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Observation of Vortex-Ring “Discrete’ Solitons in 2D Photonic Lattices
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We present the experimental observation of both on-site and off-site vortex-ring solitons of unity
topological charge in a nonlinear photonic lattice, along with a theoretical study of their propagation

dynamics and stability.
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Coherent wave propagation in lattices is fundamental
to various branches of physics, including lattice field
theory [1], solid-state physics [2], photonics [3,4], and
matter waves in optical traps [5]. The dynamics in these
systems is defined by the phase relationship between dif-
ferent points on the wave front and by transport through
tunneling or coupling between lattice sites. In nonlinear
lattices, the additional feature of self-focusing or de-
focusing may balance the lattice diffraction, resulting
in a discrete or lattice soliton. Until recently, experiments
in nonlinear waveguide arrays had been limited to propa-
gation in one dimension [6—8]. However, the development
of a new technique [9] to optically induce nonlinear pho-
tonic lattices in photosensitive materials has allowed the
observation of lattice solitons in both one [10] and two
[11] dimensions. The induction technique has opened up
new experimental possibilities to study soliton phenom-
ena in periodic structures, and has generated numerous
follow-up papers (e.g., [12,13]). In particular, the ability
to create nonlinear waveguide arrays in 2D allows the
study of lattice waves carrying angular momentum and
the generation of vortex lattice solitons. Here, we report
the first experimental observation of vortex-ring solitons
in a nonlinear lattice [14]. We demonstrate both on-site
and off-site vortex solitons in a square lattice, analyze
these structures numerically, and address their stability
properties in saturable nonlinear media. These vortex
solitons are generic to nonlinear lattices in two dimen-
sions and are among the building blocks for more ex-
tended and complicated wave structures. We anticipate
that the dynamics observed here will appear in other
systems, such as nonlinear fiber bundles [15], photonic
crystal fibers [16], and Bose-Einstein condensates [5] in
the near future.

While vorticity is fundamental to two-dimensional
wave propagation [17], and vortex arrays are common
to 2D systems [18], the study of vortex solitons in non-
linear lattices is relatively new. The optical case of dis-
crete vortices was considered only recently, in Kerr
nonlinear waveguide arrays, where on-site vortices (vor-
tices whose singularity is located on a lattice site) [19]
and off-site vortices (vortices whose singularity is located
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between sites) [20] were studied. Both cases were found to
be stable within a certain range of parameters. In this
Letter, we present the experimental observation of both
on-site and off-site vortex-ring lattice solitons of unity
topological charge in a square lattice. Our experiments
utilize the optical induction technique [9—-11] in a photo-
refractive crystal, for which the nonlinearity is inherently
saturable [21]. Hence, we also study numerically vortex
lattice solitons in saturable nonlinear media, find their
wave functions, and demonstrate their stability.

For the saturable nonlinearity, which applies to the
photorefractive screening nonlinearity present in the ex-
periment [9], the paraxial dynamics of the slowly varying
amplitude ¢ may be modeled as (in dimensionless units)
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where V = Vy{cos[m(x + y)/d] + cos[7(x — y)/d]}* is
the square lattice induced by four interfering plane waves
(asin [9,11]), where V is peak intensity of the lattice and
d is the lattice spacing. The lattice potential is written in
this fashion because in the experiment, the lattice is
optically induced in the photorefractive crystal by inter-
fering beams of ordinary polarization, while the probe
(soliton-forming) beam 1is extraordinarily polarized
along the crystalline ¢ axis [9-11]. (Note that to compare
simulation with experiment, dimensional units can be
obtained from z— z/koAny and x — x/4/2k3noAn,
where Ang = ngr33V/2L is the index change caused by
applying a voltage V, along the rs3; direction, across a
distance L.) The interference pattern of the (ordinarily
polarized) array beams induces a 2D periodic index
change (waveguide array) in the crystal with an index
contrast proportional to the applied field. That is, the
probe experiences a periodic index change that becomes
more pronounced as voltage is increased. For this reason,
it is imperative that the experimental observation of the
soliton be verified by lowering the probe intensity while
keeping the voltage at the level at which the soliton forms.
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If, indeed, the elimination of diffraction arises from
soliton effects, then lowering the probe intensity at this
(high) voltage should lead to broadening of the out-
put beam. This “test” can prove the inherent nonlinear
(intensity-dependent) nature of the soliton and exclude
the possibility that the reduced diffraction results from
tighter (linear) waveguiding [11].

We find the wave functions of the unit-charge vortex
lattice solitons by using the self-consistency method.
This method is an iterative code, originally used to find
soliton eigenfunctions in homogeneous media [22] and
recently extended to find lattice solutions [23]. In this
method, an initial intensity profile creates an index
change (through the nonlinearity) acting as a defect in
the lattice and localizes modes to its vicinity. In turn,
the localized modal structure modifies the intensity
profile, which again modifies index change (induced po-
tential), and the process is iterated until a steady-state
vortex mode is found. The profiles are then fed into
Eq. (1), using a continuous beam propagation code (split-
step Fourier scheme) [24] to model their linear and non-
linear propagation.

Typical beam propagation results showing on-site and
off-site vortex solitons for z = 800 are given in Figs. 1(a)-
1(d). Here, d = 14, Vy = 0.2, and the vortices have a peak
intensity of 0.04; the main four “lobes’” all have the same
peak intensity and, importantly, each lobe is 7/2 out of
phase with its neighbors. Note again that the singularity
of the on-site vortex is centered on a lattice site [Figs. 1(a)
and 1(b)], whereas the singularity of the off-axis vortex is
centered between four lattice sites [Figs. 1(c) and 1(d)].
The soliton exhibits stationary propagation, and the
shapes of the vortices remain unchanged; i.e., these are,
indeed, vortex lattice solitons. For comparison, when the
nonlinearity is set to zero, the vortices diffract by tunnel-
ing between lattice sites, as shown in Figs. 1(e) and 1(f)
for the off-site vortex after z = 800. Note that the phase
of the diffracting beam maintains its spiral structure
throughout diffraction [Fig. 1(f)].

FIG. 1 (color online). Calculated intensity and phase of
(a),(b) the on-site and (c),(d) the off-site vortex lattice solitons,
along with the output diffraction pattern of (e),(f) the off-site
vortex at z = 800.
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Next, we investigate the stability properties of these
discrete vortex states by simulating their propagation
dynamics through the lattice in the presence of noise.
Typical results are shown in Fig. 2. In the simulations,
we add white noise in both amplitude and phase to a wide
area encompassing the soliton. The noise is evenly dis-
tributed over the entire k space, and its power is at least
10% of the vortex power (in a section of k space 3 times
larger than the soliton FWHM spectrum). Figure 2(a)
shows stable propagation of the vortex soliton inten-
sity for z = 800. We verify that the soliton is stable at
least until z = 6000 (limited by our computation time).
Figure 2(b) depicts the initial phase plane, with the
coherent vortex structure clearly visible in a sea of noise,
while Fig. 2(c) shows the phase after a propagation of z =
800. Note that higher frequency components of the noise
have averaged out, leading to a smoother background than
the input. We have also studied vortex lattice solitons in
Kerr media, for the same conditions, and found that they
are somewhat less robust than those of the saturable case,
whose stability increases with saturation. In addition, we
performed a linear stability analysis based on the discrete
model for both cases, the details of which will be pub-
lished elsewhere [25].

Note that the on-site vs off-site vortex solitons are the
two-dimensional analogues of the Sievers-Takeno and
Page modes, respectively, in a 1D array [26,27]. Intui-
tion from the one-dimensional case suggests that the
on-site vortex is energetically more favorable. In the 2D
lattice, however, both solitons are possible, due to a
combination of the supporting lattice potential and the

FIG. 2 (color online). Simulated propagation of the on-site
vortex lattice soliton in the presence of noise. (a) The soliton
intensity exhibits robust stationary propagation. (b) Phase at
the input plane, clearly showing the presence of noise. (c) Phase
after a simulated z = 800. Note that the high frequency com-
ponents have averaged out, while the soliton maintains its
vortex phase structure.
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relative phase between sites. In this respect, the vortex
soliton represents a pair of “twisted localized modes”
[19,28], and the entire structure stays together under
focusing nonlinearity. This is in distinct contrast to the
homogeneous case, where bright rings are unstable [29]
and only dark vortex solitons are possible with defocus-
ing nonlinearity [30].

Experiments were performed using 488 nm light from
an Ar" laser and a 5 mm long SBN:75 photorefractive
crystal. The experimental setup is sketched in Fig. 3(a).
As in [11], two pairs of ordinarily polarized plane waves
interfere to optically induce a square lattice inside the
crystal. In this case, the lattice spacing was 14 um, with
each waveguide having a diameter of ~7 um. The probe
(soliton-forming) beam is extraordinarily polarized and
is focused first onto a vortex mask (of unity topological
charge) to create a vortex ring. This ring is then imaged
with a 4f system, so that the vortex is mapped 1:1 onto
the crystal input face with minimal distortion, and
coupled into the waveguide array. Each array-forming
plane wave has an intensity of ~15 mW/cm?, while the
intensity ratio between the entire optical lattice and the
probe beam is 7:1. The intensity pattern of the initial
vortex ring, imaged at the input plane with the lattice, is
shown for the on-site configuration in Fig. 3(b) and for
the off-site configuration in Fig. 3(c).

Experimental results are shown in Figs. 4 and 5. The
photorefractive screening nonlinearity is controlled by
applying voltage against the crystalline ¢ axis [21] and,
in the proper parameter range, leads to localization of the
probe beam and to the formation of lattice ring vortex
solitons. At a low voltage (~100 V), the output diffrac-
tion of both the on-site and off-site vortices looks similar.
Figures 4(a) and 4(b) show the diffraction pattern of an
on-site vortex after 5 mm of propagation, showing that

FIG. 3 (color online). Experimental scheme and vortex inputs
with lattice. (a) A photonic lattice is optically induced in a
photosensitive (photorefractive) crystal by interfering two
pairs of plane waves, and a vortex probe is created by imaging
a vortex mask with a 4f system. The output is then imaged into
a charge coupled device camera. Experimental input of (b) on-
site vortex and (c) off-site vortex, classified by the location of
the phase singularity.
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both the hole and the width of the ring expand through the
lattice. The ring expands to roughly 3 times its original
size [Fig. 4(a)], while an interferogram, created by inter-
fering the output pattern with a plane wave, clearly shows
the 0 — 27 spiral phase structure of the vortex [Fig. 4(b)].
Note that the continuous symmetry of the homogeneous
medium is broken by the lattice, so that angular momen-
tum is not conserved in the periodic system. For this
reason, phase information at the output is essential to
show that the soliton maintains its vortex structure dur-
ing propagation. At around 700 V, the input vortices
become vortex lattice solitons and maintain their struc-
ture (intensity and phase) while propagating. Figures 4(c)
and 4(d) show the intensity and phase of an on-site
soliton, while Figs. 4(e) and 4(f) show those features for
an off-site soliton. Because phase information is very
sensitive to noise in the system, only the relative phase
of the relevant (soliton) lattice sites is shown for clarity.

As mentioned above, the relative strength of the wave-
guide array (index change experienced by the probe) is
increased with increasing voltage bias [9]. Hence, to
prove that the nondiffracting nature of the vortices indeed
arises from the nonlinearity induced by the vortices
themselves (and not from deepening the potential with
voltage), it is necessary to reduce the probe intensity,
while keeping the lattice parameters (i.e., voltage) fixed,
and observe linear diffraction through the lattice. Experi-
mentally, when the intensity of the probe beam is reduced
by a factor of 12, at the same voltage as in Figs. 4(c)—
4(f), the probe is too weak to form a lattice soliton; i.e.,
the vortices spread as they propagate through the lattice.
This behavior is shown in Fig. 5(a) and 5(b) for the on-
site and off-site vortex configurations, respectively. This
is conclusive evidence of on-site and off-site vortex lattice
solitons.

FIG. 4 (color online). Experimental results at the output
face of crystal. (a),(b) Diffraction at 100 V: (a) intensity and
(b) phase information formed by interference of output with a
plane wave. (c) Typical on-site soliton at 700 V, and (d) relative
phase from an interferogram. (e) Typical off-site soliton at
700 V, and (f) relative phase from an interferogram. Note
that phase information is extremely sensitive to background
noise, so only the interference patterns from the relevant lattice
sites are shown.
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FIG. 5 (color online). Output images after reduction of the
probe intensity by a factor of 12. (a) On-site vortex. (b) Off-site
vortex. At this intensity, the probe can no longer support itself
as a soliton and begins to diffract across the lattice by tunnel-
ing between sites.

The vortex solitons observed here are fundamental
wave structures on 2D nonlinear lattices and can thus pro-
vide valuable insight into other systems in nature where
similar dynamics can be potentially observed. For ex-
ample, matter waves in optical traps [31] and charge
density waves in planes of conductive polymers [2] can
support solitons with topological charge. All-optical ex-
periments also hold much potential for application, e.g., a
2D array of fiber lasers [15] can excite a vortex mode
whose output can drive a phase-sensitive object.

In conclusion, we have experimentally demonstrated
both the on-site and the off-site vortex solitons of unity
topological charge in a nonlinear square lattice and have
shown numerically that both configurations are stable in
saturable nonlinear media. Extensions to vortex inter-
actions, in this and other lattice geometries, will follow
in future work.
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