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ABSTRACT

Electrons have played a significant role in the development of many fields of physics during the
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last century. The interest surrounding them mostly involved their wave-like features prescribed by 2017

the quantum theory. In particular, these features correctly predict the behaviour of electrons in
various physical systems including atoms, molecules, solid-state materials, and even in free space.
Ten years ago, new breakthroughs were made, arising from the new ability to bestow orbital angular
momentum (OAM) to the wave function of electrons. This quantity, in conjunction with the electron’s
charge, results in an additional magnetic property. Owing to these features, OAM-carrying, or twisted,
electrons can effectively interact with magnetic fields in unprecedented ways and have motivated
materials scientists to find new methods for generating twisted electrons and measuring their OAM
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content. Here, we provide an overview of such techniques along with an introduction to the exciting

dynamics of twisted electrons.

1. Introduction

The analysis of physical entities through their influence
on the trajectories of particles has long been of vital
importance in various areas of classical physics. The
ability to do so arises from the deterministic nature of
the equations of motion (via Newtonian or Lagrangian
mechanics), which allows the complete reconstruction
of the underlying physics of a system by analyzing the
trajectories of particles in motion. This scheme is used in
various applications, such as mass spectrometers and
alike. However, such an analysis is quickly rendered
obsolete in scenarios where effects related to quantum
mechanics become relevant. More specifically, these
effects are a result of complementarity, which states that
quantum objects are defined by properties that cannot
be simultaneously observed with full certainty, such as
position and momentum. Hence, the trajectories of par-
ticles are not deterministic anymore, and such an analysis
becomes cumbersome.

A quantum object is additionally described by a wave
nature associated with its wave function, ¥ (r), which
satisfies the Schrodinger equation. The limitations of the
aforementioned classical analysis are associated with the
probabilistic nature of the measurement process. Namely,
one cannot in a single measurement determine the wave

function W(r); one cannot determine its Fourier trans-
form W (p) describing the distribution of the momentum
variable conjugate to position. The probability of finding
the particle at position r within a volume d°r is given by
|W (r)|? d°r. Likewise, the probability that the particle has
the momentum p within a momentum space volume d°p
is given by |\Il(p) |2 d®p [1]. Consequently, the complete
physical description of the object is contained within
its wavefunction, and can be extracted from it with the
proper operators. In some specific cases, a wavefunction
Y can satisfy the equation A Yo = ay, for a given
operator A. Here, ¥, and a are said to be an eigenfunction
and an eigenvalue of the operator A, respectively; i.e. the
object defined by 1, is associated with an A value of a.
Besides providing insight on the physical traits of
quantum systems, such operators are also used to
analyze the evolution of a system’s wavefunction. Such
operators most notably include the Hamiltonian, the lin-
ear momentum, and the angular momentum operators,
which respectively allow to predict the time-evolution
of the wavefunction as well as translations and rotations
in space. The Hamiltonian is perhaps the most familiar
of the three as its eigenvalues happen to be those of
the Schrodinger equation and provide the energy values
defining the system. The linear momentum is also fairly
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known due to its frequent appearance in the formula-
tion of wavepackets. As for angular momentum, due to
its association with rotational symmetry, it is frequently
encountered when constructing the eigenfunctions of
rotationally-symmetric systems such as those involving
atomic potentials. However, the properties of this op-
erator do not necessarily restrict the usefulness of an-
gular momentum to rotationally symmetric scenarios.
In fact, angular momentum can also be of relevance in
cases involving wavepackets linked to the momentum
operator. As later demonstrated in the following section,
the free-particle Schrodinger equation allows for Gaus-
sian wavepacket solutions defined by a certain momen-
tum spread that is centered around a certain momen-
tum value. However, when the wavefunction consists
of momentum components oriented along the azimuth
of the wavepacket’s propagation, it also carries orbital
angular momentum (OAM). Therefore, in addition to
linear motion attributed to its longitudinal momentum,
a certain form of azimuthal motion will be bestowed
upon the wavepacket as well. When this wavepacket is
associated with a charged particle, this form of azimuthal
motion gets directly translated to magnetic properties.
Because these properties are directly related to those of
the wavefunction, any modification to these magnetic
properties caused by external perturbations will be re-
flected in corresponding variations in this entity’s wave-
function. In principle, these variations can be extracted
by means of methods used to perform measurements on
waves, which could involve interference or holography
for instance, in order to provide information on what
perturbed the wavepacket. Hence, charged wavepackets
that carry OAM have the ability to probe multiple sources
of perturbation.

In recent years, there has been significant progress
in using electron wavepackets for such purposes [2-5].
Here, we provide an overview of the underlying attributes
pertaining to the quantum formulation of free electrons
carrying OAM and how they are modified by the presence
of external electromagnetic fields. We also discuss recent
advances regarding the generation and the detection of
such wavefunctions along with applications.

2. Formulation of free electrons

We proceed with the construct of free electron wavefunc-
tions W (r; t) carrying OAM. These wavefunctions must
first and foremost satisfy the free-particle Schrodinger
equation given by

2

0
V2W(r; t) = ih — W (r; 1), 1
Py (r; 1) ih— (r; 1) (1)

where V2 is the Laplacian, i = 1.05x 10~3*J.sand m, =
9.11 x 107! kg are the reduced Planck constant and the
rest mass of the electron, respectively. Let us now assume
that our electrons possess a well-defined central energy
&y and hence a momentum py = (Zme&))l/z. Based on
this consideration, the formulation of the wavefunction
is reduced to W(r;t) = ¥ (r) exp (—ié’ot/h), thus al-
lowing us to transition towards the time-independent
Schrodinger equation. In this case, the latter reduces to
the Helmholtz equation (V2 + k2) Y (r) = 0,wherek? =
2meEy/ 2. Alternatively, this result can also be obtained
within a good approximation from the Dirac equation, a
relativistic version of the Schrodinger equation, and the
corrected energy-momentum dispersion relation.

2m,
K2 = m5°(1+ el ) )

h? 2m,c?

where ¢ is the speed of light in vacuum.

The explicit solutions to this equation will be discussed
in the following sections. Before doing so, we will provide
a brief description of the features that should describe
them and how they manifest themselves into exotic prop-
erties. We must first pick a convenient coordinate system
that accurately reflects the symmetry of electrons car-
rying OAM. In particular, we are looking to formulate
a wavepacket propagating along a longitudinal direc-
tion defined by transverse azimuthal momentum com-
ponents. This consideration suggests that the solutions
should be expressed in terms of cylindrical coordinates
(p, @, z). The next step in formulating the wavefunction
of a twisted electron is to ensure that they carry OAM, i.e.
that they are eigenstates of an OAM operator. The fact
that these wavepackets have a well defined longitudinal
propagation, i.e. the z axis, implies that the z component
of the OAM operator L should represent the OAM carried
by the electron. In cylindrical coordinates, this operator
is given by I, = —ihi(r x V), = —ih 0. It thus follows
that the eigenstates of this operator must clearly have the
form ¥ (r) = f(p,z) exp (ily), where f is a function of
the radial and longitudinal coordinates and £ is an integer
that ensures that 1 (r) is single-valued for all values of ¢.
The OAM eigenvalues of these states are if, which im-
plies that electrons defined by these wavefunctions carry
quantized OAM values of /£. The final step is to connect
these OAM eigenstates to those of the Schrodinger equa-
tion. Namely, given that the free particle Hamiltonian
describing electrons is azimuthally symmetric, it can be
expected to commute with L, thus implying that the two
operators can share the same eigenstates. Therefore, not
only do solutions of the form ¥/ (r) = f(p,z) exp (ilyp)
carry OAM, but they can also satisty the Schrodinger



equation and thus provide a general form describing the
wavefunctions of twisted electrons.

A quick glance at the dynamics of such wavefunctions
can also be taken by examining its probability density
currentj = —ih(Y*Vyr — iy Vi*)/2m,. As mentioned
earlier, OAM relates to the relative azimuthal motion of
the wavepacket and should therefore be related to the ¢
component of the probability current. A quick calcula-
tion reveals that j, = Al Lf(,o,z)|2 /mep, thus verifying
that there is indeed a form of quantized azimuthal mo-
tion in a twisted electron’s wavefunction that is directly
proportional to its OAM eigenvalue. Moreover, because
electrons are charged entities, this probability current
locally manifests itself as a loop of electrical current which
in turn causes the electron itself to acquire magnetic
attributes. One of the most useful of these properties
consists of a magnetic dipole moment, whose direction
and amplitude depends on the sign and the absolute value
of ¢, respectively. As discussed in later sections, it is
this trait that allows twisted electrons to be generated,
detected, and applied in ways that cannot be extended to
other types of OAM-carrying waves.

2.1. Bessel electron beams

The complete solution describing twisted electrons can be
obtained by solving the Helmholtz equation in cylindrical
coordinates by using separation of variables. Its solu-
tions take the form wf’z;sel(p, ®,2) o« Jig|(kpp) exp (ik,2)
exp (ily), where £ is an integer, Jj¢|(.) is the ot order
Bessel function of the first kind, and k, and k, are re-
spectively the radial and z-oriented components of the
wavefunction’s wavevector such that k,> + k> = k2,
e.g. see [6]. These wavefunctions are often referred to as
Bessel electron beams. As expected from previous discus-
sions, these solutions include an exp (ily) term in their
formulation thus implying that they carry OAM. Bessel
beams also have a distinct doughnut-shaped transverse
profile caused by the presence of the Bessel function in
their formulation. These transverse profiles can be found
in Figure 1.

Though it appears at first glance that we have found
a suitable wavefunction to describe OAM-carrying elec-
trons, a closer inspection of its2 probability dengity func-
tion, Ppessel = ‘\I’E iisel(r; t)‘ = ‘lﬂgiisel (r)) , reveals
that it suffers from certain unphysical aspects. This prob-
ability density is explicitly given by Ppegsel = |Jj¢) (kp p) |2
and has no dependence whatsoever neither on time, ¢,
nor z. This directly implies that the probability of finding
the travelling electron at position r does not vary with
time nor position on the axis along which its wavefunc-
tion propagates. There are even more traits that add to
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Figure 1. Transverse profile of Bessel electron waves. (a)
Transverse probability density function of Bessel beams wfi;se'
and (b) their corresponding transverse phase profiles plotted in
hue colours.

(a

—

this solution’s unphysical behaviour. Unlike along the
z direction, Ppegsel Varies with the radial coordinate thus
implying that the probability of finding the electron varies
with its transverse position and holds cylindrical sym-
metry. The latter vanishes at certain radii p, = x¢,n/kp,
where xp ,, is the nh zero of Ji¢(.), i.e. Jj¢| (x¢,n) = 0. This
spatial probability distribution thereby forms an infinite
set of concentric rings in which the probability of finding
an electron is equally likely, i.e.

Pn+1 5
/ [Tiey(ky )| pdp = constant. (3)
Pn

2
Therefore, the integral of ‘1//?22“1) over a transverse

plane is infinite, thus implying that the electron’s
wavefunction is not square-integrable and thereby can-
not physically represent a probability amplitude. Though
unphysical, it is worth noting that there are approximated
versions of these Bessel beams exhibiting similar yet phys-
ical traits and that can be readily produced in practice
using techniques that will be later discussed [7,8].

2.2. Paraxial electron wavepackets and
Laguerre-Gauss beams

The unphysical nature of Bessel electron beams stems
from the fact that the Helmholtz equation admits
diffraction-free plane-wave solutions that are not square-
integrable. To find more physical solutions, we must
therefore proceed by going back to the Helmholtz equa-
tion and modifying it in order to account for the ex-
pected physical behaviour of electron wavepackets, i.e.
their diffraction. Assuming that the electron’s momen-
tum is predominantly oriented along the z axis, the time-
independent wavefunction becomes ¥ (r) = ¢(r)
exp (ipoz/h). We then re-express the Helmholtz equation
in terms of ¢ (r). In order to seek for realistic solutions,
we will be using dimensionless coordinates that are nor-
malized to parameters describing the beam’s transverse
and longitudinal features. We let p = wy p’ where p isa
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dimensionless radial coordinate and wy is the wavefunc-
tion’s ‘width’ indicating the relative extent of the beam’s
transverse profile. Interestingly, a wave’s width, together
with its energy or its momentum along the direction of
propagation, defines its diffraction. Namely, the distance
over which the wave does not significantly diffract is given
by zr = kwo?/2. Recall that the beam energy & deter-
mines the electron’s de Broglie wavelength A4p, and con-
sequently its k value, i.e. k = 27 /Aqp = (meEo /)12
This relation naturally implies that the z-coordinate must
be normalized in terms of zg, i.e. z = zgz' where z’
is the longitudinal dimensionless coordinate. We note
that the azimuthal coordinate does not require such a
normalization as it is not defined by any units, i.e. ¢ = ¢'.
When these dimensionless coordinates are brought into
consideration, the Helmholtz equation becomes

2 9 1 (gg)> 92 .,
V 4_ 5 - 5 ) =0)

( LA (w) ag2 | 29 2)
(4)

where V/i_ is the dimensionless transverse Laplacian.
We then proceed in the same way as paraxial optics,
by considering electron waves with beam widths that
are greater than the de Broglie wavelength, i.e. wy >
Agp. This is known as the paraxial approximation and
effectively removes the last term of Equation (4) thus
yielding the so-called paraxial wave equation. Like the
Helmholtz equation, the paraxial equation admits various
sets of eigenfunctions with formulations that depend on
the coordinate system in which it is solved. The OAM-
carrying solutions expressed in terms of cylindrical co-
ordinates are known as the Laguerre-Gauss (LG) modes
and their formulation is provided below

14
2p! )1/2 L (pV2
w C(p,p2) = (ﬂ »+ e w(z) \ w(z)

<o (k) 1 ()
PAlTvm )7 o)

X exp (id%g), (5)

where w(z) = wo(1 + (z/zr)%)"/? is the electron beam’s
spot size, L, (.) is the associated Laguerre polynomial,

and dDLG con51sts of the phase of the beam and is given
by
LG _ 2
Lo +k
tp = 3R ( ) + Ly + kz

z
— (2p + I€] 4+ 1) arctan <5) (6)

=0

Figure 2. Transverse profile of Laguerre-Gauss electron waves.
Transverse probability densities of various Laguerre-Gauss beams
w};f,. Notice the increase of the beam’s extent with increasing
¢ and the addition of supplementary intensity rings with
increasing p.

where R(z) = z(1 + (zr/2)?) describes the beam’s wave-
front curvature upon propagation. The last term in Equa-
tion (6), i.e. arctan (z/zr), is referred to as the Gouy
phase, and anomalously changes its sign upon traversing
through z = 0. For £ # 0, LG modes are also charac-
terized by doughnut shaped transverse probability dis-
tributions. Moreover, the counterpart to the continuous
variable k, that radially modulates the wavefunction’s
profile in Bessel beams is the discrete variable p > 0.
Thus, unlike Bessel solutions which are only azimuthally
quantized by theindex ¢, the LG solutions are also radially
quantized. This distinct attribute is readily seen in these
beams’ transverse structures which are shown in Figure 2.

LG wavefunctions are also defined by the very physical
attributes that the Bessel wavefunctions lack. In
particular, we can see that these wavefunctions expe-
rience diffraction broadening given that the extent of
their transverse distributions is defined by w(z) while
the curvature of their wavefronts is set by R(z), both of
which vary upon propagation. Moreover, the integral of
the probability density Prg = Wng |? over the transverse
plane is normalized to unity. An additional modulation
to the longitudinal component of w can also provide a
means to make the integral of W/e G|2 finite over z. This
modulation typically consists of a Gau551an distribution
ensuring that the resulting wavefunction is still a solution
of the paraxial wave equation with the properties of LG
wavefunctions [9]. This modulation enforces a quanti-
zation of the longitudinal structure of electron waves
defined by moving Hermite-Gauss modes, i.e.

Gepn(rs 0,25 1) = Y (1,05 1) (2 = (po/me)t) (7)
where ul1G(.) are the Hermite-Gauss modes with # being

a positive integer value. The 3+1 dimensional wavepacket
solutions form a complete orthonormal set of modes.



Figure 3. Magnetic dipole moment and classical trajectories of
an electron beam. The trajectories are illustrated over half a
diffraction length zz /2 for the cases of (a) ¢ = 2 and (b) £ = —2.

That is, {$epn| b0 ) = [ 0F b0 6 = 8008y
8> where §; y is the Kronecker delta function. Thus, any
solution of the paraxial wave equation x (7, ¢, z; t) can be
expressed as a superposition x (r,¢,z; t) = Zz,p,n cbpn
Gepn(r, @, 2; t), where cbPn are expansion coefficients.
Asexpected, the Laguerre-Gauss modes have an exp (if¢)
term in their formulation. Therefore, just like Bessel
electron beams, this term makes the ¢, wavepackets
eigenfunctions of the L, operator with eigenvalues /if. As
discussed earlier, the OAM carried by such an electron
will be given by /£ e, thus causing the electron to carry a
magnetic dipole moment of p = gugle,. Here, g = 11is
the g-factor for the electron orbital motion, up = eh/2m,
is the Bohr magneton, and e; is the unit vector in the z
direction. This magnetic moment is illustrated in Figure 3
for the cases of electron wavefunctions of OAM ¢ = +£2
along with the classical trajectories attributed to the latter.

Though this value was deduced from the electron’s
OAM and its classical gyromagnetic ratio, it can also
be extracted from the formulation of the electron’s
wavefunction. More specifically, the motion attributed to
W (r; t) causes it to acquire a probability density current
given by j = m~[Ppoe, + hIm(¢p*Vg)] =~ m~'P
(po e, + hley/p), where P = ||? is the electron’s trans-
verse probability density distribution [9]. Because the
distribution of the electron’s charge and its mass are
both proportional to the probability density function of
the wavefunction, it follows that this probability current
density can be translated into an electrical current den-
sity of ej, where e is the electron’s charge. Therefore,
we can see that the electron’s magnetic dipole moment
comes from the electron’s azimuthal current density J, >~

e(hl/me p)P.

3. Generation

Early realizations of free OAM-carrying electrons at sub
eV energies exploited the fact that bound electrons in
atoms can be attributed to OAM (L,) eigenstates in con-
junction with ionization processes that remove such elec-
trons from atoms. Namely, upon ionization, the emitted
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electron will carry OAM defined by its former atomic
eigenstate [10]. Moreover, if for instance an atom that is
in a superposition of two electronic angular momentum
states is ionized, the emitted electron will likewise be in a
superposition of two angular momentum states leading
to quantum beats, which have been observed in both,
field ionization [11] and photoionization [12].

Our previous discussions concerning the formulation
of electron wavefunctions have revealed that the net OAM
carried by an electron explicitly relies on the presence
of an exp (iy) term. In practice, imprinting such an
azimuthally varying transverse phase onto an incident
Gaussian electron beam results in the generation of an
OAM-carrying electron beam. Shaping electron beams
into OAM-carrying beams can be achieved through a
variety of methods, four of which are outlined below.
Unlike earlier methods relying on ionization, the ones
presented in this section are designed to generate coher-
ent electron waves. Furthermore, they are also more easily
implemented in electron microscopes, in which proce-
dures to characterize materials using twisted electrons
are usually implemented.

3.1. Spiral phase plates

The azimuthal phase dependence of OAM carrying wave-
functions causes their wavefronts, i.e. regions of constant
phase, to be helically shaped. In essence, spiral phase
plates (SPPs) are devices that directly impose such a
twisted wavefront. They are made of a material possessing
a mean inner potential Vipper(r) that can be effectively
seen as a potential barrier by the electrons. As a re-
sult, when the electrons travel through such a mate-
rial, they will lose kinetic energy and thus momentum.
Therefore, their de Broglie wavelength increases within
the material, as prescribed by the relation Aqg = h/p.
With this increase, one is therefore capable of arbitrarily
shaping an electron beam’s wavefront using a slab of
this material with a correspondingly varying thickness.
Namely, the introduced phase shift due to a material
with a thickness #(r) is x (r) = CgVinner(r) t(r), where
Cg is a constant. SPPs consist of such slabs that are
specifically designed to have a spiraling thickness profile,
ie. t(r) := t(p) = a+b ¢, whereaand bare two arbitrary
real parameters. When ¢ d (r) is set to {Agp, i.e. integer
multiples of wavelength, then the SPP imprints a spiraling
wavefront consisting of ¢ intertwined helices onto the
traversing electron beam’s wavefunction, and thus causes
it to acquire £ units of OAM as illustrated in Figure 4(a).
It is worth mentioning that the generated beam is neither
Bessel nor LG, because it is generated via a direct imprint-
ing of a phase singularity exp (i¢¢) onto a Gaussian prob-
ability distribution, i.e. exp (il¢p) exp ( — 02/ W(Z)). Such
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Figure 4. Shaping an electron wave to imbue it with orbital
angular momentum (OAM). (a) The process of imparting one
unit of OAM onto an electron through the use of a spiral phase
plate. The thickness of the phase plate is emphasized by a
hue colour scheme where areas coloured in red represent a
thickness corresponding to an integer multiple of the electron’s
wavelength. (b) TEM bright field image of a spiral phase plate
designed to generate electrons carrying £=1 units of OAM. (c)
Probability density of the electron beam generated with the spiral
phase plate shown in (b).

modes are referred to as a sub-class of Hypergeometric-
Gauss modes, and unlike LG and Bessel beams, they are
not shape-invariant upon free-space propagation. The
first electron SPP was reported in 2010 by Uchida and
Tonomura who used spontaneously stacked graphite thin
films for a 300 keV electron beam and have reported
the first generation of electron vortex beams [13]. Since
then, significant improvements have been made in nano-
fabricating such devices [14]. A TEM image of an SPP
fabricated using ion beam lithography along with the
electron beam generated from the device is shown in
Figure 4(b) and (c), respectively.

3.2. Holography

As opposed to SPPs, which directly shape the wavefronts
of electron beams, the generation of OAM-carrying elec-
trons through the use of holography relies on the distinct
interference pattern of an OAM carrying wavefunction,
Yo (r) o< exp (ily), with reference electron waves Yr¢(r).
More specifically, holography consists of generating an
image Yimage (r) from the pattern resulting from its inter-
ference with a slightly misaligned plane wave ¢(r) o
exp (ikyy), i.e. I(r) = |Yimage(r) + Vrer(r)[%. Here, ky, is
a transverse component of the wave vector and we will
omit the propagating phase term exp (ik,z) in the formu-
lation of the reference and image wavefunctions. Thus,

Figure 5. Shaping twisted electrons with amplitude and phase
holograms. (a) Depiction of the holographic generation of OAM-
carrying electrons, (b) SEM image of an electron amplitude mask
reported by Verbeeck et al. [15], (c) SEM image of an electron
phase mask reported by Grillo et al. [16]. (d) Experimental
diffraction intensity pattern of a pitchfork hologram in which the
OAM carried by each diffraction order is noted.

having such a pattern, I(r), for the case where the image
corresponds to the OAM-carrying beam, i.e. Yimage (1) =
Y (r), would provide one with the means of generating it.
Assuming that the reference and OAM-carrying beams
are equally weighted, this interference pattern is given
specifically by I(r) o (1 + cos (g — kyy)) and has the
appearance of a pitchfork. Using holography, one can
make a hologram with this pattern in order to generate
the corresponding OAM-carrying beam by reversing the
interference process described above. Namely this reverse
process consists of illuminating the pitchfork hologram
with an electron plane wave and thereby producing an
OAM-carrying beam that is misaligned with respect to
the plane wave. Such holograms can be used in two
different forms; (i) as amplitude masks [15], and (ii) as
phase masks [16-18]. The amplitude mask is a partially
absorbing device that directly modulates an incoming
electron’s wavefunction ¥ to ¥o(1 + cos (€p — kyy)),
or equivalently, ¥ (2 +exp (i(lp — kyy)) +exp (—i(Ly
—k, y))). The latter formulation of the transmitted wave-
function directly implies that it consists of three distinctly
propagating waves: one that is not deflected, another
deflected in the —k, direction, and another deflected
in the +k, direction where the latter two carry OAM
values of +7¢ and —h{ respectively. As opposed to am-
plitude masks, phase masks, sometimes referred to as
kinoforms, rather modify an electron wavefunction by a
phase factor exp (i I(r)). Though these devices are often
still characterized by some forms of absorption, this ab-
sorption is not nearly as important as the imparted phase
modulation. The low absorption causes the efficiencies
of phase holograms to be much higher than those of



amplitude masks. Other than the considered sinusoidal
holograms, it is worth noting that these amplitude and
phase masks can also adopt blazed and binary configu-
rations. An illustration of the holographic generation of
twisted electrons is shown in Figure 5(a). SEM images
of holograms reported by Verbeeck et al. [15] and Grillo
etal. [16] can be found in Figure 5(b) and (c), respectively.
We also provide an experimental diffraction intensity
pattern of such a hologram in Figure 5(d).

3.3. Magnetic monopole

Unlike the SPPs and holographic techniques that directly
use the wave nature of electrons for OAM impartment,
the present method additionally employs the electron’s
charge. Namely, when traveling along a certain path C
while being affected by a vector potential A, an electron
will acquire a phase given by x = (e/h) [, A - dr. We
may choose to express this phase as a relative phase with
respect to that acquired by an electron while traveling
along a given reference path [19]. Therefore, upon this
supplementary consideration, the phase acquired by the
electron along path C can be expressed as a closed loop
integral which, in addition to C, considers this reference
path, hence x = (e/h) fCA - dr [20]. Using Stokes’
theorem, this integral can be rearranged as a surface
integral over V x A, which is defined by the applied
corresponding magnetic field B. Such a rearrangement
causes the form of the acquired phase to change to x =
(e/h) ®p, where &5 = fSB - ds is the magnetic flux
going through the closed loop C. Therefore, the global
phase gained by the electron is proportional to the mag-
netic flux passing through the surface embedded by C.
Let us now consider the case where B corresponds to
the field attributed to a magnetic monopole, i.e. B =
(mogqm)/ (4 r®) r, where g is the permeability of free-
space, r = |r| is the radial coordinate, and g, is the
strength or the ‘magnetic charge’ of the monopole. As
depicted in Figure 6(a), the flux going through the surface
delimited by the electron’s trajectory and a reference
trajectory positioned at ¢ = 0 clearly depends on the az-
imuthal separation Ag = ¢ between both paths. Indeed,
a calculation of this flux reveals that the phase acquired
by the electron beam becomes x = (e ogm)/(h) ¢.

We can therefore see that a magnetic monopole can add
an azimuthally dependent phase to the electron. When
(e o gm)/(h) is an integer, this phase can directly be
associated with OAM as illustrated in Figure 6(b). Inter-
estingly, on a fundamental level, the postulated existence
of natural magnetic monopoles would enforce such a
condition onto the monopole’s magnetic charge g, i.e.
the magnetic charge is intrinsically quantized. Unfortu-
nately, the existence of these entities has so far not been
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Figure 6. Electron propagation through a magnetic monopole.
(a) Images of the surfaces used to calculate the phase gained by
an electron upon propagating through a monopole’s magnetic
field. These surfaces are associated with electrons positioned
at azimuthal coordinates of (left-to-right) ¢ = 7/2, 7, 37/2,
and 2x. (b) llustration of an electron gaining one unit of
OAM ((e ;togm)/h = 1) upon propagating through a magnetic
monopole. (c) Field lines of a magnetic dipole. The highlighted
area depicts the region where this field closely resembles that of
a magnetic monopole. (d) Experimental propagation of a focused
OAM-carrying electron beam generated by a magnetic needle
reported by Béché et al. [21].

shown, hence we cannot directly use them to impart
OAM onto electrons. However, the absence of natural
magnetic monopoles does not necessarily prohibit the
use of entities that can imitate their magnetic structure for
such purposes. For instance, as shown in Figure 6(c), one
could employ one end of a magnetic dipole where the field
is very close to being perfectly radial. In fact, it has been
demonstrated that magnetic needles can be used in this
fashion to generate OAM-carrying electrons. In essence,
magnetic needles consist of very thin magnetic dipole
structures whose strength can be tuned by the application
of an electrical current [21]. With this tuning procedure,
the ‘monopole’ strength g, of both ends of the needle
can be modified to satisfy the condition £ = (e o gm)/h,
where £ is an integer, thus allowing the impartment of
It units of OAM onto incoming electrons. Nonetheless,
the blocking caused by the needle will introduce a small
spread in the electron’s OAM spectrum. These effects can
effectively be noticed in the experimental propagation of
abeam generated by such means as originally reported by
Béché et al. [21]. These results are shown in Figure 6(d).

3.4. g-filters

The manner in which the previous methods add
azimuthal phase variations to electrons either rely on
interacting with its wavefronts or with its charge. Here,
we present a way to add OAM onto electrons by using
another of their distinguishing traits, namely their spin, in
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conjunction with an externally applied magnetic field by
means of a device known as a g-filter. Much like its OAM,
an electron’s spin consists of a property describing a
component of its total angular momentum. However, un-
like OAM, spin is not related whatsoever to the electron
wavefunction’s spatial profile, but is rather attributed
to one of its more intrinsic states. More specifically, it
is attributed to the angular momentum generated by a
specific component of the circulating flow of energy in
the electron’s wavefunction [22]. As in the case of OAM,
spin consists of a quantized quantity, yet, for electrons,
it is bounded to values of s = +1/2 in units of A. The
fundamental differences between spin and OAM allows
for an electron’s wavefunction to be simultaneously de-
fined by both of these properties, though it is worth
noting that both forms of angular momenta couple to
each other in relativistic regimes [23]. In particular, as
formerly employed, the OAM component of an electron
is often formulated in terms of an exp (if¢) term in its
wavefunction while its spin component is represented
by |1) or || ), which respectively denote spins of £1/2.
Moreover, as in the case of OAM, an electron’s spin
contributes to its magnetic dipole moment by an amount
1 = gsups, where g, &~ 2, thus allowing spin to effec-
tively interact with magnetic fields. In particular, when
an electron’s spin precesses about an applied magnetic
field, it will gain a phase. The phase acquired due to
this interaction corresponds to a geometric (Berry) phase
which generally describes the phase acquired by physical
entities upon being subjected to cyclic adiabatic pro-
cesses. In this case, this adiabatic process corresponds
to the periodic precession of the electron’s spin about the
applied magnetic field. This precession can be attributed
to a specific trajectory in the electron’s spin space [20]
conveniently depicted by a Bloch sphere where the north
pole is associated with the |1) state and the south pole
associated with the || ) state. The phase acquired by the
electron will thereby depend on the trajectory that its
spin vector follows on the Bloch sphere with respect to
a reference trajectory. In essence, this acquired phase is
proportional to the solid angle enclosed by the trajectories
on the Bloch sphere.

The idea behind the g-filter, as depicted in Figure 7(a),
is to enable such a precession in a systematic way that
will make the electron acquire an azimuthally dependent
phase, and thus OAM. To achieve such control, we make
electrons defined by a central momentum py go through
a finite region of length L where there is a well-defined
(space-varying) magnetic field. In practice, this region is
usually configured as a tube of length L in which several
magnets are inserted to generate a particular field. In
addition to the magnetic field, an electric field is also
applied inside the tube to neutralize the Lorentz force

Figure 7. Electron propagation through structured magnetic
fields. (a) The configuration of a g = 1-filter in which structured
magnetic (blue) and electric (red) fields are used over a finite
region to generate OAM-carrying electrons using an external form
of spin-to-orbit coupling. (b) Trajectories taken by the spin-up
electron state on the Bloch sphere upon precessing in a magnetic
field oriented along ¢ = «. These trajectories are coloured
according to the orientation of the corresponding magnetic field.
(c) Examples of structured electric (red) and magnetic (blue) fields
that can be used in a g-filter configuration. Note how the fields
attributed to negative g values correspond to feasible hexapole
and quadrupole configurations.

applied on the electron, i.e. e(E + p/m, x B) = 0, in
order to prevent deflections in the electron’s trajectory.
For simplicity we first consider the case where the applied
magnetic field is uniform and oriented along an angle «
with respect to the x axis. Moreover, we consider the
general case where electrons with no OAM are traveling
along the z axis. These electrons also consist of a superpo-
sition of its possible spin states, |{);, = a1 |1) + a2 [{),
where a; and a, are normalized amplitude coefficients,
ie.|a1|?>+|az|*> = 1. To find the wavefunction at the out-
put of the tube, we must solve the Schodinger-Pauli equa-
tion which describes the nonrelativistic behaviour of an
electron inside electromagnetic fields [24]. The electron
wavefunction after interacting with balanced magnetic
and electric fields is given by

[¥)our = a1 [cos (8/2) 1) + isin (8/2) e |])]
+ a; [cos (8/2) |1)
+isin (8/2) e [1)], (®)

where§ = 4w L/Aj, Ay =47 R. /g, and R, = po/( |e| B)
is the cyclotron radius. We can quickly deduce from
this expression that the electron experiences a preces-
sion process defined by a spatial period A;/2 and by
an angle §. As formerly mentioned, this causes a part



of the electron wavefunction to acquire a phase of +«
attributed to the trajectory of the electron’s state on the
Bloch sphere as shown in Figure 7(b). However, we can
see that the addition of this phase is also accompanied by a
flip in the electron’s spin. Such a conversion can be made
complete in the case where § = 7, which can practically
be achieved by carefully tuning the physical parameters
defining our system. The latter include the tube’s length
L, the electrons’ momentum py, and the magnitude of the
applied magnetic field B. When the magnetic field inside
the tube is structured to have an azimuthally varying
orientation of a(r) = q ¢+ B, where q is an integer and
is a constant, we can see that electrons will obtain a space-
dependent phase of £g ¢, which directly corresponds to
the acquirement of OAM. Examples of such fields along
with the electric fields used to neutralize the Lorentz force
acting on the electron can be found in Figure 7(c). A tube
configured to generate such a field is referred to as a g-
filter.

Though this technique may at first appear to offer
little more than OAM impartment, the fact that it ex-
plicitly relies on a form of coupling between spin and
OAM allows it to be used in the following manner. Con-
sider a spin-unpolarized electron beam carrying OAM
of € = 1 ie. [¥)in = exp (ip)(ai 1) + az 1)), which
could have been generated using any of the aforemen-
tioned methods. By making such a beam pass through
a q = l-filter that perfectly converts the original state
of the electrons, we will obtain an output wavefunction
(V) out = a1 €xp (i2¢) |1) + a2 |1). Let us now recall that
OAM-carrying wavefunctions v are defined by dough-
nut shaped probability densities | | with a spatial extent
that scales with the OAM carried by the electrons. Based
on this property, we can see that the central region of
[V)out 1 almost entirely composed of electrons of spin
[1). Therefore, by making such electrons go through a
pinhole with an area that mostly encompasses the elec-
trons of spin |1), one could effectively use the g-filter as
an electron spin polarizer with a conversion efficiency
that can realistically reach values near 97.5% [24-26].

4. Measurement

Due to their ability to add or remove well-defined units
of OAM from an incident electron beam, many of the
devices introduced in the previous section can alterna-
tively be used to measure the OAM content of electrons.
Practically speaking, instead of using the devices to turn
Gaussian beams into OAM-carrying beams, they are em-
ployed to remove a given amount of OAM from the
electrons. By doing so, electrons that originally carry the
corresponding amount of removed OAM will thereby
gain a Gaussian profile while electrons that do not carry

CONTEMPORARY PHYSICS (&) 9

this specific amount will have their OAM altered, yet
their profile will still be doughnut-shaped. One can then
select the electrons with the Gaussian profile, which orig-
inally carried the amount of removed OAM, by focusing
the resulting beam through a pinhole. Thereafter, by
looking at the relative amount of electrons contained
in this Gaussian component with respect to the total
number of electrons in the original beam, the weight
of electrons carrying the removed amount of OAM in
the original beam can be determined. This method is
referred to as phase-flattening projective measurements,
since the wavefronts of individual twisted electrons are
flattened through the impartment of the phase of their
OAM conjugate, and then post-selected by a pinhole [27].

Though this method is quite simple, it suffers from
several disadvantages. The most inconvenient of them
is the need to use a specific device to analyze a distinct
OAM component. Therefore, to obtain the total OAM
spectrum of an electron beam, one would need an amount
of devices corresponding to the amount of analyzed OAM
components which can make the measurement of the
electron beam’s OAM long, tedious, and inefficient. The
fact that some of the outer electrons of the converted
Gaussian component are blocked by the pinhole fur-
ther reduces the efficiency of this method. Moreover,
this method is biased against measuring higher values
of OAM [28].

4.1. OAM sorter

The aforementioned inconveniences in conventional
OAM measurement have led to the development of
alternative methods to analyze an electron beam’s OAM
spectrum. One of the most prominent of these meth-
ods consists of a contraption that effectively behaves as
an OAM spectrometer and is commonly referred to as
an OAM sorter. More specifically, it is able to separate
or sort electrons based on their OAM content [29,30].
The core of the method relies on unwrapping an elec-
tron wavefunction’s azimuthal phase variations into vari-
ations along a given Cartesian coordinate as depicted in
Figure 8(a) for beams of OAM ¢ = 0 and £ = £2. The
wavefronts of these unwrapped electrons will be tilted
with respect to their direction of propagation and the
degree to which these wavefronts are tilted increases with
the original amount of OAM carried by the electrons.
Once the electrons are unwrapped, they go through a
magnetic lens which will focus the electrons at various po-
sitions determined by the relative tilt of their wavefronts
as shown in Figure 8(b). Because the tilt in the electron
wavefunction is determined by its initial OAM value, the
signal resulting from this sequence of transformations
consists of a series of focused points with intensities
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Figure 8. An electron OAM sorter. (a) Transverse phase profiles of OAM-carrying beams with ¢ = 0 and ¢ = +2 modulated by their
intensity profiles along with their unwrapped phase profiles. (b) The sorting process of these unwrapped beams where the latter go
through a magnetic lens to be focused at different positions based on their original OAM values. (c) Contour lines depicting variations
in the radial and azimuthal coordinates in a Cartesian system and (d) the equivalent coordinate variations in log-polar coordinates. The
two systems are linked by the coordinate transformation ®. (e) TEM bright field images of the first and (f) the second of two holograms
that can be used to unwrap an OAM-carrying electron’s azimuthal phase variations into linear phase gradients. (g) Simulated observed
unwrapping process experienced by an electron beam consisting of a superposition of £ = +5 OAM components.

that directly correspond to the weight of a certain OAM
component in the electron beam.

As implied earlier, the main challenge concerning the
implementation of such a device consists of finding a re-
liable way of unwrapping the electron’s azimuthal phase.
In essence, this unwrapping process corresponds to a
conformal mapping & that maps the azimuthal coordi-
nate to a Cartesian coordinate. The mapping can take
the form ®(¥) = aln(y/b), where ¥ is a complex
function. In the case where ¥ corresponds to an OAM
carrying wavefunction such as ¥y (r) = f(r) exp (ilp),
where f(r) is a function of the radial coordinate, we can
see that the mapping ¥y — @ () will result in the
wavefunction ® (y¢) = aln (f (r)/b)+i aly where radial
variations are mapped along one Cartesian coordinate
while simultaneously mapping azimuthal phase varia-
tions along the other. In practice, this mapping is realized
by means of a log-polar coordinate transformation which
can be performed by adding a particular phase onto an
electron wavefunction. Namely, as illustrated in Figure
8(c)-(d), the azimuthal coordinate in a Cartesian system
is equivalent to a standard Cartesian coordinate in a log-
polar system, thus allowing for the required unwrapping.
This unwrapping can be achieved using the holograms
shown in Figure 8(e)-(f). Simulated data illustrating the
unwrapping process enabled by the two holograms on
an electron beam carrying ¢ = £5 OAM components is
shown in Figure 8(g).

Such a device is of considerable interest in the ma-
terials science community due to its ability to readily
provide the entire OAM content of an electron beam.
Namely, material scientists often conduct works related

to analyzing the effects of magnetic fields in materials
on the OAM content of an electron in order to extract
information concerning the material’s nanoscale struc-
ture. Therefore, having such a sorter would considerably
simplify such a task, as demonstrated in [29].

4.2. Nondestructive measurement

Though the above sorting process directly provides a
beam’s OAM spectrum, it however relies on drastically
modifying the beam’s wavefront. Here we provide an out-
line of a recent proposal involving the measurement of an
electron’s OAM without resorting to modifying its wave-
front, and hence without modifying its OAM. To perform
such a measurement, we must make use of the fact that the
azimuthal probability current density of twisted electrons
is given by j, >~ P(hf/mp) which gives rise to a magnetic
dipole moment u = € p €,. The presence of this current
results in an azimuthal vector potential which can be
found from j, by solving Poisson’s equation. However,
in the case where we are interested in examining the
effects of this potential at radial distances that are much
larger than the radial extent of the electron wavepacket,
this vector potential can be simply expressed as that of a
magnetic dipole. In the case of twisted electrons, itis given
by Adgipole(®) = (10/47) Lutp p(p> + 22~ &, which
is azimuthally symmetric and directly proportional to
an electron’s OAM number £. Therefore, if we could
measure this potential, we would be able to obtain some
insight on the electron’s OAM. To do so, we make the
electron travel through an azimuthally symmetric hollow
and conductive object such as a loop or a cylinder. Ac-
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Figure 9. Nondestructive measurement of an electron’s OAM.
Theoretically calculated total induced currents in a conductive
loop by passing electrons with OAM values of 1, 5, and 10. The
density plots provided below the graph depict the magnetic
energy density attributed to the magnetic field generated by
the loop’s currents when an electron carrying an OAM value of
100 travels through it. The corresponding position of the electron
relative to the loop is depicted above each plot.

cording to Faraday’s law of induction, the motion of the
electron’s magnetic moment will result in the generation
of an electric field E = —9;A which induces a current
inside the conductive loop. A quick calculation reveals
that this current is also proportional to the electron’s
OAM number [31]. Therefore, by measuring this small
yet detectable current, we should in principle be able to
measure the electron’s OAM. Moreover, the electron’s
energy can be claimed to be invariant upon propagation
given that the longitudinal magnetic field generated by
the loop’s induced currents are only able to slow it down
to a negligible fraction of its original velocity. Since the
electron’s canonical OAM is invariant upon propagation
through a longitudinal magnetic field, then it will also
not change upon propagating through such a device.
The invariance of the electron’s energy and OAM dur-
ing this measurement process therefore causes the latter
to effectively be considered as a nondestructive process
(Figure 9).

5. Interaction with a longitudinal magnetic field

So far, the dynamics of twisted electrons in magnetic
fields were discussed within the scope of modifying their
OAM content. These discussions specifically entailed the
temporary use of specific fields, such as that of a monopole
or those with a distinct transverse topological structure,
to add discrete units of OAM onto electrons via their
interaction with the electron’s charge or its spin. How-
ever, all of the applications regarding the generation and
detection of twisted electrons were described in terms
of their OAM eigenstates which also conveniently hap-
pened to be those of the potential-free Schrédinger equa-
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tion. In this section, we will provide an illustration of
the manner in which the eigenstates satisfying Equa-
tion (1) are modified by the presence of a uniform lon-
gitudinal magnetic field. Our discussion will closely fol-
low the formalism employed in [32]. As in the case of
the g-filter, we must proceed by finding the solutions to
Equation (1) where the presence of a vector potential
effectively modifies the kinetic component of the system’s
Hamiltonian from —h2V?/2m, to ( — ihV — eA)?/2ms,,
where the vector potential A must be associated with
a constant magnetic field of the form B = V x A =
By €;. Needless to say, there is more than one potential
that can yield such a field, yet, due to gauge invariance,
they should all be related by a gauge transformation,
ie. A — A+ Vy, where x is a scalar. At first glance,
this gauge invariance seems to imply that there could
be completely different wavefunctions v describing our
electrons in identical magnetic fields. However, it hap-
pens that these wavefunctions only differ by a phaseex /A,
ie. v — vexp(iex/h). Therefore, the dynamics of
¥, which are usually based on quantities such as ||
and (Y| ), will not be affected by these transformations.
Based on such considerations, the first step in finding the
eigenstates of the Schrédinger equation in the presence of
a uniform longitudinal magnetic field consists of finding
a convenient formulation for A. In particular, we will
consider non-zero vector potentials that yield vanishing
and non-vanishing magnetic fields which respectively
resultin the so-called free electron Aharonov-Bohm states
and Landau states. In both cases, we will let our vector
potential have the form A(r) = f(p) ey, thus ensuring a
magnetic field definedasB = V xA = ,0_18,) (of (p)) e.

Given that the vector potential has an azimuthal form,
we can already intuitively see that its presence will bestow
an additional form of azimuthal motion to the electrons
based on the form of the kinetic momentum p — eA. In
fact, the presence of the potential directly modifies the
wavefunction’s azimuthal probability current density to
(32]

, h e )
Jo = (—Im(lﬁ*Vlﬁ) — —Aly] ) . )
M, M, 0
Therefore, we can expect that the potential will either
contribute or counter the electrons’ intrinsic orbital mo-
tion.

5.1. Aharonov-Bohm states

Aharonov-Bohm states consist of charged wavefunctions
modified by the potential A(r) = (®)/(2mp) ey, where
® is a given magnetic flux. In its presence, the eigenfunc-
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tions of the Schrédinger equation take the form

B o Ji—g(kpp) exp (i(lp + ky2)).  (10)

where o = (e®) /(27 h). A quick calculation of B reveals
that no magnetic field is actually applied on the electron
[32] , given that it is essentially concentrated along the
p = 0 axis. Therefore, its energy will be identical to that
of a free particle. However, this cannot be said about
the dynamics of the electron’s wavefunction. Indeed, we
can see that its original probability density function is
modified to P@Eal x |]|g,a|(kp,0)|2, thus resulting in
the following probability density current

h (-«
A A
]|glia| = m_e ( P ey, + k, ez> PMEM’ (11)

from which we can clearly observe the influence of A
on the dynamics of the electron wavepacket. Interest-
ingly, the wavefunction’s canonical OAM r x p remains
ht. However, the expectation values of the electron’s
kinetic OAM r x (p — eA), which dictates the orbital mo-
tion of the wavepacket, are changed to /(¢ — o). Though
changes are brought to the electron’s transverse dynam-
ics, there is remarkably no variations brought to the lon-
gitudinal dynamics associated with its propagation. Most
notably, the evolution of the electron’s phase and its
probability density function are the same as those of a free
electron characterized by a quantum number ¢ — ¢ —o.

5.2. Landau states

Let us now examine the case where the electron is sub-
jected to a potential associated with a non-zero magnetic
field B = Be,. To obtain such a field, we may let A =
(B p)/2e,. The electronic eigenstates in such a field are
known as Landau states [32,33] and are given by

14 2
L P e (2P
o (2 ) (22
‘/’e,p (WM> r ( w2, )

2
X exp <—£—2> exp (i(lp + k;z)), (12)

m

where wy,, = 24/h/([eB]) is a magnetic length parameter
which holds an analogous role to the width wy from
the paraxial Laguerre-Gauss beams that were introduced
earlier [32]. Let it be noted that w, can also be ex-
pressed in terms of the Larmor precession frequency
Q = (eB)/(2m,) as wy = /(2h) /(m[RQ]).

Landau states are endowed with several key features.
As previously suggested, we note that their formulation
is almost identical to those of the free paraxial LG beams
where the width parameter w(z) is replaced by the mag-

netic length w,,. However, unlike the free LG beams,
which are solutions to the paraxial wave equation and
thereby approximate solutions of the Schrédinger equa-
tion, the Landau states 1//eL, are exact solutions of the
Schrodinger equation describing a charged particle ex-
posed to a magnetic field. Moreover, unlike the width of
the paraxial electrons, the magnetic length wy, is invariant
upon propagation, thus causing the electron wavepacket
to be diffractionless. As opposed to the Aharonov-Bohm
states, the eigenenergies of the Landau states are modi-
fied by the presence of a non-zero magnetic field. These
eigenenergies are given by

R2k?
Ej, = = hQE+RIQICp I+ D, (13)

e

We can see that these energies can be attributed to distinct
phenomena related to the dynamics of Landau wavepack-
ets. First and foremost, they consist of a component
(hzkg) /(2m,) attributed to the longitudinal propagation
of the electron. Second, they are also defined by a —hQ2¢
contribution which corresponds to the Zeeman energy,
E; = uptB, attributed to an electron with a canonical
OAM of ¢ in a magnetic field. Finally, these electron
energies also consist of a component that is directly at-
tributed to the discrete nature of their wavefunctions.
This contribution is given by Eg = 72| (2p + €| + 1).

The influence of the magnetic field on the dynamics
of electron wavefunctions can also be readily observed in
its probability current density

h 1 2p°
jip=— [— (z +o WLZ) e, +k; ezj| Pry  (14)

me IO m

where o denotes the sign of the magnetic field, i.e.
1, B=|B

o = + |Bl e, (15)
—1, B=—|Ble,

As in the case of Aharonov-Bohm states, the presence
of the azimuthal vector potential effectively acts with
or against the electron’s canonical OAM which still has
eigenvalues of if. More interestingly, we note that when
the electron’s OAM is countercirculating with respect to
the vector potential, i.e. € < 0, then there is a critical ra-
dius pjg) = wm~/[€] /2 where the wavepacket’s azimuthal
current density vanishes. Below this radius, the direction
of the current attributed to the wavefunction’s ¢ value
is dominant and thus determines the current density’s
direction. Above pjg|, it becomes the direction of the
potential that becomes dominant. These effects cause the
expectation value of the electron’s kinetic OAM to have
values of i(£ 40 (2p+|£|+1)). Because p > 0, we can see
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Figure 10. Probing materials with twisted electrons. (a)
lllustration of an EMCD (Electron Magnetic Circular Dichroism)
apparatus. A sample is exposed to an electron beam which results
in the scattering of the incident electrons. A phase-flattening
scheme consisting of a hologram and an aperture is then used to
post-select electrons with a certain OAM value imparted by the
material. A magnetic prism and a CCD camera are then used
to acquire the electron energy spectrum of a particular OAM
component. (b) Sketch of typical data for the electron energy
loss spectra (EELS) and the corresponding EMCD spectrum in
an EMCD experiment. The EELS depict the energy spectra of
scattered electrons with opposite OAM values and thereby of
opposite handedness (left and right). The EMCD spectrum, which
corresponds to the difference between the two EELS spectra,
exhibits the asymmetry between the scattered OAM components
and thereby the material’'s magnetic properties.

that the direction of the vector potential always defines
the orientation of the electron’s kinetic OAM.

6. Interaction with materials

One of the main interests surrounding the practical ap-
plications of twisted electrons concerns their ability to
interact with magnetic fields and thereby to be employed
as nanoscale probes in magnetic materials. In practice,
the use of electrons for the characterization of materials is
typically implemented within a transmission electron mi-
croscope (TEM). Though traditionally employed in the
context of electron imaging or diffraction experiments,
TEMs have now found applications as instruments for
nanoscale measurements of many material traits includ-
ing magnetic or electric properties [34,35], crystalline
strain [36], and phononic and plasmonic responses [37,
38]. Information pertaining to these properties can be
extracted by examining how electrons are inelastically
and elastically scattered by the material. These scattering
processes distinguish themselves by whether a fraction
of the electrons’ energy is transferred to the material’s
internal degrees of freedom (inelastic) or whether it is
constant upon propagation through the material (elastic).

The fact that experiments concerning the generation
of twisted electrons can be realized within a TEM sig-
nificantly facilitates their integration in the analysis of a
material’s attributes. The usefulness of such electrons in
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this context arises when their interaction with a material
modifies its original OAM content thereby allowing the
extraction of information concerning the potential to
which it was subjected. For instance, it is well-known
that the magnetic traits of ferromagnetic materials in-
troduce a form of dichroism in an electron’s inelastic
scattering cross section. Namely, the degree to which
twisted electrons are inelastically scattered will vary with
the handedness of their helical wavefronts. This is at-
tributed to the fact that this scattering process entails the
excitation of deep atomic states with opposite symmetries
and different populations. To deduce a material’s magne-
tization from these asymmetric scattered intensities, one
usually relies on its so-called electron magnetic circular
dichroism (EMCD) spectra [39-42]. However, EMCD
spectra have always been experimentally challenging to
measure given that they originally required very sensitive
inelastic wave interferometry. With the advent of electron
OAM measurement techniques, the measurement of a
material’s dichroism has been significantly simplified to
a mere analysis of an electron’s OAM spectrum [15] as
depicted in Figure 10. The usefulness of this technique is
further extended by the fact that dichroic processes are
not confined to a material’s magnetic traits. In particular,
based on their 3D structures, materials, or even molecules
and systems of nanoparticles, can exhibit forms of dichro-
ism in the OAM content of inelastically scattered elec-
trons when exposed to twisted electrons. In addition to
providing information on their 3D structures, the dichro-
ism of such molecular arrangements also allows for a way
of spatially resolving plasmon excitations in materials and
predicting their cross section [43,44].

The characterization of a material with twisted elec-
trons also encompasses the probing of processes that in-
volve elastic scattering. The latter mostly involve a form of
coupling between the quantum states describing twisted
electrons and the material’s so-called channeling states
[45]. In principle, this coupling causes the electron to
undergo a propagation that is almost undisturbed by the
material. This type of propagation could prospectively
allow for a characterization of the material’s internal
structure by examining the degree to which the state of
the electron is unperturbed. However, the experimen-
tal realization of such a method has so far been pre-
vented by the difficulties of achieving a satisfactory level
of the required coupling. Even the slightest discrepan-
cies can cause OAM-carrying electron beams to become
unstable upon propagating through the material [46].
Fortunately, not all characterization methods based on
the elastic scattering of OAM-carrying electrons rely on
their coupling with a material’s channeling states. For
instance, some rely on measuring the phase acquired
by OAM-carrying electrons upon propagating through a
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Figure 11. Inducing time dilation on a particle by shaping its wavepacket. Left: Probability density of a one-dimensional self-accelerated
Dirac wavepacket on a Minkowski diagram. Right: Space-time trajectory of a relativistic particle influenced by a force F = mc?/R.
In both cases, the entities experience identical hyperbolic trajectories in space-time, experience the same dilation (7 time periods for
the accelerated particles vs 9 time periods for a stationary particle), and acquire the same Aharonov-Bohm phase. Figure based on

reference [54].

longitudinal magnetic field to essentially characterize the
latter [47,48]. Another recent example consists of using
OAM-carrying electrons to more easily characterize the
diffraction patterns of crystals defined by more com-
plex symmetries [49]. Beyond this, there have also been
proposals concerning the application of exotic twisted
electrons to impart torque to nanoparticles [50] and to
produce transition radiation [51].

7. Self-accelerating twisted electrons

The influence of magnetic fields on the phase structure of
electron wavefunctions undoubtedly provides a variety
of ways of both generating twisted electrons and using
them to characterize magnetic materials. As we have seen,
other entities, such as a vector potential attributed to a
vanishing magnetic field, can also influence the spatial
structure of electron wavepackets. In some cases, electron
wavepackets can even experience interesting phenomena
in the absence of external potentials. Such effects instead
arise from the initial shape and the evolution of the elec-
tron wavefunction itself.

In recent years, specially structured wavepackets
designed to experience a form of ‘self-acceleration’ have
provided new insight on the topic. Explicitly, ‘self-
acceleration’ refers to the apparent parabolic trajectory
experienced by distinct types of non-diffracting beams.

In essence, the main features of the beam experience a
lateral parabolic shift upon propagation, though the beam
as a whole propagates along a straight trajectory. In prac-
tice, however, the finite transverse extent of wavepack-
ets prevents them from indefinitely having this distinct
parabolic structure. Instead, wavepackets will experience
self-acceleration over alimited range until they eventually
succumb to diffraction. Electrons defined by such self-
accelerating wavepackets exist within non-relativistic
regimes [52] governed by the Schréodinger equation and
have been experimentally generated [53]. The recent de-
velopment of self-accelerating solutions to the relativistic
Dirac equation [54] has also introduced the prospect of
having relativistic self-accelerating electron wavepackets
defined by a variety of new properties associated with
special relativity. It has in fact been shown that self-
accelerating solutions of the potential-free Dirac
equation [54] mimic the dynamics of a free-charge accel-
erating under the influence of an EM field, even though
no field is present. Such wavepackets can be designed
to display any effect induced by EM fields by only con-
trolling the initial conditions of the wave pattern. Most
interestingly, measurements taken along the wavepacket’s
trajectory cannot distinguish between a real force and this
virtual force, which is self-induced by the wavepacket
itself and is engineered through its initial conditions.
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Figure 12. Families of shape-preserving wavepackets as eigenstates of symmetry operators. (a) The profile of a 2+1D accelerating
electron Dirac wavepacket equation in three consequent times; the wavepacket experiences length contraction, maintaining its profile
up to scaling. The glowing line marks the ct point in the plot. (b) The profile and the Poynting vector of an accelerating solution to
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The measurable effects of this virtual force are real by
all measurable quantities.

Another interesting property defining these self-
accelerating wavepackets concerns their phase accumu-
lation x along the wave’s trajectory. This quantity is
proportional to the proper time of an equivalently accel-
erating particle, thus implying that the phase difference
following this acceleration is equivalent to the relative
time dilation between the accelerating particle and a sta-
tionary one. In practice, this relation could prospectively
be used to prolong the lifetime of decaying particles by
structuring their wavefunction into a self-accelerating
wave [54]. The principles of these ideas are depicted in
Figure 11.

In addition to these relativistic effects, the analogy
between self-accelerating wavepackets and accelerating
particles is of fundamental interest from an electrody-
namics perspective. For instance, these similarities can
lead one to question whether an electron wavefunction
would emit radiation if it is shaped to self-accelerate
in potential-free vacuum. While an accelerating charged
particle emits Larmor (or Bremsstrahlung) radiation, it
remained an open question to characterize the electro-
magnetic field accompanying self-accelerating particles.

Their far-field behaviour is especially intriguing since it
may define a regime somewhere in between the tradi-
tional non-radiating near-field and the radiating far-field
while being neither — not carrying energy in the form of
radiation at the far-field, yet not decaying quickly enough
to be considered part of the charged particle’s near-field.

Some of the exotic features of self-accelerating Dirac
electrons can also be extended to other self-accelerating
systems. Much like how several electron wavefunctions
[7,9,13,15-18,23,53] are defined by features similar to
those of optical beams [56-58], these self-accelerating
features can exist in virtually any linear and nonlinear
wave system in nature. For instance, such systems include
plasmon waves [59-64] (some solving the full Maxwell
equations [55,65]), sound waves [66,67], surface waves
[68], waves on membranes, and even gravitational waves.
All of these waves share a common attribute. Namely,
they are part of a wider family of shape-preserving beams
and wavepackets that are eigenfunctions of Lorentz
operators (boosts/rotations), i.e. solutions that are
invariant under the operation of any Lorentz transform.
Generally, any wave system will have its shape-preserving
solutions fully described by finding the eigenfunctions of
its symmetry operators (see Figure 12). Consequently,
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the above phenomena, such as the accumulated phases
of self-accelerating particles, can be observed in vari-
ous settings, e.g. optical waves in honeycomb photonic
lattices [69] or in hyperbolic metamaterials [70], and
matter waves in honeycomb optical lattices formed by
the interference of laser beams.

In the specific case of electron wavefunctions, the self-
accelerating Dirac wavepackets described above are
eigenfunctions of boost operators, and in a complete
analogy, Bessel beams and other vortex beams are ex-
actly eigenfunctions of rotation operators. Hence, we can
expect other families of shaped particles such as twisted
(OAM-carrying) electrons, to also exhibit similar forms
of ‘accumulated phases’ and ‘extended lifetimes’ when
taken to their relativistic limits.

8. Conclusion

The recent surge in experimental works pertaining to
the generation of twisted electrons, the framework of
which was laid by previous theoretical investigations, has
motivated a vast amount of studies related to the mea-
surement of electron OAM and the interaction of charged
wavepackets with electromagnetic fields. As discussed in
the last section of this work, analogues to these types
of interactions caused by purely relativistic effects have
also been recently put forward, thus introducing a wide
range of exciting phenomena. Such relativistic analyses
result in wavefunctions that have completely different
structures than their nonrelativistic counterparts [23,71-
74] and hence, in some cases, affect the nature of their
quantum dynamics. For instance, the presence of spin-
to-orbit coupling in relativistic electron wavepackets di-
rectly affects the description of its coiling probability
density current. The theoretical prediction of these rel-
ativistic effects thereby opens a new frontier in the field
of twisted electrons. Namely, they should first motivate
the inception of several experimental works aiming to de-
tect these effects under relativistic configurations. Should
these works prove successful, they will undoubtebly en-
courage the reformulation of several current applications
relying on OAM-carrying electrons while also stimulat-
ing the emergence of several new proposals relying on
the distinct behaviour of relativistic wavepackets.
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