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Photonic topological insulator in synthetic 
dimensions
eran Lustig1,4, Steffen Weimann2,4, Yonatan Plotnik1, Yaakov Lumer3, Miguel A. Bandres1, Alexander Szameit2 &  
Mordechai Segev1*

Topological phases enable protected transport along the edges of 
materials, offering immunity against scattering from disorder and 
imperfections. These phases have been demonstrated for electronic 
systems, electromagnetic waves1–5, cold atoms6,7, acoustics8 and even 
mechanics9, and their potential applications include spintronics, 
quantum computing and highly efficient lasers10–12. Typically, the 
model describing topological insulators is a spatial lattice in two 
or three dimensions. However, topological edge states have also 
been observed in a lattice with one spatial dimension and one 
synthetic dimension (corresponding to the spin modes of an 
ultracold atom13–15), and atomic modes have been used as synthetic 
dimensions to demonstrate lattice models and physical phenomena 
that are not accessible to experiments in spatial lattices13,16,17. In 
photonics, topological lattices with synthetic dimensions have been 
proposed for the study of physical phenomena in high dimensions 
and interacting photons18–22, but so far photonic topological 
insulators in synthetic dimensions have not been observed. Here 
we demonstrate experimentally a photonic topological insulator 
in synthetic dimensions. We fabricate a photonic lattice in which 
photons are subjected to an effective magnetic field in a space with 
one spatial dimension and one synthetic modal dimension. Our 
scheme supports topological edge states in this spatial-modal lattice, 
resulting in a robust topological state that extends over the bulk 
of a two-dimensional real-space lattice. Our system can be used to 
increase the dimensionality of a photonic lattice and induce long-
range coupling by design, leading to lattice models that can be used 
to study unexplored physical phenomena.

Despite different manifestations in many physical systems, topo-
logical insulators usually rely on spatial lattices, and the wavepackets 
propagating in the lattice (electrons, photons or phonons) are subjected 
to gauge fields, giving rise to topological phenomena. However, lattices  
may take forms other than a spatial arrangement of sites: they can be 
assigned to a ladder of atomic states, photonic cavity modes or spin 
states13,20,21. Using one (or more) of these ladders in a non-spatial—
synthetic—degree of freedom requires that the coupling between 
the synthetic sites and the resulting gauge fields is introduced as an 
additional external perturbation. In contrast to traditional topological 
insulators based on a spatial lattice, transport for topological insula-
tors in synthetic dimensions does not occur at the spatial edges of the 
system, but at the edges of synthetic space. For example, the lowest 
and highest modes in a system can serve as synthetic edges. Using this 
concept, a topological edge state on a lattice with one spatial dimen-
sion and one synthetic dimension—the atomic spin state—has been 
demonstrated in cold atoms14,15,23. Other synthetic ladders, such as 
optical lattice clocks24 and atomic momentum states of a Bose–Einstein 
condensate25, have been used to demonstrate topological phenomena 
in synthetic dimensions in cold atoms. A related proposal suggested 
achieving synthetic dimensions by shaking harmonic traps containing 
cold atoms26. This approach uses the modes of a harmonic potential 
(instead of internal degrees of freedom) as the synthetic dimension, 

hence it allows the creation of an unlimited number of synthetic states 
and a high degree of control in fabricating elaborate lattices.

Creating photonic topological phenomena in synthetic dimen-
sions has been an important research goal for some time now, because 
photonics offers ways to experiment with physical phenomena that 
are otherwise very difficult to realize in other systems (for example, 
nonlinearity, non-Hermiticity, exceptional points and nonlocal non-
linearities). The use of synthetic dimensions has been proposed to 
generate high-dimensional optical solitons18 and was demonstrated 
in experiments of topological pumping27, in which a photonic lattice 
was mapped onto a corresponding quantum Hall lattice with twice  
its spatial dimensions. Similarly, photonic topological insulators in  
synthetic dimensions have been proposed with the synthetic space  
generated through cavity modes19–21, which offers not only an unlim-
ited number of states but also infinite lifetime—both of which are great 
advantages for large-scale lattices. Thus far, however, photonic topo-
logical insulators in synthetic dimensions have not been demonstrated 
experimentally.

Synthetic dimensions implemented via modal space, especially in 
photonics, allow the introduction of arbitrary geometries and gauge 
fields that are not available in real-space lattices. In real-space lattices, 
the coupling between sites is induced by the spatial proximity of the 
sites to each other. This nearest-neighbour coupling severely limits 
the range of possible lattice geometries. By contrast, coupling between 
sites in synthetic space is induced externally, and applying an external 
perturbation corresponds to choosing the lattice coupling scheme and 
the gauge fields. This allows us to produce lattices with unusual fea-
tures, such as long-range coupling, high dimensionality, interactions 
and other exotic phenomena.

Here, we design a photonic lattice that forms a topological insula-
tor in synthetic dimensions endowed with topological edge states and 
directly observe the propagation of the topologically protected edge 
state, which resides not at the spatial edges of the system, but at the 
edge of synthetic space. Our scheme consists of a two-dimensional 
waveguide array engineered to have one synthetic dimension in modal 
space and one dimension in real space. This design can also be imple-
mented in other physical systems, such as cold atoms26 and acoustics.

We construct the photonic topological insulator in synthetic dimen-
sions as follows. We first consider a one-dimensional array of N evanes-
cently coupled waveguides arranged along the y axis and propagating 
in the z direction (Fig. 1a). This array has N propagating eigenmodes, 
which propagate with different propagation constants. We position the 
waveguides so that they form a Jx lattice with the propagation constants 
of its modes equally spaced28,29. Thus, these modes form an equally 
spaced ladder of modes in synthetic space. The eigenmodes of the lat-
tice in Fig. 1a are not coupled. For example, if a wavepacket occupying 
the first mode is launched at the lattice input, it remains in the first 
mode throughout propagation, until it reaches the lattice output (pur-
ple ellipse in Fig. 1a). To support transport in the modal dimension, 
coupling between modes is required. To couple the modes, we spatially 
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oscillate the one-dimensional waveguide array along its longitudinal 
dimension (z dimension; Fig. 1b). The period of the oscillations, Ω, 
is designed to induce coupling between modes that have adjacent 
propagation constants and creates a ‘lattice of coupled modes’ in the 
synthetic modal dimension. If a wavepacket occupying, for example, 
the first mode of the non-oscillating lattice is launched at the input of 
the oscillating lattice, it will couple to higher modes—that is, climb the 

modal ladder—until it constitutes a superposition of high modes at the 
lattice output (purple ellipse in Fig. 1b).

Next, we consider arranging M such oscillating one-dimensional 
arrays next to each other, at equal distances along the x axis (Fig. 2a, b). 
Here, the one-dimensional arrays (all oscillating in z) are columns in the 
y direction of a two-dimensional lattice (Fig. 2b). This system can also be 
viewed as a two-dimensional lattice with one of its dimensions being a 
synthetic dimension (Supplementary Information). The first dimension 
is the ordinary spatial dimension x (horizontal axis in Fig. 2a, b) whereas 
the second dimension is the mode spectrum of each column (vertical axis 
in Fig. 2a). For example, the site (3,5) in our synthetic lattice represents 
light occupying the third mode of the fifth real-space column in the hori-
zontal direction x. This approach can be directly extended to demonstrate 
high-dimensional lattices and lattices incorporating long-range couplings 
(see Methods section ‘Increasing the dimensionality of the lattice’).

The lattice just described already contains a synthetic dimension: the 
modal space. However, it does not yet display topological edge states. To 
do that, we now add a gauge field in the synthetic dimension by intro-
ducing a phase shift in the oscillations between each pair of adjacent 
columns of the oscillating waveguides (Fig. 2c). The oscillations in all 
columns have the same frequency and amplitude but oscillations in 
adjacent columns differ by a constant non-zero phase. This phase dif-
ference induces an effective magnetic field for photons in the synthetic 
lattice, thereby opening a topological bandgap displaying topologically 
protected transport of edge states.

Our model is described in real space by the Hamiltonian:
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Fig. 1 | Forming a one-dimensional lattice in a synthetic modal 
dimension. a, One-dimensional lattice with a spectrum of N = 7 
eigenmodes with equally spaced propagation constants. b, Oscillating the 
lattice in the longitudinal direction causes each eigenmode (of the straight 
lattice) to couple to its nearest neighbours, forming a lattice of coupled 
modes.
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Fig. 2 | Two-dimensional synthetic-space lattice. a, b, Synthetic-space 
lattice (a) corresponding to a two-dimensional lattice of waveguides (b).  
The edge state of synthetic space (yellow in a) resides in the bulk of 
the waveguide array (red in b). tmn(z) and Jndy,nΩ2k0R are the coupling 
coefficients of the (m,n) site in synthetic space and tmn(z) and pn are the 

couplings in real space. c, Phase shift between two adjacent columns 
of the waveguide array of b. d, Floquet band structure of a lattice with 
Ω = 70 m−1, R = 5 μm and φ = π/4, with the edge state of a and b marked 
in red. e, Floquet band structure under random disorder in the coupling 
between waveguides.
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where cm n,
†  and cm n,  are the creation and annihilation operators of the 

real space sites, respectively, m = {1,…, M}, n = {1,…, N}, pn and tmn(z) 
are the vertical (y) and horizontal (x) coupling coefficients in real 
space, respectively, as depicted in Fig. 2b, R is the amplitude of the 
oscillations in the longitudinal z direction (which has the role of time in 
the corresponding Hamiltonian described by equation (1)), 
k0 = 2πn0/λ is the wavenumber in the ambient medium (λ is the wave-
length), dy,n is the distance in y between site n and site n+1, φm is the 
phase of the oscillations of the mth column and ‘H.C.’ stands for 
Hermitian conjugate. The coupling coefficients between the modes are 
given by Jndy,nΩ2k0R, where Jn represents the unitless coupling coeffi-
cients pn of a Jx lattice (see Supplementary Information)28. Unlike syn-
thetic dimensions relying on atomic transitions, the coupling of the 
modes here changes only slightly between the different modes. In this 
two-dimensional setting all columns oscillate parallel to the y–z plane, 
at the same frequency Ω and amplitude R, but each column oscillates 
at its own phase, φm. It is the oscillation phase, φm, that makes this 
lattice topological, by realizing an artificial gauge field in the synthetic 
lattice. Mathematically, the transformation to the lattice in synthetic 
space is carried out by the unitary matrix U that diagonalizes the 
Hamiltonian H(tmn  =  0,  R  =  0)—that is, U diagonalizes the 
Hamiltonian H in equation (1) when the coupling between columns 
and the radius of oscillation are set to zero. We note that U converts the 
basis of representation to modes of separate non-oscillating columns. 
Using U, the Hamiltonian of the synthetic lattice, ∼H , is obtained by 

=
∼H U HU† , where H is the Hamiltonian with non-zero R and tmn.

Choosing R, φm and Ω corresponds to choosing the gauge fields in 
the Hamiltonian ∼H . For our purposes, we choose φm = φm, so that the 
oscillations have a phase shift φ between adjacent columns (Fig. 2c). 
Consequently, light accumulates the phase difference φ upon encircling 
a plaquette (the shortest closed path in the lattice) in synthetic space 
(Fig. 2a). Introducing a phase φ breaks z-reversal symmetry, and the 
chirality induced by φ is an effective magnetic field in the synthetic- 
space Hamiltonian ∼H  (see Supplementary Information). Consequently, 
the Hamiltonian of the synthetic lattice ∼H  is similar to the Hamiltonian 
of the Hofstadter model, and therefore the real-space lattice of H has 
the spectrum of a two-dimensional topological insulator. Figure 2d 
displays the calculated eigenmodes of the Hamiltonian (equation (1)) 
when periodic boundary conditions are applied in the x direction, and 
R, φm and Ω are chosen appropriately. The states marked in red are 
topological edge modes in a topological bandgap but they are not at  

the edge of the lattice in real space. Instead, they reside at the edge of 
the lattice in synthetic space (yellow frame in Fig. 2a) and in the bulk 
of the lattice in real space (red curves in Fig. 2b). See Methods section 
‘Dynamics of the wavepacket near and on the corner of synthetic space’ 
for a description of the propagation of the topological edge state of our 
synthetic-space lattice.

Similarly to the edge states of a two-dimensional photonic Floquet 
topological insulator4, the topological edge modes of our synthetic sys-
tem are immune to disorder and reside in the gap. We verify this impor-
tant feature of topological immunity in our experiment (which contains 
fabrication disorder) and in simulations (Methods section ‘Numerical 
simulations of the theoretical model’). Figure 2d presents the Floquet 
spectrum (propagation constants versus transverse momentum) of the 
system without any disorder, and the topological edge states are clearly 
seen in the gap. For comparison, Fig. 2e shows the spectrum of the sys-
tem with random disorder in the coupling between waveguides, which 
shifts and deforms the edge states but does not destroy them, even 
though the disorder here is strong—of the order of half the bandgap.

To study experimentally the evolution of the edge states in our 
synthetic topological insulator, we propagate a paraxial laser beam 
at 𝜆 = 633 nm through a two-dimensional lattice of waveguides, as 
shown in Fig. 2b. Our lattice of waveguides realizes the Hamiltonian  
of equation (1) (see Methods section ‘Measuring the anticlockwise- 
propagating edge state’).

We begin our experiments by coupling light to the edge state in the 
topological lattice and comparing its evolution to that in a trivial lattice.  
A Gaussian beam is incident on the input facet of the lattices, covering 
most of the sites of the columns at the centre (Fig. 3a, e). The beam is 
oblique in the x direction (with an angle θ that controls the transverse 
momentum kx) but has a uniform phase in the y direction. This uni-
form phase in y makes the beam similar to the first mode in synthetic 
space; hence, the beam mainly excites the lowest mode of each column, 
which corresponds to the bottom edge of the synthetic lattice (Fig. 3i). 
We measure the intensity pattern at the output facet of the lattice after 
the beam has propagated for 15 cm. At angles θ where a topological 
edge state does not exist in both lattices, we observe that the beam 
evolves into the bulk of synthetic space (see, for example, Fig. 3b for 
θ = 0). However, at a range of angles where a topological edge state does 
exist in the topological lattice, we observe that the beam propagates to 
the left side of the lattice (see, for example, Fig. 3c, d for θ ≈ π/10 and 
π/5, respectively), thus reaching the bottom left corner of synthetic 
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Fig. 3 | Experimentally observed evolution of a 
topological edge state in synthetic dimensions 
and in the trivial synthetic lattice. a, Illustration 
of a beam launched into the topological lattice 
(φ = π/4, Ω = 87 m−1, R = 18 μm). The colour 
scale is for illustrating the intensity distribution 
on the lattice input facet. b–d, Experimentally 
obtained output beams at incidence angles 
without edge states (θ ≈ 0; b) and with edge 
states (θ ≈ π/10 in c; θ ≈ π/5 in d). Peak 
intensity is set to 1. e–h, Same as a–d, but for a 
trivial lattice. i, Illustrated evolution in synthetic 
space. The input beam (yellow) excites the lowest 
mode of the middle columns. In the topological 
lattice, the beam at the edge state evolves to the 
first mode of the leftmost column (purple). In 
the trivial lattice, the beam is in the middle of the 
bulk but evolves to higher modes. j, Normalized 
intensity (I) cross-section (blue line) measured 
at the columns indicated by the red bracket in 
the topological lattice of c. The sum of peak 
intensities is normalized to 1. k, Same as j, but 
for the trivial lattice in g. Orange circles in j and 
k indicate the calculated intensity profile of the 
first mode.
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space (Fig. 3j). We observe the topological state within an angular range 
of Δθ = π/5. For the same range of angles in the trivial case, the beam 
changes its position considerably in the x direction (Fig. 3g, h). In syn-
thetic space, the beam propagates clockwise along the bottom edge of 
synthetic space until it reaches the lowest mode of the leftmost column 
(purple circle in Fig. 3i). This is confirmed by comparing the intensity 
cross-section at the leftmost column (Fig. 3j) and interference meas-
urements (see Methods section ‘Dynamics of the wavepacket near and 
on the corner of synthetic space’) with the corresponding calculated 
patterns. For comparison, at the same angles (Fig. 3g, h) and in all other 
angles in the trivial lattice, the beam evolves into the bulk of synthetic 
space (blue upward-pointing arrow in Fig. 3i) since the trivial lattice 
has no topological edge states. Because the beam is moving up in the 
modal dimension of the trivial lattice, it populates high lattice modes, 
as proven by the intensity cross-sections (Fig. 3k).

After finding the topological edge state, we must examine 
whether it indeed has the two important properties of topological  
edge states: that it is unidirectional and that it does not scatter upon  
encountering an obstacle (in our case, the corner of the lattice).  
To show this, we launch a narrow Gaussian beam with the width of  
roughly three lattice sites at different regions of the lattice (Fig. 4a). We  
denote the centre of the Gaussian beam with x0, where x0 = 11  
means that the beam is at the rightmost column and x0 = 1 means that 

the beam is centred at the leftmost column. The rightmost images are 
for an even narrower excitation beam using a spatial light modulator. 
The narrow beam excites a narrower wavepacket at the synthetic-space 
edge (Fig. 4b). We choose the incidence angle of the Gaussian beam 
to match the calculated value that excites the edge states, which is also 
identified independently by the measurements in Fig. 3. Then, we 
measure the output intensity pattern while moving the position of the 
launched beam across the x axis, from the rightmost column (x0 = 11) 
to the leftmost column (x0 = 1). This corresponds to exciting the syn-
thetic-space edge at different points along the propagation path of a 
beam evolving along the edge of synthetic space (Fig. 4b) and thus 
enables us to study effectively the evolution of a Gaussian wavepacket 
along the synthetic-space edge.

The experimentally imaged output beams for different values of x0 
are presented in Fig. 4c. Figure 4d–g provides the results of the anal-
ysis of Fig. 4c, and Fig. 4h, i displays the results of the simulation of 
a wavepacket propagating along the edge of synthetic space in our 
system. When the beam is launched on the right side of the lattice 
(x0 = 8.5, 11; first and second images from the left in Fig. 4a) we find 
that the output beam is spread and resides in the bulk, to the left of 
the incoming beam (Fig. 4d). This corresponds to the beam propa-
gating clockwise in synthetic space (first and second images from the 
left in Fig. 4i). When the beam is launched in the middle of the lattice 

M
od

e 

1

7

1 Column 11

M
od

e 

1

7

1 Column 11

M
od

e 

1

7

1 Column 11

M
od

e 

1

7

1 Column 11

M
od

e 

1

7

1 Column 11

a

i

h

b

c

M
od

e 

1

7

1 Column 111

1 115 0
0

0.2

40 80 120

0.4

0
0

0.2

40 80 120

0.4

0
0

0.2

40 80 120

0.4

I

gd

M
od

e 

1

7

1
Column 

11

M
od

e 

1

7

1
Column 

11

M
od

e

1

7

1
Column 

11

M
od

e 

1

7

1
Column 

11

M
od

e 

1

7

1
Column 

11

M
od

e 

1

7

1
Column 

11

1

0

1

0

1

0

1

0

SLM

1

11

C
ol

um
n

nu
m

b
er

5

x0 = 11 x0 = 8.5 x0 = 6 x0 = 3.5 x0 = 1

x0

Input
Output

e f

y (μm) y (μm)

I I

y (μm)
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beam intensity at the output. The colour scale shows the normalized 
intensity; peak intensity is set to 1. d, Measured position of the incident 
Gaussian beam (orange) and mean position of the light at the output 
(blue). e–g, Intensity profile (blue) of the leftmost column for x0 = 6 (e), 
x0 = 1. The sum of peak intensities is normalized to 1. (f) and for the input 
pattern generated by the SLM (g), compared to the theoretical intensity 
profile of the first mode (orange circles). i, Synthetic-space description of 
the wavepacket propagation shown in h.
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(x0 = 6; third image from the left in Fig. 4a), all the light accumu-
lates in the leftmost column, mostly in the first mode (see Fig. 4e and 
phase information in Supplementary Information). When moving 
the launch beam farther to the left (x0 = 1, 3.5; fourth, fifth and sixth 
images from the left in Fig. 4a), higher modes are populated at the 
leftmost column of the lattice output (Fig. 4f, g). In the sixth image 
from the left in Fig. 4a, b, a spatial light modulator is used to excite only 
the first mode of the leftmost column, resulting in high modes at the 
output of the leftmost column (sixth image from the left in Fig. 4c and 
Fig. 4g). This finding demonstrates the unidirectionality of the edge 
state: moving to the left causes the wavepacket to ascend the modal 
ladder, whereas moving to the right causes it to descend the ladder. 
As Fig. 4 shows, the beam excites an edge state that moves only in one 
direction; that is, as observed both in the experiment and in the simu-
lation, the edge state never propagates in the opposite direction for the 
same bandgap (experimental measurements of the anticlockwise edge 
state of the lower bandgap are given in Methods section ‘Repeating 
the experiments with different parameters’). At the same time, we 
observe that the beam does not scatter off the sharp (bottom-left) 
corner of synthetic space, which demonstrates topological protection 
(see also Methods sections ‘Numerical simulations of the theoretical 
model’ and ‘Repeating the experiments with different parameters’). 
Altogether, these experiments prove that the propagation of the edge 
mode in our synthetic-space lattice possesses all the properties expected 
from topological edge modes, which in our lattice occur in synthetic 
space. We have therefore demonstrated a photonic topological insulator 
in synthetic space.

To conclude, we studied theoretically and experimentally a two- 
dimensional lattice that has one modal dimension and one spatial 
dimension and is subjected to a gauge field in synthetic space, creat-
ing a photonic topological insulator in synthetic space. Although we 
focused on topological phenomena, our scheme for creating synthetic 
lattices is modular and leads to new experimentally realizable systems. 
This opens the door for experiments combining high-dimensional 
physics and long-range couplings (see Methods section ‘Increasing the 
dimensionality of the lattice’) with a plethora of physical phenomena, 
including parity–time symmetry30,31, exceptional points32, Anderson 
localization and solitons. Our study paves the way to the observation 
of these exciting phenomena, which are currently extremely difficult 
to observe in other physical systems. Also, the topological edge state 
in our system is in the bulk in real space, which allows topological 
transport that is not restricted to the spatial edges of the system, but 
extends over the entire system. This can be important for applications 
such as one-way fibres33 and topological insulator lasers in synthetic 
dimensions11,12.
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MEthodS
Increasing the dimensionality of the lattice. Lattices in synthetic dimensions 
can be engineered by exploiting either internal degrees of freedom, such as the 
electron spin states13–15,24,34, or by using non-internal degrees of freedom, such as 
the waveguide modes described here, cavity modes or any other modes created 
by geometrical engineering the system20,21,26,35. In both cases (internal and non- 
internal) the lattice has the ability to represent physics in dimensions higher than 
those of the system and to have long-range couplings in a controlled manner. These 
abilities enable lattices in synthetic dimensions to exhibit numerous effects that 
are not observed in regular spatial lattices22,36–38. The main advantages in using 
non-internal modes in photonics is the ability to scale up the system, owing to the 
unlimited number of available states in the synthetic dimension, and to observe its 
dynamics over a long time because of the absence of spontaneous decay or deco-
herence, as well as the ability to engineer the modes of synthetic space and their 
couplings to a high degree. The ability to study experimentally photonic systems in 
synthetic dimensions opens the door for experiments combining high-dimensional 
physics and a plethora of physical phenomena, ranging from parity–time symme-
try30,31,39, including in dimensions higher than one40–42, exceptional points31,32,43, 
and unidirectional invisibility44 in high dimensions, to Anderson localization45 
under nonlocal or high-dimensional settings, high-dimensional solitons18, top-
ological insulator lasers10–12 and exciton-polariton topological insulator46, all in 
systems incorporating synthetic dimensions.

In this section, we elaborate on how to increase the dimensionality of the two- 
dimensional lattice of waveguides to more than two dimensions. There are two 
main avenues to do that. The first is by arranging one-dimensional oscillating 
columns as the unit cells of a two-dimensional lattice (Extended Data Fig. 1a). In 
this case, there are three dimensions: two dimensions describe the positions of the 
one-dimensional columns in the plane and the third dimension is the mode in each 
one-dimensional column (Extended Data Fig. 1b). In Extended Data Fig. 1a, each 
column of waveguides couples to four neighbouring columns by moving along z 
on the path marked by the black lines, tracing the figure ‘8’. The red columns move 
in the opposite direction with respect to the blue columns (as indicated by the 
direction of the black triangles in Extended Data Fig. 1a). The Floquet Hamiltonian 
of this motion maps to a two-dimensional triangular lattice in space47 and the 
added third dimension is the modal dimension of each column, as discussed in 
the main text.

The second method is to design the waveguides to oscillate in z at several fre-
quencies instead of one. For example, if the one-dimensional rows oscillate at fre-
quency Ω, then the index of refraction n can also oscillate in z at rΩ, where r is an 
integer (Extended Data Fig. 1c). More specifically, the refractive index can be made 
to vary according to γ Ω= + + π

−( )n z n r z m( ) cos
M0 1

  , where γ is a unitless ampli-
tude, n0 is the ambient index of refraction, m is the site number in the x dimension and 
M is the total number of sites in an oscillating row. Oscillation at frequency rΩ 
couples the modes of rows spaced by r−1 modes. This long-range coupling appears 
in many lattice models and can be used to experimentally demonstrate high- 
dimensional physics; however, it is difficult to fabricate lattices with long-range 
couplings in regular spatial lattices. Considering also oscillations of the rows in 
space (x axis in Extended Data Fig. 1c) with frequency Ω and amplitude β results 
in a lattice with both short-range and long-range couplings. In this case, the first 
dimension is the real-space position of the row in y and two more dimensions can 
be encoded in the modes of the rows because multifrequency oscillations can cor-
respond to several dimensions48,49, forming a three-dimensional (3D) lattice. This 
3D lattice can also be subjected to non-trivial effective 3D gauge fields for light by 
altering the relative phases of the different oscillations (Extended Data Fig. 1d). In 
such cases, there is no limit to the number of dimensions that can be added.
Dynamics of the wavepacket near and on the corner of synthetic space. In the 
main text we describe the propagation of a wavepacket along the edge of synthetic 
space. Here, we elaborate on this propagation and provide further analysis and 
results on the experimentally measured dynamics of the wavepacket near and on 
the corner of synthetic space.

As explained in the main text, the edges of synthetic space are not the edges of 
real space. The bottom edge of synthetic space, for example, means occupying the 
lowest mode of each column, which extends over the entire column in real space 
(see Fig. 2a). Thus, a wavepacket occupying the bottom edge of synthetic space will 
actually extend over the entire bulk of the lattice in real space, with the same phase 
at all lattice sites within each column. In the same vein, a wavepacket occupying 
the upper edge of synthetic space also extends over the entire lattice, but with π 
phase difference between adjacent sites within each column. The left and right 
edges have a completely different nature from the bottom and upper edges. Here, 
occupying the left edge in synthetic space also means occupying the left edge in 
real space because x is the spatial dimension of our lattice, and likewise for the right 
edge of our lattice. A wavepacket encircling the edges of the synthetic lattice will, for 
example, start its journey at the bottom edge of synthetic space (the lowest mode 
of each column), then propagate along the lower edge of synthetic space (which 

covers the entire bulk in real space) to the leftmost column, where it will stay and 
climb up the modal ladder, starting from the first mode. After reaching the highest 
mode, the wavepacket will start propagating rightwards over the entire bulk of real 
space, but occupying the high lattice modes, until it reaches the right edge. After 
that, the wavepacket will descend the modal ladder until it reaches the lowest mode, 
completing a full cycle around the edges of our synthetic lattice.

Next, we explain the properties dictated by the topology of our specific synthetic 
lattice. In our system, for φ = π/4 there are two counter-propagating edge states 
in synthetic dimensions: one in the lowest bandgap and one in the upper bandgap 
(Fig. 2d, e). We focus on the state in the upper bandgap because it has a lower spa-
tial frequency and thus it is easier to excite with a Gaussian beam (the experimental 
observation of the edge state of the lower bandgap is described in ‘Measuring the 
anticlockwise-propagating edge state’). The edge state that we measure resides in 
some range of kx values, which may vary in location and size owing to some inher-
ent disorder in the fabrication of the lattice (compare, for example, the edge state in 
Fig. 2d with that in Fig. 2e). Because φ is positive, this edge state should propagate 
clockwise in synthetic space. Furthermore, in the upper bandgap there should be 
no edge states propagating anticlockwise in synthetic space. Thus, a wavepacket 
exciting this synthetic-space edge state should not scatter while passing the corner 
of synthetic space; rather, it should propagate along the leftmost column of the 
lattice in synthetic space. For comparison, we expect that the same wavepacket 
launched into the topologically trivial system (with φ = 0) will strongly scatter 
into the bulk of synthetic space.

In our experiment, we specifically study propagation in the vicinity of the corner 
in synthetic space because it is the most complicated part of the dynamics. We now 
provide further results and conclusions related to the propagating wavepacket of 
Fig. 4. The propagation of the wavepacket along the edge of synthetic space, as 
described in the main text, starts at the lower edge of synthetic space (Extended 
Data Fig. 2a, b) and continues clockwise until it reaches the first mode of the left-
most column, which is the bottom-left corner of synthetic space. At this point of 
the propagation, we expect that the leftmost column will be occupied mostly by the 
first mode. To see this, we measure the intensity distribution of the light exiting the 
lattice in the leftmost column. We compare the measured intensity (Extended Data 
Fig. 2c) with the calculated intensity of the first mode (orange circles in Extended 
Data Fig. 2e). To confirm that this is indeed mostly the first mode, we measure 
the phase by interfering the light emerging from the leftmost column with the 
incoming Gaussian beam (Extended Data Fig. 2d). Because the peaks align on the 
equal-phase circle of the Gaussian beam (dashed line in Extended Data Fig. 2d), 
we conclude that all the light leaves the waveguides with the same phase—which 
matches the phase pattern of the first mode. The slight deviation from the first 
mode can be attributed to a small occupancy in the second mode, which is expected 
because the edge state occupies also the second mode as it decays into the bulk of 
synthetic space.

After the wavepacket reaches the corner, we expect it to continue its propagation 
by staying in the leftmost column (instead of coupling to other columns, as in the 
trivial case) and start occupying higher modes in the leftmost column. In Extended 
Data Fig. 3 we show the measured output light for the case in which the initial 
Gaussian beam is launched on the left side of the lattice, which represents a later 
stage in the propagation of the wavepacket (Extended Data Fig. 3a, b).

We measure the intensity (Extended Data Fig. 3c, f) and the phase (Extended 
Data Fig. 3d, e) of the light occupying the leftmost column in the same way as 
in Extended Data Fig. 2c, e. We observe that the intensity does not match the 
first mode (Extended Data Fig. 3f) and that the intensity peaks in Extended Data 
Fig. 3e do not lie perfectly on the equal-phase line (dashed line). Instead, we notice 
a phase difference of up to about 2π/3 between adjacent sites, which means that 
the light does not match the first mode in its phase either. By estimating the mode 
occupancy of Extended Data Fig. 3c–f according to the phase and amplitude, we 
find that more than 50% of the light intensity is in higher modes.
Numerical simulations of the theoretical model. In the main text, we pres-
ent a new scheme for achieving a topological insulator in synthetic dimensions 
using a two-dimensional oscillating lattice. Here we give further details on this 
scheme. As mentioned in the main text, we can describe our model with the 
tight-binding approach. The tight-binding equation for our scheme is equation (1). 
In Supplementary Information, we explain why equation (1) describes our lattice 
of waveguides and how it relates to topological insulators in synthetic dimensions. 
Here, we give further details on this model by studying it numerically.

Before we start, we first describe how to choose the parameters of equation (1) 
to fit the desired model in synthetic dimensions. Equation (1) can represent many 
models in synthetic dimensions for different choices of R, Ω, pn and φm.
Choosing the couplings, pn, and the frequency, Ω. The frequency should correspond 
to the spacing between the different modes in the propagation constant kz of each 
column (which has the role of energy in the analogous energy Hamiltonian). If the 
couplings are chosen according to a Jx lattice, then the modes are equally spaced in 
kz, and Ω is chosen according to that spacing.
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Choosing the amplitude of oscillations, R. The amplitude of the oscillations corre-
sponds to the strength of the coupling between the modes in synthetic space. Here, 
we choose R to be large enough to have substantial evolution dynamics within the 
finite propagation distance of our experiments and small enough so that it does 
not induce high-order effects that obstruct the dynamics.
Choosing the phase, φm. φm is the phase per plaquette in synthetic space. We start 
by determining the Floquet eigenvalues and eigenvectors of equation (1) for a 
finite 20 × 20 lattice with φ = π/2 (the spectrum in Fig. 2d, e is for a lattice of 
the same size as the experimental lattice, but with seven sites in the y dimension 
and infinite periodicity in the x dimension, and has a periodic boundary condi-
tion of φ = π/4). We calculate the eigenvalues (Extended Data Fig. 4a) and the 
distribution of one eigenvector in the gap in real space (Extended Data Fig. 4b) 
and synthetic space (Extended Data Fig. 4c). The spectrum clearly shows the 
existence of edge states, which reside in the bulk of the real-space lattice, but at 
the edge of synthetic space.

Finally, in Supplementary Information we show that the bulk propagation 
in synthetic dimensions is mathematically equivalent to the Hofstadter model 
under certain approximations. Consequently, it shares the same properties of 
the Hofstadter model, but in synthetic dimensions. However, when disorder 
is introduced into synthetic space, it acts differently than in real space. In real 
space, the disorder usually affects only the on-site energy and nearest-neighbour 
coupling, which are the diagonal and off-diagonal terms in a Hamiltonian of a 
one-dimensional lattice in the tight-binding approach (Extended Data Fig. 5a). 
Because the transformation to synthetic space is nonlocal, in synthetic space this 
disorder can have long-range coupling (Extended Data Fig. 5b). To see how the 
disorder in synthetic space affects our model, we calculate the Bott index50 of 
the Hofstadter model with ordinary disorder (on-site and nearest-neighbours 
couplings) and with disorder introduced into synthetic space (Extended Data 
Fig. 5c). This calculation gives roughly the same result for both cases, meaning 
that the topology is robust.

Next, we discuss the impact of disorder that is confined in space (for example, 
removing a single site or several sites; Extended Data Fig. 5d). We find that the 
topology is not as robust as for the regular topological insulator and for the topolog-
ical insulator in synthetic dimensions. Because the unitary transformation between 
real space and synthetic space (equation (11) in Supplementary Information) is 
nonlocal, disorder that is confined in real space becomes non-confined in synthetic 
space (Extended Data Fig. 5e) and vice versa. Thus, although strongly confined 
defects may affect the robustness of the topological edge state in synthetic dimen-
sions, the state is nevertheless robust to a range of defects that are not confined 
spatially in real space, but are confined in synthetic space.
Measuring the anticlockwise-propagating edge state. In our experiment we 
focused on measuring the edge state that propagates clockwise in synthetic space. 
The Hofstadter model includes also an edge state that propagates in the reverse 
direction—anticlockwise—in a different bandgap. In our experimental system and 
its simulations, this second edge state is more difficult to measure and to excite. 
However, we can excite it by using a spatial light modulator (SLM). We excite the 
first mode in the rightmost column with the SLM, which corresponds to exciting 
the bottom-right corner in synthetic space. As a result, part of the light couples to 
the clockwise edge state (and propagates to the bulk) and part to the anticlockwise 
state (and propagates on the rightmost column, increasing in modes). The light 
that couples to the anticlockwise edge state is concentrated on a smaller number of 
sites than the light that couples to the bulk. This fact results in a clear measurement 
of the anticlockwise edge state in the output intensity image. Extended Data Fig. 6 
shows experimental results demonstrating the anticlockwise edge state.

Extended Data Fig. 6a, d shows the excitation in real space (first mode of the 
rightmost column) of the topological and trivial lattices, respectively. The measured 
output shows that for the topological case (Extended Data Fig. 6b) light propagates 
along the edge of synthetic space, rising in modes in the rightmost column (the 
mode at the output is clearly not the first mode, because the third waveguide from 
the bottom has zero light occupancy). By contrast, in the trivial case (Extended 
Data Fig. 6e) light propagates to the bulk and increases in mode, thus propagating 
diagonally in the space–mode lattice (Extended Data Fig. 6f).
Repeating the experiments with different parameters. To further establish that 
the dynamics that we observe in our experimental system is indeed of topological 
nature and robust in the presence of disorder, we fabricate a second lattice, with 
different parameters than the sample used to obtain the data presented in the 
main text, but with the same topological features. We repeat the experiments and 
measure the synthetic-space edge state in this new sample. Extended Data Fig. 7a, b  
presents the incident light beam in real space and in synthetic space, whereas 
Extended Data Fig. 7c, d shows the corresponding experimental data and simula-
tion results at the output facet of the photonic lattice. We observe clear localization 
at the leftmost edge, which begins at low modes and climbs the modal ladder to 
higher modes with the initial beam moving to the left. Extended Data Fig.7e shows 
the corresponding image in synthetic space.

Designing the experimental lattice in synthetic dimensions. Here, we provide 
further technical details on the waveguide lattices described the main text, in terms 
of their relation to the tight-binding model and their fabrication. We fabricated lat-
tices with φ = π/4 (topological) and with φ = 0 (topologically trivial). The lattices 
consist of 7 × 11 waveguides fabricated in fused silica using the direct laser writing 
technique51. The oscillation parameters (Ω, R) and the spacing between waveguides 
(in x) are such that the coupling coefficient in the x dimension and in the synthetic 
dimension are close to one another and are sizeable enough to obtain considerable 
evolution during propagation in our lattice. The light propagates according to the 
paraxial equation:

ψ ψ ψ∂
∂

= − ∇ +
Δi

z k
x y z k n x y z

n
x y z1

2
( , , ) ( , , ) ( , , ) (2)

0

2 0

0

In equation (2) ψ(x, y, z) is the electric-field envelope function, defined by 
E(x, y, z) = ψ(x, y, z)exp(ik0z – iωt), where E(x, y, z) is the electric field, z is the 
propagation axis, the Laplacian ∇2 is restricted to the transverse (x − y) plane, 
ω = 2πc/λ is the optical frequency and c is the velocity of light. Here, −Δn(x, y, z) 
is the ‘effective potential’, that is, the variation in the refractive index relative to the 
ambient refractive index of the medium, n0. We launch a Gaussian beam into the 
lattice, excite the edge state in synthetic space at z = 0 and measure the intensity at 
the output face of the lattice using a charge-coupled device camera.

We now describe the process of designing the experimental photonic lattice that 
we used. The process included several steps: first, we fabricated a single elliptical 
waveguide and measured the intensity distribution of the propagating modes in 
both its major and minor axes (orange line in Extended Data Fig. 8a, b). This 
process was carried out shortly before the fabrication of the lattice to avoid inac-
curacies due to some drift in the experimental system, which occurs naturally over 
time. Following this, we measured the coupling of two fabricated waveguides as a 
function of the distance between them and obtained exponential curves (Extended 
Data Fig. 8c, d).

On the basis of the measurements presented in Extended Data Fig. 8a–d, we 
deduced the spatial distribution of the index of refraction of a single site, Δnsite. 
We compared the modes of the simulated waveguides with the experimental 
waveguides (blue points in Extended Data Fig. 8a, b), and using Δnsite we simu-
lated a single Jx lattice. The eigenvalues of the lattice are shown in Extended Data 
Fig. 8e. The first five eigenvalues are perfectly aligned, as required, but modes 6 
and 7 tilt upwards from the straight blue line. The reason for this deviation is the 
relatively close proximity of the waveguides in the experiment, which slightly 
violates the tight-binding approximation and therefore reduces the efficiency of 
the coupling of modes 6 and 7 in the experiment. Reducing the efficiency of the 
coupling in the two highest modes was a compromise made because of the short 
propagation length in the experiment— separating the waveguides from each 
other further reduced the average coupling and slowed down the overall dynam-
ics in z. Next, we used the beam propagation method to verify that the eigenmodes 
of a single oscillating Jx lattice were all coupled to one another and verified the 
existence of the topological edge state in synthetic dimensions in the exact lattice 
that we fabricated (these are the simulations shown in Fig. 4c). Finally, after  
simulating the system using data extracted from the experimental system, we 
fabricated the lattice and performed the experiments described in the main text. 
Our waveguide structure had 7 × 11 waveguides, a radius of R = 18 μm and 
Ω = 0.87 rad cm−1; the distances of the Jx lattice were (17.49, 15.67, 15.15, 15.15, 
15.67, 17.49) μm, the spacing in the x axis was 27 μm, the phase difference 
between the oscillating waveguides was π/4 and our probe wavelength was 
λ  =  633  nm. The coupling curves were = . −

. × −C 2, 670 08ex
x

5 7772 10 6 and 
= . −

. × −C 2, 118 41ey

y

5 90928 10 6 in units of m−1 and the ambient refractive index was 
n0 = 1.45. The value of dyk0RΩ is theoretically about 0.3, where dy = max(dy,n). 
The fast-rotating-wave approximation requires dyk0RΩ ≪ 1. However, according 
to our simulations 0.3 is small enough to preserve edge states in a gap. The sim-
ulation for the band structure shown in Fig. 1 was done with the following param-
eters: R = 5 μm, Ω = 69.1448 m−1, coupling in y of Cy = 10.943 m−1 and 
k0 = 1.919 × 107 m−1. We fabricated the waveguides in 15-cm-long samples of 
fused silica glass (Corning 7980) using the femtosecond laser writing method. 
We used pulses created by a Coherent RegA optical parametric amplifier seeded 
with pulses from a Ti:sapphire Mira 900 laser carrying energy of 450 nJ per pulse, 
at 800 nm and 100 kHz repetition rate. An Aerotech ALS 130 positioning system 
together with a microscope objective (numerical aperture, 0.35) provided highly 
accurate focusing of the laser beam ranging between 50 μm and 800 μm under 
the sample surface. The laser pulses modified the refractive index of the sample 
(by up to 7 × 10−4) at the focal point and scanned point by point by moving the 
sample with a speed of 100 mm min−1. This created waveguides with a mode field 
with principal axes of 10.4 μm and 8 μm at 632.8 nm wavelength. Propagation 
losses and birefringence were estimated at 0.2 dB cm−1 and 10−7, respectively. For 
more details on the fabrication, see ref. 51.
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Data availability
The data that support the findings of this study are available from the correspond-
ing author upon reasonable request.
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Extended Data Fig. 1 | Increasing the dimensionality of a two-
dimensional lattice of waveguides. a, One-dimensional columns 
arranged in a two-dimensional lattice. The columns oscillate along the 
black paths in the direction indicated by the triangles. Red and blue 
colours indicate different columns in the same unit cell. b, Representation 

of a in synthetic dimensions. c, Lattice with two oscillation frequencies, 
oscillating in the x direction according to Δx and with index of refraction 
changing periodically according to Δn. d, Representation of c in synthetic 
dimensions.
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Extended Data Fig. 2 | Light occupancy in the leftmost column  
when a Gaussian beam is launched from the middle of the lattice.  
a, b, Illustrated intensity (colour bar; peak intensity is set to 1) of the  
initial Gaussian beam launched in real space (a) and synthetic space (b).  
c, Measured output intensity of the leftmost column for the input shown 
in a and b. d, Measured interference of the lattice output at the leftmost 
column with the input beam, showing that all of the seven peaks are in 
phase (the dashed line represents equal phase), indicating that the light 
at the leftmost column occupies the lowest spatial mode of the column. 
e, Measured normalized intensity cross-section (blue line) at the leftmost 
column of the lattice output, compared with the theoretically calculated 
(tight-binding) intensity profile of the first mode of the column (orange 
circles). The sum of peak intensities is normalized to 1.
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Extended Data Fig. 3 | Light occupancy in the leftmost column  
when a Gaussian beam is launched from the left side of the lattice.  
a, b, Illustrated intensity pattern (colour bar) of the initial Gaussian beam 
launched in real space (a) and in synthetic space (b). c, Measured intensity 
distribution at the leftmost column. d, Measured interference pattern at 
the lattice output at the leftmost column, showing that, unlike in Extended 
Data Fig. 2d, the seven intensity peaks are not in phase and therefore 
occupy higher modes of the array. e, Zoom-in on the red rectangle in 
d, showing that the light peaks are not aligned on the equal-phase line 
(dashed line). f, Cross-section (blue line) of the intensity pattern at the 
leftmost column of the lattice output, compared with the calculated 
intensity profile of the first mode (orange circles) where the sum of 
peak intensities is normalized to 1. The mismatch shows that the light is 
occupying modes higher than the first mode.
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Extended Data Fig. 4 | Floquet spectrum of equation (1). a, Eigenvalues 
obtained numerically for a 20 × 20 site, displaying two topological gaps. 
b, Real-space amplitude distribution of an eigenstate residing in the 
gap (edge state marked in a). c, The same eigenstate as in b as it appears 
in synthetic space (unitary transformation of b), showing clearly that 
the marked state is an edge state. The parameters used are R = 5 μm, 
Ω = 69.1448 m−1, coupling in y cy = 10.9431 m−1 and k0 = 1.9 × 107 m−1.
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Extended Data Fig. 5 | Disorder in synthetic space. a, Typical disorder 
introduced to the Hamiltonian of a one-dimensional lattice. The 
Hamiltonian is in real-space matrix representation (the colour bar 
corresponds to the real part of the value of the matrix element). b, The 
disorder shown in a after transformation to synthetic space. c, Standard 
deviation and mean value of the Bott index averaged over 10 random 

disorder realizations for the regular topological insulator (blue line) and 
for the topological insulator in synthetic dimensions (red line). The red 
bracket indicates half of the bandgap. d, e, A disorder (black sites) that is 
confined spatially in real space is not confined in synthetic space (blue 
sites).
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Extended Data Fig. 6 | Exciting the anticlockwise edge state. a, Initial 
excitation of the first mode in the rightmost column of the topological 
lattice. b, Output intensity (colour bar) corresponding to a. c, Direction of 

propagation of the light in synthetic space. d–f, The same as a–c, but for 
the trivial lattice. CW, clockwise; ACW, anticlockwise.
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Extended Data Fig. 7 | Experimental results for a sample fabricated 
with different parameters. Illustration of an incident narrow Gaussian 
beam directed towards the input facet of a synthetic-space topological 
lattice fabricated with parameters different from those used in the 
experiments presented in the main text (here, φ = π/4, Ω = 91 m−1 and 

R = 17.5 μm). a, b, Input beam launched at different locations in real 
space (a) and synthetic space (b). c, d, Experimentally imaged (c) and 
simulated (d) beam intensity at the output facet of the lattice. e, Synthetic-
space description corresponding to the evolution of the wavepacket as it 
propagates in the lattice.
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Extended Data Fig. 8 | Stages in the preparation of the experimental 
model. a, Horizontal cross-section of the intensity of a propagating mode 
of a single waveguide (orange line) and the cross-section of the mode 
in the simulations (blue line). The image on the right is the intensity 
distribution of the mode in the direction of the cross-section. b, Same as 

a, but for the vertical cross-section of the propagating mode of a single 
waveguide. c, Coupling versus distance in the horizontal direction.  
d, Coupling versus distance in the vertical direction. e, Mode propagation 
constants of the Jx lattice based on measured experimental parameters 
(blue circles). The dashed line is a guide for the eye.
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