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Solitons are localized concentrations of field energy, resulting from a balance of dispersive and nonlinear effects. They are ubiquitous
in the natural sciences. In recent years optical solitons have arisen in new and exciting contexts that differ in many ways from the original
context of coherent propagation in a uniform medium. We review recent developments in incoherent spatial solitons and in gap solitons
in periodic structures.

Optical solitons have their roots in two very important scientific
advances of the 1960s: the development of the mathematical

theory of solitons starting in 1965 by Zabusky and Kruskal (1), Lax
(2), Zakharov and Shabat (3), and Miura et al. (4), and the
development of the laser (5, 6). These seemingly unrelated devel-
opments came together in 1973 with the theoretical prediction of
temporal optical solitons (7), and their experimental realization in
1980 (8).

It is easiest to describe an optical soliton in the spatial domain,
where it is simply a self-guided wave. Consider an optical beam as
narrow as 10 optical wavelengths (�5 microns for visible light). If
such a beam propagates in a linear medium it diffracts and broadens
after even a short distance (�1 mm in our example). In a nonlinear
material light actually changes the index of refraction of the
medium in which it propagates, leading to self-focusing. This
self-focusing competes with diffractive effects, and at sufficient
intensities can lead to the development of a structure for which
diffraction and self-focusing exactly balance—a soliton.

The field of optical solitons has greatly developed over the past
decade, and optical temporal solitons have become a promising
candidate for optical communication networks. At the same time
optical spatial solitons have become one of the most exciting
research areas in optics and nonlinear science. In this article, we
describe two important new directions in optical solitons, which
reflect the recent progress in this area: incoherent solitons and gap
solitons.

Until 1995 all optical soliton experiments used a coherent
‘‘pulse,’’ but in 1996 Mitchell et al. (9) demonstrated the self-
trapping of beams in which the phase varied randomly. This
incoherent wave-packet self-trapped to form a localized nondif-
fracting beam, an incoherent soliton. A subsequent experiment
demonstrated that white light, which is both temporally and spa-
tially incoherent, can also self-trap (Fig. 1) (10).

Soon thereafter several theories were proposed, including co-
herent density theory (11), which is useful for describing the
dynamics of collisions; modal theory (12), which is useful for finding
the wavefunctions and correlation properties of incoherent solitons,
as well as radiation transfer theory (13) and a ray-optics theory (14,
15). The real success of these theories is in predicting new phe-
nomena such as dark incoherent solitons (16, 17). Incoherent
solitons are proving to be a general phenomenon that occur in fields
other than optics. For example, incoherent modulation instability
effects and incoherent pattern formation relate to many other
systems in nature such as cooled atomic gases (18, 19).

To understand the ideas involved, some aspects of incoherent
light have to be explained first. A spatially incoherent beam is a
speckled (multimode) beam whose structure varies randomly with
time. At any instant the beam consists of many tiny bright and dark
‘‘speckles’’ that are caused by constructive and destructive inter-

ference. To a detector that responds more slowly than the charac-
teristic phase fluctuation time, such as the human eye, the fast
variations average out and what the detector ‘‘sees’’ is the envelope,
or average intensity. Such an incoherent beam diffracts much more
than a coherent beam of the same beam width, because each
speckle contributes to the diffraction of the beam envelope, and
diffraction is dominated by the degree of coherence rather than the
diameter of the beam.

The nature of the nonlinearity plays a critical role in the
self-trapping of an incoherent beam. Nonlinearities that respond
instantaneously cannot self-trap such a beam. If an incoherent
beam is launched into a self-focusing nonlinear medium that
responds instantaneously then each small speckle forms a small
‘‘positive lens’’ and captures a small fraction of the beam. These
features on the beam change rapidly during propagation and the
induced waveguides intersect and cross each other randomly.
Consequently the beam breaks up into small fragments and does
not self-trap. Therefore only noninstantaneous nonlinear media
can support incoherent solitons. The second condition is that the
beam should be able to induce a multimode waveguide by means of
the nonlinearity. Otherwise, if the induced waveguide is able to
support only a single guided mode, the beam will undergo spatial
filtering, radiating all of its power but the small fraction that
coincides with that guided mode. The third condition is the
self-consistency requirement: the multimode beam must be able to
guide itself in its own induced waveguide.

The rapid progress in this new area of incoherent solitons brings
about many interesting fundamental ideas and possible applica-
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Fig. 1. Self-trapping of a spatially and temporally incoherent white light
from an incandescent light bulb.
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tions. Even though current work on incoherent solitons has con-
centrated on fundamental aspects, one can already envision nu-
merous applications. The exciting ability to have self-trapped light
beams from incoherent sources such as light-emitting diodes sug-
gests possible applications like optical interconnects and steering of
light from such sources.

Another exciting frontier in modern nonlinear optics concerns
soliton-like states, called gap solitons, which propagate in peri-
odic media. A pulse of light moving through a periodic medium
consists of coupled backward and forward electric field compo-
nents. The amount of coupling depends on the relation of the
carrier frequency to the medium periodicity and is enhanced at
or near Bragg resonance, where the propagation is strongly
dispersive. A gap soliton emerges from the balance of this strong
photonic band dispersion with the nonlinear effects present at
sufficiently high intensities. In contrast, optical temporal solitons
arise from a balance of the weak material dispersion and
nonlinear effects. This implies that the formation length of gap
solitons is on the order of centimeters, compared with kilometers
for a soliton in a homogeneous fiber. Gap solitons in nonlinear
optics have been driven by theoretical predictions (20–23) and
observed experimentally (24, 25). In theory gap solitons can
travel with any speed up to the speed of light, and experiments
have demonstrated gap solitons traveling as slowly as 50% c. This
suggests the intriguing possibility of the capture of gap solitons
and their use in optical storage of information.

Can gap solitons be captured? This question was investigated by
analysis and computer simulation (26), and trapping by appropri-
ately designed defects was demonstrated. Consider nearly mon-
chromatic light propagating in a Bragg resonant periodic structure.
When the defects vary slowly relative to the periodic structure, and
nonlinear and dispersive effects balance, the governing equations
for the forward (E�) and backward (E�) propagating fields are
(26–27):

i�ET
� � EZ

� � � ��Z�E � � V�Z�E � � ��E � �2 � 2�E � �2�E � � 0.

The spatial variations in �(Z), V(Z) define the defect. Fig. 2
shows a simulation of this system. A gap soliton is incident from
the left and as it interacts with the defect the soliton distorts. In
this simulation most of the soliton’s energy is captured. The
mechanism for capture is the transfer of the soliton’s energy to
nonlinear defect modes. Information on the parameter regimes
of capture, reflection, and transmission can be deduced from an
appropriate bifurcation diagram by using energy conservation
and resonant energy transfer principles (26).

The capture process can be further understood by applying
dynamical systems ideas to an approximate reduction of the full
equation. The soliton can be characterized by time-varying param-
eters (width, height, and position) whose dynamics are coupled to
the intrinsic modes of the defect. We have studied such finite

dimensional models for the interactions of soliton-like states with
localized defects for the sine-Gordon and nonlinear Schrödinger
equations (29, 32). Using an effective Lagrangian approach we find
that the approximate dynamics of a soliton�defect interaction are
governed by a low dimensional Hamiltonian system. The qualitative
features of the full soliton�defect problem are well represented in
solutions of the reduced system—there are solutions that represent
a soliton being temporarily captured and interacting with the defect
before being ejected. We explain the very rich and complex
dynamical behavior in terms of the transverse intersections of stable
and unstable manifolds of the Poincaré map of the reduced system.
Phase space transport methods (e.g., ref. 30) give us insight into the
set of incident states resulting in transmission without capture,
temporary capture, and capture for all time. In contrast to what is
observed in the full infinite dimensional dynamics, we prove that
because of the volume preserving nature of the flow the set of initial
conditions that are eventually captured has zero measure and
appears to have the character of a Cantor set. Capture of a positive
measure set of initial conditions, in closer qualitative agreement
with the full dynamics, is obtained by inclusion of a damping term,
reflecting coupling to radiation modes (31, 32). Thus the appro-
priate point of view is that of a low-dimensional dynamical system
interacting with a radiative heat bath. A deeper understanding of
this ‘‘fattening’’ of the basin of capture is a fascinating problem.

In this short article, we have tried to provide a glimpse of the
exciting recent activity in soliton science. There are many more new
ideas and directions in which soliton science is evolving, from
spatio-temporal solitons (‘‘bullets’’ of light) to discrete solitons,
from solitons in photonic bandgap materials to solitons in Bose-
Einstein condensates. We believe that this is only the beginning, and
this exciting area will continue to be a fruitful source of mathe-
matical and physical problems.
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Fig. 2. Capture of a gap soliton by a localized defect.
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