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We demonstrate theoretically and experimentally the spontane-
ous clustering of solitons in partially coherent wavefronts during
the final stages of pattern formation initiated by modulation
instability and noise.

C lustering, or the gross-scale aggregation of fine-scale struc-
tures, has been observed in many diverse physical systems:

from galactic clusters (1, 2) to molecular aggregates (3, 4), from
self-assembled quantum dots (5) to biological systems (6), just to
name a few. Despite the great variety of physical systems in which
these clustering phenomena occur, the underlying processes are
fundamentally similar in several ways. This similarity is actually
a manifestation of two characteristic features: (i) the fine
structure results from the equilibrium of opposing effects or
forces, and (ii) the cluster forms because of attraction between
these individual ‘‘fine-scale elements.’’ For example, a protein
molecule may be made up by more than one polypeptide chain.
In the case of hemoglobin, four separate polypeptide chains, or
subunits, are clustered together (held together by van der Waals
and ionic forces). In astrophysics, gravitational attraction is
known to lead to the formation of galaxies and galactic clusters.
Given the universality of these processes, one may be able to
study clustering of fine-scale elements in a number of completely
different physical systems. In fact, propositions were recently
made to use Bose–Einstein condensates to simulate galactic
environments (7, 8). It would be very interesting if similar
dynamics, namely, the clustering of fine-scale elements, could be
observed in optical settings where the ensemble interaction
forces can be varied at will and the underlying theory is well
understood.

Here we report the experimental observation of clustering of
optical solitons. The clustering of solitons occurs spontaneously,
when a partially incoherent optical wavefront disintegrates in a
noninstantaneous nonlinear medium with a large enough self-
focusing nonlinearity. This process is initiated by noise-driven
modulation instability (MI), which in turn leads to the formation
of soliton-like self-trapped filaments. These solitonic filaments
tend to attract one another, eventually leading to the formation
of clusters of solitons. The incoherence of the wavefront (which
can be varied in a controlled manner), along with the nonin-
stantaneous nature of the nonlinearity, give rise to attractive
forces between the solitonic filaments involved. The experimen-
tal results are in agreement with theoretical predictions and are
confirmed by using numerical simulations.

To further elaborate on these ideas, we introduce some aspects
of solitons, and in particular, the ideas underlying incoherent or
random-phase solitons. Other relevant topics, such as those
pertaining to the recent discoveries of MI and pattern formation
in incoherent (or weakly correlated) nonlinear wave systems, will
also be discussed.

Solitons are stationary localized wavepackets that travel
‘‘without change of shape or diminution of speed’’ in dispersive
nonlinear wave systems.� Here we use the term soliton to denote
any solitary wavepacket, i.e., in the broader definition of the
word that includes self-trapped solutions of nonintegrable sys-
tems (9). Solitons share many features with real particles: for
example, their total energy and momentum are conserved even

when they interact with one another. In addition, solitons retain
their shape and identity after a collision event. Thus far, solitons
have been predicted and their existence has been demonstrated
in many physical systems. Such examples include surface solitary
waves in shallow water,� plasma solitons (10), sound waves in 3He
(11), short temporal soliton pulses in fibers (12, 13), and optical
spatial solitons (14–17). Despite this diversity, the main princi-
ples behind soliton formation and soliton interactions are the
same. Intuitively, solitons form when the broadening tendency of
diffraction (or dispersion) is balanced by nonlinear self-focusing.
Until 1990, most research on optical solitons concentrated on
trapping in a single dimension. Examples of such one-
dimensional self-trapped wavepackets are temporal fiber soli-
tons (12) and spatial solitons (18) in slab waveguides. In general
two-dimensional (2D) bright solitons in Kerr media are known
to be highly unstable and undergo catastrophic collapse (19, 20).
However, in the past decade, major progress has been made with
solitons in saturable nonlinear media where stable solitons of
higher dimensionality can be generated. These include 2D
spatial solitons in bulk media (17), spatio-temporal solitons that
can be self-trapped in one dimension in space and time (21), and
even ‘‘optical bullets’’ that are self-trapped in both transverse
spatial dimensions and time simultaneously.** This general view
of solitons being the result of a balance between diffraction�
dispersion and self-focusing also holds in all of these cases of a
higher dimensionality provided that the wavepacket exhibits
stable self-trapped propagation. Another way to understand
soliton formation comes from the so-called self-consistency
principle: this idea implies that a soliton forms when a localized
wavepacket induces (by the nonlinearity) a waveguide and in
turn is ‘‘captured’’ in it, thus becoming a bound state in its own
induced potential (22). In the spatial domain of optics, a soliton
results when a very narrow optical beam induces, by self-
focusing, a waveguide structure and guides itself in it. Thus,
interactions (collisions) between solitons can be viewed as
interactions between bound states of a jointly induced potential
well, or between bound states of different wells located at close
proximity (17). In nonintegrable systems (such as those with
saturable nonlinearities), interactions between solitons exhibit
very rich behavior compared with those in integrable sys-
tems (17).

Relevant to our discussion is the class of incoherent solitons.
For decades, solitons were believed to be solely coherent entities.
This perception changed, however, just a few years ago, when
partially spatially incoherent solitons were first observed in 1996
(23). Observations of temporally and spatially incoherent
(‘‘white’’) light solitons (24) followed soon thereafter. These
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experiments proved that indeed solitons made of random-phase
(or incoherent) wavepackets can exist. As a result, entirely new
directions in soliton science have opened up. Shortly thereafter,
the theory of incoherent solitons was developed (25–30) and
dark incoherent solitons were observed (31). Further studies
considered their interactions (32), their stability properties (33),
and their relation to multimode composite solitons (34). Crucial
to the existence of incoherent solitons is the noninstantaneous
nature of the nonlinearity, which responds only to the time-
averaged intensity structure of the beam, rather than to the
instantaneous, highly speckled, and fragmented wavefront. In
other words, the response time of the nonlinear medium must be
much longer than the average time of phase fluctuations across
the beam. Through the nonlinearity, the time-averaged intensity
induces a multimode waveguide structure (a potential well that
can bind many states), whose guided modes are populated by the
optical field with its instantaneous speckled structure.

Central to our discussion is the concept of MI and its
occurrence in random-phase (or incoherent) systems. MI is a
universal process that appears in most nonlinear wave systems in
nature. MI causes small amplitude and phase perturbations
(from noise) to grow rapidly under the combined effects of
nonlinearity and dispersion�diffraction. As a result, uniform
excitations (such as broad optical beams in the spatial domain in
optics or very long pulses in the temporal domain) tend to
disintegrate during propagation (35–45), leading to filamenta-
tion or break-up into pulse trains. The relation between MI and
solitons is best illustrated by the fact that the filaments (or the
pulse trains) that emerge from the MI process are actually trains
of almost ideal solitons. MI therefore can be considered as a
precursor to soliton formation. [Interestingly, this view also
holds for the breakup of one-dimensional solitons in bulk media,
the so-called transverse instability, which leads to the breakup of
a one-dimensional beam into an array of 2D filaments. In Kerr
media, 2D beams are unstable, so the entire structure is unstable
and the whole beam quickly disintegrates (see ref. 46). However,
in saturable nonlinear media, such an array of 2D filaments is
stable and is in fact an array of 2D solitons (see, e.g., ref. 47).]
Over the years, MI has been systematically investigated in
connection with numerous nonlinear processes; yet it was always
believed that MI is inherently a coherent process and can appear
only in nonlinear systems with a perfect degree of spatial�
temporal coherence. Recent theoretical and experimental stud-
ies (48, 49) have shown that MI can also occur in partially
incoherent (or random phase) wavefronts and have demon-
strated that, even in such a system of weakly correlated ‘‘parti-
cles,’’ patterns can form spontaneously. However, such incoher-
ent MI appears only if the strength of the nonlinearity exceeds
a well-defined threshold that depends on the coherence prop-
erties (correlation distance) of the wavefront. The discovery of
incoherent MI has implications for many other nonlinear systems
beyond optics. It implies that patterns can form spontaneously
(from noise) in nonlinear many-body systems involving weakly
correlated particles, such as, for example, atomic gases at
(or slightly above) the Bose–Einstein–condensation tempera-
tures (49).

In light of the above, one may wonder how the solitonic
filaments emerging from the MI and breakup of a partially
coherent yet uniform wavefront ultimately will behave. In fully
coherent systems with saturable nonlinearities, such solitary
filaments are stable and interact in the same manner as
solitons: they may either attract or repel one another, depend-
ing on their relative phase. As a result, the filaments arising
from MI in coherent (saturable) systems do not cluster to-
gether; instead, the presence of repulsive forces leads to almost
evenly spaced solitons in a quasi-ordered lattice structure. If
the underlying nonlinearity is of the Kerr type, then the
products of transverse instability are 2D filaments that are

highly unstable and tend to disintegrate, and thereby cannot
form such a structure. On the other hand, in incoherent
self-focusing systems soliton interactions over scales larger
than the correlation length are always attractive. [See review
on soliton interactions in ref. 17. The interaction forces
between solitons in such systems were first studied theoreti-
cally in ref. 50. The first experimental demonstration of
incoherent interaction between solitons was reported in refs.
51 and 52.] Such an incoherent interaction is always attractive
because the relative phase between adjacent solitons varies
much faster than the response time of the nonlinear medium
(recall that the noninstantaneous nature of the nonlinearity is
a prerequisite for the formation of incoherent solitons and
incoherent MI). When two incoherent solitons are brought to
close proximity, their intensities add in the center region
between them, leading to an increase in the refractive index.
This process, in turn, attracts more light to the center, moving
the centroid of each soliton toward it and hence the solitons
appear to attract one another (17).

Results
To analyze this process theoretically we use the coherent density
approach (25, 26) that describes the propagation dynamics of
partially spatially incoherent (quasi-monochromatic) optical
beams in noninstantaneous nonlinear media. For the propaga-
tion medium, we choose a saturable nonlinearity of the type

�n�I� �
�n0I�IS

�1 � I�IS�

where �n is the nonlinear change in the refractive index as a
function of the total intensity I, �n0 is the maximum change in
the refractive index, and Is is the saturation intensity (a constant
factor indicating the degree of saturation). This specific form of
nonlinearity represents the true nonlinear response of a homo-
geneously broadened two-level system at the vicinity of an
electronic transition, and, to a reasonable approximation, it also
represents the photorefractive screening nonlinearity (53–55).
We study clustering in a (2 � 1) dimensional system, in which the
optical beam propagates along the z-direction and undergoes
diffraction or self-trapping in two transverse (x and y) dimen-
sions. In such a system it is essential to use a saturable nonlin-
earity (e.g., the nonlinearity used in our experiment). Otherwise,
all self-focusing effects that start from a beam with power
exceeding a particular value (the critical power), lead to cata-
strophic collapse, in which the self-focusing processes never
stabilize into a 2D filament (19, 20).

In the coherent density approach, the propagation of inco-
herent light in slow-responding nonlinear media (such as biased
photorefractive crystals) is described by superimposing infinitely
many ‘‘coherent components’’ or quasi-particles all interacting
by means of the nonlinearity. In this picture the initial relative
weights of these components are given by the angular power
spectrum of the source beam, which is physically the Fourier
transform of the correlation function. Mathematically this is
modeled by using the coherent density function, f, from which
one can obtain both the intensity and the correlation function of
a partially coherent beam during propagation. The coherent
density function is governed by the following integro-differential
equation (25, 26):

i��f
�z

� �x

�f
�x

� �y

�f
�y� �

1
2k��2f

�x2 �
�2f
�y2� � kog�IN�x, y, z��f � 0,

where

IN � ���f�x, y, z, �x, �y��2d�xd�y
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and, at z � 0,

f�z � 0, x, y, �x, �y� � GN
1�2��x, �y��o�x, y�.

In the equation above, �x and �y are angles (in radians) with
respect to the z axis, k � kono, and ko � 2 ���o. The function
f(x,y,z,�x,�y) is a band-limited function and is of negligible
amplitude outside of the narrow paraxial angular range. Thus,
even though the integration is formally over all transverse
momentum space, i.e., k space, the only contributing range is an
angular range of ��0.1 radians. GN (�x,�y) is the normalized
angular power spectrum of the incoherent source, and �o (x,y)
is the wavefront’s input spatial modulation function. IN � I�Is
and g[IN(x,y,z)] represents the intensity dependence of the
nonlinearity given by n2 � no

2 � 2nog(IN). As previously men-
tioned, here the nonlinearity is taken to be of the form g(IN) �
�no IN�(1 � IN) (saturable nonlinearity). In our simulations the
linear index is no � 2.3, and the maximum nonlinear index
change is taken to be �no � 2.5 	 10
3 (which is roughly the
maximum attainable index change in inorganic photorefractive
crystals). The wavelength of the light source is �o � 0.488 �m,
and thus k � 29.613 �m
1, and ko � 12.875 �m
1. The angular
power spectrum is assumed to be of the Gaussian type
GN(�x,�y) � 1�(��o

2) exp(
(�x
2 � �y

2)��o
2) and �o (x,y) is taken

to be a very broad, yet finite, f lat wavefront (�o (x,y) � exp[
(x2

� y2)m�2Wo
2m], where m � 4 and Wo � 500 �m.

The pictures in Fig. 1 show the results of numerical simulations
carried out at an intensity ratio IN � 1 in normalized units,
seeded with random Gaussian white noise†† at a level of 10
5.

Fig. 1 A, C, and E depicts the intensity of the partially coherent
wavefront whereas Fig. 1 B, D, and F shows the 2D Fourier
transform of the intensity pattern. The input to the system was
a partially incoherent spatially initial uniform broad beam. The
width of the initial angular power spectrum �o is assumed to be
13.85 millirads, which corresponds to an initial correlation length
of 6.3 �m. In Fig. 1A, we see as expected, that perturbations of
certain spatial frequencies are favored by the MI process and
have begun to grow on top of the input (48, 49); Fig. 1B shows
that these frequencies are contained within a rather narrow ring.
As the propagation continues, the ripples grow stronger until the
beam disintegrates into solitary filaments (Fig. 1C), indicating a
balance between the effects of diffraction and nonlinearity.
Interestingly enough, little has changed in the frequency domain
(Fig. 1D); there is still a single thin ring of a well-defined radius.
This radius or spatial frequency is in fact related to average
distance between solitary filaments (or particles), which is fairly
uniform. Now, however, the particle-like nature of the solitons
starts to affect the overall dynamics of the partially coherent
system, signaling the onset of a qualitatively new stage of
behavior. As discussed above, in incoherent systems, only at-
tractive forces between the solitary filaments (particles) need be
considered for separation distances longer than the correlation
length. Thus, as small random movements accidentally bring two
solitons closer together, the mutual potential well caused by their
joint overlapping intensities will further strengthen the attractive
force between them. As a result, the peaks will be drawn toward
one another. What ensues is best described as clustering; the
interplay of the forces among particles eventually leads to the
grouping of quasi-particles with their nearest neighbors (see Fig.
1E). The overall size of each of the clusters continues to shrink
as the particles move inward and in general this motion is rather
complex. For example, the particles may spiral around one
another along seemingly chaotic orbits. Spectral analysis of the
clusters of Fig. 1E reveals a quite different picture in which a
new, lower spatial frequency has begun to dominate; this is the
frequency of the inter-cluster spacing. The spatial intensity
pattern is now characterized by sparseness as the clusters com-
pact and the distances between their edges grow.

For comparison, the simulations were redone by using a fully
coherent wavefront as input. In Fig. 2, the spatial intensity
pattern at the output is displayed (the simulation parameters
correspond to Fig. 1E). As can be seen, the results contrast
starkly with those of Fig. 1. Initially, the development is similar
to the incoherent case. On top of the featureless beam used as
input, MI seeded by noise causes ripples to grow, developing into
solitary filaments as the diffractive and nonlinear forces counter
each other. After this stage, the two cases are no longer
comparable. In the coherent regime, both attractive and repel-
ling forces between the solitary filaments (particles) are present,
and we find that the particles will be subject to too many
conflicting interactions for any definite course to evolve. De-
pending on the initial conditions, ordered grid-like patterns may

††White noise was added in the frequency domain by adding a random number chosen
from a Gaussian distribution separately to both the real and imaginary parts of each
Fourier component. The width of the Gaussian distribution was chosen so that the
average power added by the noise would be some small fraction of the total power, in
our case 10
5.

Fig. 1. Numerical simulation of propagation of partially coherent wave-
packet in saturable nonlinear media. (A) The growth of perturbations after 1
mm of propagation and (B) its Fourier transform. (C) The development of
individual solitons at 2 mm and (D) its Fourier transform. After 3 mm, cluster-
ing develops (E); (F) its Fourier transform. The vertical and horizontal scales are
micrometers in A, C, and E and radians in B, D, and F.

Fig. 2. Simulation of coherent wavefronts in nonlinear media after 3 mm of
propagation. Shown is the (output) intensity pattern displaying multiple
evenly spaced solitonic filaments. The vertical and horizontal scales are mi-
crometers.
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form, or the particles may simply remain well spaced apart. In
other words, the solitary filaments developing from MI in
coherent wavefronts do not cluster. Only when the spatial
coherence of the beam is low enough for the long-range repelling
forces to disappear can the attractive forces (that survive even
when the beam is totally incoherent, that is, the correlation
distance is zero) dominate and cause the solitary filaments
produced by MI to cluster together.

Our experiments on soliton clustering were performed in a
photorefractive nonlinear optical system. A partially spatially
incoherent beam was generated by passing an argon ion laser
beam (� � 488 nm) through a rotating diffuser. The spatial
coherence of the scattered light from the diffuser was varied by
changing the width of the laser beam incident upon the diffuser.
The degree of spatial coherence, namely the transverse corre-
lation distance, was monitored by imaging the speckles on the
front face of our nonlinear crystal while the diffuser was held
stationary. The average speckle size was roughly equal to the
transverse correlation distance lc, representing the longest dis-
tance between two points on the transverse plane within which
the points are still phase-correlated. A biased strontium barium
niobate photorefractive crystal was used as a slow saturable
nonlinear medium, with a response time on the order of 10 s. As
pointed out in the Introduction, this response time must be much
longer than the characteristic random phase fluctuation time
created by the rotating diffuser (1 ms in our experiments). The
experimental setup was similar to that used in earlier experi-
ments on incoherent MI (49, 56). In our experiments, a broad
and uniform extraordinarily polarized optical beam with a
controllable degree of spatial coherence was launched into the
biased crystal. [The strength of the self-focusing nonlinearity of
the crystal was controlled by varying the external bias field and

the intensity of the beam (53–55).] The intensity patterns of the
incoherent beam at the crystal output face were monitored by
using an imaging lens and a charge-coupled device camera.

Typical experimental results are presented in Fig. 3. These
were obtained by using a strontium barium niobate:60 crystal
(5 	 10 	 5 mm3, r33 � 280 pm�V). When the nonlinearity was
set to zero (zero bias field), the output beam remained essentially
the same uniform broad beam that entered the crystal. As the
magnitude of the nonlinearity was increased (by increasing the
dc field applied to our nonlinear crystal), the output beam
remained uniform until the nonlinearity reached the threshold
value for incoherent MI to occur (48, 49). After the threshold
nonlinearity, a rather sharp transition in pattern dynamics was
observed: the incoherent wavefront disintegrated into one-
dimensional stripes at the output (49). Further increases in the
nonlinearity led to the appearance of 2D solitary filaments, or
particles, with a characteristic width of about 12 �m (similar to
the structures observed in ref. 49). To appreciate these solitary
filaments, we note that if filaments of this characteristic width are
launched in a linear medium they diffract and broaden to at least
six times wider after 10 mm of linear propagation (which is the
propagation length in our crystal). The self-focusing nonlinearity
in our crystal keeps them as nondiffracting solitary light spots,
even though the length of our crystal corresponds to roughly five
diffraction lengths. Finally, increasing the nonlinearity to even
higher levels caused these 2D filaments to cluster together in
lumps of fine-scale structures, opening empty voids in other
regions upon the beam. The intensity outside the clusters did not
drop to zero completely, but clearly more energy was concen-
trated in the cluster region. This pattern of behavior is in good
agreement with our numerical results presented in Fig. 1.

Fig. 3. Experimental results showing pattern development in a biased photorefractive crystal. The coherence length of the beam at the input is 10 �m. Shown
are the intensity patterns taken at crystal output face (after 10 mm of propagation) for a bias field of 1 kV�cm (Left), 1.8 kV�cm (Center), and 2.6 kV�cm (Right).
(Magnifications: 	11.)

Fig. 4. Experimental results showing pattern development as the coherence of the beam is reduced. The bias field across the crystal is 0.9 kV�cm. Shown are
the intensity patterns taken at the output face of the crystal (after 6 mm of propagation) for a coherence length of 6 mm (Left), 30 �m (Center), and 12 �m (Right).
The intensity of the last photograph has been enhanced for better visualization. (Magnifications: 	11.)
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In addition, we have carried out a series of experiments in
different regimes of parameters by varying the nonlinearity satu-
ration and the degree of spatial coherence. In principle, as long as
the spatial coherence was below a certain level, repulsion forces
between the 2D filaments were practically eliminated on length
scales comparable to the correlation length. As a result, forces of an
attractive nature dominate the dynamics and clusters of MI fila-
ments form. It seems that the smallest distance between two
adjacent fine-scale elements (solitons) in a cluster is determined by
the correlation distance: when two filaments become so close that
they start to be phase coherent, the repulsive forces will push them
apart and prevent them from getting any closer to each other.

The results shown in Fig. 3 depict typical intensity patterns
taken from the output face of the crystal at various values of the
bias field (keeping all other experimental parameters constant).
In this particular experiment, the spatial correlation distance
across the beam was roughly 10 �m, and the average intensity of
the beam at crystal input face was 0.75 W�cm2. Similar exper-
iments were performed with different Strontium Barium Nio-
bate crystals under various conditions and correlation distances.
Fig. 4 shows experimental results of pattern formation for
different degrees of spatial coherence obtained with a Strontium
Barium Niobate:75 crystal (6-mm cube, r33 � 870 pm�V). When
the input beam is a spatially coherent wavefront (taken directly
from the argon laser without the diffuser), the uniform beam
disintegrates as a result of MI, and the resultant filaments tend
to form individual well-separated solitons (Fig. 4 Left). Even as
we increase the nonlinearity further, these soliton filaments still
stand on their own and do not merge together. On the other
hand, when the beam is made sufficiently incoherent, the
correlation between individual filaments becomes insignificant,

and any slight overlapping of their intensity profiles will drag
them closer together because of incoherent interaction (50–52).
As a result, a broad uniform incoherent beam experiences a
global weakly attractive force and tends to form patterns of dense
groups of solitary filaments (clusters of 2D solitons). Specifically,
in Fig. 4, when the correlation distance is sufficiently reduced to
lc � 30 �m, the onset of soliton clustering occurs (Fig. 4 Center
and Right). Observing the clustering as a function of decreasing
coherence reveals that the peak intensity of individual solitons
decreases, and the overall size of soliton clusters increases as
more neighboring solitons group together. The size and the
shape of each individual cluster as well as the dynamics inside
clusters appear to be random and driven by noise.

Conclusion
In summary, we have demonstrated both experimentally and
theoretically the spontaneous clustering of solitons in partially
coherent wavefronts initiated by random noise. Soliton clustering is
an intriguing outcome of the interplay between random noise, weak
correlation, and high nonlinearity. Together, these processes lead to
incoherent MI, formation of 2D solitary filaments, and eventually
to clustering of 2D solitons. Yet all of these fascinating features are
not unique to optics. Nonlinear systems involving weakly correlated
particles are abundant in nature and so our results may prove
relevant to other areas and fields.
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