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Theory of self-focusing in photorefractive InP
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We present a theory of self-focusing and solitons in photorefractive InP, including the previ-
ously unexplained intensity resonance and the resonant enhancement of the space-charge field.
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Self-trapping of optical beams in photorefractive
(PR) InP was observed in 1996.1,2 Self-trapping of
beams in such PR semiconductors offers attractive
features: operation at communications wavelengths,
fast response times (microseconds), and low power
level (microwatts).1,2 These properties suggest ex-
citing applications, such as reconfigurable switches,
interconnects, and self-induced waveguides. Un-
fortunately, PR semiconductors tend to have tiny
electro-optic coefficients �1.5 pm�V�, and thus a con-
ventional screening soliton in such materials would
require applied fields of 50 kV�cm and higher,3 too
large for most applications. Fortunately, Fe-doped
InP crystals offer an exception to this rule. When the
photoexcitation rate of holes is comparable with the
thermal excitation rate of electrons, the space-charge
field is resonantly enhanced by more than tenfold.
That is, the internal photoinduced field exceeds
50 kV�cm when the applied f ield is 5 kV�cm. This
enhancement, and other peculiar phenomena, appears
only in the vicinity of a particular intensity of the
beam.1,2 These features cannot be explained by the
theory of screening solitons,3 – 5 as that theory does not
show a resonance of any sort. Furthermore, despite
the experimental observations,1,2 thus far there is no
proof that self-trapped beams exhibiting stationary
propagation can form in this nonlinearity.

Experimentally, when a beam is launched into an
InP:Fe crystal under various applied f ields E0 and in-
tensity conditions, the main features observed are the
following1:

1. For E0 , 0 and Imax � Ires (the resonance in-
tensity), self-focusing occurs, and the peak of the inten-
sity structure, Imax, is shifted from the center (of the
normally diffracted beam at E0 � 0).

2. For E0 . 0 and Imax , Ires, the beam self-
focuses, but at the resonance itself �Imax � Ires� the
beam breaks up.

3. Irrespective of the polarity of E0, for high
enough intensity, Imax .. Ires, the beam goes through
the crystal almost unaffected, that is, diffracting
normally as if E0 � 0.

The f irst feature highlights the unique property
of this nonlinearity: the pronounced intensity reso-
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nance at which the space-charge field is enhanced.
Slightly below resonance, self-focusing occurs at
E0 , 0. The f irst and second features imply that
self-focusing occurs at both field polarities (at different
intensity regimes), whereas in other PR media the
sign of the nonlinearity is determined by the polarity
of E0 and does not depend on Imax. The second and
third features suggest that this nonlinearity not only
saturates but also decreases with intensity as Imax
exceeds Ires.

Here we present a theory describing resonant self-
focusing effects in PR semiconductors. We explain the
main features of the theory, extract new predictions,
and show that, in at least one parameter regime, sta-
tionary self-trapped beams (spatial solitons) do exist
in such media. The theory is based on a model6,7 with
two levels of dopants, one deep Fe-trap level and con-
duction of both electrons and holes. This model is
successful in explaining two-wave mixing but it can-
not explain self-focusing, because it relies on a peri-
odic grating at low visibility. Even a superposition
of gratings cannot be used to treat localized beams.
Yet the assumptions about the rate equations hold for
a localized beam and serve as a starting point. We
start with the standard set of equations6 in temporal
steady state: the continuity equations for electrons
and holes, the rate equation for the Fe traps, the trans-
port equations, and Gauss’s law:
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where en � en th 1 fnI�x�, ep � epth 1 fpI�x�, enth and
epth are the thermal emission rates, fn and fp are the
photoionization cross sections, I is the intensity, Nd
and Na are the donor and acceptor densities, and nt
and pt are the density of f illed and ionized traps. We
seek an expression for the space-charge field E as a
function of I for a single beam whose width is much
larger than the wavelength. In such cases, the diffu-
sion terms are negligible in Eqs. (1d) and (1e).3 – 5 The
immediate implication is that the space-charge f ield
cannot change its sign. It must be either always posi-
tive or always negative (depending on E0) if the total
current is to be kept constant in space. Furthermore,
for typical InP parameters,1,2,6 the photoexcitation of
electrons is negligible. Thus, within a good approxi-
mation (see Appendix A), the electron density is pro-
portional to the concentration of holes, i.e., p�x� ~ n�x�.
This means that the electron and hole currents, not
only their sum, are both constants. These approxima-
tions, as well as all other results here, are found to be
accurate to a fraction of a percent. Using this rela-
tion in Eq. (1c) and substituting Eq. (1d) into (1c), we
find that

E�x� � E0
Ires�x� 2 Ib
Ires�x� 2 I �x�

, (2)

where Ib is the “dark irradiance” and Ires�x� �
ennt�x���fppt�x�� is the local resonance intensity.
Here, fpptI is the rate of trap filling (by electrons)
and fpptIres is the rate of thermal ionization. There-
fore Ires�x� 2 I �x� is proportional to the net electron
ionization rate of the traps. In steady state, this
rate must be compensated by the net recombination
rate, which is given by the numerator of Eq. (2) (times
the concentration of electrons). Note that, through
Gauss’s law, Ires�x� depends on dE�dx (the density
of free carriers in Gauss’s law can be neglected).
However, if dE�dx is small enough, Ires is roughly
constant, and therefore the space-charge f ield is

E�x� � E0
Ires0 2 Ib
Ires0 2 I �x�

, (3)

where Ires0 � ennt0��fppt0� and nt0 � Nd 2 Na.
Clearly, the space-charge f ield exhibits resonance
effects when I � Ires0. Equation (3) is no longer valid
at the resonance, yet numerical studies of Eq. (2)
show that it is valid up to Imax � 0.8Ires0, where Imax
is the peak intensity of the beam. Thus, the f ield
expression Eq. (3) is valid in the regime of the f irst
experimental point listed above.

Having found E�I �x�� of Eq. (3), we obtain the re-
fractive-index change, Dn�x� ~ E�x�, substitute it into
the wave equation,3,4 and seek stationary solutions
(solitons) in the regime Imax , Ires. Using methods
similar to those reported in Refs. 3–5, we obtain the
soliton wave functions and the existence curve. The
wave function of a soliton at Imax � 0.8Ires0 is shown
in Fig. 1(a) and compared with the soliton wave func-
tions for Kerr and screening (saturable) nonlinearities.
Figure 1(b) shows the existence curve of each nonlin-
earity. As shown in Fig. 1(a), the normalized width
of the InP soliton is much narrower than in the Kerr
and the saturable cases; i.e., solitons of the same width
require a lower Dn�x� (a factor of 2 at Imax � 0.8Ires0).
This fact, and the resonant enhancement of E�x�,
explain why PR solitons are observed in InP even
though the electro-optic coeff icient of InP is tiny.

As is well established, the PR screening nonlinearity
saturates with increasing intensity (normalized to the
background intensity).3 – 5 Yet the resonant nonlinear-
ity of solitons in InP does not saturate. Instead, Dn�x�
deforms: As Imax approaches Ires (or exceeds it), the
induced Dn�x� becomes asymmetric. This asymme-
try arises from dE�dx in Eq. (1f ), which is no longer
negligible. Figure 2 shows a numerical solution for
Imax � 1.3Ires0. The local resonance intensity is modi-
fied by dE�dx so that it is always larger than the op-
tical intensity. Note that at extremum points (where
E0 � 0), Eq. (3) holds. This leads to an important
conclusion: Since the numerator of Eq. (3) is positive,
and since the sign of the field (neglecting diffusion)
cannot be changed merely by an increase in the
intensity, the denominator of Eq. (3) must be positive.
This fact implies that the maximum value of the
electric f ield occurs at a point for which I �x� , Ires0.
When Imax is increased considerably above Ires0,
the induced Dn�x� shifts away from the beam until
they no longer overlap, and Dn�x� has a diminish-
ing effect on the beam. This result explains why
for Imax .. Ires0 the beam displays primarily linear
diffraction. Experimentally,1 at Imax � Ires0 and
slightly above this value, the induced Dn�x� causes
self-focusing. In those data, Ires0 � 38 mW�cm2, and
indeed at Imax �35 mW�cm2 self-focusing is apparent.
However, at much higher intensities, self-focusing
diminishes; this explains the third feature presented

Fig. 1. (a) Soliton wave functions and (b) existence
curves for Kerr �Dn ~ I �, saturable �Dn ~ 21��1 1 I ��, and
InP �Dn ~ 1��1 2 I �� nonlinearities.

Fig. 2. Space-charge f ield E�x� (solid curve) and local res-
onance intensity Ires�x� (dashed curve) for a given intensity
I �x� (dashed–dotted curve). The peak intensity is 1.3Ires0.
At the peak, I , Ires � Ires0.
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Fig. 3. Space-charge f ield E�x� for three different beam
widths. The peak intensity is the same for all three beams
�Imax � 1.3Ires0�.

above. Thus, the disappearance of self-focusing at
intensities high above resonance results not from a
decrease of Dn (as initially thought1) but because the
induced waveguide is shifted to outside the beam.

The trends described above are valid irrespective of
the polarity of E0: Reversing E0 should switch the
nonlinearity from self-focusing to self-defocusing, as
observed.1 However, we note that we did not study
the dynamic self-focusing process but rather developed
a relation between Dn�x� and I �x� and then solved for
solitons. Some of the results described in feature 2
(the beam breakup at resonance, which occurs only for
E0 . 0) cannot be explained on the basis of stationary
propagation. Modeling beam breakup necessitates us-
ing a beam-propagation code and solving Eq. (2) at ev-
ery step. But there is one simple dynamic case that
can be readily explained. Inspection of Eq. (2) (and
Gauss’s law embedded in it) reveals that changing x !
2x and E ! 2E (also E0 ! 2E0) leaves the equa-
tion unchanged. This result means that, if E�x� is
a solution for E0 , 0, then 2E�2x� is a solution for
E0 . 0 (for the same I ). Therefore, if for E0 , 0 and
Imax .. Ires0 the beam and Dn�x� do not overlap, they
do not overlap for E0 . 0 either. This is why hardly
any effect is observed at high enough intensities, at ei-
ther E0 polarity. Thus, the narrow beam mentioned
in the second feature results from a shifted antiguide.
Since the antiguide is dislocated with respect to the
beam center [e.g., E�x� ! 2E�2x� in Fig. 2], most of
the power in the beam is pushed to one side [where
Dn�x� is less negative]. This pushing to one side is
why the beam appears self-focused, even though in this
polarity the beam forms an antiguide.

Our numerical solution of Eq. (2) shows another ef-
fect that has yet to be observed experimentally. The
enhancement of E�x� above the resonance intensity
depends on the beam width: Broader beams lead to
larger field enhancement. Figure 3 shows how the
electric field increases with beam width for a given
Imax. This increase is a consequence of the modif ica-
tion of the local resonance intensity by dE�dx, occur-
ring only for Imax . Ires0. [Otherwise, at Imax , Ires0,
Eq. (3) is valid; i.e., the resonant enhancement does not
depend on the width of the beam.]
To conclude, we have formulated what we believe to
be the first theory of self-focusing effects in PR media
in which both (thermal) electrons and (photoexcited)
holes contribute to the transport. We have shown
that self-focusing is greatly enhanced by the proximity
of an intensity resonance and derived an expression
for the space-charge f ield in the subresonance regime.
We have shown theoretically that spatial solitons form
in this medium, interpreted the unique near-resonance
features observed experimentally, and predicted the
dependence of the f ield enhancement on the beam
width. The theory relates to all PR materials sup-
porting both types of charge carrier.

Appendix A

This Appendix justifies the p�x� ~ n�x� approxima-
tion. We substitute Eqs. (1d), with the diffusion term
neglected, and (1f ) into Eq. (1a) and obtain an equation
for E�x� with x-dependent coeff icients:

dE
dx

1
qmn�dn�dx�

qmnn 2 �en 1 gnn�
E �

q�gnnpt0 2 ennt0�
qmnn 2 e�en 1 gnn�

,

and a similar equation for the holes. These equations
share the same solution [for E�x�]; therefore they must
have the same coefficients. By comparing the electric
field coeff icients, we get

mn�dn�dx�
mnn 2 �en 1 gnn��e0

�
mp�dp�dx�

mpp 1 �ep 1 gpp��e0

.

For typical values1,4 the second term in the denomina-
tors is negligible, yielding p�x� ~ n�x�. The proportion-
ality factor is obtained by solution of Eqs. (1a) and (1b)
far away from the beam, where all derivatives are zero.
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