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Spatial Thirring-type solitons via
electromagnetically induced transparency
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We show that the giant Kerr nonlinearity in the regime of electromagnetically induced transparency in va-
por can give rise to the formation of Thirring-type spatial solitons, which are supported solely by cross-phase
modulation that couples the two copropagating light beams. © 2005 Optical Society of America
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Coherence between two levels that is induced by a
strong (drive) laser field can give rise to absorption
cancellation on another transition in a �-shaped
atomic level configuration for a weak probe field. Ab-
sorption cancellation occurs via destructive interfer-
ence with the drive field. This phenomenon, known
as electromagnetically induced transparency (EIT1,2),
changes the probe-field dispersion, making its group
velocity dependent on the drive field, so that by turn-
ing the drive field off one can slow a probe pulse down
to a complete standstill.3 Slow-light manifestations of
EIT have attracted considerable attention, in view of
their possible use for storing and regenerating quan-
tum states of light in atomic quantum networks.4 An-
other nonlinear manifestation of EIT is spatial soli-
tons, which were predicted to form when diffraction
is balanced by self-phase modulation5 (SPM).
Whereas the foregoing aspects of EIT pertain to a
single probe beam, giantly enhanced Kerr nonlinear
coupling of two probe beams is not less promising.6,7

Its highlight is the dramatically enhanced phase
shift (compared with similar shifts in other Kerr me-
dia), impressed by one ultraweak probe on another
(cross-phase modulation, XPM) in the N-shaped
atomic level configuration detailed below. This effect
may bring about the deterministic entanglement of
two single-photon pulses.8,9

Despite the extensive discussion of the giant XPM
in EIT media and its recent experimental
demonstration,10 its analysis has been restricted
mainly to one dimensional (1D) propagation without
considering transverse (diffraction) effects of the
cross-coupled beams. Here we study unexplored as-
pects of the giantly enhanced XPM between two
beams subject to EIT: the formation of low-power
spatial solitons that arise solely from the balance be-
tween diffraction and XPM with no contribution from
SPM.

This kind of soliton generically conforms to the
massive Thirring model.11–13 In optics, Thirring-type
(holographic) solitons were predicted to occur with
the XPM arising from the grating induced by two mu-
tually coherent fields,14,15 having no SPM contribu-

tion. However, even though evidence for holographic
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focusing was reported,16,17 optical Thirring-type soli-
tons have thus far never been observed. This is be-
cause it is very difficult to find optical systems with
large XPM but lacking SPM altogether. The system
proposed in this Letter offers just that and thus sup-
ports the formation of such “exotic” optical Thirring-
type solitons.

Consider a cold atomic medium containing two spe-
cies of atoms, A with a �-shaped level configuration
and B with an N-shaped level configuration (Fig. 1).
All the atoms are optically pumped to the ground
states �b�A,B. Atoms A and B resonantly interact with
two running-wave fields driving the atomic transi-
tions �c�A,B→ �a�A,B with the Rabi frequencies �d

�A,B�,
respectively. In the absence of level �d�B, this situa-
tion corresponds to the usual EIT for the fields E1,2
that are acting on the transitions �b�A,B→ �a�A,B: in
the vicinity of a frequency corresponding to the two-
photon Raman resonances �b�A,B→ �c�A,B, the medium
becomes transparent for both weak fields.1,2,18 This
transparency is accompanied by a steep variation of
the refractive index. The field E1 dispersively inter-
acts with atoms B via the transition �c�B→ �d�B with
the detuning �=�dc

�B�−�1. As a result, atoms of species
B simultaneously provide EIT for the field E2 and its
cross coupling with the field E1, known as XPM.6,7,20

Note that the role of atoms A in Fig. 1 is only to pro-
vide EIT for the field E1. This is necessary to match

Fig. 1. Atomic level scheme involving two species of atoms
A and B, both subject to EIT conditions. The fields E1, E2
interact via Kerr-nonlinear XPM. For the case in which E1,2

are cw fields, atoms A and �d
�A� can be ignored, as they are
unnecessary.
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the group velocities of the two copropagating weak
pulses and thus maximize their interaction time.20 In
what follows we limit ourselves to continuous-wave
(cw) fields, so that EIT conditions for field E1 are not
required, i.e., atoms A, as well as the driving field
�d

�A�, can be dropped.
Here we study optical beams with narrow trans-

verse profiles, so that diffraction plays a significant
role, as opposed to earlier treatments of XPM in
EIT.6–9,20–22 Another distinct feature of this problem
is that SPM, caused by the coupling of the field E2 to
the transition c→d in atoms B, or its equivalent for
the field E1, is inversely proportional to the detuning
of the field from that transition. Hence, assuming
that the detuning of field E2 is much larger than the
detuning of field E1 on the same transition, SPM can
be neglected and only XPM survives. These two fea-
tures are responsible for the ability to form a novel
type of spatial soliton. The system is described by the
following equations for the slowly varying envelopes,
obtained perturbatively under the weak-field adia-
batic approximation,18,19 for cw fields and the stan-
dard paraxial conditions (i.e., optical beams much
wider than the wavelength):

2ik1

�

�z
E1 + ��

2 E1 = − k1
2��E2�2E1, �1a�

2ik2

�

�z
E2 + ��

2 E2 = − k2
2��E1�2E2, �1b�

where �=�dc
�B�2�ab

�B�2�B / ����d
�B��2�0	3�, �B is the density

of atoms B, �dc
�B� and �ab

�B� are the c→d and a→b tran-
sition dipoles, and k1,2 are the wave vectors of the
fields E1,2, respectively.

In deriving the above equations we have made the
experimentally realistic assumption that absorption
of both weak fields is negligible over the propagation
length.6,9,20 Rewriting these equations in dimension-

Fig. 2. Fundamental-mode Thirring-type solitons. (a)–(c)
Soliton profiles for different ratios between the peak ampli-
tudes. (d) Soliton existence curve: FWHM of each field ver-
sus the peak amplitude E2�0� at a fixed peak amplitude
E1�0�=1. Points a–c correspond to the solitons of (a)–(c),
respectively.
less form yields
���
2E1 + i

�

�

E1 + ��E2�2E1 = 0, �2a�

a2���
2E2 + ia
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where a=k1 /k2 is the asymmetry parameter, ���
2

=�2 /��2+�2 /�2; �=k1x; =k1y; 
= �k1 /2�z; and Ei

=����Ei. The sign of the detuning � (appearing inside
the constant �) is crucial, as it determines the sign of
the nonlinearity: �= +1 for positive (red) detuning
(focusing) and �=−1 for negative (blue) detuning (de-
focusing).

It is important to emphasize the basic difference
between Thirring-type solitons and Manakov-like
vector solitons.23 The nonlinearity in Manakov-like
systems depends on the sum of the intensities of the
individual components; that is, SPM and XPM play a
symmetric role. Consequently, the constituents of the
Manakov-like solitons are bound states of the poten-
tial they jointly induce. For Thirring-type solitons, on
the other hand, each component feels, and is guided
by, a different potential: E1 feels the potential induced
by E2 and vice versa. Note also that a must be differ-

Fig. 3. (a) Composite Thirring-type soliton solutions with
beam E1 in the fundamental (ground-state) mode and beam
E2 in the dipole (first asymmetric) mode. The amplitude ra-
tio is 1 (equal intensities). (b) Same as (a) for amplitude ra-
tio 2. (c) Propagation of the solution shown in (a): beam E1
(upper) and beam E2 (lower) without (left) the nonlinearity
for one diffraction length and with (right) the nonlinearity
for �10 diffraction lengths. During nonlinear propagation
the composite entity splits into two fundamental Thirring-
type solitons diverging away from one another. (d) Propa-
gation of the solution shown in (b) in the presence of initial
noise. Both components fuse into a single fundamental
Thirring-type soliton.
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ent from 1: i.e., the fields E1 and E2, operating on dif-
ferent transitions, must have different wavelengths.
If a=1 the SPM term cannot be neglected, and Eqs.
(1) are no longer adequate.

The soliton solutions of Eqs. (2) have been found
numerically through the self-consistency method and
their propagation has been simulated by using the
split-step Fourier propagation method. The asymme-
try parameter a has been chosen to take the experi-
mentally reasonable value of 1.0005 throughout our
calculations. In what follows we discuss the main fea-
tures of solitons thus obtained, referring to solutions
that are bound in one or two transverse directions as
1D and 2D, respectively.

We first discuss the �= +1 (focusing) case. We have
studied various amplitude ratios of fields E1 and E2 in
the presence of noise to find that the fundamental
(ground-state mode) mode of the 1D system ����

2

=�2 /��2� is stable. Figures 2(a)–2(c) present such fun-
damental Thirring-type solitons with different ampli-
tude ratios. Figure 2(d) shows the existence curve
versus the peak amplitude of the second component,
E2�0�, when E1�0�=1. Note that the existence curve is
governed only by the ratio between the peak ampli-
tudes. Increasing the peak amplitudes of both compo-
nents by a factor � results in new widths, FWHM1/�
and FWHM2/�.

When seeking Thirring solitons in two transverse
dimensions ����

2=�2 /��2+�2 /�2�, we find that the 2D
solitons suffer from a weak instability, similar to 2D
Kerr solitons.

Next, we have searched for 1D composite (multi-
mode) Thirring-type solitons for which each field is in
a different mode.24 Specifically, we have looked for
solitons in which E1 and E2 are in the fundamental
and second (dipole-type) modes, respectively, as was
found for holographic solitons25 and the Manakov-
like system.23 However, our system is not saturable
(unlike the one in Refs. 14 and 25), and we find these
solutions to be unstable. When the amplitude of the
dipole mode is equal to or larger than that of the fun-
damental mode, the composite entity splits into two
fundamental Thirring-type solitons diverging away
from one another [Fig. 3(c)]. The splitting occurs ir-
respective of whether we add initial noise to the ideal
solution. On the other hand, when the fundamental
component is more intense than the dipole compo-
nent, they fuse (within several diffraction lengths,
depending on the noise) into a fundamental-mode
Thirring-type soliton [Fig. 3(d)].

The case of defocusing nonlinearity [�=−1 in Eq.
(2)] might have been expected to yield dark 1D or 2D
solitons. However, within our model with a�1, we
cannot find such solitons. This is related to the fact
that a dark soliton (for any local nonlinearity) is the
second bound state of the induced potential at cutoff
energy.26 A Thirring-type EIT dark soliton requires

both components to be at the cutoff energy of each
other’s induced potential. This requirement prohibits
the existence of a dark Thirring soliton unless a=1.
Yet, as discussed above, the case a=1 does not repre-
sent our EIT system anymore.

To conclude, we have shown that the giant Kerr
nonlinearity in the regime of EIT in vapor can lead to
the formation of spatial Thirring-like vector solitons,
supported solely by cross-phase modulation.
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