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Collisions between Optical Spatial Solitons Propagating in Opposite Directions
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We formulate the theory describing the evolution and interactions between optical spatial solitons that
propagate in opposite directions. We show that coherent collisions between counterpropagating solitons
give rise to a new focusing mechanism resulting from the interference between the beams, and that
interactions between such solitons are insensitive to the relative phase between the beams.
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Collisions between solitons are perhaps the most fas-
cinating features of soliton phenomena because the inter-
acting self-trapped wave packets exhibit many particle-
like features [1]. Solitons collisions have been extensively
studied theoretically, both for the integrable (1 + 1)D
Kerr case [2] and for the more general case in saturable
nonlinearities (see [1] and references therein). Experi-
mental studies include elastic collisions between Kerr
solitons [3], almost-elastic collisions between solitons
in saturable media at collision angles above the critical
angle for total internal reflection [4], and inelastic colli-
sions that yield fusion [4—6], fission [7], annihilation [7],
and spiraling [8]. Soliton collisions can be classified into
two categories: coherent and incoherent interactions.
Coherent interactions occur when the nonlinear medium
responds to interference effects taking place where the
beams overlap. Such collisions occur for optical nonli-
nearities with an extremely fast response (Kerr [3] and
quadratic nonlinearities). In materials with a long re-
sponse time 7 (e.g., photorefractive and thermal), coher-
ent collisions occur only if the relative phase between the
beams is stationary for a time longer than 7 [6,7]. In such
media, if the relative phase between the beams varies
much faster than 7, then the contribution of the interfer-
ence terms is averaged out and the surviving terms (in the
nonlinear change of the refractive index An), depends
only on the sum of the intensities of the beams [4]. This
latter case is referred to as incoherent collisions [1,4]. The
interaction between two solitons can be described
through the “forces” they exert on one another. For
coherent interactions, this force depends on the relative
phase between the solitons. For example, two bright soli-
tons launched in parallel attract (repel) each other if the
relative phase between them is zero () [1,2,9]. For in-
coherent interactions, the interference terms do not con-
tribute to An (as the relative phase between solitons
varies much faster than 7). Thus, the incoherent force
between bright solitons is always attractive, and is weaker
than the force in a coherent interaction [4,10]. Thus far, all
studies on optical soliton collisions have dealt with soli-
tons propagating in the same general direction. That is,
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previous research on soliton interactions assumed that the
collision angle in dimensional units is very small, so that
the entire interaction falls into the framework of the
paraxial wave equation.

Here, we study theoretically the interactions between
solitons that propagate in opposite directions (Fig. 1). In
this geometry, coherent interactions give rise to a new
focusing mechanism, resulting from the interference be-
tween the beams. Such collisions display new features,
among them (i) the interactions are insensitive to the
relative phase between the solitons, and (ii) the collision
involves radiation loss even in ideal Kerr media.

The basic difference between this new scheme and the
traditional ‘“‘co-propagation configuration™ is the relative
propagation directions of the carrier waves. Consider a
coherent interaction between two solitons in both
schemes. The solitons interfere and give rise to a grating
in An. For copropagating solitons, the grating is periodic
in the transverse direction (x) with a period much greater
the optical wavelength A, thus the interacting solitons go
through very few (~ 3) grating periods. On the other
hand, for counterpropagating collision the grating is in
the propagation direction (z) and its period is ~A/2;
hence the interacting solitons go through many (~ 10°)
periods. Consequently, the interaction in the counterpro-
pagation scheme is strongly affected by the grating:
Bragg scattering plays a dominant role. Second, in the
new scheme, the relative phase between the solitons, and
hence the dominant term in the soliton-soliton force
varies periodically along the propagation axis on a scale
much shorter than the soliton propagation scale (the
soliton period). Thus, all the effects depending on the
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FIG. 1. Interactions between spatial solitons that propagate in
opposite directions.
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relative phase between solitons oscillate many (~ 10%)
times over one soliton period. Hence, the effective force
between the solitons is independent of their relative
phase.

Another important difference between the two
schemes has to do with the boundary conditions. In the
copropagation case, the boundary conditions are at a
single input face, whereas in the counterpropagation
scheme, the boundary conditions are at two different
(opposite) planes. To see the difficulty, consider the total
field at the z = O plane, which consists of one input term
(the forward beam) and one ‘“‘output” term from the
(backward) beam launched at the z = L plane. How-
ever, the backward field is affected (via the interaction
throughout propagation) by the forward field, whose only
known quantity is its value at z = 0 (the input term).
Because the problem is time harmonic, there are no
causality difficulties associated with the fact that the field
at each boundary includes both an input term and an out-
put term. However, the collision process is not a Cauchy
problem (as in the copropagating scheme) but a concep-
tually more subtle one. The problem is not even a standard
boundary condition problem, because only partial infor-
mation is known at each boundary (only the forward
beam at z = 0 and the backward beam at z = L are given,
but the backward beam at z = 0 and the forward beam at
z=L are unknown).

We first derive the equations governing the evolution
of counterpropagating mutually coherent beams in a
medium whose refractive index is n(x,z) = ng +
An[I(x, z7)] where ng is the linear index of refraction,
and [ is the intensity. Consider Fig. 1. Two (1 + 1)D
mutually coherent beams enter the medium from the
opposite faces. The beams propagate at tiny angles, 0 =
6 < 1, with respect to the *z directions, so that the
paraxial approximation can be used for each wave sepa-
rately. The scalar optical field, E, is a sum of for-
ward and backward waves: E=F(x,z)e'k @0 +
B(x,z)e” ket 4 ¢ ¢ where F and B are the forward
and backward envelopes. The wave vector is k= wny/c,
o the temporal frequency, and ¢ the vacuum speed of
light. To within a proportionality factor, the time-aver-
aged intensity is [« |E|>=|F|>+|B|>+ F*Be %% +
B*Fe%*_ Within the slowly varying amplitude approxi-
mation, / is periodic in z with a period A = 77/k. Since An
depends only on I, it is also periodic in z and can be
Fourier expanded:

An(x,z)=Any > C,(F,B)e?m, (1)

m=—00

In a local self-focusing medium An is real, hence Any is a
real constant, and C,,=(C_,,)*. We substitute E in the
nonlinear wave equation [11], assume |An| < ny, so that
n*=(ny+ An)*=n3 +2nyAn, apply the paraxial ap-
proximation, and find
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Substituting Eq. (1) into Eq. (2) and selecting synchro-
nous terms yields

0*F oF 2k*A

2 oikSo= -2y F+ ¢y B

ax 0z ng 3)
0’B 0B 2k>A

2 ik o=y -B+C, - F

dx 0z ng

The nonlinear terms can also be written as [Cy - F + C; -
B]:[C0+|B|2gJF and [Co‘B+C_1F:|:[C0+
|F|?g]B, where C, and g are both real functions of |F]|
and |B|. The fields F and B do not exchange power, that is,
dPp/dz=dPy/dz =0, where Pp= [*_|F|’dx, Py=
[®« |Bl*dx. Note that, if the interaction between the
beams is incoherent, i.e., if the grating is washed out,
then the above procedure leads to the same Egs. (3) but
with different Cy and with C.; = 0. Equations (3) also
describe vector solitons composed of two exactly counter-
propagating beams (6 = 0), which were studied theoreti-
cally in Kerr media in [12], and recently demonstrated in
photorefractives [13].

In Egs. (3), there are two nonlinear terms for each
beam. To elucidate their physical origin, consider two
bright beams propagating exactly counter to one another
in a focusing medium, together forming a joint entity: a
vector soliton. The first terms, C,, reflect an average value
of An (averaged along z). These C, terms represent the
waveguide induced by both beams. This waveguide can
guide other beams at a frequency that may be different
than that of F and B, just like any soliton-induced wave-
guide [14]. The second terms in the right-hand-side (rhs)
of Egs. (3) result from the periodic modulation in An
along z, which couples the two beams through Bragg
reflections. A portion of the forward propagating F
beam is Bragg-reflected backwards and is added coher-
ently to the B beam propagating in the —z direction. At
the same time, a portion of B is Bragg-reflected to propa-
gate in the +z direction and is added coherently to F.
These Bragg-reflected beams are 7r/2 phase retarded
relative to the primary beams into which they are re-
flected [15]. As the Bragg-reflected beams are added to
the primary beams, they effectively slow down the phase
velocities of the “total” beams, which is equivalent to
increasing the refractive index. Since the effect is more
intense at the center of the beams than at the beams’
margins, it reduces the natural beam divergence. We
address this new focusing mechanism as holographic
focusing [16]. In contrast to the “‘conventional” focusing
represented by the first terms on the rhs of Egs. (3) which
are insensitive to w, the holographic focusing occurs only
for those beams that induced the hologram. A second

133901-2



VOLUME 89, NUMBER 13

PHYSICAL REVIEW LETTERS

23 SEPTEMBER 2002

difference between the two focusing mechanisms has to
do with their response times. The nonlinear response
time, 7, is the time it takes An to respond to intensity
variations, and it can range from 100 fmsec in semi-
conductors (the dephasing time) to many seconds in
photorefractive, thermal, and other nonlinearities associ-
ated with transport (of charge, temperature, etc.). The
time 7 is also the response time of the ‘“‘conventional”
focusing mechanism. Holographic focusing has two dif-
ferent characteristic response times. The first is the for-
mation time of the grating, which is 7. The second is the
response time for holographic focusing of one of the
beams due to blocking of the second beam, once the An
grating is set. This response is always (irrespective of 7)
extremely fast (= the dephasing time), because the holo-
graphic focusing on the first beam results from the phase-
delayed Bragg-reflected portion of the second beam.
Thus, once An is set, one can instantaneously turn off
(or on) the holographic focusing effect on the forward
beam by blocking (or unblocking) the backward beam,
and vice versa.

Equations (3) can describe many schemes. Here, we
consider interactions between scalar solitons in self-fo-
cusing Kerr media, that is, An = n,I where n, is a posi-
tive constant. Substituting An = n,I, into Eq. (1) we
identify C, = |F|> + |B|>, C;, = B*F, and C_, = F*B.
Substituting these into Egs. (3) and transforming into
dimensionless units ¢ and ¢, yields

2
2—§2+ ij—§+ [IF12 + [BI2(1 + W]f =0,

b .9b ) 5 @
a_;ﬁ_la_f“bl +|fI*(1 + h)]b =0,

where f and b are the normalized amplitudes, and 4 = 1
(h = 0) for coherent (incoherent) interactions. We solve
Eq. (4) numerically. As input conditions, we use the single
soliton hyperbolic-secant solution for f(& ¢ = 0) and
b(&, ¢ = L), with unity amplitudes. We note that for & #
0, system (4) is known to be nonintegrable [12,17-19].
Consider first the interactions in a configuration where
two such beams are launched from two opposite planes
{ =0 and { = 18 [Fig. 1(a)]. The beams are launched
parallel to each other with a transverse spacing (between
peaks) of & =7.5. The coherent interaction between
these parallel counterpropagating beams is shown in
Figs. 2(a)-2(c). For clarity, we present the forward
beam, |f] [Figs. 2(a) and 2(c)], and the backward beam,
|b| [Fig. 2(b)] in separate plots. Figures 2(d)—2(f) show
an incoherent interaction between the same beams. For
comparison, we simulate the same beams in copropagat-
ing scheme [Figs. 2(g)—2(i)] [20]. Figure 2(g) [2(h)]
shows a coherent interaction in which the relative phase
between the launched beam is 0 [#7]. Figure 2(i) shows an
incoherent interaction. Clearly, the outcome of the inter-
action between the beams in the counterpropagating
scheme is very different than that in the copropagating
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scheme, in both the coherent and incoherent cases. First,
in the copropagating scheme, the mutual force between
the solitons is in proportion to — cos(A®) [9], where AD
is the relative phase between the solitons, hence the
interaction can be attractive [Fig. 2(g)] or repulsive
[Fig. 2(h)]. In contrast, in the counterpropagating case
the relative phase oscillates on a scale much shorter than
the soliton period, thus the relative phase does not play
any role. Specifically, varying the initial relative phase
between the launched solitons does not affect the inter-
action (except for very tiny oscillations occurring within
z = A, in which asynchronous terms contribute). More-
over, since the dominant coherent term in the mutual
force, which is in proportion to cos(A®), is averaged
out, the force between the counterpropagating beams is
dominantly the incoherent term, which is always attrac-
tive and weaker than the coherent term. The second major
difference between the counter- and copropagating cases
has to do with radiation. The coherent interaction in the
counterpropagating scheme radiates [Figs. 2(a) and 2(b)],
which again proves that this system is nonintegrable. On
the other hand, the incoherent interaction between the
counterpropagating solitons does not radiate [Figs. 2(d)—
2(f)]. Finally, we notice that a portion of the forward
beam couples into the region where the backward beam
is propagating. In the incoherent interaction, the forward
beam gradually tunnels into the backward soliton region,
hence the forward intensity at the backward soliton re-
gion increases monotonically [Fig. 2(f)]. This behavior
represents directional coupling (resonant tunneling). For
coherent interactions the dynamics are more complex, as
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lIncoherent ” Coherent |
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FIG. 2. (a)—(c) Coherent interactions between the counterpro-
pagating (a),(c) forward and (b) backward solitons. (d)—(f) In-
coherent interactions between the counterpropagating (d),(f)
forward and (e) backward solitons. For comparison, interac-
tions between coherent in-phase (g) and 7 out of phase (h), and
incoherent (i) copropagating solitons. The plots show absolute
values of the field amplitudes. The arrow indicates the propa-
gation direction of each beam. The column to the right is a
contrast bar indicating normalized intensities between 0 and 1.
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FIG. 3. Coherent (a),(b) and incoherent (c),(d) interactions
between almost-counterpropagating solitons. The plots show
absolute values of the field amplitudes, and the arrows indicate
the propagation directions.

the intensity coupled from the forward beam to the region
"under" the backward beam oscillates [see the sidebands
in Fig. 2(c)], and, in contradistinction to the incoherent
case, light does not accumulate in the ‘“‘sidebands.” The
explanation is as follows. The Bragg reflections of the
backward beam serves as an extra source to the forward
beam propagating at the backward soliton region. But,
the forward beam under the backward soliton region is
propagating slower than the original forward beam (due
to the holographic effects). Hence, the relative phase
between the original beam and its sideband is alternating,
and subsequently, the energy transfer (through tunneling)
between these beams is alternating as well.

Finally, we investigate collisions at angles close (but
not equal) to 180° [Fig. 1(b)]. We launch two beams from
planes {=0 and /=48 that initially propagate at a
(dimensionless) angle of ¢ =26.5° [21]. The coherent
and incoherent interactions are shown in Fig. 3. The
incoherent collision is fully elastic, and merely leads to
a lateral displacement, resembling collisions of copropa-
gating solitons. Coherent collisions [Figs. 3(a) and 3(b)],
on the other hand, lead to radiation. Moreover, because the
forward radiation is partly localized under the waveguide
induced by the backward propagating beam, the back-
ward beam is not completely stationary: there are small
oscillations in the backward beam just before the collision
[Fig. 3(a)]. The same process applies to the backward
radiation [Fig. 3(b)] [22].

In conclusion, we have formulated the theory of coher-
ent and incoherent interactions between counterpropagat-
ing solitons. We have shown that coherent interactions in
this scheme exhibit ‘“holographic interaction” arising
from interference between the counterpropagating beams.
The collisions between such solitons display several key
new features, among them the fact that the interactions
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are insensitive to the relative phase between the solitons,
and that radiation exists even in ideal Kerr media.
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