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Waveguiding—the ability to confine light in a region and 
guide it within a structure—is a fundamental building 
block in many photonics applications. The basic structure 

of a waveguide consists of a core region where the light is confined 
and a cladding region within which the core is embedded. Standard 
waveguide structures rely either on total internal reflection and are 
made up of a high-refractive-index core surrounded by a low-refrac-
tive-index cladding, or on metallic pipes where the electromagnetic 
fields are completely forbidden from escaping1. Other schemes rely 
on photonic systems with bandgaps2–6, coupled resonator arrays7, 
grating-mediated waveguiding8, Kapitza-effect arrangements9 or 
exploit the vectorial spin–orbit interaction of light in an anisotro-
pic medium10. In all of these, the core and cladding are made from 
media with different dispersion relations. Recently, a conceptually 
new waveguiding mechanics was proposed, where the cladding and 
core region of a waveguide have the same dispersion curve, but the 
core’s dispersion is shifted by virtue of an artificial gauge field11.

Gauge fields are a fundamental concept in physics, describ-
ing the basic interactions between charged particles. Neutral par-
ticles (such as photons) are thus decoupled from real gauge fields. 
However, by properly engineering a physical system, one can gen-
erate artificial gauge fields that will govern the effective dynamics 
of neutral particles. An artificial gauge field can often be induced 
through the geometric design of a system or through some specific 
external modulation, such that the effective dynamics of the sys-
tem behaves as if it were governed by a real gauge field. Artificial 
gauge fields play a crucial role in physics, because they allow us 
to endow systems with a wide range of intriguing features that are 
naturally not expected in them. Fundamentally, this opens the door 
to explore new physics, and from an applications point of view it 
facilitates new devices by enabling control over the dynamics of  
systems in new ways. For example, in cold neutral atoms it has  
been demonstrated that a synthetic magnetic field can be induced 
by rotating the system12 or by judicious optical coupling between 
the internal states of the atoms13. Furthermore, artificial gauge  
fields have made it possible to explore topological phenomena 
outside the context of electronic systems, in photonics14–16, ultra-
cold atoms17,18, optomechanical systems19 and even in acoustic20,21  
and mechanical systems22,23. This is important, because bringing 

topological protection to virtually all wave systems opens the door 
to a wealth of applications never envisioned before.

In photonic systems specifically, artificial gauge fields have been 
proposed and demonstrated to induce dynamics that would other-
wise be inconceivable for light. For example, artificial gauge fields 
were proposed in coupled resonators schemes as a means to real-
ize wave dynamics under an effective magnetic field24–27. Numerous 
experiments followed, ranging from the induction of a strong effec-
tive magnetic field by spatially ordering waveguide arrays28 and 
the creation of synthetic electric fields by making the waveguides 
helical—as was used to create photonic Floquet topological insu-
lators14—to specifically designed bi-anisotropic photonic crystals 
that give rise to topologically robust propagation29. In a similar vein, 
dynamic localization30–34 and Aharonov–Bohm phases have been 
demonstrated35, as well as non-reciprocal devices using temporally 
modulated silicon photonics36. In this spirit of exploiting artificial  
gauge fields, novel optical devices have been proposed such as  
one-way mirrors, negative refraction and highly efficient mode  
convertors37,38. Finally, the concept of artificial gauge fields was 
introduced to active (non-Hermitian) systems, as highlighted by the 
recent observation of topological insulator lasers39,40.

Recently, the use of artificial gauge fields to induce a fundamen-
tally new kind of waveguiding mechanism was proposed11. The 
proposed structure consists of core and cladding regions that have 
the same underlying dispersion relation, but are subject to differ-
ent artificial gauge fields, which in turn shift their dispersion rela-
tion with respect to one another. This shift between the dispersion 
curves in different regions makes it possible to design a structure 
where the core supports guided modes that do not have matching 
propagating states in the cladding region. Thus, the wavefunctions 
of these modes decay exponentially in the cladding regions, while 
being oscillatory in the core, as guided modes always are. To imple-
ment this idea, it was proposed to use arrays of resonators with tem-
poral modulations of the refractive index at different sites. However, 
thus far, the concept of guiding light with artificial gauge fields has 
never been demonstrated in experiments.

Here, we present an experimental realization of waveguiding by 
artificial gauge fields. We implement this idea in an array of evanes-
cently coupled identical waveguides, where the waveguides in the 
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core and cladding follow different trajectories during propagation. 
In our system the artificial gauge field stems solely from the trajec-
tory of the waveguides, and does not require external modulation of 
the material properties. Specifically, we present—theoretically and 
experimentally—two mechanisms for waveguiding with artificial 
gauge fields. In our first realization, the dispersion relations in the 
core and in the cladding are shifted from one another in momen-
tum-space because of the artificial gauge field. This engineered 
dispersion relation creates propagating modes that are confined to 
the core only in specific ranges of transverse momenta. Our sec-
ond realization is even more intriguing: the system is made not only 
of the same material, but also has the same artificial gauge field, 
such that the core and cladding have exactly the same dispersion 
relation. In that system, we induce guiding strictly by introducing 
a phase shift between the dynamics of the gauge fields at the core 
and at the cladding. We find that this system exhibits leaky modes 
for all values of transverse momentum, except for a specific value 
where perfect core confinement is obtained. This specific value can 
be controlled by the system parameters—that is, the waveguide tra-
jectories. We show that this effect constitutes a dynamic bound state 
in the continuum (BIC)41–45. Thus, our experiments are in fact the 
first observation of dynamic BIC ever. Altogether, the ideas demon-
strated here in our photonic platform can be implemented in other 
physical systems—such as ultracold atom systems, mechanical and 
acoustic systems—thereby enabling novel types of physical configu-
ration, such as waveguides, couplers and photonic networks, in pre-
viously unconceived scenarios.

Waveguiding of light by artificial gauge fields
We begin by describing our system—a photonic lattice of evanes-
cently coupled waveguides. The propagation of light in this struc-
ture is described by the paraxial wave equation
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where ψ is the envelope of the electric field, k0 is the wavenumber 
in the bulk material, n0 is the ambient refractive index, ∇ = ∂ + ∂⊥ x y

2 2 2 
and Δ = −n n nr r( ) ( ) 0 comprise the relative refractive index profile. 
Our basic building block is a one dimensional array of evanescently 
coupled waveguides, which means that Δn r( )  is a periodic func-
tion in x with period dx such that each period consists of a single 
waveguide. Using a coupled mode theory approach46,47, we can 
show that the spectrum of such an array is β = 2c1cos(kxdx) where 
kx is the spatial momentum in the x direction and c1 is the coupling 
strength between neighbouring waveguides (taken to be a positive 
number). Here, we define the propagation constant β by the ansatz 
ψ(x,y,z) = ψ0(x,y)eiβz. Tilting the array at an angle η makes the wave-
guides follow the trajectory x − ηz = const. The spectrum of such a 
tilted array is given by47

β η η= + +k c k k d k( ) 2 cos(( ) ) (2)x x x x1 0

We notice that the tilting of the waveguides has two effects. 
First, the shift of k0η in kx results from the constant tilt of the wave-
guides, and constitutes a type of Gallilean transformation. Second, 
the shift of ηkx in the spectrum results from the fact that there is an 
angle between the z axis and the axis of the waveguides. Looking 
at equation (2), we can treat the tilt of the array as the effect of an 
artificial gauge field that depends on the tilting angle η. When we 
generalize and consider a two-dimensional array of waveguides, 
all tilted at the same angle η, we can treat our system as being sub-
jected to a uniform gauge field. Such a uniform tilt would consti-
tute a trivial gauge, that is, a trivial change of reference frame for 
the entire system, which can be readily gauged away. To generate a 

non-trivial gauge field, we couple arrays that have different tilting 
angles. In such a system, the gauge field becomes space-dependent 
and non-trivial; that is, there is no reference frame in which both 
arrays are not tilted. More importantly, the band structures of two 
arrays of different tilt angles are not the same due to the different 
gauge field, even though the arrays are identical up to a tilt. In this 
way, by modifying the band structures of the arrays by means of 
artificial gauge fields, we can now design a structure that exhibits 
guiding of light by virtue of an artificial gauge field, in the spirit of 
Lin and Fan11.

Consider a two-dimensional array of evanescently coupled wave-
guides, with the middle rows acting as the core and the remainder 
acting as the cladding, as depicted in Fig. 1a,b. The rows of wave-
guides in the core and the cladding are identical in every parameter 
(refractive index, waveguide shape, distance between the wave-
guides), except the tilting angle; the core is tilted at an angle of +η 
and the cladding is tilted at an angle of −η (Fig. 1b). Thus, the core 
and the cladding regions are subjected to different artificial gauge 
fields. Notice that the gauge field is non-trivial, as the gauge field 
gradient, specifically at the interface region, cannot be gauged away 
by a change of reference frame. Thus, although our system is still 
periodic in x with period dx, it is no longer z-independent; rather, 
it is periodic in z with period Z = dx/η. We calculate the spectrum 
of this photonic lattice (Fig. 1a) by Floquet diagonalization of the 
continuous paraxial equation (equation (1))47; this can also be cal-
culated using an approximate tight-binding model47. The spectrum 
is presented in Fig. 1c. One immediately notes that the spectrum 
is not symmetric with respect to kx, a fact that stems directly from 
the z → −z parity symmetry breaking of the underlying structure by 
virtue of the artificial gauge field. The asymmetric dispersion shown 
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Fig. 1 | Waveguiding of light by artificial gauge fields in tilted arrays.  
a,b, Schematic of the two-dimensional waveguide array displaying 
waveguiding by an artificial gauge field. Cladding rows (blue) are tilted to 
the left and core rows (red), located at the centre, are tilted to the right. 
The tilt angle (±η) introduces an artificial gauge field, which is different 
for the core and cladding regions. c, Dispersion relation of the waveguide 
array in a. The blue shaded section represents the dispersion of just the 
cladding modes (all the arrays tilted by −η) and the red shaded section 
represents the dispersion assuming all the arrays are tilted at +η. Solid blue 
lines represent modes associated with the whole array (core + cladding) 
and red lines represent the two modes confined to the core. The distances 
between the waveguides are dx = 16 μm and dy = 22 μm, the tilting angle is 
η = ±8 μm cm−1. The spectrum is calculated using λ = 633 nm.
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here is similar to systems where time-reversal symmetry is broken 
by an actual magnetic field48,49. The Floquet analysis generates rep-
licas that in general may overlap in the bandstructure. In our case, 
the Floquet periodicity in the spectrum is Ω = 2π/Z = 2πη/dx, which 
causes the replicas to overlap around |kx| = π (see Supplementary 
Information). However, our system has an additional glide sym-
metry—a translation of Z/2 along z causes the system to repeat 
itself up to a shift of dx/2 along x. As shown in the Supplementary 
Information, this symmetry means that the true Floquet spectral 
period of the system is in fact double and equal to 4πη/dx, and the 
replicas in the band structure never overlap. In light of this, we pres-
ent only one Floquet replica in the bandstructure shown in Fig. 1c.

Let us now analyse the spectrum (Fig. 1c) of our photonic lattice 
in detail. For reference, we also plot in Fig. 1c the dispersion rela-
tion of a two-dimensional array with all the waveguides tilted at the 
same angle as the core waveguides (+η; red shaded region) and as 
the cladding waveguides (−η; blue-shaded region). In principle, one 
would expect to have guided modes only in the regions where the 
dispersion relation of the core does not overlap with that of the clad-
ding. Indeed, we see that this is the case when we plot the spectrum 
of the photonics lattice (lines in Fig. 1c). To better visualize this, we 
colour code the spectrum: the solid blue lines represent propagat-
ing modes associated with the entire array (core + cladding), while 
the red lines represent the two propagating modes confined to the 
core region. As Fig. 1c shows, the guided modes reside around the 
edges of the Brillouin zone, |kx| = π/dx, and are non-existent around 
the centre of the Brillouin zone, kx = 0. As expected, the spectrum 
is indeed asymmetric with respect to kx, as can be understood by 
noticing that the symmetric guided mode (top red line in Fig. 1c) 
has slightly larger support in the kx > 0 region of the spectrum than 
in the kx < 0 region.

To experimentally demonstrate this guiding phenomenon we 
fabricated the photonic lattice sketched in Fig. 1a,b by using direct 
laser wiring in fused silica50,51. The period in x is dx = 16 μm, the dis-
tance between all the rows along y is dy = 22 μm and the tilt angle is 
η = ±8 μm cm−1. The period is Z = dx/η = 2 cm (the same parameters 
as used for Fig. 1c). We fabricated two arrays, one with a core made 
of two rows and the other with a core made of one row only. In both 
cases, the total propagation distance was 10 cm. In the experiments 
we launch an elongated Gaussian beam, stretched in x over roughly 
10–12 sites, such that it has well-defined kx momentum. The spe-
cific value of the momentum kx is controlled by tilting the input 
beam at the appropriate angle without moving the beam position 
itself. The input beam has a vertical width corresponding to one 
row, and is launched into one of the core rows. By measuring the 
intensity distribution at the output facet, we determine if the input 
beam is guided inside the core. We do so by calculating the ratio 
of the power within the core to the total power, measured at the 
output plane of the lattice, as a function of the launched wavevector 
kx. The results for the array with two rows in the core are plotted in  
Fig. 2a, alongside simulation results using the same parameters 
(with a wavelength of λ = 633 nm). The experimentally measured 
profiles of the guiding behaviour of the array as a function of the 
kx momentum are clearly shown in Supplementary Video 1. We can 
see that, at kx values around the edge of the Brillouin zone, almost all 
of the power remains concentrated in the core—a clear indication 
for the existence of a guided mode at those kx values. In contrast, at 
kx values around 0, we see that almost all of the power has escaped 
from the core into the cladding region. Images of the light at the out-
put facet at specific kx values are displayed in Fig. 2b (unguided case) 
and Fig. 2c (guided case), where the lack of confinement (Fig. 2b)  
and waveguiding (Fig. 2c) of the light are clearly seen. We obtain 
similar results using the array with only one row in the core in  
Fig. 2d–f and λ = 532 nm. The experimental measurements of 
the guiding behaviour as a function of the kx momentum are 
clearly shown in Supplementary Video 2. Again, clear evidence of  

guiding at kx values around the edge of the Brillouin zone is seen 
both by looking at the ratio of the power at the core to the total power  
(Fig. 2d) for all kx, and by examining the output beam profile at 
specific kx values (Fig. 2e,f). Thus, we have experimentally demon-
strated light guiding by artificial gauge fields.

Waveguiding by phase-shifted artificial gauge fields
Having demonstrated waveguiding by using different artificial 
gauge fields, we want to take the concept to the next level and ask 
‘Would it be possible to guide light in a structure where not only the 
core and cladding are made from the same material but where they 
are also subjected to the same gauge field?’

To explore this idea, we introduce a different type of gauge field 
and design waveguides that follow a sinusoidal trajectory. Consider 
an array of equidistant waveguides, where each waveguide follows 
a sinusoidal trajectory: Ω φ= +x z D z( ) sin( )wg . Here, Ω is the fre-
quency of the sinusoidal modulation, D is the amplitude and φ is 
the phase of the modulation. One can show30 that the equation of 
motion for a Bloch wave in this system is

Φ Φ∂ = +i z c k A z d z( ) 2 cos(( ( )) ) ( ) (3)z k x x k1

where Ω Ω φ= ˙ = +A z k x z k D z( ) ( ) cos( )0 wg 0  is the artificial gauge 
field associated with the sinusoidal trajectory of the waveguides. 
Using the high frequency limit (Ω ≫ c1), we can calculate the 
Floquet spectrum of equation (3) and obtain

β Ω=k c J k Dd k d( ) 2 ( )cos( ) (4)x x x x1 0 0

where J0 is the Bessel function of the first kind. In equation (4), 
we see that the effect of the gauge field is only to renormalize 
the coupling constant. For the special case J0(k0ΩDdx) = 0, the 
coupling constant completely vanishes, resulting in complete 
localization of all wavepackets in the system. This effect is known 
as dynamic localization30–34. However, we will not use this effect 
here, as we wish to isolate the physics of gauge-induced waveguid-
ing. Note that, because the average directions of the waveguides 
in this case coincide with the z axis, we do not have an additional 
additive term like in equation (2). It is important to note here that 
the spectrum described by equation (4) is completely indepen-
dent of the phase φ of the sinusoidal trajectory of the waveguides. 
However, this phase can induce a non-trivial effect; for example, 
in Floquet topological insulators it can be used to generate topo-
logical defect modes52,53.

Next, we constructed a waveguiding photonic lattice from 
arrays with sinusoidal trajectories. Consider a two-dimensional 
photonic lattice of such oscillating waveguides, with two rows in 
the middle acting as the core and the remainder acting as cladding. 
All the waveguides in the array follow sinusoidal trajectories with 
identical amplitude D and frequency Ω. The cladding waveguides 
have a trajectory with phase φ = 0, while the core waveguides have 
a trajectory with phase φ = π. We calculate the Floquet spectrum 
of such a photonic lattice by Floquet diagonalization of the con-
tinuous paraxial equation (equation (1))47. The spectrum is given 
in Fig. 3c. It immediately becomes clear that the spectrum of the 
modes propagating mainly in the core (red lines) is embedded 
within the spectrum of the cladding (blue lines). This is because, as 
mentioned earlier, the spectrum of an array following a sinusoidal 
trajectory (equation (4)) does not depend on the phase φ. Because 
the dispersion relations of the core and cladding are now exactly 
the same and therefore fully overlap, we cannot expect to find 
guided modes such as those presented in Fig. 1c (for the photonic 
lattice of tilted waveguides). Rather, waveguiding in this sinusoi-
dal structure must rely on a fundamentally new mechanism, dif-
ferent from shifting the dispersion curves of the core with respect  
to the cladding.
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To see the physical origin of guiding in this photonic lattice, 
we simplify the systems and consider just two arrays with iden-
tical gauge fields, but with different oscillation phases. That is, 
we consider only two adjacent arrays, a top array and a bottom 
array, where both arrays oscillate along a sinusoidal trajectory 
with the same amplitude and frequency, but at different phases. 
Specifically, let the top array have φ = 0, and the bottom array 
have φ = π (Fig. 3b). Despite the fact that the two arrays have the 
same spectrum, the coupling between them is highly non-trivial 
and z-dependent. To achieve better understanding, we calcu-
late the effective coupling by assuming only first-order coupling 
between Bloch waves (without coupling aided by crystal momen-
tum). By also using the high frequency limit, we obtain the  
following approximate formula:
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(see Supplementary Information for more details). In equation (5),  
σ−c e k

eff
/4x

2 2
 is the effective coupling coefficient between Bloch 

waves of the top and bottom arrays with momentum kx, where 
ceff and σ are parameters we calculate numerically. According to  
equation (5), one can immediately see that the coupling between the 
two arrays vanishes at specific kx values. This means that at values of 
kx for which J0(2kxD) = 0, the top and bottom arrays are completely 
decoupled. At neighbouring kx values the coupling is small, but non-
zero. Intuitively, one can think of the decoupling between the core 
and the cladding as an interference effect from tunnelling between 
the two arrays, averaged over a Floquet period.

Now, going back to our full photonic lattice (Fig. 3a,b) and 
examining the modes of the system, we notice that there are indeed 
modes where the power is mostly concentrated in the core region. 
When we examine in detail the structure of the modes we find there 
are two bands of modes (red bands in Fig. 3c), which around a cer-
tain momentum region (shaded region in Fig. 3c) are strongly con-
fined to the core. However, the decay of these confined modes into 
the cladding region is not exponential, as one would expect from an 
ordinary guided mode (a bound state in a potential well). Instead, 
the mode oscillates without any decay, as the mode shown in blue in 
Fig. 3d. This behaviour is the hallmark of leaky modes, also known 
as quantum resonances54. However, by recalling the two-array sys-
tem given by equation (5) we know that, at specific kx values, the 
core and the cladding are completely decoupled in the two-array 
system, and we expect a similar behaviour in our full photonic  
lattice. Indeed, there is a mode at a specific kx value (red circle in Fig. 3c)  
that is perfectly confined to the core region; that is, the penetration 
of this specific mode into the cladding is identically zero, as shown 
in red in Fig. 3d. If we plot, as a function of kx, the ratio of the peak 
intensity in the core of these leaky modes to the mean intensity in 
the cladding, we find a sharp peak corresponding to J0(2kxD) = 0, 
where the core and the cladding are completely decoupled (see 
Supplementary Information). This resonant behaviour means that 
this mode is a BIC. Conventionally, BICs are bound modes whose 
energy is embedded in the continuum part of the spectrum, but they 
are nevertheless forbidden from coupling to the continuum modes 
due to symmetries41–44 or through parameter tuning that completely 
suppresses coupling to radiating modes44,45. Here, we show that our 
guided mode corresponds to a dynamic BIC43, which has never been 
demonstrated in experiments.

To experimentally demonstrate this new guiding phenomenon, 
we fabricated the photonic lattice of Fig. 3a by using direct laser 
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wiring in fused silica50,51. The period in x is dx = 20 μm, the dis-
tance between the arrays along y is dy = 24 μm, the frequency is 
Ω = 2π rad cm−1 and the amplitude is D = 8 μm (the same parameters 
as used in Fig. 3c). We launch an elongated Gaussian beam with 
well-defined kx into the core, and measure the ratio of the power 
within the core to the total power measured at the output plane of 
the lattice. The results are plotted in Fig. 4a, which shows two peaks 
at kx = 0.73π/dx, clearly demonstrating that the core of our photonic 
lattice is guiding light at a specific value of momentum. Notice that 
the expected peak positions from continuum simulations (arrows in 
Fig. 4a) are in perfect agreement with our measurements. The reso-
nant nature of the guiding mechanism can clearly be observed at the 
measured beam profile at the output facet for a kx corresponding to 
maximum guiding (Fig. 4c) and for a kx where there is no guiding 
(Fig. 4b). The experimental measurements of the guiding behav-
iour as a function of the kx momentum over the entire Brillouin 
zone are clearly shown in Supplementary Video 3. We note that in  
Fig. 4a the two peaks do not reach perfect confinement (unity) 
because the initial excitation at the core is a Gaussian wavepacket 
instead of a Bloch mode, which causes a fraction of the input beam 
to couple to higher bands.

To fully characterize this phenomenon, we designed a set of 
experiments to measure how the position of maximum guiding (the 
BIC’s position) is affected by changing the amplitude D of the sinu-
soidal trajectory. According to our approximation in equation (5), 
the peak position should be decreasing with increasing D. To cor-
roborate this, we fabricated three photonic lattices with sinusoidal 
amplitudes D = 6 μm, 8 μm and 10 μm, respectively. We again launch 
an elongated Gaussian beam with well-defined kx into the core and 
measure the ratio of power at the core, and the results are shown  
in Fig. 5. We clearly see that the position of the peak where the 
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guiding occurs (that is, the BIC position) decreases for lattices with 
increasing sinusoidal amplitude D, as we predicted from our theo-
retical analysis. Our experimental results also match very well the 
full-wave continuum simulations, as marked by the arrows in Fig. 5.  
These new waveguiding mechanism can be used as a transverse 
momentum; by propagating a wavepacket in our photonic lattice 
we can filter a specific momentum component by only coupling to 
the core of the system. Altogether, the experimental results (Figs. 4 
and 5) demonstrate a new gauge-induced waveguiding mechanism, 
where the core and the cladding regions are made from the same 
material and are subjected to the same artificial gauge fields char-
acterized by the same dispersion curves, with the only difference 
being a phase shift in the dynamics of the gauge field. Waveguiding 
of this sort relates to BICs, quantum resonances and dynamic local-
ization and offers a new platform for engineering these phenomena 
by making use of artificial gauge fields.

conclusions
In summary, we have experimentally demonstrated the phenom-
enon of guiding light by virtue of artificial gauge fields. We fabri-
cated photonic lattices where artificial gauge fields induce different 
dispersion relations at the core and cladding regions, and observed 
how this gives rise to guided modes. In a more advanced setting, 
we have demonstrated how to induce waveguiding by only chang-
ing the phase of the gauge field, while the dispersion curves of the 
core and cladding are identical. We have shown that, in such set-
tings, the guiding occurs because the interaction between the core 
and the cladding is non-trivial and can lead to nulling the coupling 
altogether, which offers precise control over the momentum values 
at which the guiding takes place. The principles of our waveguiding 
mechanism can also be implemented in systems that break time-
reversal symmetry, such as the time-modulated resonators described 
in ref. 11. By changing or modulating the system around the resonant 
frequency, it is possible to emulate the phenomenon of waveguiding 
via phase-shifted artificial gauge fields. The new guiding mecha-
nisms demonstrated here open the door to new applications of 

artificial gauge fields in photonics, and by their fundamental nature 
are applicable not only to the entire electromagnetic spectrum and 
different optical systems, but also to other physical systems such as 
acoustics and cold atoms.

online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41566-019-0370-1.
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Methods
Fabrication. We fabricated the waveguides in 10 cm fused-silica glass (Corning 
7980) samples by using the femtosecond laser writing method50. We used pulses 
created by a Coherent RegA 9000 amplifier seeded with a Coherent Mira 900 
Ti:sapphire laser that have an energy of 450 nJ at 800 nm and 100 kHz. An Aerotech 
ALS 130 direct-drive linear stage together with a microscope objective (0.35 
numerical aperture) provided highly accurate focusing of the laser beam from 
50 µm to 800 µm under the sample surface. By moving the sample with a speed of 
100 mm min−1 the refractive index at the focal point was changed around 7 × 10−4. 
This created waveguides with a mode field diameter of 10.4 µm × 8 µm at 632.8 nm. 
Propagation losses and birefringence were estimated to be 0.2 dB cm−1 and 1 × 10−7, 
respectively. A table including all the parameters and microscope images of the 
fabricated optical lattices are provided in the Supplementary Information.

Experimental set-up. We generated an elongated Gaussian beam (~130–190 µm x 
-width and ~8–12 µm y width at λ = 633 nm and 532 nm) at the input facet of the 
waveguide array by taking the Fourier transform of a rectangular slit using a single 
achromatic lens. The position of the slit (Fourier plane of the elongated Gaussian 
beam) was scanned in the x direction (~10 µm per step) by using a stepper motor 
to scan the phase of the input beam, which was translated into scanning the kx of 
the Bloch mode launched into the photonic lattice. This allowed us to collect up 

to ~800 measurements inside the Brillouin zone. The light intensity distribution at 
the output facet of the array was imaged onto a linear CMOS camera (1,920 × 1,200 
pixels, 1/12-inch sensor) by using ×10 and ×20 objectives. The size of the Brillouin 
zone (or the kx momentum step) was calculated using geometric optics and by 
correlating the output profiles.

Simulations. All the simulation results were obtained from full continuum 
simulations of the paraxial wave equation with the corresponding lattice refractive 
index profile. Each waveguide was modelled as a super-Gaussian profile given 
by Δ = Δ − ∕ − ∕n n x w y wexp( ( ) ( ) )x y0

6 6  with wx = 1.9 μm, wy = 5.5 μm and 
Δn0 = 7.5 × 10−4. The background refractive index was n0 = 1.45. These parameters 
were estimated from the output profile of single, one-dimensional and two-
dimensional arrays of straight waveguides that were fabricated together with 
the lattices study here. The continuum Floquet band structure and eigenmodes 
presented in Figs. 1c and 3c,d were calculated using a continuum Floquet 
eigensolver, as described in the supplementary information of ref. 47.
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