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Multimode Incoherent Spatial Solitons in Logarithmically Saturable Nonlinear Media
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We show that multimode incoherent spatial solitons are possible in logarithmically saturable nonlinear
media. The mode-occupancy function associated with these soliton states is found to obey a Poisson
distribution. Our analysis indicates that two approaches, i.e., the dynamic coherent density description
as well as static self-consistent multimode method lead to exactly the same results. Closed form
solutions are obtained fdi + 1)D as well as for(2 + 1)D circular and elliptical incoherent solitons.
[S0031-9007(98)05547-1]
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To date, the nonlinear process of optical beam selfwhether incoherent spatial solitons also exist or not in other
focusing has been investigated by means of coherent @aturable nonlinear systems (such as in biased photorefrac-
laser sources [1]. Only very recently has the first ex-tives) cannot be easily addressed. In order to circumvent
perimental observation of incoherent self-trapping beertthis problem, we have very recently developed an alterna-
reported in literature [2]. In this experiment, a monochro-tive theory which is essentially a self-consistent incoher-
matic partially spatially incoherent light beam was foundent multimode approach [8]. In brief, in this procedure,
to self-trap in a biased photorefractive crystal. As in thean incoherent spatial soliton is sought, which intensitywise
case of coherent photorefractive spatial solitons, this wais a superposition of all the modes self-consistently guided
achieved via the saturable photorefractive drift nonlinearityin its nonlinearly induced waveguide [9]. By doing so, we
[3,4]. More specifically, at a certain bias voltage the inco-have obtainedl + 1)D photorefractive incoherent spatial
herent beam was found to self-trap whereas above or belogolitons, the conditions necessary for their existence, as
this limit the beam underwent compression or expansiomvell as their coherence characteristics [8]. At first sight,
(diffraction), respectively. Even more importantly, the ex-the two theories [6,8] may seem to have very little in
periment suggested that incoherent spatial solitons may ircommon. Thus it is important to ask whether the two ap-
deed be feasible in biased photorefractives. These resulpgoaches are mutually consistent or lead to the same re-
are by themselves of great significance since they shed nesults. Moreover, it is interesting to know wheth@r +
light on the complex dynamics of incoherent optical beamd )D incoherent spatial solitons are also possible in satu-
in a nonlinear environment. Shortly after, self-trapping ofrable nonlinear media.
incoherent white light was also observed in the same ma- In this Letter we show that multimode incoherent spa-
terial system [5]. tial solitons are possible in logarithmically saturable non-

In order to explain the results of Ref. [2], we have re-linear media. The mode-occupancy function of these
cently approached this problem by introducing a theorysoliton states is found to obey a Poisson distribution. Our
based on the so-called coherent density [6]. In this deanalysis demonstrates that, in this case, the two theories,
scription, the underlying evolution model takes the form ofi.e., the dynamic coherent density description and the static
a nonlinear Schrodinger-like integro-differential equationself-consistent multimode method, lead to identical results.
provided that at the origin the coherent density is approTwo-dimensional circular and elliptical incoherent spatial
priately scaled with respect to the angular power spectrursolitons along with their characteristics are also obtained
of the incoherent source. The results of this study werén closed form. Even though the saturable logarithmic
found to be in good agreement with the experimental dataonlinearity differs from the photorefractive, it provides
of Ref. [2]. Moreover, using this same approach it has alsmevertheless a platform (perhaps the only platform) upon
been shownthdil + 1)D incoherent spatial solitons are in which the equivalence of the two previously mentioned
fact possible in saturable nonlinear media of the logarithapproaches can be established in closed form. Finally, as
mic type [7]. Itis important to note, however, that, in gen-recently argued by Snyder and Mitchell [10] and by Shen
eral, the coherent density model is by nature better suitefl1], simplifications of this sort in terms of “accessible”
to describe dynamic evolution and thus it does not readilynonlinearities can provide valuable insight and still main-
lend itself toward identifying stationary solutions such astain the characteristic features of the underlying physical
incoherent spatial solitons. With the exception of the satuprocess.
rable logarithmic model (perhaps the only exactly soluble We begin our analysis by considering a saturable non-
model in the coherent density description), the question ofinear medium of the logarithmic type, similar to that
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previously considered by Snyder and Mitchell in theirincoherent excitation [8,15]. Yet, at this point, we still

study of “mighty morphing” spatial solitons and bullets do not know the mode-occupancy functida,,|?) that

[12], i.e., self-consistentzly leads to the incoherent Gaussian soliton

Iy = rexp(—s*) assumed in the very beginning of this

(1) = ng + naIn(1/1), 1) analysis. F:(_et the mode occupancy, a}; in tghe cage of quan-

whereny is the linear refractive index of the materiah, ~ tum mechanical coherent or Glauber states [14,16], be

is a positive dimensionless coefficient associated with théescribed by a Poisson distribution [17]; that is,

strength of the nonlinearity, anfj is a threshold inten- (p/2)m

sity. To avoid any logarithmic singularities we assume {leml?) = Fexp(—p/2) P , (6)

that the I/ /1,) nonlinearity results from the more realis-

tic In(1 + 1/1;) model in the limit/ > I,. Let the opti-  where p is the Poisson parameter ahds a constant to

cal beam propagate in thedirection. We also make the pe determined. From Egs. (4)—(6) and with the aid of
important assumption that the nonlinearity responds muciyehler’s formula [18],

slower than the characteristic phase fluctuation time across ,
the incoherent beam so as to avoid speckle-induced fila- Z (p/2) H,,(X)H,(y)
mentation instabilities [13]. Thus, in this regime the mate- m! T

m!

m=0

rial _WiII experience only the timg—:--averaged beam intensity 1 2pxy — p2(x2 + y) T
as in the case of photorefractives. Furthermore, let the = N ex 1 2 , (1)
electric component of the optical field be written in terms p p N
of a slowly varying envelopd/, i.e., E = U explikz), one can then obtain the following result:
where k = kong and ko = 27 /Ag. In that case, it can F exp(—p/2) - _
readily be shown that the envelopgin this nonlinearly Iy = % exp{—as2< p) . (8)
induced waveguide evolves according to vI—p 1+ p/]
oU 1 /02U 92U a? Thus the assumed Poisson distribution self-consistently
s E( pye) 3772> + 5 INIx)U =0, (2)  leads to the incoherent spatial solitdp = r exp(—s?)
_ _ _ _ . provided that* = r/1 — p% exp(p/2) and
wherely = I/1; is a normalized intensity and in Eqg. (2)
we have used normalized coordinates and quantities; that _ a1 Q)
. 2 5 > p .
is, s = x/wo, m = y/wo, & = z/kwq, a* = na(kowo)*, a+1
wherewy is an arbitrary spatial scale or spot size. From Eq. (7) it is evident that, in this case, the positive

We first employ the self-consistent incoherent multi-pojisson parametegr must be below unityp < 1) for this
mode description in the case when the incoherent beaffcoherent soliton to exist. Or alternatively, from Eq. (9),
is one dimensional or planar. For the time being, let us, > 1 which implies that at a given waveleng#fy, the
assume that an incoherent spatial soliton of a Gaussian ira]'uantitynl/zwo has a cutoff. below which no incoherent
tensity profile exists, i.ely = r exp(—s?), wherer is an spatial sofitons are aIIowed’
intensity ratio with respect t§. From these last assump- To establish the equi\./alence between this result

tions, Eq. (2) takes the form [Egs. (8) and (9)] with that previously obtained using
L oU 1 °U = a? 21rr the coherent density approach [7] one must resort to
S o T 5 N =570 =0. () Gitfraction data. More specifically, during linear diffrac-

— +
Y96 T2 92 | 2 . fically. >
. . . . tion = (), the intensity of each Gauss-Hermite mode
The allowed modes in this parabolic waveguide can therévol\(/’(qezs, acc)ording to [14]y

be easily obtained in terms of Gauss-Hermite functions
[14] and thus the optical field can be expressed through (s, E)P = 1 _ as?
superposition, i.el/ = 3 _ cuitm, Where (s, E)I° = Itz N Y=

U = Hy(a'?s) exp(—as?/2) expiBné)  (4) " H2[ a2 } (10)
and ¢,, are the mode-occupancy coefficients that vary "LV A+ a2 ]
randomly in time. In Eq. (4)H,(x) are Hermite poly- gy keeping in mind that the mode-occupancy function

nomials, B, = (1/2)[a’In(r) — 2m + Da] andm = (¢ 12} satisfies the Poisson distribution of Eq. (6) and
0,1,2,.... The time-averaged intensity of this beam canpy employing again Egs. (7) and (9), we find that upon
then be obtained from diffraction the normalized intensity profilg, is given by
® 2
Iy = (U = ) L2, 5 ___r p<_37>
v = AUPY = 3 den )l (5) b= Frrae ™ Ty ee) M

where we made use of the fact that the time average dEquation (11) clearly shows that during diffraction this
the cross-interference terms is ze(oﬁ} « §;;) under incoherent beam remains Gaussian. Given the fact that the
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initial modulation function [6] is Gaussian, i.epy(s) =  whereB,,, = (a/2)[aIn(r) — 2m + 1) — c(2n + 1)].
exp(—s2/2), and that the diffraction behavior of this The overall intensity of this beam can then be found from
statistically stationary beam obeys a convolution inte- ©

gral [Eq. (3) of Ref. [6]], it then becomes immediately Iy = Z {emn!®) lttmnl?, (17)
apparent that the angular power spectif(6) of the in- m=0n=0

coherent source must also be Gaussian. In this regard, Ighere we have assumed again that under incoherent exci-
Gn(0) = (7'7260) " exp(—62/65), whered, is the width  tation (c;;cl;) = 6,6, [15]. If we now allow the mode

of the incoherent angular power spectrum. Thus, had Wgccupancy(|c,,.,|?) to obey a double Poisson distribution
treated the diffraction regime within the coherent density

apprloach [6], we would have arrived at the following | 12y — ?ex;{—%(p 4 q)} (P/Z)":(Q‘/Z)n’ 8
result: ’ n!

= d exi_L) then the two-dimensional incoherent spatial solifgn—
JI+ (0 + v2)e? 1+ (14 V)¢ rexd—(s2 + o2n?)] can be self-consistently recovered
(12) using Egs. (7), (17), and (18) provided that the two Poisson

whereV = kwyf,. Since diffractionwise, the results of parametergp, g satisfy
Egs. (11) and (12) are the same, we conclude &tat=
1 + V2 or that p=

1 (13)
koy/na — n%&% q = Z T Z» (20)
The result of Eq. (13) is exactly what has been previ-
ously obtained [Eq. (9) of Ref. [7]] using the coherentand moreover # = r[(1 — p*) (1 — ¢*)]'*exd(p +
density approach. Ata more fundamental level, our analyq)/2]. These incoherent solitons can be elliptical # 1)
sis demonstrates that the two theories, i.e., the dynamf’ circular (¢ = 1) depending on whether the angular
coherent density description as well as the self-consistef@oWer spectrum of the incoherent source (exciting this
multimode method, lead in this case to exactly the samétructure) is symmetric or not. Moreover, these states
results. In the coherent limiy — 0 or @ — 1, the soli- ~ €Xist as long a® < (p,q) < 1 ora > maxl,o). The
ton spot size reduces t@, = (koné/z)_l as previously pOSS|b|_I|ty of_generatm_g(Z + 1)D eII|pt|c§1I solltqns in
found by Snyder and Mitchell [12]. In this same limit, isotropic nonllnear me<_j|a seems to be unique to mcohere_nt
Eq. (9) suggests that the Poisson parametes 0 and multimode solitons, since it has be_zen 'shown that 'thelr
thus the beam itself is single moded or fully coherentSONerent counterparts change their widths periodically
Moreover, the widthd, of the angular power spectrum during propagation [12]. Having found the modal com-
of the incoherent source and the Poisson parameter position of these so_lltons, their co_herence properties [16]
are now related through the following expressign= N then be descrlbed by following prqcedures similar
[(1+ V)2 = 1)/[(1 + V)2 + 1]. Of course these to those employed in Refs. [15,19]. Using Egs. (7) and
incoherent spatial soliton states exist as longas 1 or  (16)=(20), one can show that the complex coherence
« > 1 or equivalentlyd, < né/z/no. factor w1, of these solitons is given by

In the same vein, one may show that two-dimensional wi2(s,7;s + 8,7 + &)
incoherent spatial solitons also exist in this nonlinear p8? go2e?
system. To do so, let us assume in general an elliptic = eXD{—[(I m R T }} (21)
Gaussian incoherent beam

Ip

: (19)

woy =

Iy = rexd—(s> + o?n%)], (14) This Iatt_er.result demonstrate_s' that the_ cpherence.func—
where the parameter is associated with its degree of tiOn w12 is independent of positiofs, n) within the soli-
ellipticity. Substituting Eq. (14) in Eq. (2) we get ton beam and instead it depends only on the deviation

distancesd ande. For a circular incoherent solitdrp =
iﬂ n 1 <92_U 32_U> n g, o = 1), the actual correlation length (the distance
& 2 \ 9s2 an? where w1, falls to its e~! value) can be obtained from

o2 Eq. (21) and it is given by, = wo(1 — p)p~'/2. Evi-
—[In(r) — s* — o?9*U = 0. (15)  dently,/, — o whenp = 0 (single mode case), whereas
2 ¢ . -
l. — 0whenp — 1. These results are in agreement with
The optical fieldU in this elliptic paraboloid potential our previous discussion. In fact, for one-dimensional soli-
can be obtained as a superposition of the allowed Gaus#ens, the complex coherence facgor; is identical to the
Hermite modes, i.el/ = > _ > "o Cunlimn, Where statistical autocorrelation function of the sourgéx; —
x2) [R(x; — x2) can be obtained fror&y (#) via an inverse
tnn = Hu(a'Zs)Hy(a' P! a) Fourier transform [6]] which is given bR (x; — x;) =
X exd —(a/2) (s* + on?)]expliBmaé), (16) exp(—562V2/4), wherex; — x, = wod. Thisis true since,
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from Egs. (13) and (19)p(1 — p)~2 = V2/4. In other remain invariant as a function of distance. As expected,
words, the correlation length of a logarithmic incoherentthe sum of the individual modes provides the intensity
soliton remains invariant during propagation and it is equaprofile of Fig. 1(a). These results are in excellent agree-
to that of the exciting incoherent source. Moreover, as irment with our theoretical analysis.

the fully coherent case [12], the dynamics of these two- In conclusion we have shown that incoherent spatial
dimensional solitons [during compression or expansionsolitons are possible in logarithmically saturable nonlin-
i.e., whenp andgq deviate from the prescribed values of ear media. These solitons can exist as long as their mode-
Egs. (19) and (20)] can also be described in closed formoccupancy function obeys a Poisson distribution. We have
However, these solutions are rather involved and we wilfound that two approaches, that is, the dynamic coher-
report on them elsewhere. We emphasize that by its vergnt density description as well as the self-consistent multi-
nature the logarithmic nonlinearity leads to an infinite setmode method, lead in this case to exactly the same results.
of modes which are in turn related through a Poisson disTwo-dimensional (circular and elliptical) multimode spa-
tribution. Of course this is also true for the(ln+ Iy) tial solitons have also been obtained in closed form.
nonlinearity provided that the maximum intensity at the This work was supported by AFOSR, NSF, and ARO.
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