow the usage of simple
detectors, rendering the usage of number-resolving detectors
altogether unnecessary, at least for quantum experiments specifi-
cally designed for recovering quantum states.
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