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pulses from 2D spatial intensity patterns
recorded by an all-in-line system in a single-shot
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Abstract: We propose a simple all-in-line single-shot scheme for diagnostics of ultrashort laser
pulses, consisting of a multi-mode fiber, a nonlinear crystal and a camera. The system records a
2D spatial intensity pattern, from which the pulse shape (amplitude and phase) are recovered,
through a fast Deep Learning algorithm. We explore this scheme in simulations and demonstrate
the recovery of ultrashort pulses, robustness to noise in measurements and to inaccuracies in
the parameters of the system components. Our technique mitigates the need for commonly used
iterative optimization reconstruction methods, which are usually slow and hampered by the
presence of noise. These features make our concept system advantageous for real time probing
of ultrafast processes and noisy conditions. Moreover, this work exemplifies that using deep
learning we can unlock new types of systems for pulse recovery.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Ultrashort femtosecond-scale laser pulses are a key ingredient in time-resolved investigations of
ultrafast phenomena [1–3], such as chemical reactions, electron dynamics in atoms and molecules
etc., hence their complete characterization (amplitude and phase) is of great importance. However,
sensor technology does not yet have short enough response time to recover ultrashort pulses
directly. Consequently, ultrashort pulses are currently recovered indirectly, often through
algorithmic methods. A widespread method is the Frequency-Resolved Optical Gating (FROG
[4]) which is based on gating a pulse with a time shifted replica of itself inside a nonlinear medium,
and measuring the power spectrum of the nonlinear signal as function of the delay between the
pulses (the 2D FROG trace). A more recent method that gains popularity, known as d-scan
(dispersion scan [5]), is based on varying the dispersion experienced by the probe pulse before
the pulse passes through the nonlinear crystal. D-Scan relies on forming a 2D trace by stacking
the nonlinear spectra at the different degrees of dispersion. The reconstruction algorithms used
in both FROG and d-scan to recover the probed pulse from the recorded spectrograms are
iterative phase-retrieval algorithms [4–6]. Recently, with the progress in machine learning [7,8],
deep-learning-based reconstruction of ultrashort pulses was demonstrated in both FROG [9],
d-scan [10] and other techniques [11], displaying considerable improvements in terms of speed of
reconstruction and noise robustness, due to the intrinsic ability of deep learning to filter out noise
[12]. However, in the field of diagnostics of ultrashort laser pulses, deep learning techniques
were so far employed only for improving the performance of already existing schemes, but never
as the pulse recovery method associated with a completely new scheme.

Conventional FROG and d-scan devices work in the multi-shot regime, which requires trains
of (almost) identical pulses. However, in some experiments [13,14], the probed pulse is not part
of a train of identical pulses, hence it is often desired to characterize a pulse using a single-shot
characterization method. Indeed, single-shot variants of FROG (termed GRENOUILLE [15])
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and of d-scan [16] were developed. In GRENOUILLE, a Fresnel bi-prism splits an incoming
pulse beam into two non-collinear stripe beams, where the delay between the pulses is mapped to
a spatial axis. The beams overlap in a thick nonlinear crystal, acting also as a spectrometer by
utilizing the narrow bandwidth frequency-angle phase-matching dependence. In this scheme,
the group velocity mismatch and crystal dispersion result in a tradeoff between the spectral
bandwidth and temporal duration of the pulse, limiting the time-bandwidth product of the pulses
such a device can recover. In single-shot d-scan, different transverse parts of the beam experience
different degrees of dispersion by using a prism and imaging system. The number and accuracy of
sampled dispersion points is limited by the resolution of the imaging system. Another single-shot
method is Spectral Phase Interferometry for Direct Electric—Field Reconstruction (SPIDER
[17]), which is based on spectral interferometry between the probed pulse and a frequency shifted
replica of itself. The probed pulse is calculated directly from the measured 1D interferogram.
However, SPIDER devices are generally more complicated than GRENOUILLE and single-shot
d-scan. Also, generally single-shot devices are inherently highly sensitive to noise (as there is no
averaging by multiple pulses and the power of the incoming signal is always limited), hence noise
robustness of the reconstruction algorithm is especially critical in single-shot pulse recovery
systems.

Here, we propose and demonstrate in simulations, a simple single-shot pulse characterization
system, based on all-in-line propagation of the pulsed beam using off-the-shelf fibers and a
χ(2) nonlinear crystal. The output of the crystal is imaged onto a camera that records a 2D
speckle intensity pattern. We show that by using deep learning techniques, we can successfully
reconstruct the pulse from the recorded data, even at low SNR, a previously unattainable feat for
these types of measurement systems. We prove that this system can provide a practicable single
shot measurement apparatus for diagnosis of ultrashort pulses, and validate the robustness of the
reconstruction to physical variations in the system. Last but not least, the multi-mode fiber in our
scheme can be replaced by other components that mix the beam’s spectral and spatial degrees of
freedoms (e.g. a thick diffuser), which would offer greater resolution and dynamic range.

2. Proposed system

The system is based on spatiotemporal coupling and a nonlinear measurement (see Fig. 1). The
first element of the system is a single-mode fiber. When a pulse enters the single-mode fiber,
its spatial profile is coupled (projected) to the spatial mode of the single-mode fiber, while
retaining its spectrum and spectral phase. We assume that the field propagates linearly in the
single-mode fiber, experiencing only dispersion. Next, for the purpose of creating spatiotemporal
coupling, we use a coupler and a multi-mode fiber. The coupler is actually a diffuser that
acts to project the field from the single-mode fiber onto the different modes of the multi-mode
fiber, exciting each mode with a different amplitude and phase. The diffuser is positioned far
enough from the SM fiber, such that the wave front incident upon the diffuser is approximately
spherical, hence the coupling from the diffuser into the modes of the multimode fiber is of equal
strength. In practice, any physical realization that will couple deterministically between the
(one) mode exiting the SM fiber to the many modes of the multi-mode fiber would be suitable.
In the multi-mode fiber, each mode has a different spatial profile and a different rate of phase
accumulation according to the modal dispersion and the wavelength. Next, we introduce a
χ(2) nonlinear medium with a large enough numerical aperture such that the highly multimode
field emerging from the fiber is coupled to the crystal without being truncated (readily done
because these crystals are bulk materials whose numerical aperture can be fairly large). Under
the common assumptions of slowly varying envelope and non-depleted pump approximation,
the electric field emerging from the crystal is composed of the outcome of all the χ(2) processes
occurring among the frequency components of the pulse: sum frequency generation, difference
frequency and rectification (for simplicity, we neglect cascaded effects where χ(2) operates twice
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or more). The emerging field is then passed through an optical high pass filter, keeping only the
sum frequencies while blocking the original frequencies associated with the power spectrum of
the original pulse. This complex high-frequency field is then directly imaged onto a camera that
measures the time-averaged interference pattern created by the sum-frequency field of the pulse.
The nonlinearity of this process, combined with the spatiotemporal mixing due to the diffusive
coupler and the propagation through the multi-mode fiber, creates an interference pattern that
depends on the amplitude and spectral phase of the pulse. As described below, this interference
pattern allows for deciphering the amplitude and phase of the incoming pulse.

Fig. 1. Proposed system for ultrafast pulse measurement. The ultrashort pulse is passed
through a single mode (SM) fiber, and subsequently through a coupler that couples to multiple
modes of a multimode fiber. The resultant spatio-temporal pulse exiting the multimode fiber
is passed through a nonlinear crystal (NLC) and then through a high-pass frequency filter
(HPF) that passes only the sum-frequencies (blocking the frequencies associated with the
spectrum of the original pulse). The ensuing interference pattern is directly imaged onto a
camera.

We choose this system due to its simplicity and small size, and because it offers an easily
controllable method of interference between different frequencies, by simply changing the
propagation length in the dispersive medium (multi-mode fiber). We note that such a system, but
without the nonlinearity, was used for high resolution low loss spectrometry [18]. However, that
system measures only the power spectrum of the pulse while the spectral phase is lost, preventing
complete pulse reconstruction.

We wish to note that the efficiency of the above χ(2) process depends on the selectivity of the
phase matching condition, just like in any conventional FROG system. The phase matching
selectivity depends on the spectral bandwidth of the pulses and the polarization. The spectral
bandwidth of the pulses simulated here are commonly handled by a FROG system, with the same
tradeoff and considerations as ours. Desirably, the polarization of the light going through the
nonlinear crystal should typically be linear (like in a FROG system). In our system, light existing
from a multi-mode fiber can be in mixed polarization state. To rectify that, we suggest using
a polarization-maintaining multimode fiber, which can in principle be rather short – as long
as it leads to accumulate sufficient phase differences between modes due to modal dispersion.
Otherwise, the mixed polarization state of the light exiting the multimode fiber can also be
corrected by a polarizer, and then accounted for in the modeling of the network and while
training the network. In what follows, we assume for simplicity that the light emerging from the
multimode fiber maintains the linear polarization.
Next, we analyze our proposed system theoretically and simulate examples. To that end,

we calculate the spatiotemporal coupling of the pulse emerging from the single-mode fiber to
the modes of the multi-mode fiber by writing an analytic description of the propagation of the
pulse in the system. For simplicity, we use the modes of a step-index multi-mode fiber as our
mathematical basis. We will limit our basis to the family of linearly polarized modes, under the
weakly guided approximation (a full description of the modes can be found in [19]). Thus, we
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can construct a transfer operator which will evolve an incoming single mode field, in the form of
a pulse emerging from the single-mode fiber, through the multi-mode fiber. We write it in the
following form:

T(r, θ, z,ω) =
∑
l,m

αl,m(ω)El,m(r, θ, z,ω) (1)

whereEl,m are the spatial profiles of the (l,m) mode including also the relevant phase accumulation
along the propagation axis z, and αl,m are complex valued coefficients representing the coupling
created by the diffuser coupler and the single mode field input. These coefficients represent both
magnitude and phase coupling. Therefore, from this point onwards we can disregard the spatial
profile of the incoming field and let αl,m encode this information directly. The coefficients αl,m
may (or may not) depend on the frequency, depending on the coupling method between the single
mode and the multimode fibers. In our simulations described below, we take these coefficients to
be random, hence their explicit dependence on the wavelength is immaterial.

Using this transfer operator, we can write the complete field evolving in the multi-mode fiber,
given an arbitrary input field Einput(ω) = A(ω)eiφ(ω)n (of a given power spectrum and spectral
phase):

E′(r, θ, z,ω) = Einput(ω) · T(r, θ, z,ω)

= A(ω)eiφ(ω) ·
∑
l,m
αl,m(ω)El,m(r, θ, z,ω)

(2)

For simplicity, in our analysis and results, we will focus on obtaining the amplitude and phase of
the pulse entering the multi-mode-fiber, noted as Einput(ω). As the propagation in the single-mode
fiber is a linear operation, it can be readily back propagated to relate back to the original pulse
and thus we can disregard this effect for our needs. Using (2) we write an analytic description of
the sum frequency field generated in the nonlinear crystal, and the resultant interference pattern
measured by camera:

Mnonlinear(r, θ) =
∫ ∞

−∞

I2(r, θ, z = L, t)dt =
∫ ∞

−∞

|E(r, θ, z = L, t)|4dt (3)

where I(r, θ, z = L, t) is the intensity of the field E(r, θ, z = L, t) at the output of the fiber, as given
by Eq. (2) and L is the length of the fiber. We want to describe the nonlinear interference process
described by Eq. (3) through the spectral fields. For a linear process this is straightforward by
using Parseval’s theorem, while for this nonlinear interference we take a direct approach and
write the inverse Fourier transform:

Mnonlinear(r, θ) =
∫ ∞
−∞

���∫ ∞
−∞

E(r, θ, z = L,ω)eiωtdω
���4dt

=
∫ ∞
−∞

���∫ ∞
−∞

A(ω)eiφ(ω) · T(r, θ, z = L,ω)eiωtdω
���4dt

(4)

This is the first indication that the nonlinearity of the sum frequency generation process creates a
non-trivial functional dependence on the spectral phase. It is important to note that the functional
that maps an input pulse to the nonlinear interference is not injective, which means that the
inversion of this system contains ambiguities. This can be seen easily by exploring two common
trivial functional ambiguities: a global phase and a time shift (or a linear phase in the Fourier
domain). But these ambiguities are trivial and generally of no practical importance, hence their
effect can be mitigated by working in a predefined subspace of pulses with equal global phase
and a fixed time shift.

3. Reconstruction method

To the best of our knowledge, there is no analytic solution for the extraction of spectrum and
spectral phase from the spatiotemporal nonlinear interference pattern. This poses the question on
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how can we reconstruct the incoming pulse out of the recorded intensity pattern. In principle,
this is a regression problem and it can be stated as: given an interference pattern, we want to
regress and find the pulse which created it. Mathematically, we can write the relation between a
pulse and the interference pattern arising from that pulse, as the following functional:

Γ : E(ω) → M(r, θ)
E(ω) ∈ Cn

M(r, θ) ∈ Rk×k
(5)

where M(r, θ) is a matrix representing the discrete sampled interference pattern, E(ω) is a vector
representing the discrete sampled complex valued pulse, and Γ is the discrete case of the integral
derived in Eq. (4). In the regression problem we are trying to find the inverse of this relation.
We will take an approach similar to the one taken in [9] and construct a deep neural network

to solve the regression problem to reconstruct the pulse from the recorded data. The deep
neural network is a parametric function that can represent high-dimensional nonlinear functions.
By learning the parameters of the network we are able to train the network to solve specific
tasks. This concept has been around for some time now [20], but only in recent years, with
the exponential growth in computational power and improved network architectures [21], deep
networks are proving to be a formidable technique that can solve difficult and complex problems.
By constructing an optimization problem on the parameters of a given network and using ground
truth inputs and outputs (samples and labels), we can learn the correct parameters by solving the
underlying optimization problem. Usually, direct solution is not possible due to the complexity
of the problem, hence the problem is solved by iterations, using a variant of SGD (Stochastic
Gradient Descent). In our problem, we pass an input image, i.e. the nonlinear interference
pattern, through the computational layers of the network and receive an output vector which
represents the temporal electric field.
This process of optimizing the network parameters is referred to as the training stage of the

network. For this stage, we use two disjoint datasets of known pulses, “training set” and “test
set”, each with its simulated intensity pattern recorded by the camera in our proposed setup.
The first is used for training the network. Namely, in every iteration, each data sample changes
the network parameters, with the purpose of decreasing the overall reconstruction error. The
second dataset is used for testing the performance: a sample data is passed through the network
to produce a reconstruction and find its error, but the network parameters are not varied by the
test dataset. In training the network, it is important to avoid overfitting the parameters of the
trained network to the specific data used for training, because tight overfitting might hamper the
ability of high quality recovery of pulses that were not part of the training set. Hence, to prevent
overfitting, we train the network on data from the training set, and then test its performance on
the (disjoint) “test set”. This is done iteratively, until we find the best network parameters that
yield the best fit on the testing data. In this way, we avoid overfitting and find the most suitable
network parameters to recover the pulse.

In our problem, we train the network to approximate the inversion of the functional described
in Eq. (5) by feeding into the network nonlinear interference patterns as input and the pulses as
labels, and we aim to minimize the L1 loss between the output of the network and the given label,
i.e.:

w = arg min
w′

| |DNN(I;w′) − E(t)| |1 (6)

where w are the parameters we wish to optimize, DNN(I;w′) is the output of the network, I is the
sum frequency generation interference pattern and E(t) is the time domain complex envelope of
the field, where E(t) = F[A(ω)eiφ(ω)]. The L1 criteria is chosen as it promotes sparser solutions
which are more robust to noise (we observe this empirically, as training with a L2 norm results in
slightly noisier solutions).
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In practice, we will define our label as the real and imaginary part of the pulse, and concatenate
them into a single vector. This means that we will try and find a R2n vector rather than a Cn

vector. This representation is less ambiguous than separating into amplitude and phase, and has
shown better results in previous works [9].

Figure 2 shows the optimized architecture of our regression network used for reconstruction of
pulses from nonlinear interference patterns. The network is composed of two major components,
convolutional neural network (CNN) and a rectifier linear unit (ReLU). A CNN is a type of neural
network which preforms cross-correlation between an input object and a learned kernel, meaning
that each output value is composed of a local weighted average defined by the kernel. ReLU is a
type of nonlinear activation function with the following form:

f (x) = max(0, x) (7)

Our network is constructed by a 4-layer CNN followed by three fully connected layers with ReLU
nonlinear activation between them. Figure 2 also shows the channels and filter sizes in each
layers.
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Fig. 2. (A) Regression network architecture: four CNN layers followed by three fully
connected layers. The input to this network is a sum frequency interference pattern, which is
passed through the computational layers, until a final output is produced in the form of a
vector of the real and imaginary parts of the temporal electric field. (B) Block diagram of
sum frequency interference measurement and of the label generation from an input spectral
pulse, as described in section 2 and section 3. The input of the simulation is passed on to the
regression network. (C) Supervised training of the regression network. Each interference
pattern is passed through the network to create a reconstruction. The error between a
reconstructed pulse and its ground truth pulse shape is used in back propagation and gradient
descent to train the network and improve the network parameters.

4. Results

In order to learn the functional mapping described in Eq. (6) we need to create a dataset
representing the physical relation between the pulse and the nonlinear interference pattern
measured by the camera. Our simulated system consists of a multi-mode fiber of length 1cm,
core radius of 50µm and refractive indices of ncore = 1.4699, nclad = 1.4533 (parameters of a
commercially available multimode fiber). This results in a numerical aperture of NA ≈ 0.22 for
the fiber (a reasonable NA for phase matching in crystals that are not too long and coherence
length that is not too short). Using these parameters we construct a transfer operator in the
manner described in (1), with l ∈ [0, 19], m ∈ [0, 10] and we choose the coupling coefficients,
αl,m, as αl,m = eix where x ∼ Uni[0, 2π]. In a real physical system each coefficient will have a
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slightly different amplitude with some dependence on the wavelength; however, for a large enough
number of modes in the multi-mode fiber, we assume that this choice of coupling coefficient is
reasonable for a proof-of-concept demonstration.
In our simulations, we use a mixture of pulses with either a Gaussian or a Lorentzian power

spectrum with random varying width, widthGaussian = 68± 39Thz, widthLorentzian = 45± 2.6Thz,
with a randomly generated spectral phase. The spectral phase is smoothed by removing high
frequencies in order to ensure the pulse to be time limited yet complex, selected to have pulses
with time bandwidth product in the range of [0.5, 5]. As noted, to be able to invert the functional
relation, we remove the trivial phase and time shift ambiguities by setting the phase at the center
of the pulse to be zero and centering the max amplitude of the pulse to the center of the vector.
Working in the digital domain, we discretize the above functions using a linearly spaced

spectral grid points in the range of ω ∈ [1.93Phz, 3.01Phz] with spacing of ∆ω = 4.24Thz,
equivalent to temporal resolution of 5.8fs, corresponding to 256 spectral points and wavelength
span in the range λ ∈ [625nm, 975nm]. The 2D linear spatial grid is chosen such that each pixel
is of the size of 0.21µm × 0.21µm with 256 × 256 spatial points corresponding to (x, y) ∈[−
27.5µm, 27.5µm] × [− 27.5µm, 27.5µm], preserving resolution in regions of interest yet keeping
computational effort low. The produced image represents the center section of the fiber, where
the rest of the image from the fiber is cropped out and is not fed into the network (so as to reduce
the input dimension of the data for computational efficiency). We do not see any performance
degradation due to this cropping.
To train the system, we create a dataset of 100,000 pulses and their corresponding nonlinear

interference pattern, as described in section 2. Through random sampling of pulses from the
train set over many iterations, we pass the interference patterns through the network. This gives
us the reconstructed pulses. By computing the error between reconstruction and ground truth
pulses, we back-propagate the error and optimize the network parameters, by the process of
gradient descent. In practice, we use a popular variant of gradient descent named ADAM [22].
This process is illustrated in Fig. 2. By this process of training, we create two models (the set of
parameters that describe the network): one trained without noise present in measurements and
one trained with an additive white Gaussian noise of SNR ∼ Uni[0dB, 30dB].
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Fig. 3. Three examples of pulse reconstruction with varying complexity: Top simple,
middle medium, bottom most complex. (A) Temporal amplitude and phase of an original and
reconstructed pulse. (B) The nonlinear interference of the original pulse and its reconstructed
counterpart.
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Having trained the network, we now test its the performance by creating a test set of 7000
pulses, which are not part of the training set, that is, the test pulses have not been previously seen
by the network. By passing the interferences images of the test set pulses through the net, we
obtain a set of reconstructed pulses. Examples of such test pulses and their reconstructions can
be seen in Fig. 3 for the noiseless model and with no noise present in the test set measurements.
Using the L1 error criterion between ground truth pulses and reconstructed pulses on noiseless
measurements, on average we obtain a final reconstruction error of 0.91 × 10−3 ± 0.71 × 10−3 on
the test set and 0.83 × 10−3 ± 0.57 × 10−3 on the train set. This error is very low, compared to
the pulses norm which is normalized to unity. We also compare the reconstruction quality in

terms of the NRMSE (normalized root mean squared error), defined as δNRMSE =

√
| |EG−ER | |22
N·Max(EG)

between the ground truth and the reconstructed pulses and N being the vector length. We
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Fig. 4. (A) Error as a function of SNR for reconstruction of 30 pulses using ptychography
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obtain δNRMSE = 0.64 ± 0.59% which indicates good reconstruction quality as on average each
reconstructed pulse is highly correlated with its corresponding ground truth.
We also compare the trained models performance with and without AWG noise present in

test set measurements, which can be seen in Fig. 4. As expected, when SNR is high the two
models achieve similar accuracy, yet once noise is introduced and the SNR is lowered - the model
trained with noise shows greater noise immunity and reconstruction accuracy, to the extent 22%
improvement for high SNR and 300% for very low SNR. For comparison sake, we create FROG
traces from the same pulses and compare their reconstruction using the ptychography algorithm
[23] as shown in Fig. 4.

Fig. 5. Probability distribution of normalized root mean squared error (NRMSE) recon-
struction errors of the three test sets, done on 7000 pulses.

Next, we test the robustness to transfer operator estimation mismatch, i.e. the sensitivity of the
network to errors in the operator. This test is motivated by the algorithmic challenge this system
introduces: the transfer coefficient of a real lab coupler is unknown, hence, in order to simulate
a real system, one would need to measure or estimate these coefficients. This will be further
elaborated in the discussion. For the sake of comparison, we create 3 instances of operators: a
ground truth operator, an operator whose αl,m coefficients differ by 1% and an operator with 10%
difference from the ground truth. The difference is generated by adding a x% uniform random
phase to the coefficients. We train a network using the train set from the ground truth operator
and test it using test sets from the three operators. The results of this test can be seen in Fig. 5.
We can see that the 1% difference in coefficients created a small shift in the histogram towards
higher errors which means there was a decrease in performance. As this degradation is small,
compared to variance of the errors within the pulse distribution, it shows that the system is robust
to small deviations in the physical elements.

5. Conclusions

We proposed a new simple all in-line system for ultrashort pulse reconstruction from sum
frequency field interference measurements, employing deep learning to numerically invert the
nonlinear interference pattern to pulse mapping, as a method for analytical inversion is unknown.
Using simulated data, we have shown that this method achieves good reconstruction results, with
an average NRMSE error of 0.64 ± 0.59%.
The system shows good performance even in scenarios of low SNR, which is a key property

for single-shot ultrashort pulse measurement system. We expect our method to be especially
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useful in cases where single-shot measurements are required and there is a power constraint on
the pulses employed (e.g. when studying biological specimen).
As the transfer operator of the presented device is system-dependent, the training of the

network must be done on a specific real system. This can be achieved by either taking interference
measurements of known pulses (labels) from the system itself or by simulation of measurements
of simulated pulses using the parameters of the system. Naturally, using simulated data (instead of
data from experiments) for training the network is highly desirable, but this may pose challenges
due to discrepancies between real and simulated data (problem known as “sim to real” in deep
networks). Therefore, showing that the system is robust to small errors in the transfer operator
implies that we can rely on estimating the parameters of the fiber and the coupler rather than
measuring them precisely, and thereby train the network on simulated pulses. Although beyond
the scope of this work, it is also possible to use the data itself to extract these coupling coefficients
and thus improve on the systems performance in general.

We emphasize that our training stage and therefore reconstruction algorithm is system agnostic.
That is, we do not assume any prior knowledge (or any information) on the system itself or
on the transfer function at the training stage. The network extracts this information by itself
during the training. Thus, as long as the data presented to the network in the training stage
(interference measurements and pulse shapes) represents the functional physical mapping in
the setup - the system will perform well – even if the actual transfer operator is different than
the one we simulated here (Fig. 1). For example, non-ideal effects such as mode coupling due
to bent fibers, and other additional effects that may arise while constructing such a system in
experiments, will be learned directly from the data.

Before closing, we note that the system proposed here introduces a new feature with respect to
making use of the redundancy of the measurements. Namely, the recoded data in FROG and
d-scan is generally redundant. That is, there are many more measurements than required for
reconstructing the pulse uniquely. This redundancy makes these techniques powerful, giving
rise to robustness to noise and misalignment as well as allowing reconstructing a pulse at higher
temporal resolution from the temporal scanning steps in FROG [23] and reconstructing multiple
pulses from a single FROG trace [24,25]. However, the measured data for each scanning step
in FROG or for specific dispersion in d-scan is not redundant; in fact, it does not even contain
enough information to reconstruct the pulse. Here comes into play another added value of our
technique: in our system, due to the strong spatiotemporal mixing in the MMF, the temporal
information of the pulse is mixed completely in the 2D image. There is no separation into rows
or columns. Hence, in principle, every subset of the image is highly redundant. This endows our
technique with possibly greater robustness that can make it advantageous for real time probing of
ultrafast processes and under noisy conditions. Also, it is important to note that our technique
does not suffer from the stringent physical restrictions characteristic of other single-shot methods,
for example, on the time-bandwidth product [15] or on the spatial beam profile [16], avoiding
these limitations facilitates greater dynamic range and robustness.

Finally, it is worth noting that the architecture of the network can be further improved by adding
a generative model, such as Generative Adversarial Network (GAN) [26], which can be used
for enriching the distribution of pulses learned and thus improving robustness of reconstruction.
Thus, we believe that this method can achieve state of the art results, comparable to FROG
reconstruction accuracy, while improving the noise immunity and thus improving SNR.
We recently became aware of a closely related paper that was posted on the arxiv [27],

demonstrating a system of a similar concept of using a single-shot scheme for diagnostics of
ultrashort laser pulses, consisting of a multi-mode fiber, nonlinear spatio-temporal mixing, and
reconstruction via Deep Learning.
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