
Research Article Vol. 9, No. 6 / June 2022 / Optica 585

Spatiotemporal photonic crystals
Yonatan Sharabi, Alex Dikopoltsev, Eran Lustig, Yaakov Lumer, AND Mordechai Segev*
Solid State Institute, Technion—Israel Institute of Technology, Haifa 32000, Israel
*Corresponding author: msegev@technion.ac.il

Received 7 February 2022; revised 19 April 2022; accepted 21 April 2022; published 25 May 2022

We study light propagation in spatiotemporal photonic crystals: dielectric media that vary periodically in both space
and time. While photonic crystals (spatially periodic media) are well understood, the combination of periodic change in
both time and space poses considerable challenges and requires new analysis methods. We find that the band structure
of such systems contains energy gaps, momentum gaps, and mixed energy–momentum gaps in which both energy and
momentum may attain complex values. We identify the unique interplay between the exponential growth induced by
temporal modulation and the exponential decay caused by spatial modulation, and how these can completely counteract
one another. Under proper conditions, these two opposing forces are exactly matched, causing the mixed energy–
momentum gap to collapse to a single point, which is an exceptional point known from non-Hermitian dynamics. Such
spatiotemporal photonic crystals possess unique properties that could pave the way to new ways of controlling the
propagation of light. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
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1. INTRODUCTION

Photonic time crystals (PTCs)—the temporal analogs of photonic
crystals (PCs)—are dielectric media whose refractive index varies
periodically in time strongly and abruptly such that it exhibits
momentum gaps. The idea of wave propagation in time-varying
media dates back to the 1950s [1–5]. When an electromagnetic
(EM) wave propagates in a medium whose refractive index changes
abruptly in time (on the time scale of an optical cycle), it expe-
riences time reflection and time refraction [3,5,6]. This process
results in two new waves: a time-refracted wave propagating in
the same direction, and a time-reflected wave propagating in the
direction opposite to the original wave (because causality prohib-
its it from being back-reflected in time, unfortunately). When
the medium is spatially homogeneous, momentum is conserved
(hence the resulting waves have the same wavenumber as the ini-
tial wave), but energy is not: the frequency of the refracted and
reflected waves is different from the frequency of the original wave.
When the refractive index varies in time multiple times, multiple
time-reflected and -refracted waves emerge and interfere with one
another. If these temporal variations are periodic, a PTC is formed
[2,5,7,8]: Floquet eigenmodes arranged in a band structure with
bands and bandgaps in momentum. Similar to the Bloch modes
describing PCs in space, the eigenvalues of the Floquet modes�F

(quasi-energies) take real values in the bands and complex values
in the gaps. In the momentum gaps, the complex eigenvalues
can lead to exponential growth of the wave amplitude, extracting
energy from the modulation of the refractive index, or to exponen-
tial decay. The existence of a momentum bandgap has profound
implications: in the momentum gap, all waves are amplified at all
frequencies, as long as their wave vector falls within the momentum
gap.

The formation of PTCs critically depends on the abruptness of
periodic modulation and on having a large refractive index con-
trast. Otherwise, if a wave is propagating in a medium modulated
in time at a frequency significantly lower than the frequency of the
wave, or if the index contrast of the modulation is small, the time
reflections are suppressed, and the dispersion relation does not
display a momentum bandgap. These conditions make PTCs fun-
damentally different from optical parametric amplifiers (OPAs),
which do not possess bandgaps. Pointedly, the amplification pro-
vided by OPAs to the signal and idler is resonant: the frequency
of the pump must be equal to the sum of the frequencies of the
signal and the idler, and momentum conservation imposes phase
matching. This is in sharp contrast to PTCs, where all waves with
momentum in the gap are amplified.

The periodic temporal modulation of the refractive index
responsible for the formation of PTCs is reminiscent of their spatial
counterparts known as PCs: dielectric media whose refractive
indices vary periodically in space. However, there are fundamen-
tal differences between the two seemingly analogous systems.
While PTCs possess spatial translation symmetry giving rise to
momentum conservation, dielectric PCs possess time-translation
symmetry, guaranteeing energy conservation. This profound dif-
ference affects the choice of the variable (“quantum number”) used
to analyze the system: for PTCs, the wavenumber (momentum) is
a good quantum number, hence the band structure is constructed
with it, resulting in momentum bands and bandgaps. For spatial
PCs, the frequency (energy) plays this role, and yields energy bands
separated by forbidden energy gaps. Another important distinction
between PTCs and PCs is the physical properties of gap modes.
While in PCs the gap modes have an exponentially decaying ampli-
tude (the exponentially growing mode is unphysical due to energy
conservation), the gap modes in PTCs have both exponentially
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growing and decaying amplitudes, extracting energy from the
modulating force or vice versa.

Recently, the study of PTCs has gained momentum and
brought to light many interesting new phenomena, among them
momentum bandgaps [9], topological aspects [10], parity-time
symmetry [11], temporal aiming [12], localization via temporal
disorder [13], temporal Brewster angle [14], reciprocity under
temporal changes [15], and more [16–20]. On the experimen-
tal front, observing a significant time reflection necessitates an
abrupt change of the refractive index occurring on the time scale
of the optical cycle of the EM wave. For this reason, thus far, time
reflection has been observed only with water waves [21,22]. Using
low-frequency EM waves simplifies the experiment, as was demon-
strated by the observation of a momentum gap at radio frequencies
[8]. In the optical regime, the hope to observe PTCs relies on novel
epsilon-near-zero materials [23–29], which have already been used
to study time refraction [26,27]. These materials are endowed with
an extremely large refractive index change (on the order of ∼1)
occurring within a few femtoseconds, and hopefully will enable the
observation of PTCs in the near future [29].

Here, we study the propagation of EM waves in spatiotemporal
photonic crystals (STCs): dielectric media with refractive indices
that vary periodically in both time and space. We find that the
band structure of such STCs contains energy and momentum
gaps that open due to the periodic modulation in space and time,
respectively, and also mixed momentum–energy gaps. Naturally,
the most intriguing are the mixed momentum–energy gaps formed
when a momentum gap and an energy gap begin to overlap. The
eigenmodes in these gaps attain both a complex Bloch wavenum-
ber K B and a complex Floquet frequency�F , and exhibit coupling
of energy to modes with complex quasi-energy and momentum. In
these mixed gaps, we find that the effects of the momentum gap can
be completely negated by an overlap with an energy gap, and vice
versa. As a result, these mixed gaps display a wide range of unique
propagation phenomena, such as localization and exponential
or linear power growth, depending on the ratio of Im(�F ) and
Im(K B ). We find that the size of the momentum–energy gap
depends on the overlap between the pair of gaps, and shrinks as
the overlap increases. When a pair of gaps overlap perfectly, the
energy–momentum gap closes to an exceptional point, giving rise
to unique eigenmodes exhibiting linear power growth.

The major differences between PCs and PTCs raise important
and interesting questions regarding the essence of STCs. For exam-
ple, what types of bandgaps exist in the system? Are there perhaps
entirely new types of eigenmodes? What properties might these
eigenmodes “inherit” from either temporal or spatial crystals in
general, and specifically inside an energy–momentum gap? In
this paper, we address these issues, and predict the formation of
unique modes growing linearly in time when a pair of gaps overlaps
completely and the mixed gap is closed.

2. BAND STRUCTURE OF SPATIOTEMPORAL
PHOTONIC CRYSTALS

We begin, for simplicity, by assuming a dielectric medium with
a refractive index that varies periodically in time and space in a
separable form, namely, the permittivity function can be written as
the product of a time-dependent function and a space-dependent
function:

ε(z, t)= ε0 · εz(z) · εt(t). (1)

These functions εz(z), εt(t) are periodic, thus manifesting a
STC. We find that such separable crystals allow for better intuition
and analysis of the calculated results while still relying on the fun-
damental mechanisms of general STCs (whose permittivity is a
periodic function of time and space in a non-separable form). An
example of a separable permittivity function is shown in Fig. 1(a)
displaying the separate dependence of the permittivity on time and
space, together with the periodicity in both of them. The reason we
use this specific form of crystals is that it enables analytic solutions
for the eigenvalues and band structure, and yields EM fields that
also happen to be coordinate separable: Ē = f (t) · g (z) ŷ . The
field solutions have two eigenvalues: quasi-energy,�F , and quasi-
momentum, K B . We show that each of these eigenvalues can be
calculated separately, as shown in Fig. 1(b). These eigenvalues are
then used to construct the band structure: the dispersion relation
between energy (ω) and momentum (k). The band structure of
the STC of Fig. 1(a) is shown in Figs. 1(c) and 1(d), in “folded”
and “unfolded” views, respectively. Figures 1(c) and 1(d) show
the bands, where both eigenvalues are real, and the bandgaps
where the eigenvalues are complex. Notice that all band structures
are displayed in normalized units, [πa ] and [ πT ], for K B and �F ,
respectively (where a and T are the periods in z and t , respectively),
thus setting the edge of the first Brillouin zone to one.

First, we demonstrate the viability of the coordinate-separable
solution by substituting it into the Maxwell equations, and
recasting the wave equation in a coordinate-separable form:

∇ ×∇ × E =∇ × (−∂t B)=−µ0∂t∇ × H =−µ0∂
2
t D

=−µ0ε0 · g (z) · εz(z) · ∂2
t ( f (t) · εt(t)) ŷ

=−µ0ε0 · g (z) · εz(z) ·
(

f̈ εt + 2 ḟ ε̇t + f ε̈t
)

ŷ .
(2)

Thus,

∇ ×∇ × E =∇ · ∇ · E −∇2 E =−∇2 f (t) · g (z) ŷ

=− f (t) · ∂2
z g (z) ŷµ0ε0 · g (z) · εz(z)

·
(

f̈ εt + 2 ḟ ε̇t + f ε̈t
)

ŷ . (3)

We can now divide Eq. (3) by εz(z)g (z) f (t) to derive the
coordinate-separable form:

∂2
z g (z)

εz(z)g (z)
=

f̈ εt + 2 ḟ ε̇t + f ε̈t

c 2
0 f (t)

=−λ2. (4)

Equation (4) reveals that each wing describes the exact dif-
ferential equation of either a PC (left) or a PTC (right). This
means that the spatial part of the electric field g (z) ŷ is dictated

by ∂2
z g (z)

εz(z)g (z)
=−λ2 and therefore yields Bloch modes of a PC with

εz(z). The solution of the temporal part ( f̈ εt+2 ḟ ε̇t+ f ε̈t )

c 2
o f (t)

=−λ2

takes the form of Floquet modes of a PTC, with εt(t). The
eigenmodes of the full spatiotemporal system will therefore
take the form of the product of a Bloch mode and a Floquet mode:
E = exp(i(zK B + t�F )) ·U1(t) ·U2(z) ŷ , where U1,U2 are
periodic functions in their respective coordinates. The coordinate
separation also enables the use of methods such as transfer matrix
formalism. The transfer matrix formalism allows us to easily write
a matrix describing the evolution [30] through a full cycle (spatial
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Fig. 1. Spatiotemporal photonic crystal and its band structure. (a) Coordinate-separable STC. The permittivity varies in time and space according
to ε(z, t)= ε0 · 2 · (1.5+ 0.5 · cos(ωt))/(1.5+ 0.5 · cos(kz)). (b) Spatial and temporal band structures of (a), calculated individually as function of
the parameter λ. Dark blue (real part) and red (imaginary part) lines describe the spatial Bloch wavenumber, K B , and show the energy bands and energy
bandgaps (where K B is complex). Light blue (real part) and green (imaginary part) lines describe the temporal Floquet frequency, �F , and show the
momentum bands and momentum bandgaps (where �F is complex). (c) Band structure of the STC in 3D displaying �F and K B for each value of λ.
Blue lines represent bands where both�F , K B are real, red lines illustrate the complex values K B takes within the energy gaps, and green lines illustrate the
complex values�F takes within the momentum gaps. (d) “Unfolded” 2D view of the band structure from (c), making it easier to observe higher bands.

or temporal). Then, by diagonalizing the matrix, we find the corre-
sponding eigenvalue, K B or�F . This solution method also applies
to the case of an additional spatial dimension, which we discuss in
Supplement 1.

Notice that, in Eq. (4), λ is a unitless parameter arising from the
coordinate-separable form of the partial differential equation. The
value of λ translates to the frequency of the light ω, for which we
solve the spatial equation, and to the wavenumber k, for which we
solve the temporal equation. This solution method also finds com-
plex eigenvalues that arise naturally as solutions of the evolution
matrices. Thus, the band structure can be constructed by scanning
over the values of λ, and for each λ value, calculating the eigenval-
ues K B and�F . This pre-step is shown in Fig. 1(b), displaying the
two separate band structures of the corresponding PC and PTC,
and their dependence on λ. Then, the final spatiotemporal band
structure can be constructed in the coordinate system [K B ,�F , λ]
by plotting the points describing the values ofλ, and the two calcu-
lated eigenvalues K B ,�F [3D plot in Fig. 1(c)]. Notice that for this
type of separable permittivity STC, the eigenvalue solutions exist
for both positive and negative values: ±K B , ±�F , and therefore
the band structure contains four different “branches.” Figure 1(c)
displays the bands (blue) as well as the energy gaps (red) and the
momentum gaps (green). Another presentation method for the
same band structure, displaying an unfolded 2D view, is shown in
Fig. 1(d). This presentation unfolds higher bands onto higher val-
ues of K B ,�F outside the first Brillouin zone, and enables drawing
the band structure without the third λ dimension. Henceforth,
we use this 2D unfolded presentation of the band structure, as the
momentum and energy gaps are easier to detect.

Since both K B ,�F can take either real (in the band) or complex
(in the gaps) values, it is evident that there are four different types of
eigenmodes that can exist in the system. The states possessing both
real eigenvalues make up the bands of the STC, and are shown in
the band structure [Fig. 1(c) and 1(d)] in blue. The states that have
one real and one complex eigenvalue define the bandgap regions:

a momentum gap when �F is complex, and an energy gap when
K B is complex. The fourth type of eigenstates has both a complex
�F value and a complex K B value, and exhibits unique behavior,
which we discuss later on.

Thus far, the discussion has been general—about any one-
dimensional STC with a coordinate-separable permittivity.
Henceforth, the examples provided throughout this work are
calculated for STCs of the form

ε(z, t)= ε0 · (1+ A · (1+ cos(ωt))) ·
1+ 2B

(1+ B · (1+ cos(kz)))
.

A and B are real constants describing the modulation ampli-
tudes in time and space, respectively. We chose this form for the
sake of simplicity, as it has a single momentum bandgap and a
single energy bandgap. However, our results and analysis remain
valid for any form of coordinate-separable crystal. The positions of
the momentum and energy bandgaps on the λ axis depend, respec-
tively, on the values of parameters ω and k (modulation frequency
and spatial wavenumber). The specific crystal analyzed in Fig. 1 has
a unit cell of size T = 4.72 · 10−15

[s], a = 5 · 10−7
[m] A= 0.5,

B= 0.5, in which case the two bandgaps appear for different values
of λ and therefore do not overlap. This of course can be modified
by tuning the values ofω and k, and if we increase the value of T to
2.8 · 10−15

[s], the momentum bandgap begins to overlap with the
energy bandgap.

3. PULSE PROPAGATION IN SPATIOTEMPORAL
PHOTONIC CRYSTALS

Before proceeding to more “exotic” cases where the STCs display
a mixed momentum–energy gap, let us first study the eigenmodes
of the STC in Fig. 1, and pinpoint the similarities and differences
from eigenmodes of other PCs and PTCs. To study the dynamics
of light propagation in the system, we use finite difference time
domain (FDTD) simulations. This numeric algorithm discretizes

https://doi.org/10.6084/m9.figshare.19664409
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both time and space and then evolves the EM fields in time by
directly solving Maxwell’s equations. To do that, we adjust the
commonly used FDTD algorithm to also support time varia-
tions of the permittivity and permeability, a crucial change for
simulation of PTCs or STCs.

To study the evolution in the STC, we excite the different types
of eigenmodes by launching a short pulse initially propagating
in a stationary homogeneous medium with a refractive index
n =
√
(1+ A) · (1+ B), which serves for impedance matching

with the STC. We focus this study on the case of a temporal bound-
ary between the homogenous space and the STC, meaning that at
T = 0, the entire medium transitions from having an initially uni-
form stationary refractive index n, to the crystal ε(z, t). The other
case of a spatial boundary, where space is divided into two regions
with a homogenous stationary material and ε(z, t), is discussed
in Supplement 1. The initial pulse is of course a superposition of
plane waves with well-defined wavenumbers and frequencies. At
t= 0, the STC begins, and as a result, the plane waves comprising
the pulse couple to the eigenmodes of the crystal. We can control
which modes are excited by tuning the central frequency of the
initial pulse, which dictates the wavenumber and frequency of
the plane waves. The STC we study here possesses three types of
eigenmodes, shown in Figs. 1(c) and 1(d). Figure 2 displays the
dynamics of three different pulses, designed to excite each of the
three types of eigenmodes in this system. Figure 2(a) specifically
marks the eigenmodes excited by each pulse by specifying the
different regions of the band structure. In Figs. 2(b)–2(d), we plot
the electric field amplitude as a function of time and space, thus
describing the evolution of the pulses as they propagate inside
the STCs. A dashed white line at t = 0 in each panel marks the
transition from a homogenous medium with constant permittivity
to the STC.

The first pulse excites modes strictly in the band [as marked in
Fig. 2(a)], and its evolution in time and space is shown in Fig. 2(b).
Once the STC begins at t = 0, each plane wave couples to the band
eigenmodes for which both K B and �F are real, and these evolve
as propagating modes. The plane waves couple to both forward
and backward propagating modes, and as a result, we observe the
new pulse comprising a crystal eigenmode that keeps propagating
forward, and in addition, a lower amplitude pulse of the same
structure propagating in the opposite direction.

Next, we examine the dynamics of a pulse that couples to
modes in the energy gap. As shown in Fig. 2(c), when the crystal
begins, most of the plane waves comprising the pulse couple to
eigenmodes that have a real �F value but a complex K B value.
These modes resemble the modes in a bandgap of a PC, as both
mode types decay exponentially in space. As shown in Fig. 2(c),
once the STC begins, the pulse stops propagating altogether. It
remains in the same location, slightly widening over time, as a
result of the exponential decay in space, which effectively localizes
the pulse. This result is drastically different from the evolution of
the same pulse in a stationary PC. Namely, when a pulse whose
spectrum resides in the energy gap of a PC attempts to enter the PC
through a spatial boundary, the pulse experiences total reflection
(see Supplement 1).

The last example is of a pulse that couples to modes residing
in the momentum gap of Fig. 2(a), and its evolution is shown in
Fig. 2(d). Once the STC begins, the pulse amplitude experiences
exponential growth; hence we display the electric field amplitude
in logarithmic scale. The pulse couples to modes in the momen-
tum gap that have a real K B value and a complex�F value. These
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Fig. 2. Dynamics of pulses entering the spatiotemporal photonic crys-
tal (STC) through a temporal boundary. (a) Band structure of the STC
highlighting the eigenmodes excited by each of the three pulses (band,
energy gap, and momentum gap), marked by circles in different regions
of the band structure. (b)–(d) Electric field amplitude as function of time
and space describing the evolution of the three pulses. The dashed white
line marks the onset of the STC. (b) Evolution of a pulse that couples
to propagating and counterpropagating band modes whose eigenvalues
�F and K B are both real. With the onset of the STC, two pulses are
created. These pulses have the same shape but propagate in opposite
directions, with the time-reflected pulse having a much weaker amplitude.
(c) Evolution of a pulse that couples to energy gap modes whose K B values
are complex and therefore decays exponentially in space. With the onset
of the STC, the pulse stops propagating and remains in the same location.
(d) Evolution of a pulse that couples to momentum gap modes whose�F

is complex, and as a result, their amplitude grows exponentially in time.
Once the crystal begins, the energy of the pulse grows exponentially in
time, while its center remains at the same location and its width increases.
The amplitude scale (color code) in (d) is logarithmic.

eigenmodes resemble the gap modes in the momentum gaps of a
PTC. The complex values of �F cause both exponential growth
and exponential decay in time. However, due to their nature, the
exponentially growing modes are dominant and govern the evo-
lution of the electric field. Once the time crystal begins, the pulse
stops propagating, and its amplitude grows exponentially in time,
displaying an envelope function whose center remains constant,
but grows in amplitude and in width.

4. MIXED ENERGY–MOMENTUM GAPS

Let us now proceed to discuss the more interesting case of STCs
with mixed momentum–energy gaps. Generally, these gaps exist
in both energy and momentum and can support three different
types of eigenmodes, as shown in Fig. 3(a): modes with a com-
plex �F but a real K B , modes with a complex K B but a real �F ,
and finally modes that have both a complex K B and a complex
�F . Figure 3 displays the band structure of a crystal with param-
eters T = 2.4 · 10−15

[s], a = 5 · 10−7
[m], A= 0.5, B= 0.5,

containing all three types of modes inside one mixed gap.
Generally, calculating the size of the bandgap in a PC (or a PTC)

is trivial: there is a range of energies (or momenta) for which there is
no corresponding real eigenvalue. In the case of the band structure
of a STC (in its 2D presentation), the calculation follows similar
principles, but the nature of the two eigenvalues (which can both
be complex) changes the result. As shown in Fig. 3(a), the size of a
momentum (or an energy gap) can be calculated by “projecting”
the gap region where one eigenvalue is complex onto the band (the
region of real values) of the other eigenvalue. This projection marks
a range of real eigenvalues for which there are no real corresponding

https://doi.org/10.6084/m9.figshare.19664409
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Fig. 3. Band structures of a STC with a mixed energy–momentum
gap. (a) Band structures of the spatial part and the temporal part separately
as function of λ, displaying the mixed momentum–energy gap and how
it comprises a momentum gap region, an energy gap region, and a λ gap
region. This band structure also illustrates how the sizes of the three types
of gaps are determined. (b) Spatiotemporal band structure displaying a
mixed energy–momentum gap whose size in both axes matches the gaps
calculated in (a).

eigenvalues of the other kind—the bandgap. The main difference
here is that regions where both eigenvalues are complex do not con-
tribute to the size of the bandgap. For example, in regions on the
λ axis where�F is complex and K B is real, we can find a range of
real K B values for which there are no corresponding real�F values,
thus forming a momentum bandgap in which the quasi-frequency
�F is complex. The width of this momentum bandgap is dictated
by the range of real K B values that fall within the projected area.
For the energy gap, we follow a similar process, but exchanging�F

and K B .
After calculating the regions of the energy gap and the momen-

tum gap shown in Fig. 3(a), we find a third type of region
remaining, where both eigenvalues are complex. Interestingly,
such regions where the gaps overlap cannot be projected onto
either band and do not contribute to the size of either the energy
or the momentum gaps. They do, however, describe a group of
eigenmodes for which both eigenvalues are complex, and manifest
a third type of bandgap—the λ gap. For a specific choice of param-
eters, the energy–momentum gap will completely vanish, leaving
behind only aλ gap, a case we discuss later on.

5. PULSE EVOLUTION IN MIXED
ENERGY–MOMENTUM GAPS

Let us now proceed to describe the dynamics of pulses associ-
ated with λ gaps possessing two complex eigenvalues. These two
complex eigenvalues give rise to opposing effects—the complex
momentum gives rise to exponential decay, while the complex
energy gives rise to exponential growth. We find that the two
opposing complex eigenvalues negate each other’s effects. The
exponential decay caused by the complex momentum is mitigated
or even completely suppressed by the complex energy, and the
exponential growth caused by the complex frequency is mitigated
or suppressed by the complex momentum.

This mitigation causes the effects of the complex eigenvalue
with the lower imaginary component to be completely suppressed
by its counterpart. As a result, we can cast the eigenmodes into
two groups with different dynamics according to the relative size
of the imaginary component of K B and �F in their normalized
form ([πa ] and [ πT ], respectively). The modes residing in a λ gap,
for which Im(�F ) < Im(K B ), generally behave as energy gap
modes, such as the ones in bandgaps of PCs. The modes for which
Im(�F ) > Im(K B ) generally behave as momentum gap modes
such as those appearing in PTCs.
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Fig. 4. Evolution of pulses associated with λ gap modes. (a) Evolution
of a pulse associated with a mixed gap where the eigenmodes have
Im(�F ) < Im(K B ). The pulse stops and remains localized in space
while maintaining approximately the same energy, but growing in width.
(b) Evolution of a pulse (logarithmic scale) associated with a mixed gap
where the eigenmodes have Im(�F ) > Im(K B ). The pulse stops, and
its amplitude grows exponentially in time and in momentum. (c) Total
EM energy (red) and momentum (blue) for the pulse shown in (b), both
growing exponentially once the pulse enters the STC.

We once again study the evolution of pulses constructed
from these modes through FDTD simulations of a pulse ini-
tially propagating in a static homogenous medium, until at
t = 0, a STC begins with parameters that couple the pulse to
the prescribed modes. The dynamics of λ gap modes for which
Im(�F ) < Im(K B ) are displayed in Fig. 4(a), and show both
similarities and differences from modes in an energy gap. With
the onset of the STC, the pulse stops propagating, and broadens
over time while maintaining its energy. This dynamic is similar
to the evolution of pulses inside energy gaps, except for the pulse
broadening. As Im(�F ) increases and comes closer to the value
of Im(K B ), the pulse experiences faster broadening. In-depth
analysis of this effect is presented in Supplement 1.

The dynamics of eigenmodes for which Im(�F ) > Im(K B )

are shown in Fig. 4(b) and again display both similarities to and
differences from modes in a momentum gap. Once the STC begins
at t = 0, the pulse stops propagating and grows exponentially
in time. Its center remains at the same location while its ampli-
tude grows exponentially. An important distinction from the
behavior of modes in a momentum gap is the momentum of the
pulse, which also grows exponentially for these modes as shown
in Fig. 4, in linear (c) and logarithmic (d) scales, and in normal-
ized units (so that the initial momentum and energy of the pulse
both equal one). While the momentum of modes in a momen-
tum gap does not grow over time, the momentum of modes with
Im(�F ) > Im(K B ) grows exponentially in the direction opposite
to that of the initial pulse. In other words, if initially the pulse has
positive momentum (moves in the positive z direction), after the
crystal begins, the total momentum decreases, becomes negative
(in the negative z direction), and grows exponentially in the oppo-
site direction. Finally, we note another difference: the exponential
growth rate decreases as the value of Im(K B ) increases and gets
closer to Im(�F ). Additional details about this phenomenon can
be found in Supplement 1.

6. CLOSED MIXED GAP: HIGH-ORDER
EXCEPTIONAL POINTS AND BACKWARD
RADIATION EMISSION

Finally, we note a unique and interesting case where the two
types of bandgaps completely overlap. An example of such a band
structure is displayed in Figs. 5(a) and 5(b), showing how the
two individual band structures of the spatial and temporal parts

https://doi.org/10.6084/m9.figshare.19664409
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Fig. 5. STC with a closed gap. (a) Identical imaginary components of�F (green) and K B (red), causing the energy and momentum gaps to collapse into
a point and completely disappear. (b) Spatiotemporal band structure displaying a linear dispersion relation with no gaps. (c) Pulse propagation in the band
of the crystal, experiencing weak time reflection when the crystal begins, but keeps propagating at the same speed and width due to the linear dispersion
relation. (d)–(f ) Dynamics of a pulse propagating in the λ gap. (d) Electric field of the pulse broadening linearly once the crystal begins. (e) Poynting vec-
tor of the pulse displaying how the original pulse keeps propagating unimpeded, but acts as a “radiation source” generating waves in the opposite direction.
(f ) Energy and momentum of EM fields as function of time, normalized so that they equal one at the start. Once the crystal begins, the energy grows linearly,
and the momentum decreases linearly (growing in the opposite direction), a result of the waves generated in the opposite direction.

completely overlap. In this case, only a λ gap remains, and in it,
Im(�F )= Im(K B ) for all modes (in normalized units). We refer
to this case as a “closed gap” since the spatiotemporal band struc-
ture [Fig. 5(b)] displays no gaps at all. This unique case occurs
only under very specific conditions that the permittivity function,
ε(z, t)= ε0 · εz(z) · εt(t), must fulfill. For this to happen, the
temporal and spatial parts must be inversely proportional to one
another, and furthermore, there must be a specific ratio between
the temporal and spatial periods. To provide a more detailed math-
ematical explanation, let us define a unitless parameter β such
that β = z

a =
t
T . As a result of this definition, for each dimension,

0≤ β ≤ 1 in a unit cell. The first condition that ε(z, t) must
fulfill is εz(β)=

D
εt (β)

, where D is a constant that can take any real
positive value. The second condition is that T = a

c ·
√

mt , where
c is the vacuum speed of light, and mt =max(εt(t)). When these
conditions are met, the two band structures of the temporal and
spatial parts completely overlap and create only a λ gap, in which
Im(�F )= Im(K B ).

The emergence of bandgaps has intriguing implications having
to do with exceptional points (EPs) known from non-Hermitian
optics [31,32]. It has been known for some time now that band
edges of spatially periodic structures feature EPs [33,34], marking
the transitions from periodically evolving band modes to exponen-
tially decaying evanescent gap modes. In the context of PTCs, we
find that the edges of the momentum gaps of PTCs and STCs also
feature EPs, even though now the transition is from periodically
evolving band modes to gap modes that can either grow or decay
exponentially. Here, in this special case of a perfect overlap of the
bandgaps in a STC with a closed gap, we find that the two EPs on
the band edges also overlap. Namely, in this special case of perfectly
overlapping gaps, the transition to exponential modes in both
momentum and energy occurs simultaneously (same value of λ
where the gaps begin and end). The result is two coinciding EPs
of a second order at the beginning and end of the gaps, which,
in the spatiotemporal band structure, all exist in the exact same

location—where the mixed gap closes up. This case of coinciding
EPs of different types is unique to this system and gives rise to
unorthodox modes that we describe next.

We have already described the dynamics for modes inside such
lambda gaps and divided them into two groups according to the
relative sizes of the imaginary parts. But what about modes with
(�F )= Im(K B ) ? The unique crystal with a closed gap can help us
answer this question.

Once again, we study these modes by launching a pulse and
then “turning on” the STC at t = 0 to study the dynamics. First, we
study a pulse that couples to the modes on the band of the crystal,
as seen in Fig. 5(c), showing the amplitude of the electric field (in
color) as a function of time and space. After the STC begins, a very
small reflection occurs, but the pulse keeps propagating at the same
velocity and shape, a result of the completely linear dispersion of
the band structure.

The more interesting case of the dynamics of a pulse propa-
gating inside the λ gap can be seen in Figs. 5(d)–5(f ). Once the
STC begins, we find that the pulse appears to broaden linearly at
the speed of light (d). The initial pulse keeps propagating in the
same direction and velocity, but also acts as a source of radiation,
emitting waves in the opposite direction. Figure 5(e) displays the
Poynting vector (color) as a function of time and space for the
same pulse, and provides a clearer picture of this phenomenon.
The red regions describe forward propagating waves and follow
the exact trajectory of the pulse. The blue regions describe waves
propagating in the opposite direction and show how the initial
pulse acts as a source generating backward-propagating waves.
Interestingly, the total EM energy in the system, as well as the total
EM momentum in the opposite direction, grow linearly in time
as shown in Fig. 5(f ). This resembles an EM source, such as an
antenna radiating EM waves. This behavior is very unique and
requires separate study.
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7. RELEVANCE TO SYSTEMS WITH
TRAVELING-WAVE PERMITTIVITY

Before closing, we wish to discuss the relation between this
work and recent work related to EM waves in “traveling-wave”
spatiotemporal variations of EM properties of the material. In
such systems, the electric and/or magnetic permittivity varies as
ε(z, t)= ε0 · εr (z− vt) or related forms in higher spatial dimen-
sions [5,35–41]. The permittivity in such systems may actually
vary at relativistic (or even superluminal) velocities. Such systems
exhibit a “tilted” band structure in the energy–momentum space.
The questions we explored here, on the nature of the eigenmodes
and the dynamics of pulses propagating in such systems, especially
when the band gaps overlap and collapse to a point, giving rise to
EPs, are of course also relevant in traveling-wave permittivities, and
may lead to new concepts there as well. We leave those to future
studies.

8. CONCLUSION

To summarize, we have studied STCs: dielectric media with elec-
tric permittivities that vary periodically in both time and space. We
found the band structure of such media, investigated the evolution
of the eigenmodes, and pinpointed the different types of gaps
and eigenmodes that may exist in these systems. Furthermore,
we examined how the effects of one type of bandgap can be mit-
igated or even completely negated by the presence of a gap of the
opposite type. Finally, when the energy and momentum bandgaps
completely overlap, these PCs display unique modes causing
waves to act as a source, emitting radiation backwards. Last but
not least is the ability to observe the phenomena described here in
experiments. Generally, observing momentum bandgaps requires
temporal modulation of the refractive index on the order of unity,
occurring within a single cycle. These conditions can readily be
met at radio frequencies, as was demonstrated by Reyes-Ayona
and Halevi [8]. At optical frequencies, these conditions are hard
to meet, but much progress has recently been demonstrated using
epsilon-near-zero materials [9,28,29].
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