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The recent advent of photonic topological insulators has opened the door to using the robustness of topologically pro-
tected transport—originated in the domain of condensed matter physics—in optical devices and in quantum simulation.
Concurrently, quantum walks in photonic networks have been shown to yield exponential speedup for certain algo-
rithms, such as Boson sampling. Here we theoretically demonstrate that photonic topological insulators can robustly
protect the transport of quantum information through photonic networks, despite the presence of disorder. © 2016
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Topological insulators are materials that have a bulk bandgap, but
have edge (or surface) states with energies that cross the gap [1]. In
2D, these states are protected from scattering: they cannot scatter
into the bulk due to the gap, and they cannot scatter backward
because the backward channel is not present or is forbidden from
coupling. This leads to robust transport, offering potential appli-
cations in quantum information [1], wherein qubits are protected
against decoherence.

Photonic topological insulators (PTIs) were proposed [2,3] and
realized in microwaves [4,5]. Other schemes were then predicted for
the optical regime [6–9] and realized in experiments using arrays of
helical waveguides [10] and in resonator arrays [11]. As described
below, here we are interested in the system of Ref. [10], where
classical light in the paraxial regime (thus obeying a Schrödinger-
type paraxial wave equation) propagates in a honeycomb lattice
of helical waveguides. In such a helical honeycomb lattice, a
bandgap exists in the spatial spectrum with topological edge states.
Each of the bands acquires a nonzero Chern number. The experi-
ment showed that even in the presence of scattering (by defects and
corners), the edge wave function propagates unimpeded.

Independently, quantum walks [12] in photonic lattices have
shown rich physics [13–16]. A breakthrough came in 2013, when
it was shown that non-interacting quantum walks give exponen-
tial speedups in calculating hard-to-compute quantities [17]; this
is “boson sampling”. This, taken together with the “KLM proto-
col,” [18] shows that non-interacting optical systems show great
potential for quantum information processing. As of yet, however,
there has been no notion on how topological photonic systems
can “topologically protect” quantum information. Indeed, there

is no need to protect photons from decoherence because photons
barely interact and decohere slowly. So what does it mean to
protect photonic quantum information?

Here, we show that PTIs can be used to robustly transport
fragile multiphoton states in quantum walks. We show that these
states maintain their path entanglement despite disorder, in stark
contrast with nontopological systems. Throughout this analysis
the topological nature of the system is manifested in the robust
transport of its unidirectional propagating edge states, where
scattering by defects and imperfections is suppressed.

First, we show using a simplified analytical argument that scat-
tering will necessarily destroy maximally spatially entangled states
(for example, two-particle NOON states [19,20], where the
measurement of a photon in one channel implies that the other
will be observed in the same one). Specifically, we show that upon
backscattering any initially NOON-state wave packet will neces-
sary contain a nonzero amplitude to measure one transmitted and
one reflected photon, making the wave function non-NOON.
We then use numerical simulations to show that path entangle-
ment is preserved in a disordered topological system, and
destroyed in a topologically trivial system.

Consider the diagram of the 1D nontopological lattice with a
defect (Fig. 1). The two single-photon spatial states in which the
photons are initially launched are I †l j0i and I †r j0i (denoting
left and right wave packets, where I †l creates a photon in the left
state and I †r in the right state). We allow the wave packets to
hit the defect and be reflected and transmitted. Assuming that
both the left and right wave packets get reflected and transmitted
with the amplitudes r and t , we have
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I †l → UI †l U
† � rR†

r � tT †
l and

I †r → UI †rU† � rR†
l � tT †

r ;
(1)

where U denotes the evolution operator corresponding to the field
Hamiltonian (not the single-particle evolution operator in the
Schrödinger picture); and R†

l (T †
l ) and R†

r (T †
r ) are the left and

right reflected (transmitted) wave packets, respectively. Consider
an initial NOON state: jψ�0�i � 1

2 �I †l I †l � I†r I †r �j0i.
After the state evolves and gets reflected from and transmitted

by the defect, the wave function is:

jψ�0�i→ jψ�t�i � 1

2
U�I †l I †l � I †r I†r �U†j0i

� 1

2
��UI †l U†��UI†l U†�� �UI†rU†��UI †rU†��j0i:
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r � tT †
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l �� �rR†

l � tT †
r ��rR†

l � tT †
r ��j0i

� 1

2
�r2R†

r R†
r � t2T †

l T
†
l � 2trT †

l R
†
r � r2R†

l R
†
l

� t2T †
r T †

r � 2trT †
r R

†
l �j0i: (2)

This state is fundamentally non-NOON, because of the
amplitudes that mix the transmitted state on the right and the
reflected state on the left (and vice versa)–these are the cross
terms. Note that if one considers only the region on the right-
hand side of the defect, the state is NOON-like. However, in this
toy model the reflected channel must not be ignored, since wave
packets therein may (in a more complex setting) encounter
another defect and get scattered in the rightward direction.
This would therefore make the overall transmitted state most def-
initely non-NOON. Indeed, in a fully disordered system, the
state will be less NOON-like with each scattering event, hence,
the final state is necessarily some random state that is not max-
imally path entangled. This simplified model also conveys why
the path-entanglement character is not destroyed in topologically
protected lattices. If r � 0 (a property of topological protection),
clearly there are no cross terms and the state remains NOON.

To study a quantum walk in a PTI lattice, consider a honey-
comb lattice of helical waveguides akin to the design in Ref. [10],
and as depicted in Fig. 2(a), i.e., a PTI. The dynamics of the
diffraction of a photon through a PFTI waveguide array is given
by [10]

i∂za†n �
X

hmi
ceiA0�cosΩz;sinΩz�·rmna†m�una†n≡

X

m

Hnm�z�a†m; (3)

where z is the distance of propagation along the waveguide axis; a†n
creates a photon on waveguide n; c is the coupling; A0 � kRΩa is

the gauge field strength (arising due to the helicity); k is the
wavenumber, R is the helix radius, Ω is the spatial frequency of
the helices and a is the lattice constant; un is a random number
lying in the range �−W ;W �, representing disorder (random wave-
guide refractive index); andHF �z� is the z-dependent Schrödinger-
picture Hamiltonian. Here, z takes the place of time in the usual
Schrödinger equation. Physical time can be fully neglected in the
case of continuous-wave light. Or, if pulsed lasers are used, chro-
matic dispersion effects can be neglected when the hopping con-
stant c does not change significantly within the spectral bandwidth
(for typical laser-written waveguides, a readily achievable spectral
bandwidth of 10 nm or less, corresponding to pulses of several hun-
dred femtoseconds, is more than sufficient). Since z, the propaga-
tion distance, acts like time, the photon diffraction maps to the
temporal motion of a quantum particle. This mathematical equiv-
alence between Eq. (3) and the Schrödinger equation has been
exploited to probe a wealth of phenomena, including Bloch oscil-
lations [21,22], Zener tunneling [23], Shockley states [24], bound
states in the continuum [25], Anderson localization [26–28],
photonic quasicrystals [29], photonic graphene [30], and others.

It has been shown [31] that Floquet topological insulators in
the strong-driving limit (helix pitch smaller than coupling length),
the z dependence can be removed and the system can be approx-
imately described by the Haldane model [32]. We work exclu-
sively in this limit. The practical difference between the two
lies in the fact that there is some bending loss associated with
the waveguide helicity. Experimentally, this will manifest in a
lower photon count, meaning that a longer integration time is
required. But this does not affect photon correlations in the
lattice.

This photonic system exhibits topological edge states residing
in the bulk gap [10,32], as shown in see Fig. 2(b). Moreover, there
are no counterpropagating states in the gap, meaning that when
the edge states encounter a defect they do not scatter. In the
Haldane model, we consider a honeycomb lattice with nearest
neighbor coupling term c1, the second-neighbor term jc2j �
0.2jc1j; the coupling phase is set to π∕2 [32]. This regime is easily
accessed in the model in Ref. [10]. The bandgap is called topo-
logical because there is a nonzero topological invariant (the Chern
number–see Ref. [32]). The edge states travel to the right along
the upper edge and to the left along the bottom edge.

Fig. 1. We consider an injected NOON state based on spatially sep-
arated input states. They scatter off a defect in the topologically trivial 1D
lattice, resulting in reflected and transmitted wave packets.

Fig. 2. (a) Honeycomb lattice of helical waveguides forms a PFTI
[10]. (b) The band structure in the topological case (edge states cross
the bandgap). (c) The probing effects of disorder: the two-photon state
is injected in the “clean” region (left), and enters the disordered region
(right).
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To elucidate the role of the topological features of our system
in protecting entanglement, consider the specific system sketched
in Fig. 2(c). This is essentially the photonic topological insulator
of Ref. [10], with the left part of it being an ideal (disorder-free)
lattice, whereas the right part of it contains disorder. States are
injected on the “clean” left side (i.e., not disordered; W � 0),
propagate to the right, and enter a disordered region. The goal
here is to examine the effect of the disordered region on the prop-
erties of a two-photon wave function. We note in addition that
here we restrict our analysis to pure quantum states being
launched into the waveguide array rather than mixed states.
That said, the correlation map associated with ideal NOON states
cannot arise from classical light of any form (see the criteria for
classical light set forth in Ref. [14], which NOON states violate).

Photonic quantum walks involve injecting a photon into a
waveguide, or multiple photons in path-entangled spatial states
[13–16]. Our initial state is a superposition of topological edge
states. In particular, consider the projection of a single waveguide
excitation on only edge modes in the bandgap (which can be
achieved experimentally through the use of a spatial light modu-
lator to launch the exact wave function). We construct these states
from the edge states in the bandgap within some finite spatial
bandwidth, centered in the middle of the gap such that jE j < Eb
(where E represents the energy of the state, and 2Eb is the spatial
bandwidth). We note here that at the center of the bandgap [see
Fig. 2(b)], the topological edge state is at an inflection point. At
that point, the second-order diffraction term is zero. Therefore, the
amount of diffraction of the wave packet will approach zero more
quickly with increasing wave packet size than at any other point in
the band structure. Therefore, choosing this point to be spectrally
at the center (as we have done here) allows for the smallest possible
wave packets for a given tolerance for diffraction. A large spatial
bandwidth means that the edge wave function has a small spatial
extent, whereas a small one means a larger extent along the edge.
We call w†

n the operator that creates a photon in the state centered
on waveguide n. These wave functions, which are localized to the
top edge of the lattice, are depicted by the red ellipses in Fig. 2(c).
They propagate to the right and enter the disordered region [de-
picted in Fig. 2(c)]. Since the edge states only occupy a fraction of
the complete spectrum, the wave packets are “sinc-like”, i.e., they
have decaying outer lobes. Despite the disorder, since the wave-
guide array acts as a completely closed system obeying determin-
istic dynamics, there is no mechanism that can lead to a loss of
phase coherence (i.e., there is no external bath). Thus, a multipho-
ton wave function entering the array in a pure state remains in one.

Now, consider the injection of two path-entangled photons
along the edge. The initial wave function, which contains the am-
plitude to observe a photon at waveguides m and n can be written
jψ�z � 0�i � P

mncmna†ma†nj0i. The correlation map is given
by Γmn�z� � hψ�z�ja†ma†nanamjψ�z�i [16] for the two-photon
wave function jψ�z�i at propagation distance z. As we show in
Supplement 1, Γmn at any propagation distance z can be written
in terms of the one-photon propagator U �z� � e−iHz, as
Γmn � j�U �c � cT �UT �mnj2. Although this expression is gen-
eral, henceforth we use m and n to index waveguides along only
the edge, not the bulk. The expression Pmn � Γmn∕�1� δmn�
gives the probability of observing one photon in waveguide m
and another photon in n.

We study the dynamics of two distinct two-photon initial
states: a NOON state [19,20], namely, jψNOONi��w†

i w
†
i �

w†
i�l w

†
i�l �j0i∕2 as well as an “anti-NOON” but still indistinguish-

able photon state jψSEPi � �w†
i w

†
i�l �j0i. Here, l indexes the

number of waveguides between the states; we take l � 16. These
states may be constructed experimentally using parametric down-
conversion and beam shaping with a spatial light modulator.

Figure 3 shows the dynamics of the two-photon states in two
cases: for a nondisordered topological system (first row), and for a
similar system but with the right section highly disordered
(second row), corresponding to Fig. 2(c). For all cases, the disor-
der strength is W � c∕2. We choose this value of the disorder
because it is large enough to cause significant scattering in the
trivial case, but not large enough to close the topological gap, neg-
ating the topological protection. The first column is for two-
photon NOON states, and the second is for anti-NOON states.
The disordered region contains random on-site energies (i.e., the
refractive indices) within the range �−W ;W �. Each subfigure here
shows the correlation map Γmn, just for the edge waveguides. The
initial state (shown at the bottom-left corner of each subfigure) is
composed of two lobes denoting the position of the injection of
photons. For the NOON states, these lobes lie along the diagonal
(meaning that if one photon is observed centered on waveguide n,
the other must be centered there as well). For the anti-NOON
state, the opposite is true: if one photon is centered at n, the other
must be centered on n� l , meaning that the lobes lie across the
diagonal from one another.

In Figs. 3(a) and 3(b), which correspond to the nondisordered
case, the NOON and anti-NOON states travel along the diagonal
(corresponding to moving rightward along the edge) and undergo
some degree of diffractive broadening. The broadening is weak be-
cause the topological edge state, since it crosses the band gap, has a
nearly linear dispersion [see Fig. 2(b)]. Of course the wavefunction
eventually diffractively broadens due to higher-order diffraction

Fig. 3. Correlation map evolution along the edge of the photonic
topological insulator depicted in Fig. 2(c) for: (a) the NOON state with
no disorder; (b) the anti-NOON state with no disorder; (c) the NOON
state with disorder; (d) the anti-NOON state with disorder. The disorder
starts half way through. Here we see that the presence of disorder has not
caused a strong change in the qualitative behavior of the correlation map
(see Fig. 4 for a comparison with the topologically trivial case).
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terms. The diffractive broadening can be reduced by decreasing the
spatial bandwidth of the input wave function 2Eb (resulting in a
wider wave function). It can therefore be suppressed to any desired
degree.

Figures 3(c) and 3(d) represent the case where the photons
enter a disordered region [but are otherwise analogous to 3(a)
and 3(b)]. Note that for both the NOON and anti-NOON cases,
the path-entangled photons pass through mostly unchanged, de-
spite the disorder. For the NOON state, the “NOONity” (pre-
cisely defined below) of the state is preserved. This is striking
considering that photon correlations are highly sensitive to the
phase of the one-particle propagator; therefore, not only does
topological protection preserve the one-particle state in the
disordered region, but also the nature of the path entanglement
of two-particle states. This happens despite the fact that the de-
fects imbue the state with a random phase compared to the clean
case. Animations of the dynamics associated with the correlation
map shown in Fig. 3 are given in Visualization 1, Visualization 2,
Visualization 3, and Visualization 4.

We also compare the protection of the two-particle state in the
topological case to what occurs in the nontopological case. Perhaps
the best way of doing this is to simply remove the bulk and study
the edge in isolation; without the bulk to provide a buffer between
the top and bottom edges of the lattice, the system ceases to be
topological and backscattering is permitted. Therefore, we con-
sider a 1D lattice with a coupling term of strength c between sites
(akin to Fig. 1). We launch two entangled photons into the 1D
lattice, analogously to the top edge of the 2D topological case.
Figure 4 shows the correlation map for the NOON state wave
function (top row is the clean case, bottom row is the disordered).
The left column represents the initial state, and the next columns
represent the wave function after successively longer propagation
distances. Clearly, the clean and disordered cases behave entirely
differently; as a result of backscattering, the NOONity of the pho-
tons is destroyed in the nontopological lattice. A similar picture
emerges for the anti-NOON state.

To quantify this, we introduce a quantity that measures the nature
of path entanglement: the “NOONity” N of a two-photon state

N ≡
X

mn

ΓmmΓnn − Γ2
mn:

The larger this quantity, the more NOON-like is the state. It is
positive for a NOON state, zero for a nonspatially entangled state
(e.g., a state that represents two photons in the same single-
photon state) and negative for an anti-NOON state. In Fig. 5,
we plot N as a function of z, in order to compare the shape
of the wave function with and without disorder. In Fig. 5(a)
the NOON state is in the topologically trivial 1D array; 5(b)
the anti-NOON state in the same; 5(c) the NOON state on
the topological edge; and 5(d) the anti-NOON state in the same.
In all cases in Fig. 5 (including the nondisordered case), there is
some decrease in N caused by unavoidable diffractive broadening
(choosing a wave packet covering ∼10 waveguides leads to a
decrease in NOONity of ∼1∕2 over 100 coupling lengths).

Now comparing to the disordered case, in both Figs. 5(a) and
5(b), we see that the disorder has destroyed the NOON and anti-
NOON states in the nontopological system. By comparison, in
Figs. 5(c) and 5(d), which show the topological case, we see that
the character of the state is largely preserved. This is depicted in
Fig. 3 as well as in the visualizations. (See Visualization 1,
Visualization 2, Visualization 3, Visualization 4, Visualization 5,
Visualization 6, Visualization 7, and Visualization 8.) Clearly, the
topological protection has protected the character of the state,
preserving the “NOONity” of both the NOON and anti-
NOON states. We account for the deviation between the clean
and disordered topological cases as follows. When topological
edge states propagate past a defect unscattered they effectively
“go around it,” meaning it takes them an additional amount
of time (z) compared with a clean system. We therefore interpret
the difference between the clean and disordered case shown in
Figs. 5(c) and 5(d) as the edge states taking “longer” to traverse
the disordered path. As a result of diffractive broadening, there
is some decrease in NOONity in the disordered case compared
with the clean one (though much less than in the nontopological
case). This can be seen by comparing Figs. 3(a) and 3(c); careful
examination shows that the final state in each case is not exactly
the same, with minor qualitative differences. For example, the
higher-order diffractive lobes are more pronounced in the latter

Fig. 4. Figures show the correlation map evolution in the topologically
trivial 1D array for NOON states, in two cases: without (top row) and
with (bottom row) disorder present. It is clear that the defect destroys the
nature of the photon correlations (disorder interface at dotted line).

Fig. 5. Evolution of the “NOONity” as a function of z for: (a) a
NOON state on the nontopological edge; (b) an anti-NOON state
on the nontopological edge; (c) a NOON state on the topological edge;
(d) an anti-NOON state on the topological edge. In the topologically
trivial cases (a) and (b), NOONity and anti-NOONity are destroyed
by disorder, whereas in the topological cases (c) and (d) they are largely
conserved. The blue points indicate the clean case (disorder,W � 0); the
red points indicate the disordered case (W � c∕2).
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(disordered) case compared to the former (clean) case. This is con-
sistent with the state effectively propagating a longer distance due
to the disorder, since diffractive lobes of course become more
pronounced with distance from the source. The same can be said
of Figs. 3(b) and 3(d).

Before closing, it is important to discuss experimental realiza-
tions and potential obstacles. The proposed system is the same as
in [10], and the NOON edge states will be launched by use of
two spatial light modulators to properly engineer the spatial wave
functions of NOON states generated, as in [20]. We expect the
principle challenges associated with an experiment to be three-
fold: (1) shaping the spatial wave function to sufficiently overlap
the topological edge states such that bulk states do not interfere
with the dynamics; (2) fully optimizing experimental parameters
to minimize absorption, scattering, and bending losses associated
with the waveguides in order to achieve high photon counts;
and (3) collecting the photons from all of the waveguides at the
output facet with a high coupling efficiency. For (1), a sufficiently
high-resolution phase-modulated spatial light modulator should
give enough control over the wave function to realize a high edge
state overlap; for (2) this will depend on the specifics of the wave-
guides but previous work showing less than 1 dB/cm total loss
well into the topological phase [10] is reasonable and can likely be
improved upon; and (3) specially designed integrated fiber couplers
can be used to directly couple to pigtailed waveguides. Taken to-
gether, we believe the experiment can be realistically carried out.

In conclusion, we have shown that topological edge states
can transport path-entangled multiphoton states in a robust
way, demonstrating that photonic topological insulators have clear
advantages in transporting quantum light. In this work, we have
only dealt with pure quantum states, not mixed states. However,
we expect our results to straightforwardly generalize to that case as
well, but a full analysis will require integrating the density of the
matrix of the system, rather than simply the deterministic evolution
of biphoton states. We further note that, since the argument
captured in Eq. (2) generalizes to a higher photon number,
the protection of NOONity described here should similarly gen-
eralize to that case as well. The effect presented here may lead to
robust transport of quantum information through disordered
environments, and provokes many new questions. For example,
what happens to the topological protection in the presence of
photon interactions? To what extent is photonic topological
protection compatible with networks that are useful for quantum
information applications?

Note: This work was presented in the 2015 conference on
lasers and electro-optics (CLEO) [33]. After the submission of
this manuscript we became aware of another work proposing a
similar effect in the temporal domain [34].
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