2774

OPTICS LETTERS / Vol. 31, No. 18 / September 15, 2006

Surface lattice solitons
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We study theoretically nonlinear surface waves in optical lattices and show that solitons can exist at the
heterointerface between two different semi-infinite 1D waveguide arrays, as well as at the boundaries of a
2D nonlinear lattice. The existence and properties of these surface soliton solutions are investigated in

detail. © 2006 Optical Society of America
OCIS codes: 190.4350, 190.4390.

Surface waves are, by their very nature, guided
waves propagating along the interface of two differ-
ent media.! In the linear optical domain, such surface
waves can exist between a metal and a dielectric
(plasmon waves) and at the boundary of two semi-
infinite periodic dielectric media,? as well as at the
interfaces of anisotropic materials. In addition to
these families of linear waves, optical surface waves
can also arise from nonlinearity, e.g., at the interface
between a linear medium and a nonlinear
material. > Yet, as of today, only diffusion-induced
nonlinear surface waves have been reported,” prima-
rily because of fabrication and experimental difficul-
ties (surface roughness etc.). However, many of these
practical problems can be overcome by using nonlin-
ear waveguide arrays instead.” These periodic topolo-
gies are known to exhibit novel properties in both
the linear and the nonlinear optical regimes and
have been extensively studied during the past few
More specifically, modulation instability9

years.
and discrete or. lattice solitons in cubic,lo_13
photorefractive, ™ and quadratic waveguide

arrays = have been examined theoretically and ob-
served experimentally. Very recently, surface wave
lattice solitons occurring at the boundaries of optical
predicted'”  and

lattices were experimentally
observed® as a new class of self-trapped surface
states.

In this Letter we study nonlinear surface waves in
1D and 2D optical lattices and predict surface lattice
solitons propagating along the heterointerface of two
different semi-infinite waveguide arrays. A unique
characteristic of this new family of solitons is that
two different semi-infinite field profiles can form a
composite entity, namely a hybrid surface soliton. We
investigate several generic examples of hybrid sur-
face solitons residing in different bandgaps of the
composite heterostructure and study their stability.
Finally, we predict surface lattice solitons occurring
at the boundaries of a 2D lattice (at a corner or at an
edge) when their power level is above a critical
threshold.

Let us consider a lattice consisting of two different
semi-infinite waveguide arrays, as shown in Fig. 1.
Every waveguide is designed to be single mode, and
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the assumed nonlinearity is of the self-focusing or de-
focusing Kerr type. Since the difference in the refrac-
tive indices (with respect to the cladding) is small, a
scalar approach is applicable for the particular prob-
lem. In this case, the system is governed by a
paraxial scalar nonlinear Schrodinger equation ca-
pable of describing higher-order band dynamics. In
normalized units this equation is written as

du u 9
L;+$+V(x)u+a|u| u=0, (1)

where u(x,z) is the slowly varying envelope of the op-
tical field, V(x) is the index potential that describes
the composite structure of the two semi-infinite
waveguide arrays, and the coefficient o is o=+1
(1) for self-focusing (defocusing) nonlinearities. For
demonstration purposes, let both regions in Fig. 1
have a linear refractive index difference of 2.8 X 1073,
with equally spaced sites (10 um center to center).
Note that the difference between the width of the
channels leads to an effective mismatch in the propa-
gation constant in the two regions. As a result, the
bands of the right and left arrays are relatively
shifted, as can be seen in Fig. 2. If this shift is large
enough, solitons whose propagation eigenvalues re-
side inside a forbidden gap are possible. It can be for-
mally shown that the band structure of the entire
heterointerface involves the individual band struc-
tures of each of the two semi-infinite optical lattices,
which in turn are related to the band diagrams of the
corresponding infinite arrays. Figure 2 also demon-
strates that for the specific design parameters used
here, there is a band overlap between the second and
the third band of the two different semi-infinite ar-
rays. Therefore soliton solutions can be obtained only
in the resulting three complete bandgaps. More spe-
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Fig. 2. Band structure of the two coupled semi-infinite
waveguide arrays. The dotted curves correspond to the
band structure of the right-hand array, while the solid
curves correspond to that of the left-hand array. Points A,
B, and C represent the propagation eigenvalues of the al-
lowed surface solitons.
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Fig. 3. (a) Field profile of a hybrid in-phase-in-phase soli-
ton and (b) the corresponding power—eigenvalue diagram.
The gray areas represent the bands of the structure.

cifically, one can identify surface solitons with propa-
gation constants in the semi-infinite gap, in the first
gap between the two first bands and in the second
gap between the first band of the left-hand array and
the second band of the right-hand array (points A, B,
and C, respectively, in Fig. 2). It is important to note
that the hybrid solitons are a direct outcome of the
nonlinearity, since the heterostructure does not sup-
port linear defect modes and does not lead to pinned
states owing to inhomogeneities. In all cases the lat-
tice surface solitons are numerically found by using
numerical relaxation schemes based on the self-
consistent method.!! This is done by assuming sta-
tionary solutions of the form u(x,z)=@(x) exp (i\z),
where ¢(x) is the field profile and \ is the nonlinear
correction to the propagation constant or the soliton
eigenvalue.

Figure 3(a) depicts the field profile of a surface soli-
ton existing at the nonlinear heterointerface of Fig. 1.
This soliton state corresponds to the eigenvalue A of
Fig. 2, which is located in the semi-infinite bandgap
of both lattices. As a result, the two components com-
prising this soliton are in phase. The power-
eigenvalue stability diagram (P-\ curve) associated
with this solution is shown in Fig. 3(b). This curve
terminates close to A =0.69, which is close to the top
edge of the first band of the right array. In this region
the solutions start to become unstable, as one may
also anticipate from the Vakhitov—Kolokolov crite-
rion. For higher eigenvalues these solutions are
stable.
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Another interesting case arises when the soliton ei-
genvalue is located at point B of Fig. 2. This implies
that B is at the top of the first band (in the semi-
infinite bandgap) of the left-hand array and at the
bottom of the first band (first bandgap) of the right-
hand lattice. Therefore one part of the surface soliton
field in the left-hand array will be in phase, whereas
the other part on the right-hand array will be stag-
gered (the field lobes are 7 out of phase). As a result,
the two components can propagate locked together as
a composite self-trapped state, thus forming a hybrid
surface soliton. A typical field profile of this type of
hybrid soliton is shown in Fig. 4(a). The power of
these hybrid solutions with respect to the correspond-
ing soliton eigenvalue \ is plotted in Fig. 4(c). As the
eigenvalue \ approaches the edge of the first band (of
the right array) the staggered component of the solu-
tion becomes wider while the in-phase component is
getting more localized. The converse occurs when the
eigenvalue \ is close to the edge of the second band.
The stability of this solution was investigated by us-
ing beam propagation methods. Another solution can
be found in the third complete gap (eigenvalue C in
Fig. 2) when the nonlinearity is of the defocusing
type (0=-1). The field profile of this surface soliton
as well as the associated P—\ are shown in Figs. 4(b)
and 4(d), respectively. In this latter case, both compo-
nents at the interface are of the staggered type.

Surface solitons can also exist at the boundaries of
2D lattices. More specifically, we have examined a
nonlinear Kerr semi-infinite square lattice of
waveguides. The linear refractive index between the
core and the cladding is taken here to be 4 X 1073, and
the distance between the single-mode waveguides is
6 um in both orthogonal directions. The wave propa-
gation in this 2D self-focusing optical lattice is de-
scribed by the normalized nonlinear Schrédinger
equation

06 () (b)
= = 0.4
& 04 &
E ',E 02)
= 0.2 -
z o z
-0.2]
0.
osf (€) 2.5 (d
0.7} 2
5
Z 06 515
£ 3
05 [
0.4 0.5

03w 05 o052 0757

044 046 048
Eigenvalue 02 03

OEigen%;lue
Fig. 4. Field profile of a hybrid (a) in-phase—staggered
soliton, and (b) staggered—staggered soliton. The powers—
eigenvalue diagrams for these solutions are depicted in (c)
and (d), respectively. The gray areas represent the bands of
the structure.



In conclusion we have theoretically demonstrated
the existence of surface spatial solitons in nonlinear
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Ju Fu Fu )
I—+—S+—+V,y)u+ul‘u=0, 2
PRRIP R (o0,3)u + |ul (2)

where V(x,y) is the semi-infinite index potential. Our
analysis leads to new soliton solutions existing at the
corner [see Fig. 5(a)] and at the edge [see Fig. 5(b)] of
the 2D lattice. The power associated with these sur-
face solitons is plotted in Fig. 5(c) as a function of the
corresponding eigenvalue A. Our analysis shows that
both these soliton solutions are possible only when
their power exceeds a critical threshold. The thresh-
old of the edge surface state is slightly higher than
that of the corner soliton, which is physically antici-
pated, since the latter self-trapped state is confined
in fewer sites. In both cases, the propagation con-
stants of these surface solitons are located at the
semi-infinite bandgap of the lattice. Before closing,
we would like to mention that other surface soliton
configurations may also be possible, such as, for ex-
ample, gap surface solitons in both 1D and 2D
arrangements.
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Fig. 5. Intensities of surface solitons in a semi-infinite

square lattice located at (a) the corner, and (b) at the edge
of the 90° angular sector lattice. The corresponding power—
eigenvalues diagrams are shown in (c) for the corner (thin
curve) and edge (thick curve) surface lattice solitons. The
gray area represents the first band of the 2D array.

optical lattices. Such surface self-trapped waves can
exist at the interface between two different semi-
infinite 1D waveguide arrays as well as at the bound-
aries of 2D optical lattices. The stability of these
states was also investigated.
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