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Deep learning reconstruction of ultrashort pulses
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Ultrashort laser pulses with femtosecond to attosecond pulse duration are the shortest systematic events humans can
currently create. Characterization (amplitude and phase) of these pulses is a crucial ingredient in ultrafast science,
e.g., exploring chemical reactions and electronic phase transitions. Here, we propose and demonstrate, numerically
and experimentally, what is to the best of our knowledge, the first deep neural network technique to reconstruct ultrashort
optical pulses. Employing deep neural networks for reconstruction of ultrashort pulses enables diagnostics of very weak
pulses and offers new possibilities, e.g., reconstruction of pulses using measurement devices without knowing in advance
the relations between the pulses and the measured signals. Finally, we demonstrate the ability to reconstruct ultrashort
pulses from their experimentally measured frequency-resolved optical gating traces via deep networks that have been

trained on simulated data.
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1. INTRODUCTION

Ultrashort laser pulses [1] are among the shortest systematic
events that can currently be created. These pulses are currently
used in numerous applications in ultrafast science, including fem-
tochemistry [2], coherent control [3], high-harmonic spectros-
copy [4] and ultrafast imaging [5]. The term “ultrashort pulse”
typically refers to a light pulse whose duration is below picosec-
onds (10712 5). In this regime, pulses are too short to be measured
directly by photodiodes. Naturally, it is highly important to char-
acterize these pulses, but this is possible only through indirect
measurements. A popular technique for characterizing ultrashort
pulses is frequency-resolved optical gating (FROG) [6]. It is an
established [7] and recently mathematically proven [8] approach
for full characterization of the amplitude and phase of ultrashort
optical pulses. It involves creating a 2D intensity diagram, called
the FROG trace, by spectrally measuring a nonlinear product field
of a pulse with time-shifted replicas of itself. The data acquired
by FROG (or its variations such as (GRating-Eliminated No-
nonsense Observation of Ultrafast Incident Laser Light E-fields)
GRENOUILLE [9] and frequency-resolved optical gating for
complete reconstruction of attosecond bursts (FROG-CRAB)
[10]) incorporate enough information to resolve the ultrashort
pulse reconstruction up to “trivial” ambiguities: time shift, con-
stant phase, and in some schemes, time flip with complex conju-
gation [7]. The reconstruction of the pulse from the FROG
measurement requires a recovery algorithm. Among such retrieval
algorithms, the principal component general projections algorithm
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(PCGPA) [11] is one of the typically deployed algorithms,
although it requires a full spectrogram that fulfills the sampling
Fourier relations in the frequency-time domain, and therefore
has to satisfy constraints on the number of measurements.
Another recent approach, ptychographic FROG [12], offers im-
provement by being able to handle any Fourier relations and partial
measurements. Both the PCGPA and the ptychographic FROG can
reconstruct ultrashort pulses at fairly low signal-to-noise ratios
(SNRs) after manual pre-processing [13]. However, without the fil-
tering stage, their performance deteriorates at low SNR to the extent
that FROG traces of too weak ultrashort pulses are non-invertible.

Here, we propose and demonstrate, theoretically and experi-
mentally, the reconstruction of ultrashort optical pulses by
employing deep neural networks (DNNs), and show (on simu-
lated data) that our trained network outperforms other state-
of-the-art techniques for low SNR measurements. We further
develop our methodology by modifying the network training
stage to combine both supervised and unsupervised learning,
and show that this new network is able to reconstruct ultrashort
pulses from low SNR experimental data, while being trained on
simulated data.

More specifically, we train a convolutional neural network
(CNN) to learn the inverse mapping of the FROG measurement
function using supervised learning. In the training procedure, we
use a set of pairs of known pulses and their associated FROG
traces, where the traces serve as input (to the procedure), and
the recovered pulses are compared with the (known) original
pulses. In the field of deep learning, this procedure is called
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supervised learning using labeled data, and it allows us to blindly
learn the structure of the problem without knowing the math-
ematical relation in advance. As we show in simulations below,
this methodology enables the reconstruction of pulses, even from
low SNR data. However, transferring this technique to experi-
ments would require training the DNN on tens of thousands of
measured pulses, which is clearly a drawback. To rectify this prob-
lem, we modify the learning procedure and combine supervised
together with unsupervised (unlabeled) training. The procedure
facilitates the reconstruction of pulses based on a network that is
trained on simulated data. In this modified network, the super-
vised procedure uses the previous computer simulated data set,
which helps the network learn a good basis to represent pulses
and improves its ability to filter noise. The unsupervised pro-
cedure makes the network more specific in reconstructing the
given experimental measurement. The joint training procedure
makes the whole concept of DNN pulse reconstruction experi-
mentally viable, by removing the need for measuring thousands
of pulses for the network training stage. We also note that the
unsupervised procedure could not be carried on its own (without
the supervised procedure), as it is highly sensitive to ambiguities.
Finally, we use our network and methodology on experimental
data and demonstrate high-quality pulse reconstruction with
networks trained strictly on simulated data. Our reconstruction
outperforms PCGPA and ptychographic FROG in the regime
of low SNR, while matching their performance for high
SNR data.

Recovering the structure of ultrashort pulses through neural
network techniques was pioneered more than two decades ago
[14] when a parametric model was trained to reconstruct the pulse
from its polarization gated (PG) FROG measurements. However,
those attempts struggled to perform well empirically and were not
widely adopted, since they used old neural network implementa-
tions, small training sets, and a shallow two-layer neural network.
Even more importantly, those methods were used after manual
engineering of features in the data, instead of being fed with
raw measurements, e.g., [14] assumed that the phase follows
polynomial dependence and aimed at reconstructing the first
polynomial coefficients.

In contrast to those early neural networks, the past decade has
witnessed overwhelming progress on deeper and more sophisti-
cated network architectures, those known today as DNN, that
are now being extensively used to extract expressive features from
data automatically [15]. The massive progress with DNN research
has recently led to superhuman performance, meaning that the
DNN extracts features better than a human, in a plethora of ap-
plications ranging from image classification [16], natural language
processing, [17] and Go [18] to visual diagnosis of skin cancer
[19], microscopy [20], and estimating the parameters of strong
gravitational lensing systems [21], to name a few. We note that
deep learning techniques extract the structure of the data by learn-
ing from many examples, whereas classical algorithms reconstruct
a single pulse from a single measurement. This fact endows
DeepFROG with the advantage of filtering noise better [22] than
commonly used algorithms.

We focus on second-harmonic generation (SHG) FROG,
the widely used FROG system, where spectrograms of auto-
correlations of an unknown complex pulse £(z) are measured
in order to reconstruct the amplitude and phase structure of
the pulse. The measured trace, after being discretized, is given by
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Fig. 1. (A) Experimental SHG FROG setup. (B)—(G) Simulated
examples from the data set. (B), (D), (F) are pulse amplitudes (blue)
and phases (red). (C), (E), (G) are the corresponding FROG traces.

]measured(wi’Tj) = |]:{E(t)E(t_ Tj)}|2> (1)

where F is the Fourier transform operator, w; are the discrete
frequencies of the spectrometer, and 7; are time delays between
the pulse £(r) and its replica. The reconstruction problem is de-
fined by mapping the FROG trace to the pulse that created it,
I neasured (@1, 7)) = E(2). Figure 1(A) depicts the experimental
scheme for generating FROG traces. Figures 1(B)-1(G) show
three simulated examples of short pulses and their corresponding
FROG traces.

If a SHG FROG trace is invertible, then the reconstructed
pulse, £(¢), is unique up to trivial ambiguities: constant phase
shift, inversion with conjugation, and translation (the proof
[8] is based on the fundamental theorem of algebra). This obser-
vation is essential, as it assures us that pulses with similar FROG
traces are themselves similar (Fig. 2). However, while these ambi-
guities are considered trivial and often have virtually no impact on
the use of ultrashort pulses, training a DNN to overcome one of
these ambiguities suffers from instabilities, e.g., when an ambigu-
ity appears in the data set, i.e., two different pulses correspond to
the same (or a similar) FROG trace. This problem is highly re-
lated to multi-label classification [23], a fundamental problem in
machine learning where a data point may be associated with
multiple labels instead of a single class. One approach to deal with
it is to transform the problem into many single-label problems
and solve each one separately. We avoid introducing ambiguities
to the training set by generating pulses with the same constant
phase shift, inversion with conjugation, and translation.

2. RECONSTRUCTION METHOD

Our algorithm, which we call DeepFROG, consists of two func-
tions that are implemented using differential programming
software and represented as DNNs. The first neural network,
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Fig. 2. Four different pulses (amplitude and phase) that correspond to
the same FROG trace. Each pulse corresponds to a different ambiguity in
SHG FROG measurements.

denoted by FROGNet, represents the measurement system gov-
erned by Eq. (1). It uses differential building blocks, and provides
efficient evaluations of the measurement system as well as its
gradients. For example, Fourier transform is a linear transforma-
tion and can be represented using a fully connected layer whose
weights are the Fourier matrix. In this vein, time shifts, multipli-
cation, and Euclidean norms can also be represented by differen-
tial building blocks, and they all have implementations in Torch
[24], the deep learning library we use here, as well as in other
libraries. We construct the FROGNet by using these building
blocks and adding them sequentially one after the other (e.g.,
norm after Fourier), in parallel (e.g., applying many parallel time
shifts to the pulse), and combining them (e.g., summing the
imaginary and real parts of the complex Fourier transform).
We emphasize that this function is a-parametric and remains con-
stant, i.e., it is not learned or changed at any time, and it repre-
sents the measurement system exactly through the entire learning
process. The second function is a parametric CNN, which
receives a FROG trace and outputs a vector of the real and
imaginary parts of the reconstructed pulse. The weights of the
CNN function are optimized such that the function is close to
the inverse mapping of the FROGNet function. This is achieved
using Adam [25], a variant of stochastic gradient descent (SGD),
by minimizing the /; loss between the measurement and the
reconstruction:

w* = arg min{loss(/, E)}

_ o [ IONN(s w) - £ o
& MM £ A|FROGNet(CNN(Z; w)) - 1], |

where CNN(Z; w) denotes the output of the CNN function with
weights w, given the input / and label £, and 4 is the supervised to
unsupervised learning rates ratio [26—28]. In principle, A may vary
between different datasets. In Section 3, we show how this 1
parameter can be exploited to reconstruct experimental pulses
by DNNs that were trained with computer simulated pulses,
where 1#0. For 4 =0, the network will learn only from
supervised training.

Our DNN architecture is a CNN [29], which commonly
consists of a few convolution layers followed by fully connected
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Fig. 3. (A) DNN architecture for mapping FROG traces into complex
pulses. A FROG trace, which serves as input data, is convoluted by
learned filters in three subsequent layers. The result serves as an input
to three fully connected layers with ReLU activation, after which the real
and imaginary parts of the pulse are fully reconstructed. (B) Supervised
training procedure. The generated pulses are used (after ambiguity re-
moval) as labels for the supervised DNN training step. We create a
FROG trace from these pulses with the FROGNet, add white
Gaussian noise (WGN), and then forward propagate the pulses in a
DNN. The label comparison gradient (loss) back propagates and updates
the weights. The gradient is back propagated through the DNN and is
added to the weights through a stochastic gradient descent (SGD) up-
date. (C) Unsupervised training procedure. Similar to B, but now, the
reconstructed pulse (the output of the DNN) is also forward propagated
through the FROGNet, such that the reconstructed FROG trace is com-
pared with the measured one. The gradient is then computed and is back

propagated through the FROGNet to update the weights of the DNN.

neuron layers with nonlinear activations in between (Fig. 3(A)).
Given a layer y,, in the CNN, which consists of A/ matrices, also
called M channels, of size N, . x IV, ,, a convolution layer with
P - M filters w of size N, x N, will output P matrices of size
Noyex X Noyey» denoted by y,,. These matrices are used as the
next CNN layer. Mathematically, the convolution for each pixel
in the pth matrix in the output layer (7guc> 7our,) is described by
summing all the multiplications between input pixels of the mth
matrix (i x, 7n,,) and the pth filter pixels (7,4, 72,,,) for the mth
input matrix:

}/OU.[(P; nout X nout}/)

- Z}’m(m’ Mouex ~

Nw,x
r:,,/]

wx’ nout,)/ - nw,)/)w(P’ m; nw,x’ nw,}/)’

In addition, a convolutional layer may have a padding param-
eter p (additional zeros added to the input) and a stride parameter
s. For stride s we move the filters by s pixels at a time. Given these
parameters, the size of the output image is given by the size of
the input image and the filter parameters so that (for one of
the dimensions):

Mowe = (n + 2p) /s + (n,, = 1). 4)

During training, the convolutional layers automatically extract
2D shift invariant features from the data, by learning the weights
of the filters w.

After the last convolutional layer is applied, the information in
the different feature maps is reshaped into a single, one-
dimensional vector, followed by fully connected (linear) layers.
The output of this layer is also a vector, y,,, = Wy,,, where
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W is a matrix (the weights of the layer), and y,,, is the input vector.
The parameters of the fully connected layers are updated during
training, similar to the filters of the convolutional layers. First, the
gradients are computed using backpropagation [30]. Then, the
gradients are scaled and added to the weights via a SGD algo-
rithm. SGD typically maintains a single learning rate for all
weight updates, and the learning rate does not change during
training. In practice, we used Adam [25], a variant of SGD that
has individual adaptive learning rates for different parameters,
calculated from estimates of first and second moments of the
gradients (see Ref. [25] for more details).

We test three different architectures. The first type is a simple
CNN with three convolutional layers and two fully connected
layers with a basic neuron function, the rectified linear unit
(ReLU, ReLU(x) = Max(x,0)), in between. The convolution
layers have 32 filters each, kernel sizes of 4,2,1, respectively,
strides 2,2,1, and pad 1,1,1. The convolutions are followed by
two fully connected layers, where the size of the last hidden layer
is 512, and the size of the last layer is 128 (corresponding to the
imaginary and real parts of the pulse).

The second type is inspired by Ref. [31] and uses convolu-
tional blocks with filters at multiple resolutions (sizes) in each
convolutional block, and is denoted by Multires. Explicitly, this
network is composed of six convolutional layers and two fully
connected layers, all followed by ReLU activations. The convo-
lution layers are divided between Multires layers and regular con-
volution layers. The Multires layers contain filters with four
different sizes, e.g., 11,7,5,3, where the stride and padding param-
eters are adjusted such that the output images from each filter are
of the same length as the input image [using Eq. (4)]. Thus, the
output of a Multires convolution layer is of the same size as the
input, but has four times more channels (due to the multiple fil-
ters). Each Multires layer is followed by a standard convolution
layer, adjusted such that the output image is half the size of the
input image with twice as many filters. Finally, the fully connected
layers size is adjusted such that the size of the last hidden layer is
512, and the size of the last layer is 128 (similar to the CNN).

The third type is the densely connected convolutional network
(DenseNet) [32] architecture, a very deep network with high in-
terconnectivity between nonadjacent layers. Overall, DenseNet
and our Multires architecture display the best performance, while
Multires takes a shorter time to reach good results. Here, we
report only results for the Multires architecture and leave archi-
tecture comparison for a future comparative study.

3. RESULTS
A. Simulations

We create our simulated training data in the following manner.
To design simulated pulses, we first generate a random spectral
phase (@) by smoothing a randomly generated vector and
add it to a Gaussian power spectrum S(w), such that
E(w) = /S(0)e® | where E(w) = F[E(¢)]. We take a wide
enough spectrum S(®), and we smoothen the phase ¢(w) by
reducing the high frequency Fourier coefficients of the random
vector to ensure that the pulse £(#) is limited in time while still
having small fast features. After generating £(w), we inverse
Fourier transform it into a time-domain electromagnetic field
E(#). The widths of our simulated pulses are of 100 fs, with
64 (N) delay points. Then, we forward propagate E(#) in the

FROGNet to yield a FROG trace. To deal with ambiguities
whose removal is essential for DNNs, we choose a single pulse
Er(2) out of its “trivial” E(#) counterparts, which correspond
to the same FROG trace. Specifically, Exr(#) must have an in-
tensity peak at a specific time; its phase at the peak is zero, and the
integral of the left (to the peak) side of the real part of Exg () is
larger than its right side integral. Examples of generated pulses
and their FROG traces are given in Fig. 1. We collect 60 K train-
ing examples containing pairs of inputs (FROG traces, I) and
labels (pulses, Er). These pairs are used to calculate the
reconstruction error and s weights by back propagating the error
gradient back to the DNN. The entire learning process is
described in detail in Fig. 3(B). Once the training is complete,
we use the trained network to test 10 K simulated examples that
were not part of the training set.

We now present results showing the reconstruction of
computer-simulated pulses using a DNN that was trained with
simulated data. We train two variants of the DeepFROG algo-
rithm, one without injected noise in the traces during training,
and the second with injected noise (WGN), sampled uniformly
to have SNR values of 0-30 dB. Every FROG trace in the training
data is injected into the DNN, the output of the DNN is com-
pared to the matching pulse, and the resulting error is back propa-
gated to update the weights in the network. This process is
repeated for every datum a couple of hundreds of times. The total
training time of the network is between 15 and 45 min on a
standard PC with a Titan X GPU. Figure 4 presents the final
performance of the different methods, tested on simulated
pulses (which were not part of the training set) with varying
levels of noise. The DeepFROG variant that was trained with
noise achieves lower reconstruction error, calculated by
6 = ||E, - E;|l, than classical methods for SNR values below
22 dB. Figure 5 presents an example from the simulated data
set, along with its reconstructions. The DeepFROG algorithm
produces less noisy pulses with lower reconstruction error
compared to previous methods. Overall, injecting noise during
training helps the network to learn how to filter noise from noisy
unseen examples. Also, after training, it takes only 0.7 ms to

recover a pulse from an SHG FROG trace.
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Fig. 4. Learning stage. Reconstruction error and STD as a function of
SNR for different methods: DeepFROG DNNis trained with no noise
(blue) or 0-30 dB SNR (red) training sets, ptychographic FROG
(yellow), and PCGPA (dashed black). DeepFROG trained with noisy
data reaches the lowest error at SNR values below 20 dB.
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Fig. 5. Reconstruction of a simulated example pulse, which was not
included in the training set, from its FROG trace with 10 dB SNR, using
PCGPA, ptychography, and DeepFROG. (A) Noisy simulated FROG
measurement at 10 dB SNR. (B), (C), (D) are the reconstructed
FROG traces by PCGPA, ptychographic FROG, and DeepFROG,
respectively. (E) FROG trace of the original simulated test pulse.
(F), (G), (H) reconstructed pulses by PCGPA, ptychographic FROG,
and DeepFROG, respectively, compared to the original. Pulse error
and FROG trace error are denoted. DeepFROG reaches the lowest
reconstruction error, almost three times lower than the error achieved
by other algorithms.

Figure 4 shows, in simulations, that the DeepFROG DNN
trained with some added noise outperforms both ptychographic
FROG and PCGPA for SNR lower than 20 dB. Based on these
simulations, we believe that training the DNN on experimentally
measured data will facilitate similar results on experiments.
However, training the DNN requires some 60,000 pulses, which
clearly sets an experimental toll that would pose a clear disadvantage.

The challenge is therefore to create a DNN to be trained by
simulated data, and would still be able to handle experimentally
measured data, even at low SNR. To deal with this issue, we cre-
ated the second unsupervised procedure (Fig. 3(C)), in which we
impose the mathematical relation between the pulse and the
FROG trace to train the network to reconstruct experimental
pulses.

B. Reconstructing Ultrashort Pulses from
Experimentally Measured Data with Networks Trained
by Simulated Data

In this section, we demonstrate that a DNN with the same
architecture, trained on simulated data, but, in parallel, using
the unsupervised loss for the experimental pulse, is able to
accurately reconstruct ultrashort pulses from their experimentally
measured FROG traces, even at low SNR. In fact, as we show
below, our network outperforms other state-of-the-art techniques
for low SNR data. To test this, we turn to reconstruct ultrashort
laser pulses measured in our lab. We use a mode-locked Ti-
Sapphire laser to generate the pulse and shape it with a spatial
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Fig. 6. Reconstruction of an experimentally generated reference pulse.
(A) High SNR SHG FROG measurement of the reference pulse.
(B) Reconstruction of the pulse from (A) with the commonly used
algorithms: ptychographic FROG, PCGPA, and the algorithm provided

within the commercial reconstruction FROG program by the Trebino
group.

light modulator (SLM). We measure the pulse using an SHG
FROG setup.

We evaluate the performance of our method by calculating the
error between the FROG trace of a reference pulse and the FROG
trace of the reconstructed pulse, and compare to the performance
of other state-of-the-art methods. The reconstruction error is
defined based on the one-to-one mapping between a pulse and
its FROG trace (up to trivial ambiguities, see Ref. [8]). The error
between two FROG traces is defined by 6; = ||7, - I; ||, /|| Z; 11>
where /; is the measured FROG trace intensity, and 7, is the re-
constructed FROG trace intensity. As the reference pulse, we use a
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Fig. 7. Reconstruction of an experimental pulse from low SNR FROG
measurements. (A) Measured FROG trace. (B), (C), (D) FROG traces
constructed from the pulses reconstructed by PCGPA, ptychographic
FROG, and DeepFROG, with their error compared to the FROG trace
of the reference pulse listed in white. (E) FROG trace of the reference
pulse. (F), (G), (H) Corresponding reconstructed pulses and their
reconstruction errors. Additionally, the §; errors between the recon-
structed FROG traces and the low SNR measured trace are 0.49,
0.44, and 0.32 for PCGPA, Ptychography, and DeepFROG, respectively
(not shown in figure). The modified DeepFROG displays the
lowest reconstruction error for both the pulse and the FROG trace.
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pulse measured at high SNR, where all the methods yield virtually
identical reconstructions. Then, we use the same pulse measured
at low SNR as the test pulse, and as we show below, our combined
training methodology outperforms the other techniques.

To make our method able to reconstruct pulses from exper-
imentally measured data based on networks trained by simulated
data, we make use of a combination of supervised learning on the
computer-simulated data (Fig. 3(B)), along with unsupervised
learning (Fig. 3(C)) on the measurement [4 in Eq. (2) was set
to 0.1 for the simulated pulses and to 0.8 for the measured pulse].
That is, we are using the gradients from the FROGNet to update
the trained DNN according to the experimentally obtained
FROG trace. The unsupervised learning part allows us to use
the structure of the problem, benefiting from the gradients of
the FROGNet, to find the solution specific to the experiment,
without any prior knowledge on the reconstructed pulse.

To compare our results to a known reference pulse, we mea-
sure two FROG traces from the same pulse, one measured at a
higher SNR than the other, to be used as a reference for the noisier
case. To reconstruct the reference pulse in the case of the high
SNR, we use three methods: PCGPA, ptychographic FROG, and
the Trebino group software [33] for FROG pulse reconstruction.
Because of the high SNR, we can use the error between the mea-
sured and reconstructed FROG traces as a recovery quality
criterion. The results are shown in Fig. 6. The reconstructions
are similar, with §;-errors of 0.1. We chose (arbitrarily) to use the
pulse recovered by the Trebino group software as a reference.
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Fig. 8. Experimental pulse reconstruction from noisy but filtered
FROG measurement. (A) Measured and filtered FROG trace. (B), (C),
(D) are FROG traces constructed from the retrieved pulses reconstructed
by PCGPA, ptychographic FROG, and DeepFROG and their errors from
the reference FROG trace, respectively. (E) FROG trace constructed from
the reference pulse. (F), (G), (H) are the corresponding pulses and pulse
reconstruction errors Jg, relative to the reference pulse. Additionally,
the §; errors between the reconstructed FROG traces and the low SNR
measured trace are 0.102, 0.103, and 0.092 for PCGPA, Ptychography,
and DeepFROG, respectively (not shown in figure). In this filtered trace
reconstruction, DeepFROG  performs comparatively to PCGPA and
ptychography—results we predicted in the simulations section.

Then, we turn to reconstruct pulses from their low SNR
experimentally measured FROG traces. We compare among
three reconstruction methods—PCGPA and ptychographic
FROG, both state-of-the-art methods, with our DeepFROG
reconstruction. Figure 7 presents the reconstructed experimental
pulses and their FROG traces for the ptychographic FROG,
PCGPA, and the deep learning methods, on top of the chosen
reference pulse. It is possible to see, even with a naked eye, that
all pulse reconstructions differ from the original pulse, but the deep
learning method has reached the lowest ;-error when comparing
the reconstructed FROG trace to the reference FROG trace.
Clearly, the error (0 = arccos((£,|E;)/\/{E,|E,){E;|E})), as in
Ref. [12]) between the reference pulse £; and the recovered one £,
is the lowest for the DeepFROG method. In Fig. 8, we show the
pulse recovery from the same low SNR measured FROG trace, but
after using noise filtering on the trace. Here, both PCGPA and
ptychography achieve a slightly better reconstruction than the pro-
posed DeepFROG algorithm, when comparing the reconstructed
FROG traces to the high SNR measured FROG trace.

To summarize this section, we find that the DeepFROG is
able to handle low SNR data and perform almost as the
PCGPA and ptychography do at high SNR. These experimental
results match the performance we expected for low and high SNR
values in the training stage, thus confirming the high potential of
using DNNGs for pulse reconstruction.

4. DISCUSSION

The proposed DeepFROG method for reconstructing ultrashort
pulses from FROG measurements consists of two training proce-
dures. The first one involves traininga DNN to reconstruct pulses
from FROG measurements using supervised learning on a
synthetic dataset, i.e., pairs of pulses and FROG measurements
that are created for the purpose of training. In the second method,
we modify the network to be able to reconstruct an experimental
pulse after being trained by simulated data. To do that, we add an
unsupervised component in the training stage, where the learning
uses a large computer-generated data set and the specific exper-
imentally measured FROG trace (with no additional knowledge
on the pulse or on the experiment).

For the first method, which uses solely computer-generated
pulses for training, the DNN outperforms the other methods
for any SNR below a reasonably high SNR of 20 dB on test pulses
(pulses that were not used by the network for raining). This im-
plies that a network that was trained on experimentally measured
data should be able to reconstruct pulses from measurements of
their FROG traces. However, this would require tens of thou-
sands of measured pulses in the training stage. This raises the
question of whether a network trained solely with simulated data
would be able to reconstruct pulses from real measurements. We
tested this with an experimentally measured FROG trace via our
DNN trained with simulated data (first method), and the net-
work managed to reconstruct the pulse but was outperformed
by other state-of-the-art methods. This challenge, known in the
deep learning community as sim-to-real, is due to the fact that the
simulated data are limited to our generation methods and do not
represent perfectly all the possible pulses in the world, and in par-
ticular, those that we measure in the lab.

To solve this issue, we created the second method, which
combines the supervised learning from simulated data with
an unsupervised procedure, where we imposed the mathematical
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relation between the pulse and the FROG trace. In doing that,
we trained the network to reconstruct the experimental pulse
without knowing anything on the actual pulse. As we show
in Figs. 7 and 8, the network that was trained using a combi-
nation of supervised and unsupervised training procedures pro-
vided better reconstruction on experimental data than other
algorithms, when the noise level was high, and was slightly below
them at high SNR. The advantage of using both procedures
together is that the supervised training procedure trains the
network to filter the noise and deal with ambiguities, while
the unsupervised procedure trains the network to reconstruct
the measured pulse. We note that the unsupervised procedure
did not perform well without the supervised one, because the
ambiguities caused the DNN to diverge, a phenomenon we
observed during training.

To further enhance the performance of our approach, we plan
to investigate the sim-to-real challenges in future work. First is
increasing the variety of the computer-generated dataset to in-
clude as many spectral amplitudes and phases as possible. The
second is to significantly enlarge the number of measured pulses
that train the network. Of course, this suggestion has obvious dis-
advantages, but in some experimental schemes, where the mea-
surements are embedded in noise, or when extreme accuracies are
crucial, this could be practical. The third is using generative mod-
els to generate more data by learning the data distribution of mea-
sured pulses. In particular, a recently developed network called the
generative adversarial network (GAN) [34] can be used to create
new data pulses on which the DNN tends to make mistakes
(poorly reconstruct the pulses). These pulses will be new to
the dataset on purpose, and will increase the variety of the pulses
in the training dataset.

5. CONCLUSIONS

In this work, we presented a deep learning approach to recon-
struct ultrashort laser pulses from their measured FROG traces.
We constructed a supervised DNN with convolutional and fully
connected layers and trained it by injecting labeled data examples
and updating the network using the reconstruction error. By
doing this, we use convolutions not only to construct the
FROG trace, but also to reconstruct the pulse from it. We point
out that in the supervised training procedure, our method does
not require any advance knowledge of the relation between the
pulse and the measurement (up to trivial ambiguities). That is,
by blindly learning the structure of the problem, our network
enables the reconstruction of pulses from measured data, even
when the mathematical relation between the measurement and
the pulse is unknown. We have shown that the DeepFROG
network is able to recover the pulses from measurements even
when the pulses are weak and embedded in noise, and that
the DeepFROG is superior to other methods by reducing
reconstruction error, in particular with high noise levels. The abil-
ity to compete with state-of-the-art methods and outperform
them is a clear proof that there is a fundamental difference
between our DNN-based DeepFROG and the machine learning
method suggested two decades ago in Ref. [14]. Finally, we imple-
mented an unsupervised network by using supervised DNN fol-
lowed by the FROGNet to recover an ultrashort laser pulse from
experimental data based on a training stage performed on simu-
lated data. We believe that application of DNN can lead to
improved performances in many techniques in diagnostics of

ultrashort laser pulses, including d-scan, multiplexed FROG [35],
and interferometric FROG [36]. In a broader context, what we
have shown here is a method for phase retrieval that does not
require any advance information: neither the support, nor spar-
sity, or a desirable mathematical basis to represent the data [37]. It
does not even require any knowledge of the mathematical relation
between the measured data and the information we wish to
reconstruct. Clearly, this work indicates that DNNs can become
a powerful approach in diagnostics of ultrashort laser pulses.
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