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Abstract—Optical spatial solitons are self-trapped optical beams
that exist by virtue of the balance between diffraction and nonlin-
earity. They propagate and interact with one another while dis-
playing properties that are normally associated with real parti-
cles. Solitons, in general, manifest themselves in a large variety of
wave/particle systems in nature: practically in any system that pos-
sesses both dispersion (in time or space) and nonlinearity. Solitons
have been identified in optics, plasmas, fluids, condensed matter,
particle physics, and astrophysics. Yet over the past decade, the
forefront of soliton research has shifted to optics. In this paper, we
describe the historical evolution of spatial solitons from speculative
creatures to one of the most fascinating features optics has to offer.

Index Terms—Beam self-trapping, bright solitons, coherence,
dark solitons, discrete solitons, discrete systems, Kerr solitons,
modulational instability, nonlinear optics, nonlinear optics
in cavities, nonlinear waves, optical bullets, photorefractives,
photorefractivity, second harmonic generation, solitons, soliton
collisions, soliton interactions, spatial solitons.

I. INTRODUCTION

T HE best-known characteristic of wave propagation is
that beams that are finite in space tend to broaden due

to diffraction effects. In fact, such diffraction effects are fully
equivalent to the broadening of temporal pulses propagating in
media that possess chromatic dispersion. That this paradigm
can be broken is perhaps one of the most fascinating features
of nonlinear optics. For this to occur, it requires a strong non-
linear interaction between the wave and the medium through
which the beam is propagating. As a result, a self-trapped
beam or a spatial soliton can form [1], [2]. Spatial solitons
are optical beams that propagate in a nonlinear medium
without diffraction, i.e., their beam diameter remains invariant
during propagation. Intuitively, a spatial soliton represents an
exact balance between diffraction and nonlinearly induced
self-lensing or self-focusing effects, as shown schematically in
Fig. 1. An actual picture of the contrast between soliton prop-
agation and normal diffraction for a beam in a photorefractive
material is shown in Fig. 2. Such spatial solitons belong to the
same family of phenomena as their better known relative, the
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Fig. 1. Schematic showing the spatial beam profiles (solid line) and phase
fronts (dashed line) for (a) beam self-focusing, (b) normal beam diffraction, and
(c) soliton propagation.

Fig. 2. Top view photograph of a 10-�m-wide spatial soliton propagating in a
strontium barium niobate photorefractive crystal (top), and for comparison, the
same beam diffracting when the nonlinearity is “turned off” (bottom).

temporal soliton. Again, in a way fully analogous to the spatial
case, a temporal soliton forms when group velocity dispersion
is totally counteracted by temporal self-focusing or self-phase
modulation effects [3], [4].

All solitons require that a strong enough nonlinear interaction
takes place between themselves and the material in which they
propagate. This interaction typically requires that the so-called
diffraction length for the spatial case or the dispersion length
for the temporal (fiber) case is comparable to a nonlinear length
that characterizes self-focusing in the medium. In fibers, low
losses allow propagation distances of kilometers, and as a re-
sult, the very weak glass nonlinearity becomes cumulatively
sufficient for soliton formation. In the spatial case, however,
the sample sizes are typically limited to only centimeters, and
thus, either the nonlinearities and/or operating powers need to
be larger. What sets spatial solitons apart from their fiber coun-
terparts is their dimensionality. Fiber solitons are described by
a (1 1)-dimensional [(1 1)-D] space-time evolution equation,
whereas spatial solitons are by nature (21)-dimensional crea-
tures (two transverse dimensions plus one propagation coordi-
nate). The fact that the spatial domain exhibits a higher dimen-
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sionality leads to a host of interesting phenomena and processes,
which have no analog whatsoever in the temporal case. These
include for example, full three-dimensional (3-D) interaction
between solitons and soliton spiraling, vortex solitons, angular
momentum effects, rotating dipole vector solitons, etc. These
are a direct consequence of the fact that the number of different
nonlinear mechanisms that can support spatial solitons is to date
much larger than for their temporal counterparts. Solitons in
fibers exist as a result of the glass Kerr nonlinearity. In pure
Kerr media, the index change is linearly proportional to the
optical intensity , i.e., , where is the Kerr co-
efficient. In the spatial case, however, optical solitons have been
observed based on several other nonlinear processes. In addition
to the Kerr nonlinearity, various photorefractive effects, para-
metric mixing phenomena, nonlinearities in liquid crystals
and polymers, and the saturable nonlinearities of two-level sys-
tems were found to support spatial solitons.

Over the years, there has been some discussion as to which
self-trapped optical beams should actually be called solitons.
Historically, the concept of solitons emerged in the math-
ematics literature and was reserved for optical self-trapped
beams/wavepackets obeying integrable nonlinear partial dif-
ferential equations. In nonlinear optics, the so-called nonlinear
Schroedinger equation represents such an example. This equa-
tion, which is known to describe (11)-D wave propagation in
pure Kerr nonlinear media, can be fully solved (or integrated)
using the “inverse scattering theory” [5]. Because of this “royal”
property of integrability, solitons remain unchanged (apart from
a phase factor) during a collision event. In reality, however,
most nonlinear physical systems of importance (involving other
types of nonlinearity) are described by nonintegrable evolution
equations. Nevertheless, even in this latter case, self-trapped
solutions exist and display important features and conserved
quantities that relate solitons to real particles. Initially, such
self-trapped entities in nonintegrable systems were referred
to as “solitary waves.” In general, solitons and solitary waves
have some specific interaction and collision properties that
differ from one another. Solitons do not couple to radiation on
collision, and the number of solitons is conserved [5]. This is
not the case for solitary waves. Yet, in spite of their “humble”
roots, solitary waves, like solitons, still exhibit particle-like
properties. As a result, in today’s literature this distinction is, in
general, no longer used (except maybe in mathematics papers),
and all self-trapped beams are loosely called solitons.

The number of papers dealing with spatial solitons has risen
meteorically in the 1990s, still dominated by theoretical work.
As in any other area, there have been certain key ideas and ex-
periments that have defined this field and the directions that it
has taken. In this paper, we discuss a selection of such papers
and their significance. This overview is by no means all-inclu-
sive, nor was it meant to be.

II. EARLY EXPERIMENTS ONSPATIAL SOLITONS

Although the history of the temporal fiber soliton has been
widely publicized and its 25th birthday celebrated, in fact, both
the theory and experimental discovery of the spatial soliton ac-
tually preceded those of its temporal counterpart. The idea that
an optical beam can induce a waveguide and guide itself in it was

first suggested by Askar’yan as early as 1962 [6]. On the exper-
imental side, one of the earliest observations (1964) in the field
of nonlinear optics key to the evolution of soliton ideas was the
self-focusing of optical beams due to third-order nonlinearities
[7]. In order to investigate this effect, the wave equation in non-
linear Kerr media was analyzed in both one and two transverse
dimensions [8], [9]. In 1964, Chiao, Garmire, and Townes [8]
and Talanov [9], independently discussed the spatial trapping
of optical beams in Kerr media via the nonlinear wave equa-
tion. A year later, Kelley showed [10] that the two-dimensional
[(2 1)-D] self-trapped solutions to the nonlinear wave equa-
tion undergo catastrophic collapse, and thus, they are unstable.
In fact, as it turns out, one-dimensional (1-D) solitons in a bulk
3-D nonlinear medium are also unstable. They break up into
multiple filaments due to transverse instabilities [11]. Thus, spa-
tial solitons in Kerr media can only exist (in terms of stability)
in configurations where one of the two transverse dimensions is
redundant, i.e., where diffraction is arrested in one dimension by
some other means, for example, in a slab waveguide. Just a few
years after Kelley’s paper, Dawes and Marburger found numer-
ically that saturable nonlinearities are able to “arrest” the cata-
strophic collapse and can lead to stable 2-D spatial solitons [12].
These ideas formed the basis for experimental developments for
the next 20 years. Furthermore, the concept of a “saturable non-
linearity,” i.e., materials in which the magnitude of the index
change has an upper bound (and thus ceases to increase with
increasing intensity), has turned out to be a key to many of the
new families of solitons discovered in the 1990s.

The first experiment on spatial optical solitons was reported
in 1974 by Ashkin and Bjorkholm [13]. They used a circu-
larly symmetric beam in a 2-D medium, namely, a cell filled
with sodium vapor and operated their input laser near the fa-
mous sodium yellow line. At low powers, their laser beam di-
verged (diffracted) in the gas cell, whereas at higher powers, the
beam diameter self-stabilized and propagated without diffrac-
tion. This is the classical signature of a spatial soliton. The non-
linearity employed in these first experiments was not the clas-
sical Kerr nonlinearity, but rather the saturable nonlinearity that
exists near an electronic resonance in a two-level system. Near
any such active transition between a ground state and an ex-
cited state, the transition gives rise either to gain or to loss, and
the loss (or gain) are interlinked through the Kramers–Kronig
relations to a dispersive resonant contribution to the index of
refraction. The probability for the absorption of a photon de-
pends on the population difference between the excited upper
level and the lower energy level. This population difference can
be reduced by a strong laser beam that creates a significant pop-
ulation in the excited state. This reduces both the absorption
coefficient (hence leading to saturation of the absorption) and
the resonant contribution to the refractive index at and near the
“saturating laser” wavelength for an inhomogeneously broad-
ened transition and over the full dispersion curve for a homoge-
neously broadened transition. In such two-level, absorbing sys-
tems, for and for .
Ashkin and Bjorkholm used a cw dye laser tuned to the short
wavelength side of the sodium yellow line, and hence, their
beam experienced self-focusing. The nonlinearity is commonly
referred to as “saturable” because an intense enough field can
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reduce the difference between populations of the energy levels,
and hence, no additional change in the index will occur with
further increase in intensity. This distinction between Kerr and
saturating nonlinearities is important because 2-D spatial soli-
tons are only stable in saturable nonlinear media.

This was the first experiment demonstrating self-trapping in
a medium with a self-focusing nonlinearity, i.e., the refractive
index increases with intensity. The index was thus largest at
the peak of the beam intensity and decreases to the background
value of the index in the tails of the beam. Therefore, the phase
velocity is lowest at the beam maximum and increases toward
the tails. This results in a bending of the phase fronts as shown
previously in Fig. 1 and consequently leads to beam focusing.
Counteracting this focusing is diffraction, and this interplay
leads to the formation of a robust spatial soliton.

Because of the dynamics of the field of nonlinear optics at
that time, this turned out to be the classical case of an experi-
ment before its time. It was more than another ten years before
this field was revisited in a pair of experiments by researchers
at Limoge University [14]. They essentially performed the first
1-D soliton experiments in waveguides using the reorientational
nonlinearity of liquid carbon disulphide-CS. Although the
nonlinearity of CS is inherently of the saturable type, in the
regime in which it was used in these experiments, it behaved in
a Kerr-like fashion. Two approaches to achieving confinement
in one dimension were used. First, by producing an interference
pattern in 1-D, effectively, a parallel series of 1-D waveguides
was formed orthogonal to that dimension. Thus, light could
not diffract across the dark zone of the interference pattern.
Although clever in concept, this approach was not widely
adopted. Their second experiment consisted of liquid CS
sandwiched between two glass plates. In this 1-D planar
waveguide, classical 1-D self-trapping was observed. This
was the first observation of a 1-D Kerr spatial soliton. These
solitons can be analyzed by inverse scattering theory, and their
collision properties are special within the soliton family. These
experiments opened the way to subsequent 1-D bright soliton
demonstrations in glass [15], semiconductors [16], polymers
[17], etc.

III. 2-D I NTERACTIONSBETWEEN KERR SOLITONS

One of the precepts of nonlinear optics is that waves interact
and so it should be no surprise that spatial solitons affect each
other. These interactions can all be understood in terms of the
wave-mixing properties associated with nonlinear optics. How-
ever, the fact that the number of solitons into and out of a col-
lision differs by an integer number is indicative of the particle
nature of solitons.

Interactions between solitons are perhaps the most fasci-
nating features of all soliton phenomena. They are sufficiently
complex that it is frequently necessary to resort to detailed
numerical calculations for predictions. However, in the simplest
case of 1-D Kerr solitons, interactions can be treated analyti-
cally using the inverse scattering theory [5]. First, because Kerr
solitons are (1 1)-D, their collisions occur in a single plane.
Second, all collisions between Kerr solitons are fully elastic
so that the number of solitons is always conserved. Third, the

system is integrable, and therefore, no energy is lost (to radia-
tion waves). Finally, the directions and propagation velocities
of the solitons remain the same even after each collision. This
equivalence between solitons and particles was actually first
suggested in 1965 and led to the term soliton [18]. The real
surprise was, however, that solitons survive the collision event
as self-trapped entities, even though the solitons themselves are
highly nonlinear creatures. Furthermore, the collision between
solitons involves “forces”: Solitons interact like real particles,
exerting attraction and repulsion on one another [19]. (For a
detailed review on soliton interactions, see [1] and [2]).

The first experiments demonstrating soliton collisions in 1-D
glass waveguides were performed back in 1991 by Aitchisonet
al. [20], [21]. They found that in-phase Kerr solitons attracted,
whereas out-of-phase solitons repelled one another. This is
simply a manifestation of the well-known concept of linear
optics that light is bent toward regions of higher index and away
from regions of lower index. For the in-phase case, the index
increases in the overlap region due to constructive interference
between the soliton fields and, hence, the attraction toward the
centroid of the system. Conversely, out-of-phase solitons result
in destructive interference between the fields which leads to
repulsion. The situation is more complex at other relative phase
angles. The first experiment to demonstrate the importance of
the four-wave mixing term of nonlinear optics for coherent
solitons was reported by Shalabyet al. [22]. They showed that
for a phase difference, one soliton gained energy at the
expense of the other soliton. The energy exchange direction is
switched when the phase is increased to . These effects
can be viewed as the consequence of the well-known four-wave
mixing term in nonlinear optics.

These two experiments demonstrated the basic collision prop-
erties of coherent Kerr solitons. The number of solitons at the
output, after a collision, equals the number at the input. Further-
more, if there is a quadrature component to the interaction, i.e.,
relative phases of neither 0 nor, there is energy exchange be-
tween the solitons in addition to attraction and repulsion which
are manifestation of the in-phase component. Yet, up until that
point in time, true solitons were believed to exist only in a 1-D
form in a plane, and all interaction features were restricted to
planar interactions (conservation of “effective mass” or power
and linear momentum, i.e., velocities and trajectories). As we
will see below, this situation has dramatically changed following
the discoveries of photorefractive and quadratic solitons and
with pioneering collision experiments in atomic vapors.

IV. DARK SOLITONS

It was shown theoretically in 1973 that as the converse to an
optical bright soliton, the dark soliton should also exist in 1-D
when the nonlinearity is of the self-defocusing type [23]. This
soliton is a dark “hole” in an otherwise bright background, or
more accurately, a dark line of finite width along the propaga-
tion axis . It is further characterized by aphase shift right
where the field is zero. This soliton requires a self-defocusing
environment, that is, in a Kerr medium.

The first experiments on dark solitons were clustered around
1990 and 1991 and were actually performed in bulk media, i.e.,



1422 IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 6, NO. 6, NOVEMBER/DECEMBER 2000

in 2-D [25], [26]. Strictly speaking, the dark lines with a phase
shift of across the light minimum correspond to 1-D dark soli-
tons. However, as is frequently the case for spatial solitons, there
are regions of parameter space in which soliton solutions valid
for a lower-dimensional system, 1-D in this case, are for all prac-
tical purposes stable over the typical sample lengths available in
a higher dimension, i.e., 2-D. These experiments employed a va-
riety of media, including those with thermal and semiconductor
nonlinearities, all of the saturable type. In the early work of
Schwartzlanderet al., a mask provided two orthogonal bound-
aries across which a phase discontinuity ofcould be obtained.
This led to the two orthogonal nondiffracting dark lines ob-
served in their experiment. Blocking the incident light with a
single or multiple absorbing stripes led to the generation of di-
verging pairs of dark solitons with equal but oppositephase
shifts across their intensity minima. Phase masks in which a
phase discontinuity was introduced (by inserting an extra op-
tical path into one half of the incident beam) have proved to be
very effective in generating single clean dark solitons.

Soon thereafter, the stable propagation of a (21)-D dark
soliton (optical vortex soliton) was observed for the first time
in self-defocusing media with thermal nonlinearities [27]. This
type of soliton consists of a circularly symmetric dark hole in a
bright uniform background. It is a vortex around which there
is an angular phase discontinuity of . The vortex in fact
propagates without any change in shape, except for phase rota-
tion, around its center of symmetry, as imposed by its azimuthal
phase. Vortex solitons were actually studied earlier in the con-
text of superfluidity [28] and later predicted to occur in optics
[29]. The experimental observations have confirmed the phase
singularity by interfering the field from a vortex with a plane
wave showing that two dark fringes coalesce at the center of the
vortex.

Dark solitons have a unique place in nonlinear optics. The
fact that plane waves are unstable in self-focusing media and
therefore can disintegrate into solitons (with self-focusing being
balanced against diffraction) is perhaps not surprising. However,
plane waves are stable in self-defocusing media. Therefore, an
extra “ingredient” is needed to form solitons, and that ingredient
is the phase jump of which leads to beam localization in
both 1-D and 2-D.

By the end of the early 1990s, spatial solitons in both 1-D
and 2-D, and their interactions, had been demonstrated. These
solitons were all an extension of the Kerr nonlinearity approach
to soliton generation. The Kerr solitons turned out to be the exact
analog to the temporal case in the 1-D case. At that point in
time, except for the Bjorkholm and Ashkin experiment, solitons
seem to behave “by the book,” exactly as predicted by theory.
The surge of new classes of solitons, which occurred shortly
thereafter, was first faced with skepticism, which later on turned
into enthusiasm: (21)-D solitons and (3 1)-D solitons (the
latter being trapped in both transverse dimensions and in time)
have completely revolutionized the field of solitons.

V. NEW CLASSES OFSOLITONS

The last decade has been characterized by the experimental
discovery of new classes of solitons in material systems that

are very different from those of the Kerr-type family. These
new solitons exhibit many properties that are similar to those
of Kerr or Kerr-like solitons. However, the physical mechanism
behind their nonlinearity is quite different. As a result, as new
discoveries were made, it started to become clear that soliton
phenomena are pervasive in nonlinear optics and are not just re-
stricted to Kerr-type nonlinearities. The two new classes of soli-
tons, at least in terms of nonlinear mechanisms, are quadratic
solitons and photorefractive solitons. In addition to these soli-
tons in new material systems, other generic families were also
discovered; they were not directly related to particular materials.
These include, for example, multicomponent vector solitons, in-
coherent and discrete solitons, and spatio-temporal and cavity
solitons. For numerous reasons, the field of photorefractive soli-
tons has proven to be especially fruitful, and many of the key
new discoveries have been made with them.

A. Photorefractive Solitons

The discovery of photorefractive solitons [30], [31] was,
for many reasons, a radical turning point in the development
of the field of spatial solitons. These solitons are formed due
to multiple physical effects, some of which are nonlocal, and
all of which have a noninstantaneous temporal response. The
common features are the absorption of light and subsequent
charge generation, the motion of charge under the influence of
electric fields and the consequent establishment of local fields,
and finally, an electro-optic effect in which an index change
is created via the local fields. The nonlinear response isnon-
local due to the charge migration over macroscopic distances.
The time scale is determined by the dielectric relaxation time
(the necessary time for charge separation), which is inversely
proportional to the intensity of the optical beam and the charge
recombination rate. This results in a nonlinear mechanism that
is inherently saturable, and hence, many of the soliton’s global
properties beyond the generation process resemble those of
Kerr solitons (in some regimes) or those of solitons in saturable
nonlinear media.

The term “photorefractive effect” encompasses many dif-
ferent physical processes on a microscopic level, all of which
lead to an index change due to a combination of light absorp-
tion and charge migration [32], [33]. In general, the family of
photorefractive solitons encompasses several members, each
one exhibiting a different dependence. Thus, there is
no single type of photorefractive soliton but instead, a number
of them whose origin depends on the details of the different
physical mechanisms. Of these, the photorefractive screening
soliton [34]–[36] has had the largest impact. Fig. 2 showed
the propagation of a photorefractive soliton made visible by
scattering centers in the crystal.

Intuitively, one may view the formation of bright photore-
fractive screening solitons as follows. Consider a narrow light
beam propagating through the center of a photorefractive
crystal across which a voltage has been applied in the direction
orthogonal to the light propagation. In the illuminated region,
the density of free electrons increases due to absorption,
which means that the conductivity increases (or the resistivity
decreases). Since the resistivity is now not uniform across
the crystal, the voltage drops primarily in the dark regions (a
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simple voltage divider), and this leads to a large space charge
field . On the other hand, this same field is much lower in
the illuminated region. In practice, the spatial distribution of
the field in this intuitive voltage-divider picture is supported
by different concentrations of ionized donors on either side of
the beam. This leads to an electric field “under” the beam with
polarity opposite of that of the applied field, thus resulting in
partial screening of the applied field in the region of the optical
beam. In turn, the refractive index changes by
(via the electro-optic effect). The sign of depends on
the direction of with respect to the principal axes of
the noncentrosymmetric photorefractive crystal and can be
reversed by simply changing the voltage polarity. The actual
dependence of on the optical intensity , for 1-D screening
solitons, is . Here,

is the effective electro-optic coefficient, which depends on
the direction of the applied field and the polarization of the
beam, is the voltage applied between electrodes separated
by distance ( soliton width). is the so-called “dark
irradiance,” which is a material parameter that is proportional
to the conductivity of the crystal in the dark. Note that the dark
irradiance parameter can be artificially increased by illumi-
nating the entire crystal, thus reducing the soliton formation
time.

The first photorefractive self-trapped beam, predicted in
1992, was demonstrated a year later in a Strontium Barium
Niobate (SBN) crystal [30], [31]. Although, historically, it was
the first photorefractive self-trapped beam, it was transient in
nature and not a steady-state soliton. It was not until 1994 that
the first steady-state photorefractive self-focusing was reported
[37] by a group from Mexico lead by Stepanov. At the same
year, steady-state “screening solitons” were predicted [34], and
experimentally demonstrated soon thereafter, in both (21)-D
[38], [39] and (1 1)-D [40] realizations. Since then, photore-
fractive screening solitons have been investigated intensively
and have been used to demonstrate many of the interesting
features of photorefractive solitons in particular and solitons in
general. In addition to screening solitons, many other versions
of photorefractive solitons were subsequently reported, based
on the rich diversity of photorefractive effects [41].

The discovery of photorefractive solitons was important for
many reasons. The power necessary to generate these solitons
can be very small, as small asWs; therefore, spatial soliton ex-
periments can be carried out with CW laser beams and very ele-
mentary equipment. Photorefractive solitons are also attractive
for waveguide and steering applications. Once the index distri-
bution responsible for the self-trapping is established, beams of
much higher power can be guided by these index waveguides,
provided that they are at wavelengths where the absorption is
small. The waveguides induced by these solitons can be actually
impressed into the crystalline lattice and become permanent, yet
erasable with large electric fields and/or elevated temperatures.
Furthermore, since the photorefractive response time can be in
the millisecond to microsecond range, it is relatively straightfor-
ward to work with either coherent or incoherent light. Finally,
from a credibility point of view, photorefractive solitons were
the first to be imaged (due to scattering impurities) during their
propagation, as shown in Fig. 2. They made believers of many

people that what was claimed to be happening during propaga-
tion in the interior of a material was really happening.

B. Quadratic Solitons

The most recent generic class of spatial solitons to be exper-
imentally demonstrated was the quadratic soliton. They were
actually predicted back in the early 1970s by Sukhorukov and
Karamzin [42] but were demonstrated experimentally only in
1995 [43]. In this case, the beam-trapping mechanism is due to
the energy exchange between the fundamental and second har-
monic, as described by the usual coupled-mode equations for
SHG.

The initial experiment used Type II phase-matching in KTP;
i.e., there were two orthogonally polarized fundamental input
beams [43], [44]. The crystal geometry was such that the ex-
traordinary fundamental wave and the second harmonic “walk
away” from the ordinary fundamental beam. That is, the group
velocities of the interacting beams are not collinear. It was
shown experimentally on and near phase matching that once
the soliton was formed, all three beams not only did not diffract
but also propagated in the same direction in space, i.e., their
group velocity directions were locked together. Furthermore,
although the steady-state quadratic soliton consists of in-phase
fundamental and harmonic fields, they can also be generated
during the SHG process with the fundamental beam input only.

The importance of this particular type of soliton is that
it demonstrated experimentally that, in nonlinear optics,
nonlinear wave mixing can lead to soliton formation. Here,
we will use a very simple example to illustrate the beam
focusing that takes place. Consider the case of a waveguide
in which the field distributions along the-axis are locked in
by the waveguide. From the usual expansion of the nonlinear
polarization in terms of the products of the interacting fields,
the nonlinear polarization term driving the harmonic is of the
form , and the one driving the regenerated
fundamental is , where and

are the fundamental and harmonic field, respectively, and
is the coordinate along which diffraction (or self-trapping) oc-

curs. Again, assume for simplicity that the initial fundamental
field distribution is Gaussian of the form .
Therefore, , and thus, the
polarization source and, hence, the harmonic generated by it
are both narrower in space than the fundamental. Similarly,

, i.e., the polarization source
which regenerates the fundamental is narrower than the original
fundamental. Although the actual field distributions for the
fields are more complicated than Gaussian, these arguments are
valid for all beams of finite width. Therefore, this parametric
interaction leads to beam narrowing for both beams. This
counteracts diffraction and results in stable solitons. Note that
any process involving the product of finite beams will lead to
mutual self-focusing and, presumably, spatial solitons.

At the same time, (11)-D quadratic solitons were demon-
strated in LiNbO waveguides [44]. What distinguishes this ex-
periment from previous work is the amount of second harmonic
generated. In this case, it was very small, since a geometry far
from the phase-matching condition was chosen. This limit is
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called the cascading or Kerr limit in which only a small amount
of second harmonic is needed to impart a nonlinear phase shift
to the fundamental beam proportional to its intensity [45]. This
now leads to self-focusing of the beam, and quadratic soliton
formation can take place similar to that for the Kerr case. The
difference, of course, is that some harmonic must be present
since the process relies on the second-order nonlinearity.

This 1-D experiment was important because the effective
nonlinearity used now depends on the phase-mismatch, i.e.,
is tunable both in sign and magnitude, and the geometry is
flexible because stringent phase-matching conditions need not
be imposed. It is these concepts that ultimately led to quadratic
solitons in which temporal spreading was also arrested, at least
in one dimension.

VI. M ULTICOMPONENT VECTORSOLITONS

In 1992, Shalaby and Barthelemy demonstrated experimen-
tally that a bright-dark spatial soliton pair can propagate in a
nonlinear material such as CS[46]. This was the first experi-
mental observation of a vector (multicomponent) spatial soliton.
This composite structure involved two different soliton compo-
nents (each of different color) which coexisted via symbiosis. In
this particular case, the physical mechanism that coupled these
two soliton components happened to be the cross-phase mod-
ulation between the two wavelengths (1064 and 532 nm). Yet,
it was not until 1996 that the experimental field of multicom-
ponent vector solitons actually blossomed. From a theoretical
perspective, the existence of a vector soliton was predicted in
1974 by Manakov [47]. Such a Manakov structure involves two
coupled degenerate solitons polarized along the two orthogonal
axes. Moreover, this vector self-trapped state is possible as long
as the polarization self-phase and cross-phase modulation coef-
ficients (which depend on the material system) are equal. It is
also interesting to note that the partial differential equation de-
scribing the Manakov system are fully integrable via the inverse
scattering transform. Therefore, the Manakov states are solitons
in the strict sense of the word.

Manakov solitons were first demonstrated in AlGaAs waveg-
uides in 1996 [48]. For electric field vectors polarized parallel
to the AlGaAs 110 and 001 crystalline axes, it happens that
the self- and cross-phase modulation terms are approximately
equal, thus satisfying the requirement for Manakov solitons. In
this experiment, the two polarizations were passed through two
separate optical systems with different group velocity disper-
sion to eliminate the temporal coherence between them.

The self-trapping of a vector soliton can perhaps be better
understood by considering the properties of the jointly induced
waveguide of such a multicomponent structure. Self-consis-
tency requires that each soliton component is exactly a mode
of this waveguide [49]. Conceptually, this is an important
step since one can view such a multicomponent soliton as
a “superposition” of the modes of the commonly induced
waveguide. Vector solitons were first suggested in the temporal
domain, i.e., in fibers [50]–[52] and later on for spatial solitons
[53]. Over the years, two additional methods (other than those
relying on orthogonal polarizations) were suggested to realize
multicomponent solitons. The first one assumes that the two

soliton components are widely separated in the frequency scale
[54], whereas the second one considers components which are
mutually incoherent with respect to each other [55]. The latter
method proves particularly useful in terms of implementing
Manakov-type systems of any arbitrary dimensionality,
where is the number of components involved. This is
possible in materials with noninstantaneous nonlinearities (as
in photorefractives), even when all the fields share the same
wavelength and polarization. This method was employed with
photorefractive solitons, first to demonstrate bright-bright,
dark-dark, and dark-bright soliton pairs [56], [57], and later
on to make the first experimental demonstration of mul-
timode/multihump solitons [58]. In the multimode soliton
experiment, the two input field distributions resembled the first
and/or second and third modes of a slab waveguide. The beams
were made to be mutually incoherent by delaying one of the
components beyond the coherence length of the laser. With the
nonlinearity, i.e., the voltage turned on, the intensity profile
remained invariant during propagation and both “modes” were
guided as a composite soliton. Very recently, 2-D dipole vector
(or composite) solitons were also demonstrated experimentally.
These vector solitons consist of a bell-shaped component and
a 2-D dipole mode [59], [60].

The general ideas behind multicomponent vector solitons
proved invaluable for later developments and, in particular, to
the area of incoherent solitons discussed in the next section.

VII. I NCOHERENTSOLITONS

Until 1996, the commonly held impression was that all soliton
structures are inherently coherent entities. In that year, how-
ever, an experiment carried out at Princeton University demon-
strated beyond doubt that self-trapping of a partially spatially
incoherent light beam [61] is in fact possible in noninstanta-
neous nonlinear media such as biased photorefractives. In this
case, a spatially partially-coherent soliton can form. This same
effect was later on observed with white light, i.e., a beam that
is both temporally and spatially incoherent [62]. In this experi-
ment, the self-trapped beam originated from a simple incandes-
cent light bulb that emitted light between 380–720 nm. In yet
another experiment, self-trapping of dark incoherent “beams,”
i.e., 1-D or 2-D “voids” nested in a spatially incoherent beam
was also demonstrated [63].

For self-trapping of an incoherent beam (an incoherent
soliton) to occur, several conditions must be satisfied. First,
the nonlinearity must be noninstantaneous with a response
time that is much longer than the phase fluctuation time
across the optical beam. Such a nonlinearity responds to the
time-averaged envelope and not to the instantaneous “speckles”
that constitute the incoherent field. Second, the multimode
(speckled) beam should be able to induce, via the nonlinearity,
a multimode waveguide. Otherwise, if the induced waveguide
is able to support only a single-guided mode, the incoherent
beam will simply undergo spatial filtering, thus radiating all
of its power but the small fraction that coincides with that
guided mode. Third, as with all solitons, self-trapping requires
self-consistency: The multimode beam must be able to guide
itself in its own induced waveguide.
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These experiments were the first to show that solitons
can exist with both spatial and temporal incoherence. These
unexpected observations opened the way for several other
important results. These include, for example, the discovery of
gray fundamental dark incoherent solitons [64], anti-dark in-
coherent states, elliptic incoherent solitons, and suppression of
transverse modulational instability using anisotropic coherence
control. Following this, a number of experiments were carried
out demonstrating the effects of partial coherence on various
soliton effects.

VIII. D ISCRETESOLITONS

Another fascinating class of self-trapped states can arise in
discrete nonlinear networks such as large arrays of coupled
waveguides. In this case, a discrete soliton can form whose field
extends over a limited number of nonlinear waveguides. Unlike
other families of spatial solitons, which are known to exist in
homogeneous media, discrete solitons result from the collective
behavior of the array as a whole. In reality, they represent
nonlinear defect modes in a photonic crystal or optical lattice.
To understand how such a discrete structure can actually form,
it is perhaps useful to take a look at the linear properties of such
arrays. Let us first assume that only one waveguide is initially
excited under very low power conditions. In this case, power
will eventually flow to more and more neighboring waveguides
as a result of waveguide coupling due to the overlap of the
fields associated with individual waveguides. In essence, this
tunneling or coupling process can be considered as some sort
of discrete diffraction. On the other hand, as the input power
increases, the waveguide becomes eventually detuned from
its neighbors (because of nonlinearity), and as a result, the
power transfer among waveguides ultimately stops. Thus, the
light becomes trapped to a few of the waveguides via the Kerr
nonlinearity, and the envelope described by the peaks of the
fields of each waveguide takes on a soliton-like envelope. In
other words, these states are possible through a careful balance
of discrete diffraction effects and waveguide nonlinearity.
Discrete solitons were first predicted in 1988 [65] and observed
experimentally ten years later by Eisenberget al. in AlGaAs
nonlinear waveguide arrays [66].

As mentioned in several studies [67]–[70] discrete solitons
differ from their continuous counterparts in fundamental ways.
For example, there is no translational or Galilean invariance in
waveguide arrays. This in turn can lead to power dependent
steering—an effect that has been also observed experimentally
[71]. Recently, diffraction management has been successfully
demonstrated in such waveguide arrays [72]. The prospect of
tailoring at will the diffraction properties of these structures
(in some cases even reversing the sign of diffraction) brings
about several exciting possibilities. Among them is the possi-
bility of dark spatial solitons in self-focusing environments or
bright solitons in materials with de-focusing nonlinearities.

These experiments have opened the way to the exploration
of this new class of solitons. The introduction of discreteness
adds another degree of freedom, which should allow other novel
families of solitons to exist. This is an interesting area that is

sure to capture the attention of experimental groups in the near
future.

IX. SPATIO-TEMPORAL SOLITONS

It is well known that self-focusing nonlinearities counteract
group velocity dispersion (GVD) in optical fibers and, as a re-
sult, temporal solitons can form. It has been known for some
time that in principle, a wave packet self-trapped in both space
and time (an “optical bullet”) should also be possible [73]. The
problem in realizing such creatures is to find the right material so
that for a given optical pulse width, the dispersion length in time
is comparable to the spatial diffraction length and that both are
equal to the nonlinear length. In this case, the pulsed beam can
be confined in all dimensions (2-D space1-D time, (3 1)D).
The stumbling block has always been that for typical materials,
an unusually high GVD is required for centimeter long samples.

The first experimental work reporting a quasi-bullet used a
very clever scheme to control the GVD along one spatial axis
[74]. In this experiment, self-trapping occurred only along one
spatial dimension of a 2-D beam. By reflecting a beam from
a diffraction grating, the nonspecular orders have their energy
wavefront tilted relative to their phase velocity wavefront with
different spectral components having different tilts. Pulse com-
pression in time based on this principle was first demonstrated
by DeTrapaniet al. [75] utilizing the cascaded nonlinearity in
second-order nonlinear materials. The experiments of Liuet al.
utilized quadratic solitons in the cascaded limit in bulk LiIO
with highly elliptically shaped beams. Along the long axis of
the beam cross-section, the diffraction length was longer than
the length of the crystal so that no diffraction occurred. Along
the short axis, the diffraction length was about one third of the
crystal length and it is along this axis that the beam behaved
like a spatial soliton. The pulse width of 110 fs was used, with
the grating-engineered GVD, to match the dispersion length to
the diffraction length. Along that dimension they showed that
no spreading occurred in space or in time: a characteristic of an
optical bullet.

This was a landmark experiment. Very recently, self-focusing
of 2-D beams in both space and time was reported [76], and it
seems that the road to full 3-D optical bullets is now open.

X. CAVITY SOLITONS

Cavity solitons are soliton-like structures trapped between re-
flecting surfaces [77]. This is in contrast to all of the solitons just
discussed that are traveling waves. This introduces new prop-
erties and greatly widens the class of materials in which soli-
tons may be discovered. Although there have been a number
of experiments reported on patterns in resonators, the first ex-
periments in which isolated solitons were observed were only
reported very recently [78]. They utilized GaAs in a resonator
and studied the spatial structure of the light reflected from the
cavity. The shape of the soliton within the cavity is in excel-
lent agreement with theory, right down to the oscillations in the
tail of the soliton. By changing the cavity detuning via tuning
the input light frequency, these authors were able to show dark
solitons as well. They also showed some beautiful examples of
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collisions between cavity solitons. This was an important first
experiment.

Another recent experiment [79] reports stable, controllable
spatial solitons in Na vapor with a single feedback mirror. These
are also dissipative structures, and many of the properties pre-
dicted for cavity solitons have been directly observed in this
system, as well as in earlier experiments on feedback systems
[80]. This recent progress on cavity solitons, especially in sys-
tems that do not support traveling-wave states, e.g., dissipative
systems, are expected to offer many more surprises.

XI. SUMMARY

The field of spatial soliton research, which really started back
in the mid 1970s, picked up momentum in the late 1980s, and
reached some maturity in the 1990s, is now a very active field.
It represents a fruitful direction for nonlinear optics in the new
millenium. At this point, much remains to be uncovered, and
we expect rapid progress on several fronts. Many areas such as
those of incoherent and vector solitons, discrete and cavity soli-
tons, and the field of optical bullets remain still largely unex-
plored. Judging from the current level of activity, it is certain
that this area will continue to flourish for years to come.
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