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Cross-phase-modulation nonlinearities and
holographic solitons in periodically poled
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We show that the nonlinearity in periodically poled photovoltaic photorefractives can be solely of the cross-
phase-modulation type. The effects of self-phase modulation and asymmetric energy exchange, which exist
in homogeneously poled photovoltaic photorefractives, can be considerably suppressed by the periodic pol-
ing. Finally, we demonstrate numerically that periodically poled photovoltaic photorefractives can support
Thirring-type (“holographic”) solitons, which to our knowledge have never been observed. © 2006 Optical
Society of America
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In optically nonlinear materials, the presence of light
modifies the material properties. The process
through which a beam is experiencing an intensity-
dependent nonlinear phase shift induced by the beam
itself is commonly referred to as self-phase modula-
tion (SPM) and is accompanied by self-focusing (or
defocusing) of the beam.1 A rather different nonlinear
effect is cross-phase modulation (XPM), in which the
nonlinear phase shift experienced by one beam is in-
duced by the presence of another beam, and vice
versa. In optical systems, XPM has been traditionally
believed to be “always accompanied by SPM.”1 Recent
studies, however, have revealed optical systems that
exhibit strong XPM but lack SPM altogether.2–8 In
such systems, two (or more) narrow beams that
propagate jointly interact via XPM and undergo mu-
tual focusing, whereas a single beam propagating
alone experiences linear diffraction. Such systems
are known from the mathematics arena to support
Thirring-type solitons,9,10 which form solely by virtue
of XPM. Thus far, Thirring-type solitons have, to our
knowledge, evaded experimental observation, be-
cause lossless optical systems exhibiting appreciable
XPM but lacking SPM altogether are rare. In fact,
such systems were demonstrated only in a highly co-
herent Raman medium3 and in an atomic 4-level sys-
tem under electromagnetically induced transparency
conditions.5 Common to the systems described in
Refs. 3–6 is the fact that the interacting beams are at
different frequencies.

Here, we suggest a scheme to produce an optical
nonlinearity that is solely XPM between interacting
beams at the same frequency. The scheme is based on
periodically poled photovoltaic photorefractive crys-
tals, such as periodically poled lithium niobate
(PPLN). Under appropriate conditions, the periodic
poling considerably suppresses the SPM nonlinearity
and averages out the unidirectional energy transfer,
while leaving the XPM nonlinearity unaffected. Fi-
0146-9592/06/070954-3/$15.00 ©
nally, we show that such periodically poled photovol-
taic photorefractives can support the hitherto unob-
served holographic solitons.

Consider first the nonlinear interaction between
two beams propagating in a homogeneously poled
photovoltaic photorefractive crystal, such as lithium
niobate [Fig. 1(a)]. The beams are mutually coherent
and propagate at small angles ±� relative to the
z-axis such that their interference intensity forms a
1D grating with a wave vector in the x direction,
which is parallel to the crystalline c-axis. The beams
are polarized (approximately) in the x direction, tak-
ing advantage of the typically large r33 electro-optic
coefficient.11 Let the joint slowly varying amplitude
representing the beams be written as ��x ,y ,z�
=A�y ,z�exp�ikxx�+B�y ,z�exp�−ikxx�, where A and B
are the beams’ complex amplitudes and kx is the
transverse wavenumber. In this geometry, the

Fig. 1. Top, scheme for mutually coherent beams propa-
gating in (a) a homogeneously poled crystal and (b) a peri-
odically poled crystal. Bottom, scheme for photovoltaic
charge separation due to (c) a uniform beam and (d) an in-

terference pattern.

2006 Optical Society of America



April 1, 2006 / Vol. 31, No. 7 / OPTICS LETTERS 955
steady-state nonlinear index change is given by12–14

�n = −
1

2
n0

3r33

EPVI + EDdI/dx

�A�2 + �B�2 + Idark
, �1�

where n0 is the linear index of refraction; ED and EPV
are the diffusion and photovoltaic fields, respectively;
and Idark is the dark irradiance. Inserting I= ���2
= �A�2+ �B�2+AB* exp�2ikxx�+A*B exp�−2ikxx� into Eq.
(1) leads to
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n0

3
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�A�2 + �B�2 + Idark
. �2�

The term �1=r33EPV��A�2+ �B�2� arises from the photo-
voltaic space-charge field produced by the transver-
sally averaged intensity pattern, and it gives rise to
equal SPM and XPM nonlinearities. The terms �2
and �3, on the other hand, both involve a grating. The
term �2=r33EPV�AB* exp�2ikxx�+c.c.� represents an
induced index grating that is in phase (or � out of
phase) with respect to the intensity grating in I; this
term leads to a solely XPM (holographic)
nonlinearity.2,15,16 The last term, �3
=2ikxr33ED�AB* exp�2ikxx�−c.c.�, results from the dif-
fusion space-charge field, and it represents an index
grating that is ±� /2 phase shifted relative to the in-
tensity grating. Consequently, this term yields a uni-
directional energy exchange between the beams.17,18

Consider now two beams interacting in the same
configuration but propagating in a periodically poled
photovoltaic crystal (e.g., PPLN), as shown schemati-
cally in Fig. 1(b). Assume also that the periodic poling
is at a 50% duty cycle, with a wave vector along z and
periodicity L, where L is much larger than the period
of the intensity grating, L�d, and much smaller
than the transverse width of the beam in the x direc-
tion, W�L. For example, possible values are d
�2 �m, L�50 �m, and W=3 mm. It is well estab-
lished, both theoretically and experimentally, that
under these conditions the effect of �1 is significantly
suppressed12,19–21 and the effect of �3 is averaged
out,12,20 while at the same time the solely cross-
phase-modulated holographic nonlinearity arising
from �2 remains practically unaffected by the peri-
odic poling.12,19–21 Below, we give a qualitative expla-
nation for these effects.

We first elucidate the effect of the periodic poling
on the photovoltaic nonlinearity (�1 and �2). The di-
rection of the photovoltaic field depends on the crys-
talline c-axis, and hence it has opposite signs at ad-
jacent domains and vanishes in the interfaces.12,21

The relevant steady-state photovoltaic field is associ-
ated with charge separation along the c �x-axis. The
distance that the charges are separated is compa-
rable to the length scale of the relevant intensity
variations. In the case of �1, the relevant length is the
width of the beam, which is much larger than the pol-
ing periodicity �W�L�. Hence, the photovoltaic field,
and consequently the photovoltaic–photorefractive
effect (manifested in �1), is considerably suppressed

by the rapid sign alternation of charges at the beam
boundary [Fig. 1(c)]. In �2, on the other hand, the rel-
evant length scale is the periodicity of the intensity
grating, which is much smaller than the poling peri-
odicity �d�L�. Hence, the photovoltaic field is sup-
pressed only in narrow regions near the domain in-
terfaces, while within the domains its absolute value
is practically unaffected [Fig. 1(d)].12,19–21 Moreover,
the sign of �2 does not depend on the poling direction,
because the signs of both the photovoltaic field and
the electro-optic coefficient, r33, are opposite in anti-
parallel domains. Thus, �2 is practically unaffected
by the poling periodicity.12,19–21 The absolute value of
�3 is independent of the poling direction, yet its sign
is opposite in antiparallel domains (because the dif-
fusion field is independent of the crystalline axes,
hence the sign of �3 follows the sign alternation of
r33). Consequently, the effect caused by �3 (asymmet-
ric energy exchange, e.g., from A to B) is averaged
out throughout propagation, because energy is trans-
ferred in opposite directions in antiparallel
domains.12,20

Having elucidated that �1�0 and 	�3
z=0, we now
show that the remaining �2 term indeed gives rise to
a solely XPM interaction between the beams. The
paraxial time-independent propagation of the joint
slowly varying amplitude is described by the follow-
ing �2+1�D equation:

i
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1
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��
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n0
� = 0, �3�

where k=2�n0 /	 with 	 being the wavelength at
vacuum. Inserting � and �n into Eq. (3) and select-
ing only synchronous terms leads to
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where �n0=−�n0
3r33EPV/	. Clearly, the nonlinearity

is saturable and is solely XPM. Hence, if the beams
are narrow in y, then both beams experience mutual
focusing–defocusing in y. The focusing results from
the induced grating (hologram), which is periodic in
the direction perpendicular to the focusing direction
and hence was termed holographic focusing.15,16

Moreover, for such a set of equations, holographic
solitons2 [stationary mutually trapped solutions of
Eq. (4)], as well as more complex structures such as
multimode7 and dissipative holographic solitons,22

are known to exist.
Next, we demonstrate a numerically bright holo-

graphic soliton in our system. Having in mind PPLN,
we use the following experimental parameter values:
n0=2.2, 	=0.5 �m, d=2 �m ��� ±6.5° �, L=50 �m,
�r33�=30 pm/V, ED=0.8 kV/cm, and �EPV�=20 kV/cm.
We simulate Eq. (3) with initial excitation ��x ,y ,z
=0�=U�y�cos�kxx� (i.e., setting A=B=U /2), where U
is the solution (wave function) found for the bright

2
holographic soliton. The nonlinearity is given by Eq.
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(2) with �1=0, and the signs of r33 and EPV alternate
every L /2. As an example, Fig. 2 presents a holo-
graphic soliton with U�0�=�IDark/4 having FWHM
=22 �m. To test the stability of these solitons, we
simulate the propagation of holographic solitons in
such a PPLN system in the presence of noise, launch-
ing the soliton waveform embedded in noise at the
level of 10% of the peak intensity. The noisy intensity
at z=0 is shown in Fig. 2(a). We observe that the
noise radiates away after �1 mm propagation, after
which the beam demonstrates stationary propaga-
tion. The intensities of the soliton beam and the lin-
early propagating beam (which experience diffraction
broadening) at z=2 cm are shown in Figs. 2(b) and
2(c), respectively. Finally, Fig. 2(d) shows the induced
index change (with �3=0) displaying the shape of a
grating mediated waveguide of the first type.23

In conclusion, we have shown that periodically
poled photovoltaic photorefractives can exhibit a non-
linearity involving solely XPM between two beams.
The conditions for such solely XPM conditions are
that the poling periodicity is much smaller than the
width of the interacting beams but much larger than
the period of the interference grating they form, i.e.,
W�L�d. We expect that relaxing this condition will
lead to continuous control of the ratio between the
SPM and the XPM nonlinearities. Finally, we nu-
merically demonstrated that this nonlinearity in pe-
riodically poled crystals gives rise to stable holo-
graphic solitons. We believe that Thirring-type
holographic solitons will soon be demonstrated. A po-
tentially important property of these solitons is their
ability to facilitate instantaneous switching in a slow
response nonlinearity.2

Fig. 2. (Color online) Holographic soliton in a periodically
poled phovoltaic photorefractive crystal. (a) Intensity of the
beam launched into the medium in the presence of 10%
noise. (b), (c) Output intensity after z=2 cm: (b) nonlinear
and (c) linear propagation. (d) Index structure induced by
the holographic soliton beam.
O. Cohen’s e-mail address is coheno
@colorado.edu.

References

1. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed.
(Academic, 1995), Chap. 7.

2. O. Cohen, T. Carmon, M. Segev, and S. Odoulov, Opt.
Lett. 27, 2033 (2002).

3. D. R. Walker, D. D. Yavuz, M. Y. Sheverdin, G. Y. Yin,
A. V. Sokolov, and S. E. Harris, Opt. Lett. 27, 2094
(2002).

4. D. D. Yavuz, D. R. Walker, and M. Y. Sheverdin, Phys.
Rev. A 67, 041803(R) (2003).

5. H. Kang and Y. Zhu, Phys. Rev. Lett. 91, 093601
(2003).

6. I. Friedler, G. Kurizki, O. Cohen, and M. Segev, Opt.
Lett. 30, 3374 (2005).

7. J. R. Salgueiro, A. A. Sukhorukov, and Y. S. Kivshar,
Opt. Lett. 28, 1457 (2003).

8. Note the similarity between the two beam
interaction in the solely XPM system and three-
wave parametric interactions in quadratic media in
the limit of large phase mismatch, as pointed out in
Refs. 2 and 7.

9. W. Thirring, Ann. Phys. (N.Y.) 3, 91 (1958).
10. A. V. Mikhailov, JETP Lett. 23, 320 (1976).
11. In lithium niobate r51 is comparable to r33. However,

its contribution to the nonlinearity is negligible
because (a) G23=0, hence there is no photovoltaic
field in the y and z directions, and (b) dI /dz, dI /dy
�dI /dx.

12. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M.
Fejer, and M. Bashaw, Phys. Rev. A 50, R4457 (1994).

13. M. Taya, M. C. Bashaw, and M. M. Fejer, Opt. Lett. 21,
857 (1996).

14. M. Segev, M. C. Bashaw, G. C. Valley, M. M. Fejer, and
M. Taya, J. Opt. Soc. Am. A 14, 1772 (1997).

15. O. Cohen, R. Uzdin, T. Carmon, J. W. Fleischer, M.
Segev, and S. Odoulov, Phys. Rev. Lett. 89, 133901
(2002).

16. O. Cohen, S. Lan, T. Carmon, J. A. Giordmaine, and M.
Segev, Opt. Lett. 27, 2013 (2002).

17. B. I. Sturman and V. M. Fridkin, The Photovoltaic and
Photorefractive Effect in Noncentrosymmetric Materials
(Gordon & Breach, 1992).

18. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The
Physics and Applications of Photorefractive Materials
(Oxford U. Press, 1996).

19. B. Sturman, M. Aguilar, F. A. Lopez, V. Pruneri, P. G.
Kazansky, and D. C. Hanna, Appl. Phys. Lett. 69, 1349
(1996).

20. S. Odoulov, T. Tarabrova, A. Shumelyuk, I. I.
Naumova, and T. O. Chaplina, Phys. Rev. Lett. 84,
3294 (2000).

21. B. Sturman, M. Aguilar, F. A. Lopez, V. Pruneri, and P.
G. Kazansky, J. Opt. Soc. Am. B 14, 2641 (1997).

22. J. S. Liu, Opt. Lett. 28, 2237 (2003).
23. O. Cohen, B. Freedman, J. W. Fleischer, M. Segev, and

D. N. Christodoulides, Phys. Rev. Lett. 93, 103902
(2004).


