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Abstract: We show that, in contrast to popular belief, sub-wavelength
information can be recovered from the far-field of an optical image, thereby
overcoming the loss of information embedded in decaying evanescent
waves. The only requirement is that the image is known to be sparse,
a specific but very general and wide-spread property of signals which
occur almost everywhere in nature. The reconstruction method relies
on newly-developed compressed sensing techniques, which we adapt
to optical super-resolution and sub-wavelength imaging. Our approach
exhibits robustness to noise and imperfections. We provide an experimental
proof-of-principle by demonstrating image recovery at a spatial resolution
5-times higher than the finest resolution defined by a spatial filter. The
technique is general, and can be extended beyond optical microscopy, for
example, to atomic force microscopes, scanning-tunneling microscopes,
and other imaging systems.
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1. Introduction

Back in 1873, Ernst Abbe formulated the theory of imaging, stating that the maximal resolution
recoverable in a perfect optical imaging system is determined by the numerical aperture of the
lenses involved [1]. Some decades later, it became clear that the true limit on imaging arises
from the optical wavelength λ and the best recoverable resolution is λ/2. This is because the
propagation of EM waves in bulk media behaves as a low-pass filter, for distances much larger
than the wavelength, rendering spatial frequencies larger than 1/λ evanescent [2]. Therefore,
such spatial frequencies decay rapidly, on a distance scale of several wavelengths. Hence, the
observation of sub-wavelength features is essentially impossible using conventional imaging
methods. Throughout the years, there have been many attempts to bypass the λ/2 limit on
imaging. One approach is the Near-field Scanning Optical Microscope (NSOM): a very narrow
tip, which samples the electromagnetic field at a single point at very close proximity (“near
field”) to the sub-wavelength specimen, is scanned across the object. The NSOM has nowadays
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become a frequently used commercial product, but it does have some major disadvantages: (I)
the tip must be placed in the near-field, hence it cannot be used, for example, to look into living
cells, and (II) acquiring an image requires scanning the specimen point-by-point [3–5], which
implies that real-time imaging is impossible. These are severe limitations particularly when
studying objects that vary in time (e.g., living objects like bacteria). In the last few years, sev-
eral genuine ideas have been proposed to allow for more effective sub-wavelength imaging. One
approach is based on probing the information with sub-wavelength holes made from thin film of
plasmonic metals [6]. A more recent idea relies on constructing super-oscillatory wavepackets
to sample at sub-wavelength resolution [7]. However, both of these methods still require scan-
ning, either in the near-field [6] or in the plane where the super-oscillations are generated [7].
Another intriguing avenue is constructing an imaging system made of negative-index materi-
als. The early version of such a system is the “superlens”, where the sub-wavelength object is
imaged 1:1 to another plane [8, 9]. Hence, this superlens cannot yield any magnification of the
object features. The more advanced version is the “hyperlens”, where the sub-wavelength infor-
mation is magnified such that its smallest feature is larger than λ/2, thereby transforming all its
evanescent waves into propagating waves - which can subsequently be imaged with an ordinary
microscope [10–13]. Both the superlens and the hyperlens, albeit offering much promise, also
have various shortcomings: the heavy loss involved in all current optical negative-index mate-
rials, and the stringent requirement to fabricate metamaterial structures at nanometer precision,
to name only a few. All of these are nontrivial issues, posing serious challenges before such
negative-index structures can become viable technology. Other ideas for sub-wavelength imag-
ing rely on distributing smaller-than-wavelength fluorescing items on the object and repeating
the experiments multiple times. In this way, the ensemble-average fluorescent light together
with prior knowledge on the size and shape of the items facilitate acquiring sub-wavelength
information on the object [14, 15]. However, these methods are once again not real-time, and
in addition in many cases attaching external items is undesirable, especially when dealing with
biological specimen. Altogether, in spite of the major progress recently accomplished with sub-
wavelength optical imaging (for a recent review see [16]), having a far-field method that could
do real-time imaging with sub-wavelength resolution is still a long-standing goal.

In parallel to the attempts to obtain sub-wavelength imaging through “hardware”, there
have been several attempts to achieve this goal through theoretical tools, such as bandwidth ex-
trapolation and related techniques [17]. The key ideas in all of these methods are (quoting from
Ref. [17]) (1) the far-field of a spatially-bounded 2D image is described by an analytic func-
tion, and (2) if an analytic function is known exactly in an arbitrarily small (but finite) region
of the far field, then the entire function can be found uniquely by means of analytic continua-
tion. These concepts and the extrapolation methods arising from them theoretically allow the
recovery of sub-wavelength information [18, 19]. However, all of these algorithms are known
to be extremely sensitive to noise in the measured data. As summarized by Goodman’s 2005
book [17], “all methods for extrapolating bandwidth beyond the diffraction limit are known to
be extremely sensitive to both noise in the measured data and the accuracy of the assumed a
priori knowledge” and “it is generally agreed that the Rayleigh diffraction limit represents a
practical frontier that cannot be overcome with a conventional imaging system.”

Here, we show theoretically and provide an experimental proof of concept that sub-
wavelength information can be recovered robustly from the far-field of an optical image, over-
coming the loss of information embedded in decaying evanescent waves. The only requirement
is that the image is known to be sparse, a specific but very general and wide-spread property
of signals which occur almost everywhere in nature. Our approach is based on theoretical tools
from the emerging field of Compressed Sensing (CS), which is being used to reduce sampling
rates in information processing [20–25]. Recently, CS has been suggested in the context of
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optics [26] and was actually used for ghost imaging [27]. Our purpose is different: to recover
the information contained in spatial frequencies that were cut off by diffraction limit, which
acts as a low pass filter. We reformulate sub-wavelength imaging as a sparse sampling prob-
lem. We provide several examples demonstrating reconstruction of 1D and 2D images of sub-
wavelength resolution, and discuss the interrelation between the three parameters controlling
the system: sparsity, resolution, and the optical wavelength. In addition, we extend the standard
basis-pursuit algorithm [20, 22, 28] commonly used in CS for sparse signal recovery, in order
to enable reconstruction of optical images including non-uniform phase, which is an essential
attribute in optical image recovery. As we show in the Theory Appendix, basis-pursuit alone is
not able to recover features close in space that have opposite phase. Therefore, this novel fea-
ture is crucial to the extraction of physically relevant data from the image, through the phase of
the electromagnetic field. We then provide an experimental proof-of-principle of our approach,
by demonstrating image recovery at a spatial resolution greatly exceeding the finest resolution
defined by a spatial filter. Finally, we discuss the general concept and broad applicability of our
technique, and its possible extension to other, non-optical, microscopes, such as Atomic Force
Microscopes, Scanning Tunneling Microscopes, Magnetic Microscopes, and more.

2. Theoretical considerations

Consider the time-harmonic EM field at some initial plane z = 0:

E(x,y,z = 0) = Re
{

f (x,y)eiωt} (1)

where ω is the optical frequency of the wave. The spatial function f (x,y) can be expanded as a
function of plane waves f (x,y) =

∫∫
F(kx,ky)e−i(kxx+kyy)dkxdky, where kx, ky are the transverse

wave numbers, related to the spatial frequencies by kx = 2πνx, ky = 2πνy etc. The propagation
of the field at all planes z > 0, in a homogeneous isotropic and linear medium, can be described
through

g(x,y) =
∫∫

F(kx,ky)H(kx,ky,z)e−i(kxx+kyy)dkxdky (2)

where H(kx,ky,z)eikzz is the optical coherent transfer function, with kz = (k2−k2
x −k2

y)
− 1

2 . Here
k = ω/c = 2π/λ is the wave number, and c and λ are the speed of light and the wavelength in
the medium, respectively. The limits of the integral in Eq. (2) are determined by the numerical
aperture of the system. However, even if the system in principle has infinite width (as in free
space), the transfer function always acts as a low-pass filter. Since for sufficiently large spatial
frequencies kz becomes imaginary, such waves decay exponentially with propagation. Thus,
for propagation distances z much larger than the wavelength,

∣
∣H(kx,ky,z)eikzz

∣
∣ has a cutoff at

k2 = k2
x + k2

y , and all waves with spatial frequencies beyond the cutoff are evanescent. This
is the reason why sub-wavelength information imprinted on EM fields cannot be observed by
conventional imaging techniques.

To explain our technique, consider an EM wave that has propagated a distance z much
larger than the wavelength λ . Since the transfer function acts as a low-pass filter, all spatial
frequencies larger than 1/λ are lost. We will now show that the information detected in the
far-field can be used to recover the sub-wavelength features, in a robust fashion, provided they
are sparse in an appropriate basis.

Let us first explain our approach on intuitive grounds. The idea can be elegantly illustrated
by first pinpointing why other extrapolation methods fail: they are not robust to noise in the
measured data. As a simple example, consider Taylor expansion as a means for analytic exten-
sion from some region in the far-field, close to the cutoff spatial frequency. Taylor expansion
fails when the value of some term in the expansion (some higher derivative) is comparable
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to the noise in the measured data. Other, more advanced, extrapolation methods [18, 19] fail
for similar reasons [17]. An illustrative comparison between the performance of the technique
following [18] and our CS-based approach is shown in the Theory Appendix. The comparison
was carried out on our experimental data - through which our technique gives excellent recon-
struction, as shown in Figs. 4 and 5 below. As demonstrated in that Appendix, the extrapolation
method of [18], performed on the same experimentally measured data, fails to reconstruct the
information. A comparison was also carried out with Taylor expansion, and the result is even
worse. Let us now discuss why these methods fail. All extrapolation methods rely on projecting
the measured data on some set of orthogonal functions (a basis) spanning the space of solu-
tions. The noise in most physical systems is uncorrelated, hence it is distributed uniformly on
the basis functions. The extrapolation methods fail when the value of some projection on the
basis functions is comparable to (or lower than) the noise in the measured data, which obviously
introduces large errors. Over the years, various ideas for rectifying this problem have been stud-
ied [18,19], all relying on additional a priori knowledge on the information. But this introduces
another problem: the extrapolation methods now become very sensitive to the a priori assump-
tions, where small inaccuracies can introduce large errors. This is why generally extrapolation
methods have failed in optical sub-wavelength imaging, exactly as stated in [17].

Let us now explain the intuition underlying CS, and the reason why it succeeds where other
extrapolation methods have always failed. CS relies on a single assumption: that the informa-
tion is sparse, in some basis spanning the space of solutions. If the information is sparse, it is
possible to find a proper basis, where we could identify a sharp separation into two sub-spaces: a
sub-space where the projections of the measured data is much larger than the noise, and another
sub-space where the projections are very small, and can be set to zero without losing much in-
formation. If we could somehow identify these basis functions, which of course depend on the
actual data, we could use only the sub-space where the projections are large, and completely
ignore the other sub-space. Such method will not suffer from noise, because we do not use
the sub-space where the projections are small and susceptible to noise. The CS technique does
exactly that: it automatically identifies the first sub-space, and ignores the second. To do that,
CS uses prior knowledge that the information is sparse (and just that), which implies that the
information can be represented in a very compact way in some (mathematical) basis spanning
only a (preferably small) sub-space of all possible solutions. Then, since the uncorrelated noise
is distributed uniformly on all basis functions, a large fraction of the noise lies in unoccupied
basis functions (the second sub-space which we ignore). This is the main idea behind CS and
its robustness to noise. We use this idea in reverse logic, to recover sparse high-bandwidth in-
formation that was low-pass filtered, in a highly robust fashion. As explained below and in the
Theory Appendix, CS has a tradeoff between two parameters: sparsity - the fraction of degrees
of freedom occupied by the sparse information, and the desired signal extrapolation ratio - the
ratio between all degrees of freedom (known + missing) in the system, and the known (meas-
ured) degrees of freedom. In our case of sub-wavelength features, sparsity is the ratio between
the non-zero features and the total field of view, whereas the signal extrapolation ratio is the
ratio between the full bandwidth of the sub-wavelength information and the measured spatial
bandwidth determined by the numerical aperture of the system.

On more mathematical grounds, the ability to reconstruct sparse signals from a limited
number of measurements has become feasible with the emergence of a new signal process-
ing technique called Compressed Sensing (CS) [20–23, 25, 28]. This method challenges the
traditional limits on the signal reconstruction and measurement process. The underlying logic
behind this approach is that sparsely represented signals hold a very limited number of degrees
of freedom, since only a small fraction of their coefficients in a particular mathematical basis
representation are non-zero. Hence, sparsity is extremely powerful and useful prior informa-
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tion, enabling considerable reduction in the number of measurements required to reconstruct
the signal. In what follows, we demonstrate the results of the CS technique applied to recon-
structing sub-wavelength optical information from the measured far-field of a signal, which is
the optical analogue to the Fourier transform of the signal after passing through a low-pass filter.
Theoretical background on CS and the new recovery techniques we develop here are provided
in the Theory Appendix.

The problem of reconstructing sub-wavelength images is equivalent to that of recovering
a signal from its low spatial frequencies only. Clearly this is impossible without additional
information. Here we exploit the knowledge that the signal is sparse (and nothing else!) to
resolve the fine sub-wavelength features. To see how we benefit from sparsity, note that sparse
signals can be represented very compactly in a given basis, meaning that only a small fraction
of their projections on the basis functions are non-zero. This feature significantly restricts the
number of degrees of freedom the signal possesses. More specifically, each non-zero coefficient
holds exactly two degrees of freedom: one for the amplitude of the projection and the other for
the choice of the basis function. If we knew in advance which functions are chosen, then the
degrees of freedom would be reduced in half. Given that the relative fraction of occupied basis
functions is β (< 1), we only need to determine β samples of the signal in an alternative basis
expansion. However, we must choose the measurement basis wisely such that the combined
matrix describing the signal and measurement bases is (left-) invertible, to ensure the existence
of a solution. This follows from standard linear algebra considerations and is well known.

We now turn to the more interesting setting, in which we know that the signal is sparse, but
we do not know the location of the basis elements comprising the signal. In this case, the de-
grees of freedom are doubled. We therefore expect that at least a fraction of 2β measurements
of the total number of possible measurements are required. However, since the chosen basis
functions are unknown, it is now less clear how to choose the measurement basis and how to
recover the signal. An essential result of CS is that we need to choose a measurement basis
such that is satisfies the requirement of invertibility, obtained in the case in which the locations
are known, for every possible set of locations. This mathematical condition is quite difficult to
verify in practice; however, it can be shown that a sufficient condition is that the measurement
basis is uncorrelated with the signal basis. To understand this requirement intuitively, suppose
first that the signal basis is orthonormal, and we choose as a measurement basis the signal basis
itself. In this case, the majority of the measurements will yield zero, and contain no information
about the true signal. We would have to acquire almost all of the projections to make sure we
have not lost any information. Instead, we would like to choose the measurement basis such
that that a measurement of any projection in this particular basis contains information about the
signal. This can be achieved by requiring that each measurement basis function has low cor-
relation with each signal basis function. A highly uncorrelated pair of bases obeys a specific
mathematical condition. This important theorem, similar to the uncertainty principle in quan-
tum mechanics, prevents a signal from being sparse in both bases, and ensures that, if the signal
is sparse in one of the bases, it will be very spread in the other. Therefore almost each projection
will yield a non-zero informative measurement. Classical examples of maximally uncorrelated
bases are the spatial and Fourier domains: A highly sparse signal, e.g. a single Dirac delta
function is Fourier-transformed into a spread function that covers the entire spectrum. In our
sub-wavelength optical setting, the measurement basis is fixed as the low spatial frequencies
in the Fourier domain. According to the discussion above, measuring these will be sufficient
to recover the signal if it is sparse in a real-space basis that is uncorrelated with the low-pass
Fourier basis. This is in particular the case if the signal is highly localized in real-space.

In the next section we will address how the signal can be recovered in practice from
measurements that are all contained within the low-pass filter window. If the correlation be-
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tween the measurement and signal bases is low enough, then one can prove that a combinatorial
search over all sets of basis functions will recover the true underlying signal. However, clearly
this approach exhibits high complexity. Instead, a variety of different recovery algorithms have
been proposed that run in polynomial time, and are aimed at seeking a sparse signal that is con-
sistent with the given measurements. One of the most common techniques is the basis-pursuit
method [29], which amounts to solving an l1 optimization problem involving minimization
of a l1 norm, and can be implemented quickly and efficiently. A key result of CS is that at
the expense of slightly increasing the number of measurements, or in turn, a more demanding
condition on the signal sparsity, these polynomial-time algorithms can recover the true sparse
signal in a robust fashion, provided that the measurement and signal bases have sufficiently
low correlation. Consequently, noise in the measurement (which is always present in any
physical system) can be tolerated by a slight increase in the required sparsity of the object. In
the context of optical imaging, an important feature is the ability to detect signals with nonuni-
form phase. As we illustrate in the Theory Appendix, the standard basis-pursuit approach is not
able to resolve fine details with different phase. Therefore, we extend this technique to account
for nonuniform phase by adding an iterative nonlocal thresholding step. This new method is de-
scribed in detail in the Appendix, and is referred to as Non Local Hard Thresholding (NLHT).

Our technique is demonstrated theoretically in Fig. 1(a), showing the ability to recover
phase and amplitude information that is (β/2)-times smaller than the wavelength, in a robust
fashion. The sub-wavelength information is represented by a one-dimensional optical image
with alternating phase. Such a signal, with alternating phase, can be reconstructed via CS tech-
niques, but not by the standard basis-pursuit algorithm when the non-zero information is close
in space. In order to recover signals containing arbitrary phases, we develop the NLHT algo-
rithm described in the Theory Appendix. The data in Fig. 1 represents, e.g., a sequence of 1D
items with different amplitudes (grey levels) and phases [Fig. 1(a)]. The spatial frequency spec-
trum of this image is shown in Fig. 1(b), where the red lines mark the cutoff boundaries of the
low-pass filter |H(kx)| at kx = ±2π/λ . In conventional optical imaging systems, the contents
at all frequencies beyond the cutoff are lost [Fig. 1(d)]. Hence, the observed optical image is
strongly deteriorated [Fig. 1(c)]. For example, the loss of information beyond the cutoff renders
the two peaks around x/λ ≈ 6 indistinguishable, in the observed image. Using CS (our NLHT
algorithm), we are able to achieve perfect recovery of both the image [Fig. 1(e)] and its spatial
spectrum [Fig. 1(f)].

To demonstrate the robustness of NLHT, we add noise to the system; evidently, the recon-
struction is robust and the noise has a very small effect on the recovered image. In order to meet
physical relevant conditions, we use uniformly-distributed noise in Fourier space, amounting
to 1% of the image power. Since the sparsity of this particular image is β = 0.03 in real space,
the recoverable spatial frequencies (as we explain below) are in the range kx = ±2π/(2βλ ),
greatly exceeding the initial low pass window. Clearly, the results displayed in Fig. 1 demon-
strate that indeed CS methods facilitate robust and accurate recovery of sub-wavelength op-
tical amplitude and phase information. Comparing the robustness to noise of CS techniques to
other bandwidth extrapolation methods yields overwhelming results. See the discussion in the
Theory Appendix. As shown there, CS techniques are robust to noise even at low SNR, where
other bandwidth extrapolation methods completely fail even in the presence of weak noise, as
discussed in [17] and references therein.

As demonstrated in Fig. 1 theoretically, CS can facilitate the recovery of sub-wavelength
information, based on a-priori knowledge that the information is sparse. The key idea is to ex-
ploit sparsity. We point out that there are other modern information processing techniques that
are also sparsity-based, such as Finite Rate of Innovation (FRI) [30], which was also applied
for calculating fine spectral lines in nuclear magnetic resonance (under the name FDM) [31].
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Fig. 1. Theoretical reconstruction of one-dimensional sub-wavelength information
(amplitude and phase). (a) The original function, which we want to reconstruct. (b) The
Fourier (plane-wave) spectrum of the original information shown in (a). The vertical red
lines indicate the width of the low-pass filter, which for sub-wavelength information is 2/λ .
(c) The distorted image obtained by an inverse Fourier transform on the filtered spectrum;
the features are highly blurred. (d) The low-pass-filtered spectrum; a large fraction of the
frequency contents is lost. (e,f) Reconstructed image (e) and its spectrum (f) using CS-
methods based on the sparsity of the original information. The function is reconstructed
perfectly in both real space and Fourier space, including the phase information. Our algo-
rithm is robust against noise. (g,h) Adding 1% noise to the filtered spectrum (not shown
here), we are still able to reconstruct the original information at high quality in both real
space (g) and Fourier space (h). Amplitude and intensity are given in arbitrary units (a.u.),
because the system does not depend on the light intensity.
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In principle, any method supporting sparsity can be used. However, as we show in the Theory
Appendix, some of these approaches may be highly sensitive to noise in some settings. In the
Appendix, we briefly compare between our CS-based method and FRI, showing that in the
presence of noise CS often performs much better. In addition, as we also demonstrate there,
our method tends to be more robust at recovering information with closely-spaced phase varia-
tions, while standard CS and FRI techniques have difficulties resolving such details. Our point
here is to bring forth the advantage of exploiting sparsity in sub-wavelength imaging, and to
suggest one possible method that in our examples appears to be robust and provide superior
recovery in comparison with other techniques, to the extent that it can be used for imaging of
sub-wavelength information. However, certainly, this calls for a more detailed and careful com-
parison with other techniques, and possibly even coming up with new sparsity-based ideas that
are tailored to optical imaging. Such algorithms can address the specific issues related to optics
(e.g., noise that could be partially correlated, etc.). This is beyond the scope of the current work,
but an interesting and important direction for future pursuit.

The ideas presented in Fig. 1 can be extended to reconstructing two-dimensional sub-
wavelength features. Figure 1 depicts an example containing 2D sub-wavelength amplitude
information. However, the 2D case is physically more challenging, because the scalar rela-
tion of Eq. (2) requires a modification to describe inevitable polarization effects. That is, EM
waves containing sub-wavelength 2D optical images cannot be linearly polarized. This implies
that using CS for 2D sub-wavelength imaging should contain vectorial mapping between real
space and the plane-wave spectrum [a unit vector should be added in the integral of Eq. (2)].
Nonetheless, extending the CS techniques described here to 2D sub-wavelength images will
require some further sophistication, but it is not a major obstacle in any way. In this sense, Fig.
1 describes a scalar version of the physical reality, simply to demonstrate the ability to recover
2D sub-wavelength images.

3. Experimental proof-of-principle

In what follows we provide proof-of-principle experiments, demonstrating image recovery at
a spatial resolution greatly exceeding the finest resolution defined by a spatial filter. The ex-
perimental setting (Fig. 3) is the simplest optical imaging system: the so-called 4-f system,
with an adjustable slit placed at the common focal plane of the lenses, where it acts as a 1D
low-pass spatial filter. It is important to note that our setup does not contain sub-wavelength
objects, but rather paraxial objects where the features are much larger than the wavelength. The
aperture of the adjustable slit defines the highest resolution in the image recovered optically at
the output plane (image plane). As such, our system contains exactly the same physical impact
of low-pass filtering as naturally done by

∣
∣H(kx,ky)

∣
∣ in free space, only that the cutoff spatial

frequency in our experiment is controlled by the aperture of our filter, whereas for the transfer
function in free space the cutoff is set by the wavelength. Our adjustable filter facilitates precise
control over the resolution of the imaging system, since, in contrast to the fixed and symmetric
filter window of the optical transfer function in free space, the window size and position can be
tuned in our experimental setup. As we explain in details in the Theory and the Experimental
Appendices, the data for the reconstruction via-CS can be taken in the Fourier space, or in the
(spatially-filtered) image plane, and/or at any plane between the Fourier plane and the image
plane. Of course, taking the data at multiple planes constitutes over-sampling, and increases the
performance of our CS reconstruction.

We first demonstrate the recovery of a generic amplitude-only picture: 3 stripes at uneven
spacing [Fig. 4(a)]. The input information is generated by passing a broad Gaussian beam
(“plane wave”) through 3 transparent elongated rectangles drawn on an opaque slide (acting as 3
rectangular slits). We emphasize that Fig. 4(a) is the actual input information: it is photographed
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Fig. 2. Theoretical reconstruction of two-dimensional sub-wavelength information.
(a,b) The original information consists of an arrangement of circles, forming the Star of
David (a), and its respective Fourier transform (b). (c,d) After some propagation distance,
all spatial frequencies above 1/λ are lost (d), so that the actual observed image is strongly
blurred and the fine features cannot be resolved anymore (c). (e,f) Applying our CS al-
gorithm reveals the underlying sub-wavelength structure in the real space (e), since the
Fourier spectrum is fully restored (f).

right after ( 1mm) the input plane. As such, the horizontal cross-section [Fig. 4(c)] contains
3 almost-perfect square-waves with sharp edges, in contrast to the best optically-recoverable
output image generated in our system when the slit is completely open, which has wiggles
on each square-wave. These wiggles occur because of the finite aperture of the lenses, which
act as a low-pass filter even with opened slit. [This effect is known in information processing
as the Gibbs effect]. Our input information passes through the first lens, which generates the
Fourier transform of the information, at the focal plane. Figure 4b, showing that plane, depicts
the full spatial spectrum of the input information. We then adjust the spatial filter (slit) to cut
off a large fraction of the spectrum - leaving practically only the central lobe [Fig. 4(e)]. The
output image recovered via direct optical imaging (additional Fourier-transform by the second
lens) is now only a single, very broad, intensity peak containing practically only low-frequency
information [see Fig. 4(d) for the experimental image and Fig. 4(f) for the horizontal cross-
section]. Comparing Fig. 4(d) to Fig. 4(a), and Fig. 4(f) to Fig. 4(c), demonstrates nicely the
impact of low-pass filtering on an optical picture, due to the loss of information caused by the
filter.
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Fig. 3. Experimental setup for the proof-of-concept experiments. The laser beam is col-
limated using lenses L1 and L2, before the sample is illuminated. The signal is then Fourier
transformed using lens L3, low-pass filtered by the slit and again Fourier transformed into
the real plane by lens L4. Another lens L5 performs an additional Fourier transform, which
is recorded by a camera. In order to measure the phase distribution, a probe beam is super-
imposed (using the beam splitter BS) on the signal in order to create interference fringes.
In an alternative setup, the information can be directly taken in the real plane, so that the
camera is positioned directly behind lens L4. .

We now employ our CS techniques, on the measured Fourier spectrum acquired after the
low-pass filter (which has cut off a large fraction of the spectrum). The simplest CS technique
(called basis pursuit; see Theory Appendix) facilitates the reconstruction of 3 accurate stripes,
with the appropriate amplitudes and spacing [Fig. 4(g)], thereby circumventing the loss of infor-
mation caused by the low-pass filter. Importantly, the cross-section shown in Fig. 4(k) reveals
that the wiggles are absent. This shows that actually our CS technique performs better than any
optical direct-imaging system, by removing the wiggles caused by the finite apertures of the
lenses. In this vein, the CS-reconstructed spectrum is almost identical to the original (uncut)
spectrum [Fig. 4(h)].

Moving on to an optical image containing phase information, we perform measurements
with the structure depicted in Fig. 5(a): two closely-spaced in-phase stripes and a single stripe
further away with an opposite phase. The spectrum of this image is shown in Fig. 5(b), the
cross section in Fig. 5(c). The low-pass spatial filter is set to pass just the central region of the
spectrum [Fig. 5(e)]. Consequently, the image obtained via direct optical imaging (4f system)
has two very broad peaks [Fig. 5(d), 5(f)]. Note that, because the input phase information is
basically zero and π , any low-pass filtered image always has at least two peaks. We then use
CS to recover the image, including both amplitude and phase. To do that, we employ the NLHT
algorithm (see Theory Appendix). The CS-recovered image, depicted in Figs. 5(g) and 5(k), is
in excellent agreement with the input image, in all of its features. Likewise, its CS-recovered
spectrum is very similar to the spectrum of the original image [Fig. 5(h)].

Figures 1–5 demonstrate the ability to recover optical information at a resolution greatly
exceeding the maximum resolution (defined by a low-pass filter in Fourier space), that can be
recovered by direct optical imaging. Our CS techniques compensate for the loss of information
by taking advantage of the sparsity of the input information. It is therefore instructive to esti-
mate the highest resolution recoverable via CS, given the sparsity of the input information β ,
and the width of the pass-band of the low-pass filter Δk. In principle, in a noise-free scenario,
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Fig. 4. Experimental proof-of-concept: reconstruction of amplitude information.
(a,b,c) The original information consisting of three vertical stripes (a), its Fourier spectrum
(b), and a horizontal cross-section of the amplitude, taken through the real-space infor-
mation (c). (d,e,f) Using the optical slit, the signal is low-pass filtered at the vertical red
lines, yielding a highly blurred image (d). The Fourier spectrum now contains now only the
lowest frequencies (e), which cause the mergence of the three stripes (in real-space) into
one, as seen in the horizontal cross section (f). (g,h,k) Reconstruction using CS methods
yields a high quality recovered information (g) and its respective Fourier spectrum (h). The
strong correspondence between original and recovery is clearly visible in the horizontal
cross section (k).

the CS techniques could act by extending the pass-band up to Δk/(2β ). [As explained in the
Theory Appendix, CS techniques cannot yield an improvement of 1/β , because there is always
a penalty of factor 2 for finding the proper basis]. This would amount to extending the pass-
band of the transfer function of free-space H(kx,ky), from Δk = 4π/λ to Δk = 4π/(2βλ ). In the
particular example of Fig. 1 (β = 0.03), the recoverable feature can be as small as λ/16. In op-
tical microscopy of sparse objects such as living bacteria (where β can be 0.01 and smaller), the
resolution is even much higher. Apart from sparsity, another physical limitation is noise, which
can never be eliminated. As demonstrated in Fig. 1, CS techniques are rather robust to noise,
although noise does reduce their performance. However, the detriment effects of noise can be
minimized using over-sampling to increase the precision of the measurements. Using a beam-
splitter in the optical system, one could measure simultaneously both the Fourier spectrum and
the output image (both after low-pass filtering), and in principle - measure the field distribution
in any plane between those. Hence, even though noise will still affect the results somewhat,
its detriment effects could be minimized. Finally, the system analyzed in this article assumes
coherent illumination (as used in many modern sub-wavelength imaging techniques [8–12]).
However, CS techniques are general and can be extended also to imaging with incoherent light.

The key ingredient of all CS techniques is sparsity of the input information. In fact, β = 0.5
poses a stringent fundamental condition on all CS techniques; that is, without sparsity, CS can-
not provide any improvement. It is therefore important to note that the vast majority of natural
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Fig. 5. Experimental proof-of-concept: reconstruction of amplitude + phase informa-
tion. An important feature of our proposed algorithm is the ability to recover both ampli-
tude and phase, which is essential for pictorial information carried upon electromagnetic
waves. (a,b,c) The original information consisting of three vertical stripes (a), its Fourier
spectrum (b), and a horizontal cross-section of the amplitude, taken through the real-space
information, revealing that the two stripes on the right are π-phase shifted with respect
to the stripe on the left (c). (d,e,f) Using the optical slit, the signal is low-pass filtered at
the vertical red lines, yielding a highly blurred image consisting of two distinct lobes (d).
The Fourier spectrum now contains now only the lowest frequencies (e), which cause the
mergence of the two stripes on the right, as seen in the horizontal cross section (f). (g,h,k)
Reconstruction using CS methods yields a high quality recovered information (g) and its
respective Fourier spectrum (h). The strong correspondence between original and recovery
is clearly visible in the horizontal cross section (k).

objects, as well as artificial objects, are sparse. Notwithstanding that, the information does not
necessarily have to be sparse in real space: it can be sparse in any mathematical basis that
is sufficiently incoherent with the Fourier basis. Moreover, one can use a mask with random
phase (speckles) in the near field right after the object, which projects more information from
the original signal into the low-frequency range, thereby increasing the amount of measurable
data [32]. An excellent example for naturally-sparse information is the interior of a living bac-
terium, which occupies only a small fraction of the area of the cross sections, being therefore
highly sparse. Another example of sparse objects, this time from the man-made world, is liq-
uid crystals consisting of giant molecules with lengths slightly below the visible wavelength. In
both of these examples, CS can provide a major improvement of ”looking beyond the resolution
limit”. Of course, there are objects that are not sparse, for example, electronic chips. However,
it is clear that sparse objects are not esoteric, but are rather common in very many systems,
especially in biological specimen. Finally, we emphasize that our approach can be applied to
every optical microscope as a simple computerized image processing tool, delivering results
in almost real time with practically no additional hardware. Our technique is very general,
and can be extended also to other, non-optical, microscopes, such as atomic force microscope,
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scanning-tunneling microscope, magnetic microscopes, and other imaging systems. The main
idea presented here holds the promise to revolutionize the world of microscopy with just mi-
nor adjustments to current technology: sparse sub-wavelength images could be recovered by
making efficient use of their available degrees of freedom.

A. Appendix: Experiment

The objective of the experimental setup is to provide a proof-of-concept that CS techniques
can be used to recover pictorial optical information at a spatial resolution greatly exceeding the
finest resolution defined by a spatial filter. Our experiments demonstrate exactly that: image
reconstruction in spite of a major loss of information caused by a low-pass filter placed in the
Fourier space. The basic principles underlying this proof of concept are identical to the ability
to reconstruct information that was lost due to the optical transfer function, which acts as a
fixed low-pass filter, because it renders evanescent all waves carrying sub-wavelength informa-
tion. The ability to recover information that was lost, either because it is cut off by a filter (as
in our experiments) or because the waves carrying it are exponentially-decaying, is basically
identical. Hence, our experiments are indeed a proof of concept for recovering sub-wavelength
information via CS techniques.

For this purpose, we use a 4-f-setup, as shown in Fig. 3. A laser beam (Verdi 5W, Coherent
Inc.) at λ=532 nm is collimated using a telescope of lenses L1 and L2, and passed through
a mask. The information upon the mask is imprinted on the beam, and serves as the input
information. To facilitate filtering in the Fourier domain, we optically Fourier-transform the
information using the lens L3. At the focal plane of this lens (where the Fourier spectrum is
obtained) we place a tunable slit, acting as a low-pass filter. It is important to note that this
setup covers all physical features of the low-pass filtering due to the optical transfer function,
with the important difference that transmission window is arbitrary in both size and symmetry.
The Fourier transform back into the real domain is then accomplished by another lens L4. The
measurements are carried out such that they take maximum advantage of the sparsity of the
input information. To do this, it is essential that the input information has a maximum attainable
field of view: the largest possible with lens L3 (the limiting factor is of course the numerical
aperture of L3). This is accomplished by a proper choice of the focal lengths of lenses L3 and
L4.

Our measurements are carried out with a conventional CCD camera (Cohu 3400), placed
either at the Fourier plane, where it measures the cut spectrum, or at the image plane - at
the output of the 4-f system, where it measures the filtered-information. [In fact, using beam-
splitters and two cameras, one could perform the measurements at both planes simultaneously,
which offers over-sampling, thereby improving the robustness to noise]. Note that the Fourier
spectrum is measured in a Fourier plane which is created by another lens L5. The actual number
of measurements in each frame is of course determined by the finite number of pixels in the
camera. The camera provides direct measurements of the power-spectrum (or the intensity).
The phase information, either in the Fourier plane or in the filtered-image plane, is provided
by interference with a plane wave propagating at a known angle. Finally, optical information
is inherently 2D, whereas our current experiments are dedicated to 1D information. In order to
extract the 1D information from our 2D images, we average over the direction along which the
information is uniform, and take a cross-section through the averaged image.

B. Appendix: Theory

This appendix provides an overview of the compressed sensing (CS) framework and techniques,
in relation to the underlying objective of recovering subwavelength optical information from
measurements conducted in the far-field of a sparse high-resolution image. We also detail our
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new algorithm Non-Local Hard Thresholding (NLHT), for recovery of signals with nonuniform
phase.

We begin in Section B.1 with a brief overview of CS, which complements the descrip-
tion in the paper. In Section B.2 we introduce the signal and sampling model on which our
developments are based. Recovery of a signal from its low frequency content is discussed in
Section B.3. Some remarks on implementation issues and subwavelength imaging are provided
in Section B.4.

B.1. Compressed Sensing

Compressed sensing addresses the problem of reconstructing a signal from a limited number
of measurements, when the signal is known to be represented very compactly in a given basis
[20, 21, 23]. We consider a finite, discrete-time signal x[�] of length N. We wish to reconstruct
the signal from K � N linear measurements of the form yk = 〈ψk,x〉 where

〈p,q〉 = pHq = ∑
i

p∗i qi, (3)

is the usual inner product, and ψk are a given set of measurement vectors. Here (·)H denotes the
conjugate transpose of the corresponding vector or matrix, and (·)∗ is the complex conjugate.
Clearly, if no prior information is given on x, then we would need N measurements to ensure
perfect recovery. In addition, if we construct the measurement matrix Ψ whose rows are equal
to ψk, then Ψ must be invertible. Performing less than N measurements results in an under-
determined set of equations, leading to ambiguity in the solution. To compensate for the lost
information we must add additional priors on x. CS treats the scenario in which x is assumed to
be sparse. Such signals can be represented very compactly in a specific basis Φ, so that x can
be written as x = Φd where only a small number S � N of the coefficients dk are nonzero.

Given a sparsity prior and the measurements yk, we may attempt to recover x by seeking
the sparsest representation x = Φd that is consistent with the given measurements. Denoting by
‖d‖0 the �0 pseudo-norm of the vector d which counts the number of nonzero coefficients of d,
we may solve

(P0) min
d

‖d‖0 subject to y = Ψ̃x = Ψ̃Φd = Wd. (4)

The tilde notation in Ψ̃ is a reminder of the fact that we only preform K measurements, so
that Ψ̃ is of size K ×N. We define W = Ψ̃Φ as the measurement matrix. The recovery process
described in (4) is useful only if it produces the exact and unique recovery of the original
signal x. To study the properties of (4), we first examine the simple setting where the support
of the vector d, namely the location of the nonzero values, is known. In this case, uniqueness
is guaranteed as long as the columns of the matrix W corresponding to the support of d are
linearly independent. If this condition is satisfied, then we can invert the reduced linear set
of equations and obtain exact recovery. Consequently, knowledge of the signal support allows
recovery from only S measurements as long as the corresponding S columns of W are linearly
independent.

Reconstruction becomes significantly more complicated when the support is unknown.
To guarantee the uniqueness of the solution for any signal, without knowledge of the signal
support, we have to ensure that every 2S columns of W are linearly independent. To see this,
suppose that we have two solutions d1 and d2 that are S-sparse, and satisfy

y = Wd1 = Wd2. (5)
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Then, taking the difference we have

W (d1 −d2) = Wz = 0, (6)

where we denoted z = d1 −d2. It is easy to see that the �0 norm satisfies the triangle inequality:

‖d1‖0 +‖d2‖0 ≥ ‖d1 −d2‖0. (7)

Therefore, ‖z‖0 ≤ 2S. If every 2S columns of W are linearly independent, then Wz = 0 implies
z = 0 for any z such that ‖z‖0 ≤ 2S. Consequently, under this condition there is a unique S-sparse
signal d that satisfies y = Wd.

A useful definition in this context is that of the spark of a matrix [33]: Spark(A) is defined
as the minimal number of linearly dependent columns of the matrix A. An important virtue of
Spark(A) is that if x is in the null space of A, namely Ax = 0, then ‖x‖0 ≥ Spark(A). From
our discussion above we can therefore conclude that y = Wd has a unique S-sparse solution
if Spark(A) > 2S. Calculating the Spark of a matrix is a combinatorial process that becomes
computationally intractable as the matrix size grows (one needs to examine every subset of the
matrix columns). A simpler approach that relaxes spark computation and ensures uniqueness,
is to consider the mutual coherence [33]. The mutual coherence of a matrix is defined as:

μ(A) = max
j,i
= j

=
|aH

i a j|
‖ai‖2‖a j‖2

, (8)

where ai is the ith column of A. The mutual coherence measures the largest correlation be-
tween the columns of A. Low coherence implies that the measurements are informative and
uncorrelated. One can use the mutual coherence in order to bound the Spark [33]:

Spark(A) ≥ 1+
1
μ

. (9)

From (9) we conclude that if

‖d‖0 ≤ 1
2
(1+1/μ(W )), (10)

then there is a unique S-sparse solution to y = Wd.
Under condition (10) we are guaranteed that there is a unique sparse solution to (4). How-

ever, unfortunately, this problem is an NP (Non-Polynomial) hard combinatorial optimization
problem, that becomes computationally intractable as the signal length grows. Instead, the CS
literature offers a variety of different relaxation schemes that provide computationally efficient
alternatives to (4). In this paper we focus mainly on the basis pursuit (BP) algorithm [29], in
which the �0 norm is relaxed by the sparsity promoting �1 norm ‖x‖1 = ∑i |xi|. This transforms
(4) into:

(P1) min
d

‖d‖1 subject to Ψ̃x = Ψ̃Φd = Wd. (11)

The main advantage of (P1) is that it can be written as a standard linear programming prob-
lem, which can be solved efficiently in polynomial time using any one of the many well-known
standard software packages for solving such problems. However, the solution of (P1) is not
guaranteed to be the sparsest one. If (10) is satisfied, then it can be shown that the solutions to
(P1) and (P0) coincide. It is worth noting that this bound is very loose and numerical simula-
tions usually give better average performance rate.
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B.2. Signal Model

Our goal is to show how we can transform the subwavelength imaging problem into a CS
counterpart. To this end, we first introduce the class of signals we treat.

We consider the following 1D spatial information model, which describes the electric field
of the EM wave we would like to recover:

g(x) =
N−1

∑
�=0

d�a(x−Δ�). (12)

Here a(x) is a generator describing the image, and d� are the unknown image coefficients. The
generator is chosen according to the specific imaging problem, and should capture as accurately
as possible the high frequency content of the image (12) beyond ν = 1/(2Δ) (which is beyond
our resolution target). A common example is the sinc(x) function used to describe bandlimited
functions; other commonly used functions are splines and interpolating wavelets [34]. In our ex-
periments, the optical mask was composed of rectangular slits corresponding to a(x) = rect(x).
However, it is important to note that the actual choice of the generating function is usually of
little importance, since the image is assumed to vary slowly on a length scale which is smaller
than Δ. In practice, the value of N is determined according to experimental considerations, as
we detail in the following sections. Our goal is to recover the expansion coefficients d� from
the lowpass regime of the image.

To proceed, we define the continuous-spatial Fourier transform (CSFT) of a function a(x)
as:

A(ν) =
∫ ∞

−∞
a(x)e− j2πνxdx, (13)

which describes the spectrum of g(x) given by (eq. 1) in the paper. We further define the
discrete-spatial Fourier transform of a sequence d�,1 ≤ � ≤ N by

D(e j2πΔν) =
N−1

∑
�=0

d�e
− j2πΔ�ν . (14)

The discrete Fourier transform (DFT) of a length-N sequence d� is given by

D[k] =
N−1

∑
�=0

d�e
− j2πk�/N . (15)

The sequence d� can be recovered from D[k] using the inverse DFT:

d� =
1
N

(N−1)/2

∑
k=−(N−1)/2

D[k]e j2πk�/N . (16)

Here, and throughout, we assume that N is odd; similar results hold for the case of N even with
appropriate modifications.
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Taking the CSFT of g(x) given by (12), we have

G(ν) =
N−1

∑
�=0

d�

∫
a(x−Δ�)e− j2πνxdx

=
N−1

∑
�=0

d�e
− j2πΔ�ν

∫
a(x)e− j2πνxdx

= D(e j2πΔν)A(ν). (17)

As explained in the paper [Eq. (2)] the optical transfer function is modeled as a perfect low-pass
filter (LPF) with cutoff frequency νc = 1/λ :

H(ν) =
{

1 |ν | ≤ νc

0 else.
(18)

Therefore, in the far field the Fourier transform of the image is given by:

GFF(ν) = G(ν)H(ν) =
{

D(e j2πΔν)A(ν) |ν | ≤ νc

0 else.
(19)

Our problem then is to recover d� from GFF(ν).

B.3. Signal Reconstruction

B.3.1. Fourier Sampling

In order to measure GFF(ν), we need to sample it. The most straightforward approach is to
measure it directly in the Fourier plane. Specifically, the samples are obtained by sampling
GFF(ν) in the interval |ν | ≤ νc with a uniform spacing of 1/N. The spectral resolution η =
1/(NΔ) is determined by the resolution of the sensing device and sets the value of N = 1/(ηΔ).

In order to make the derivations generic, we rescale the frequency axis by 1/Δ which
transforms the cut off frequency to νc = α = Δ/λ , the spatial resolution Δ becomes equal to 1,
and the first replica of D(e j2πΔν) is contained in the interval [−1/2,1/2]. Denoting:

kmax = �αN�, (20)

we may write the samples explicitly as

ck = D(e j2πk/N)A(k/N) = D[k]A(k/N), |k| ≤ kmax. (21)

We now distinguish between two different cases:

1. α ≥ (1−1/N)/2;

2. α < (1−1/N)/2.

Case α ≥ (1− 1/N)/2: We begin with the simple case in which α ≥ (1− 1/N)/2, cor-
responding to kmax ≥ (N − 1)/2. In this regime, we do not lose any information embedded
in D(e j2π f ). Indeed, assuming that A(k/N) 
= 0 for |k| ≤ kmax, we can define the modified
measurements

bk =
ck

A(k/N)
= D[k], |k| ≤ kmax. (22)

Since kmax ≥ (N − 1)/2, we have enough DFT coefficients D[k] in order to recover d� via the
inverse DFT formula (16). Once these coefficients are known we can construct the image g(x)
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using (12).
Case α < (1−1/N)/2: When α < (1−1/N)/2, the modified coefficients (22) correspond

to only a segment of the DFT of d� since kmax < (N − 1)/2. Therefore, taking the inverse
DFT on these coefficients will not yield the correct sequence dl , and we have lost some of the
information embedded in D(e j2πΔ f ) due to the LPF effect.

B.3.2. Spatial Domain Sampling

The far-field image can also be measured in the spatial domain. In fact, it can be sampled in any
basis as long as there is an invertible transformation between the measurement basis and the
Fourier basis. This is an important virtue since it allows flexibility in the physical realization
of the measurement process which can be preformed in the Fourier domain, spatial domain,
or even in the Fresnel zone. Below we describe sampling in the spatial plane. As explained in
the experimental part of the supplementary notes, for practical reasons, in our experiments the
measurements were preformed in the spatial plane of the filtered image.

As in the case of fourier sampling, the value of N is determined by the sensing devise;
however, here the camera’s field of view (FOV) plays the role of the spectral resolution. Since
η = 1/FOV, we get N = FOV/Δ, which is the number of features with resolution Δ that fit into
the FOV. As before, we rescale the spatial domain resolution so that Δ = 1.

In the spatial domain the far field image takes on the following form:

gFF(x) =
N−1

∑
�=0

d�(a� � s)(x) (23)

where
a�(x) = a(x− �), (24)

s(x) is the LPF convolution kernel

s(x) = 2αsinc(2αx), (25)

and ( f1 � f2) denotes the continuous-time convolution:

( f1 � f2)(x) =
∫ ∞

−∞
f1(x−χ) f2(χ)dχ. (26)

We sample gFF(x) uniformly with critical sampling rate T = Δ = 1 over the FOV of the camera;
this rate follows from noting that the relevant frequency content is limited to the first replica
of D(e j2πΔν). In practice, one can increase the sampling rate in the spatial domain in order to
improve robustness to noise. The resulting samples are given by

gFF(x = k) = d̃[k] =
l=N−1

∑
�=0

d�

∫ ∞

−∞
a(k− �−χ)s(χ)dχ, 0 ≤ k ≤ N −1. (27)

In order to model the jitter in the measurements we shift the sampling points by τ , resulting in:

gFF(x = k− τ) = d̃[k] =
�=N−1

∑
�=0

d�

∫ ∞

−∞
a(k− �− τ −χ)s(χ)dχ. (28)

We can rewrite (27) in matrix form as
d̃ = Md (29)
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where d̃,d are the vectors with elements d�, d̃� respectively, and

Mk� =
∫ ∞

−∞
a(k− �− τ −χ)s(χ)dχ. (30)

It is easy to see that we can recover the DFT coefficients D[k] for |k| ≤ kmax from the
measurements d̃. Indeed, let F̃ be the Fourier matrix with elements F̃r� = 1√

N
e− j2πr�/N . Noting

that D =
√

NF̃d and F̃HF̃ = I, we have from (29)
√

NF̃d̃ = F̃MF̃HD. (31)

Since M is an approximately circulant matrix, it is (approximately) diagonalized by F̃ . There-
fore, P = F̃MF̃H is a diagonal matrix with diagonal values

Pkk =
{

A(k/N)e− j2πτk/N , |k| ≤ kmax

0, |k| > kmax.
(32)

(Note the similarity to (21)). We may then take the pseudoinverse of F̃MF̃H in (31) to recover
the Fourier coefficients D[k] for |k| ≤ kmax.

Clearly the matrix P depends on the value of the jitter τ , which is unknown. In the simula-
tions, we tested a few values of 0 ≤ τ ≤ 1 until we obtained the desired results.

B.3.3. Reconstruction with Sparsity Priors

We have seen in the previous sections that regardless of whether we sample in the Fourier do-
main or the spatial plane, we can recover the frequency content below the LPF cutoff. However,
we still need to overcome the loss of high frequency information. To do so we assume a sparsity
prior on the series d�. Let β = S/N be the relative fraction of the nonzero elements of d�, where
S is the number of nonzero values. Our goal is to reconstruct the time series d� from the partial
Fourier measurements

dk = D(e j2πk/N), |k| ≤ kmax, (33)

under the assumption that at most S values are nonzero.
To set up our problem within the framework of CS, let F be the M ×N partial Fourier

matrix with elements e− j2πkl/N for 1 ≤ � ≤ N and −(M−1)/2 ≤ k ≤ (M−1)/2. Here

M = 2kmax +1 = 2�αN�+1 (34)

is the number of measurements. When M = N, F is equal to the full Fourier matrix and is an
orthogonal invertible matrix. In this case, the elements of the vector Fd are the DFT coefficients
of d�. When M < N, the matrix has more rows than columns and cannot be (left) inverted. In
the context of CS, F = W is the measurement matrix.

Denote by d the vector with elements d�,1 ≤ l ≤ N, and by b the measurement vector with
elements bk, |k| ≤ kmax with bk defined by (22). Our goal then is to find the sparsest vector d
that is consistent with the measurements. Similarly to (4) this can be written as

(P0) min
d

‖d‖0 subject to b = Fd. (35)

When N is prime, it can be shown that every M columns of F are linearly independent [20].
Therefore, (35) has a unique solution if:

M
N

≥ 2β . (36)
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To solve (35) we can use known algorithms from the CS literature such as BP (11). How-
ever, these methods are not guaranteed to recover the true d. In the special case where the
measurement matrix is a partial Fourier matrix as in (35), the unknown d can be recovered
exactly (in the noiseless setting) using the annihilating filter method [35] whenever (36) is sat-
isfied; we will discuss this technique in Section B.3.3. The drawback of this approach is that in
many settings it is highly sensitive to noise and is therefore often not reliable. In contrast, BP is
more robust, but requires an increase in the number of measurements to recover d. As we will
show, BP works well with uniform phase, or in the nonuniform phase setting when the nonzero
elements are far enough apart. Unfortunately, when the details to be resolved are closely spaced
and with different phases, the BP algorithm tends to fail. To overcome this limitation of the BP
technique, we propose a new method, referred to as NLHT, which leads to very good recovery
results in the presence of noise and closely spaced elements with nonuniform phase.

In the next subsections we briefly discuss each one of these approaches and point out their
limitations in our context of subwavelength imaging. Further we’ll provide a comparison with
the reconstruction obtained by Gerchberg-Papoulis algorithm on the experimental data.
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Fig. 6. (a) Mutual coherence of the lowpass Fourier matrix. (b) Reconstruction guarantees
for BP. The maximal sparsity level that ensures exact reconstruction remains very low even
for relatively high values of α . The case S = 2 corresponding to two spikes is illustrated by
the horizontal line.

Basis Pursuit The BP algorithm relaxes P0 by replacing the non-convex �0 norm in (35) by
the sparsity promoting �1 norm:

(P1) min
d
‖d‖1 subject to b = Fd. (37)

As we have seen, if the coherence of F is low enough, then (P1) and (P0) will yield identical
results. Unfortunately, the partial Fourier matrix consisting of the lowpass frequencies has high
coherence even for relatively large values of α , as can be seen in Fig. 6(a). In Fig. 6(b) we plot
the BP bound for the maximal degree of sparsity that enables exact recovery. Even for relatively
large values of α , we cannot guarantee the reconstruction of two spikes.

Experiments demonstrate that (37) yields good recovery results when the coefficients d�

are in-phase (e.g. d� ≥ 0). However, in the presence of multiple phases, the method fails to
reconstruct d� when two spikes with different phase are distanced below 2/α (corresponding to
λ/2). Figures 7(a) and 7(b) illustrate this phenomena in the case of two spikes. One can clearly
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see that when the spikes are positive perfect reconstruction is possible far below the diffraction
limit; however, in the multi-phase scenario, the method fails. These results have been discussed
theoretically in [36, 37].
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Fig. 7. (a) Reconstruction of an in-phase signal. The first row corresponds to the original
information in real-space and in Fourier space. The following rows are reconstruction using
Basis Pursuit with different cutoff frequencies, as indicated by the red LPF. Green corre-
sponds to the original signal while blue is the reconstructed signal. In this example, these
sequences overlap completely matrix. (b) Reconstruction of a multi-phase signal. The first
row corresponds to the original sampled information in real space and Fourier space. The
following rows are reconstruction using Basis Pursuit with different cutoff frequencies, as
indicated by the red LPF. Green corresponds to the original signal while blue is the recon-
structed signal. In this example, a high cutoff frequency is needed in order to obtain good
recovery.

Annihilating Filter The annihilating filter method, also known as “Finite Rate of Innova-
tion”(FRI), can be used to solve our problem exactly in the noiseless case, under the condition
(36). This method is described in [30, 35], and is summarized below.

The algorithm consists of two stages. In the first stage, the locations of the spikes are
determined, by finding the roots of an annihilating filer H(z) = ∑S

n=1 hnz−n that annihilates the
Fourier domain measurements bk. The filter is of length S as the number of nonzero coefficients
of the series d�. This can be achieved by solving the following set of equations:

⎡

⎢
⎢
⎢
⎣

b−1 b−2 . . . b−kmax

bo b−1 . . . b−kmax+1
...

...
. . .

...
bkmax−2 bkmax−3 . . . b−1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

h1

h2
...

hS

⎤

⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎣

b0

b1
...

bkmax−1

⎤

⎥
⎥
⎥
⎦

. (38)

Once these locations are known, we can solve for the amplitudes of d� by inverting the system
b = Fd over the location set S.

Although, in principle, this approach can yield perfect recovery, the process of root finding
is very sensitive to noise. In order to overcome the noise sensitivity it was suggested in [35]
to use Cadzow’s algorithm that de-noises the signal by imposing self consistency conditions
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on the convolution matrix of (38): The matrix should have a maximal rank of βN (because the
original signal is βN sparse) and also have a Toeplitz structure. Iterating between these two
requirements leads to denoising of the measurements. Although this process reduces the noise,
the resulting method is still often very sensitive and nonrobust as we demonstrate below.

We tested the algorithm on the following simulation setting. We considered a signal of
length N = 101, and sparsity levels β = 0.06,0.07,0.08,0.09. The locations of the spikes were
drawn randomly between 0.1N − 0.9N, with randomly chosen amplitudes drawn from a uni-
form distribution ranging between 5−10, with a random sign pattern. Figure 8 shows the prob-
ability to reconstruct the support of the sparse signal for different signal-to-noise ratios (SNRs)
and sparsity levels, where the noise is additive white Gaussian noise. The empirical probability
was calculated from 1000 runs; Cadzow’s algorithm was used with 10 iterations.

As can been seen from Fig. 8 in the scenario tested, this method is extremely sensitive to
noise especially for signals which have adjacent spikes. This point is noted in [35], in which it
is stated that in order to ensure exact support recovery the spikes should be distanced enough
from one another.
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Fig. 8. Probability of support recovery as a function of the SNR using the annihilating filter
method.

NLHT: Non Local Hard Thresholding Standard BP is a robust to noise and efficient, but
cannot resolve closely-spaced spikes with different phases. Below, we propose a new algorithm,
referred to as NLHT, which appears to be both robust and capable of resolving closely-spaced
spikes with arbitrary phases.

The algorithm attempts to allocate the off-support of the sparse signal in an iterative fash-
ion, by performing a thresholding step that depends on the values of the neighboring locations
(in real space). In each iteration, we use a BP step which takes into account noise with level ε
(this algorithm is referred to in the literature as BP denoising [29]):

(P1) min
d

‖d‖1 s.t ‖b−Fd‖2 ≤ ε. (39)

Based on the solution we try to allocate the off-support of the signal by performing a nonlocal
thresholding step. Each element of d̂ which is below a fixed threshold along with its neighbors
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is zeroed out and considered as off-support. In the next iteration, we repeat the BPDN step (39)
with the additional constraint that the locations corresponding to the off-support are set to zero.
Table (Algorithm 1) provides a more detailed version of the algorithm.

Algorithm 1 Non Local hard Thresholding.
Require:

• S - off support

• μ - Nearest neighbor window size

• ζ0 - Threshold

• Δζ - Increment in the Threshold

• ε - Noise level

Initialize: S = /0, μ = μ0, ζ = ζ0.
Repeat

Solve:
min

d̂
‖d̂‖1 subject to

∥
∥b−Fd̂

∥
∥

2 ≤ ε, d̂[�] = 0, ∀� ∈ S. (40)

Allocate the off support:

1. Find all �̃ such that d̂[�] ≤ ζ ·max(d̂) for all �’s which are distanced from �̃ to the
right or left by μ or distanced from both sides by μ/2.

2. Add �̃ to S̃.

Update S = S∪ S̃.
If the support was not updated increase ζ by Δζ and decrease μ by 1.

Until |S| ≤ ‖d‖0
Return d̂

The NLHT method was tested on the same setting as the annihilating filter method. The
parameter values were chosen to be μ = 9, λ = 0.025, Δλ = 0.025, ε as the noise level. In
choosing the parameter values one should make sure that the initial window size is significantly
larger than 1/α .

Figure 9(a) plots the probability of support recovery as a function of the SNR. Compar-
ing Figs. 9(a) and 8 reveals a significant improvement with respect to the annihilating filter
approach with Cadzow’s algorithm.

Figure 9(b) illustrates the reconstruction of multi-phase adjacent spikes using the NLHT
algorithm. This is in contrast to the failure of the BP method illustrated in Fig. 7(b).

Gerchberg-Papoulis Algorithm Finally, we provide a comparison between our reconstruc-
tion method, which is based on compressed sensing techniques, and the Gerchberg-Papoulis
extrapolation algorithm [18, 19]. The comparison is carried out with our actual experimental
data: the measured data presented in Fig. 4(d-f). Recall that in the paper we demonstrate suc-
cessful reconstruction using CS. As we show in this section, using the Gerchberg-Papoulis
algorithm on the very same measured data fails in reconstructing the correct information. The
noise in the measured data arises from the actual physical noise in our experimental system.

The Gerchberg-Papoulis algorithm [18, 19] attempts to extrapolate the frequency content
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Fig. 9. (a) Probability of support recovery as a function of the SNR using the NLHT algo-
rithm. (b) Reconstruction results of the NLHT algorithm for multiple-phase spikes.

beyond the cut off frequency by iteratively imposing the measured data under the assumption
that the image is space-limited. We start by performing an inverse Fourier transform on the
low-pass Fourier data, leading to a spread image in the spatial domain which cannot be space
limited. Next, we reinforce the assumption that image is space-limited simply by truncating
the image. The resulting space-limited image possesses frequency contents beyond the cut off
frequency, leading to a different frequency content than the original data. In addition, the fre-
quency content inside the low-pass is also altered. We therefore force the known measured data
on those frequencies. This procedure is repeated in an iterative fashion by employing the above
steps, until the frequency and spatial domain images conform to one another. The algorithm is
implemented and tested on the same experimental data of Fig. 4 in the article. The image was
assumed to be limited to the first lobe in the spatial domain. Hence in the iteration process all
values beyond the first lobe were zeroed out. Figure 10 of this section compares between the
performance of the Gerchberg-Papoulis algorithm and the algorithm described in the article,
which is based on CS. The first row shows the experimental data: the actual blurred image
10(a), the respective Fourier transform 10(b) and a cross section of the amplitude in real space
10(c). Applying the Gerchberg-Papoulis method yields the reconstruction shown in 10(d), with
the corresponding Fourier transform 10(e). In particular the cross section of the reconstructed
image 10(f) reveals that this algorithm, based on the assumption of space limitation, completely
fails, being unable to recover the true image. In contrast, the reconstruction task is easily done
by of our CS-based technique. Its advantage in precision and in robustness to noise, based
solely on the sparsity of the object, yields the reconstruction depicted in 10(g), which clearly
shows the three stripes of the original sample. The respective Fourier transform in 10(h) is al-
most identical to the original shown in Fig. 4(b). In the cross section plot, the reconstructed
amplitudes are directly compared to the original data, proving the superiority of our CS-based
technique, in precision and in robustness to noise with sparsity being the only assumption, over
other extrapolation methods and their underlying assumptions.

B.4. Implementation Considerations and Subwavelength Imaging

Naturally, when trying to recover information from an incomplete set of measurements, one
would like to use all the data at hand, without any additional loss of information. When treat-
ing true subwavelength optical information, the loss of information occurs due to the decay of
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Fig. 10. Comparison between the performance of the Gerchberg-Papoulis extrapolation
algorithm and our CS approach. The comparison is made on our experimental data (of
Fig.4 of the paper) (a,b,c) The filtered information, blurred to a single stripe (a), its cut
Fourier spectrum (b), and a horizontal cross-section of the amplitude, taken through the
real-space information (c). (d,e,f) Reconstruction using GP-extrapolation methods yields a
distorted recovery with little resemblance to the original data (d) and an incorrect Fourier
spectrum (e). The recovery error is most apparent in the horizontal cross section (f). (g,h,k)
Reconstruction using CS methods yields a high quality recovered information (g) and its
respective Fourier spectrum (h). The strong correspondence between original and recovered
image is clearly visible in the horizontal cross section (k).

evanescent waves with spatial frequencies ν ≥ 1/λ . Any optical element placed at some dis-
tance z after the evanescent waves have already decayed (z > λ ) will cause additional loss of in-
formation, because all such elements have a finite extent (i.e., their numerical aperture is smaller
than unity). Therefore, for true subwavelength imaging, one should perform the measurements
at any plane z > λ , but without passing the waves through any additional lenses. This means
that the measurements should be taken as close as possible to the subwavelength object.In that
region the low-pass filter H(ν) also contains phase. The recovery of information would be
somewhat more complicated, but not by much. Alternatively, of course, one could use another
lens and perform the measurements either in the Fourier plane or at the low-pass-filtered plane,
where measuring the data is more convenient. However, the finite numerical aperture of the lens
causes further loss of information (low-pass filtering).

The experiments presented in our paper are proof-of-concept, not containing subwave-
length information. However, the considerations are identical: it would be best to perform the
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measurements immediately after the low-pass filter, and avoid using additional lenses. Unfor-
tunately, in that plane the optical intensity distribution is concentrated in a small region, and
taking the data with a camera whose pixels (detectors) are typically 10 microns wide. would
cause under-sampling of the data. For this reason, we used another lens, and performed the
measurements in the low-pass-filtered image plane (see Fig. 3). Alternatively, we could use a
pair of lenses, magnify the Fourier plane information, and take the data where the finest resolu-
tion in Fourier plane can be sampled properly by the pixels in the camera. The results after CS
reconstruction are practically identical. The experimental results presented in Figs. 4 and 5 in
the paper were obtained for measurements taken at the low-pass-filtered image plane. For this
case, one can use |H(ν)| (instead of H(ν)) because the phase is anyway compensated by the
imaging system.
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