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We show that three approaches previously developed to describe partially incoherent wave propagation in
inertial nonlinear media are in fact equivalent. This equivalence is formally established through the evolution
of the mutual coherence function and by means of Karhunen-Loeve expansions.
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One of the most important recent advances in nonlineaf5,8]. In this case, both approaches were found to lead to
science is the discovery of incoherent solitphs3]. In gen-  exactly the same results. In this same logarithmic system,
eral, spatial incoherent solitons are multimode self-trappedhis correspondence was later extended to include the results
entities, which are possible only in materials with noninstan-obtained from the propagation equation of the mutual coher-
taneouginertial) nonlinearities. Prompted by the experimen- €nce functior{21]. In a recent study concerning modulation
tal results, the theory of this newly found class of spatialinstabilities of partially incoherent beams in Kerr and satu-
solitons has been the focus of considerable attefiteri 3. rable nonlinear media, the numerical results of the coherent
To date, the theory of partially incoherent wave propagatiorfl€nsity approach were found to be in excellent agreement
in inertial nonlinear media has proceeded altge seem- with the analytical predlct_lons based on the _evolutlon of the
ingly different approaches (i) the propagation equation for Mutual coherence functionl9]. The question naturally
the mutual coherence functi¢th4,17, (i) the coherent den- arises as to vyhgther thgse three gpproaches,.wh!ch at first
sity method[4—6], and (iii) the ’self’—consistent multimode sight look dissimilar, are in fact equivalent. And if this is the

o ) case, is it truen generalin any nonlinear system and under
theory[7—-13]. In addition, approximate ray transport meth- any circumstances?

ods also exisf15-17. These, however, are only valid in the |, 4his Rapid Communication, we prove that these three
limit of broad incoherent beamnuch larger than the cor- gphr0aches are formally equivalent. Our result holds in any
relation distanceand by their very nature, they cannot ac- nonlinear system, regardless of the character of the underly-
count for any processes that have been initiated by phasgg nonlinearity. This equivalence is formally established by
manipulation[3,6,18. Analytically, incoherent spatial soli- demonstrating that the evolution equation for the mutual co-
tons were first demonstrated in saturable nonlinear media aference remains the same irrespective of the representation
the logarithmic type where the strong link between their cor-used. The correspondence between the coherent density
relation statistics and the properties of these self-trapped emethod and the propagation equation governing the mutual
tities became appareffi]. Subsequently, the development of coherence function is derived via the Van Cittert—Zernike
the self-consistent modal theofy] led to the identification theorem. On the other hand, the equivalence of the self-
of several other important incoherent soliton families in bothconsistent multimode theory to the other two methods is
Kerr and saturable nonlinear media-13]. Generally, inco- proved using Karhunen-Loeve expansions. Having different
herent solitons differ from their coherent counterparts in sev{albeit equivalentformulations describing the same physical
eral ways. Unlike coherent solitons, which can be establishetkality is, of course, not new in physics. For example, quan-
through an appropriate choice of their complex envelopetum phenomena can be described either within the frame-
incoherent solitons are required to evolve in such a way so agork of Heisenberg’s matrix mechanics or Schroedinger's
to conform to the correlation statistics of the exciting inputwave formulation. Or for that matter, the equations of elec-
beam[6]. The modulation instability of partially coherent trodynamics can be investigated by either directly solving for
wave packets along with the self-focusing collapse of two-actual electromagnetic field quantities or by introducing aux-
dimensional incoherent beams has also been recently inveiiary potential functions. In all cases, the choice as to which
tigated[19-20Q. representation is to be used depends heavily on the nature of
The correspondence between the results of the coheretite underlying physical problem.
density approach and those of the self-consistent multimode Let us consider a slowly responding nonlinear medium,
theory was first established in systems with saturable logathe refractive index of which varies with the optical intensity
rithmic nonlinearities where closed form solutions existl according tsm?=nZ2+2n,g(l). Heren, is the linear part of
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the refractive index and the functiay(l) represents its non- =J,,/J;1J,, from where the correlation distances can be
linear intensity dependence. The partially coherent opticatietermined[6,22]. Equation(5) represents a modified ver-
field propagating in this material is also assumed to be quasiion of the Van Cittert—Zernike theoref@3]. The equiva-
monochromatic. The average intenditis taken over a time lence of this approach with that of the mutual coherence
interval that exceeds the response time of the nonlinear megropagation method can then be established by proving that
dium that is also much greater than the characteristic coheEgs. (4) and (5) lead to Eq.(3). To do so, we uséJ,,/dz
ence time within the optical beafl-3]. Starting from the  _ 424 exdikd. (f,— F(f%of, loz+1,0f 3azh. By employ-
Helmholtz equationV2E+k3n?E=0, and by writing E ing Eq. (4) and its complex conjugate & andr,, respec-

= ¢ exp(kz), wherek=Kkono, one then finds that the slowly tjvely, it is then straightforward to show that
varying envelopeap evolves according to

4o - S
ap 1 i —2=ko[g(l 11)]J +fd20ex ik6-(F,—T.
i—¢+—V$¢+kog(l)¢=O. ) 97 olg(l2)—9(11)]312 i (F1—r2)]
az 2k
Let us now consider two functiong(fy,z),¢(f,,z) each X[ —if30-Vyufy— 2kf*VTlfl)
satisfying Eq. (1) at different transverse coordinaté$
=X;X+Y;¥y, wherej=1,2. By multiplying Eq.(1) atf; with L .y
¢*(r,,z) and the complex conjugate of E@l) at r, with +| —if10-Vrofy + 2kf1VT2f2 (6)
¢(r1,z), and after subtracting, the statistical expectation
J12=(¢('1,2) ¢* (2,2)) is found to obey Substituting the transverse Laplacian operatord,efat f,
I:) ’
ddy, 1 2
'_ Zk{VTl Vi ) R
i i ) 2kVT1J12 fdzaexp[ika(r*l—r*z)]f’z‘
+ko(p(1,2)9[1(71,2)]¢* (3,2))
. | n k
—ko{@(F1,2)9[1(72,2)]¢*(72,2))=0,  (2) ZkVT1f1+|9 Vrifi— 5 6% ], (7a)
where J;, is the mutual coherence functiofor mutual
intensity) [22]. Since on the other hand the nonlinearity 1, - .
is not instantaneous, (#(1,2)g[1(F},2)]1¢* (F2,2)) ok Vr2di= | d70exdik-(r—rp)]fy
=g[I(F},2) {#(I1,2) 9™ (F2,2)) [14]. As a result,
k
(?le ZkV'ZI'ZfZ |0 VTZf*__ez ] (7b)

= k{v = V32H12t ko{g(310) —9(J20) }91,=0,
©)] in Eq. (6) we then obtain

whereJd,,=1(r1,z) andJ,,=1(f,,z) are respectively the in- AR
tensities atr;, r,. Equation(3) describes the evolution of 1+ Zk{VTl V112t Ko{g(11) —9(1,)}1,=0,
the mutual coherence and was first derived by Pasmanik (8
[14]. In fact, it is a nonlinear version of Wolf's equations
[22] in the paraxial regime. which is exactly the same as E@) if one keeps in mind that
The second approach builds on an auxiliary funcfidshe  |;=J;;. In other words, the coherent density approgdé-
so-called coherent densify#]. As previously showrj4-6], scribed by Eqs(4) and(5)] is formally equivalent to Eq(3),
the coherent densitiyevolves according to which governs the propagation of mutual coherence.
y We will next show that the self-consistent multimode
S 2 theory also leads to Eq3). Let us assume that the slowly
I az+0'VTf 2kV rkog(DT= @ varying envelope of the partially incoherent beam can be

R written in terms of an orthonormal set of functiorer
In Eqg. (4), 6= 6,%+ 6,9 is the angle at which this density “modes”) un(f,z),
propagates with respect to the z axis. In this representation,
the mutual coherence function is given [}

¢<F,z>=§ Clm(F,2), 9

JiolF1,Fp,2)= | d?6f,f5 exdiké-(Fi—F»)], (5 - _
1201.72,2) j 0.tz exdliko-(f—r2)] © where the modal coefficients,, are random variables that

- _ _ are uncorrelated with one another, that{@,c}) =\ ndmn,
wheref;=f(r;,6,2). Note, that the intensity af can also  where,, (the modal occupangyis a real positive quantity.
be obtained from Eq(5), i.e., |;=1(F] ,z)=J,-j=fd20|fj|2, This sort of representatiofEq. (9)] is better known as a
and thus Eq(4) is in reality an integro-differential equation. Karhunen-Loeve expansid@2,24]. For this expansion to be
Associated withd,, is the complex coherence factar;,  valid, one expects that the functiong(f,z) remain orthogo-
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nal during propagation provided that this was so the case diton can be followed by solving the propagation equation for
the origin, i.e..f fdxdyuy,(F,z=0)u} (F,z=0)= &,,,. From  the mutual coherence function, that is E8).. Even numeri-
Eg. (1), each eigenfunction,, is found to evolve according cally this is not an easy task. Analytically, the involved char-
to acter of the nonlinear partial differential equati@®) is such
that it does not easily lend itself to physical interpretation.

Uy 1, Thus, it is not surprising that the first exact analytical solu-
'E“L ﬂVTuerkOg(l)um:O' (10 tions for incoherent solitons were obtained using the other
two methodq5,7].
wherel =32 A |unl?. Using Eq.(10) and its complex coun- On the other hand, the integro-differential equati@dn
terpart, one gets describing the coherent density is the closest one can get to
the more familiar nonlinear Schdmger equation, where
2ikif j dxdy(u,u*) considerable wealth of results exists. This in turn can allow
Jz m=n the transfer of analytical tools and methods from the coher-

ent to the partially incoherent reginisee, for example, Ref.
:f J dxdy(umV$u: _UEV%’Um) [20]). As previously men_tione_d, in c_ertain sp_ecial cases this
method can analytically identify soliton solutiof@aussian
Schell solitong[5]. However, the coherent density approach
= §d|ﬁ.(umVTu:—u: ViUp), (11 is by nature better suited to study dynamical evolution of
c incoherent systems as demonstrated in several studies. More-
. ) _ ... over, it can be easily implemented using standard beam
where fl is an outward unit vector normal to the infinite o o 4ation methods. Incoherent quasisolitons can also be
contourc enclosing the interaction region. In obtaining Eq. jgg|ated numerically by exploiting their robustnd€3. One

(1) we made use of Green's second identity. It can D&y the drawbacks of this method has to do with determining
shown, that in general, the contour integral in EHl) van- 6 ¢ fynction right at the origin. More specifically, given
ishes, and that is irrespective of the nature of the eigenfunc:

c: . . . RS
tions involved[25]. Therefore, theu,, system remains ortho- J1AF1,72,2=0), the inputf(r;,§,2=0) can only be ob-

normal during propagation. This in turn enabledymamical f[ained_ by solving Fh.e nonlinear_ integral eq_uat(&), Whi.Ch .
Karhunen-Loeve expansidie., Eq.(9)]. It is important to is by itself a nontrivial task. This problem is greatly simpli-

note that this same result could have been obtained und iFd.in the case of statisticglly s_tationary “sources,” where
more general conditionghat is, during nonlinear collisions, Ia? mgvvte?esnselzri?r:] l:;em\j/vrgte:oﬁ tfer)r(nsrnoofdtﬂlzﬂsg#rgjnizgﬁ'
interactions with passive waveguides, gt€his stems from [4_5] The ;n Ular power s ectrﬂm is obtained from. the
the fact theg(l) term in Eqg.(10) can be replaced with any j 9 P P

S : Fourier transform of the source correlation function.
other real potentiaV(r,z) that can represent any arbitrary . . .
) ; . . The self-consistent multimode theory is the method of
interaction without affecting the end result.

. . . choice in identifying incoherent soliton families. In the case
The mutual coherence function can then be written INSf intearable nonlinearitiefsuch as that of 1D Keyr such
terms of these orthonormal eigenfunctions, 9 4

families can be constructed using knowledge from the gen-
Iyl F1,F2,2)=(b(F1,2) ¢* (F2,2)) eral area of vector solitonf26—27. As shown above, in
addition to isolating static soliton solutions, it can also be
=S (P12 (P 2) (12 used under dynamical conditions, which can be advanta-
< AmEmi T 1S Emi T 204 geous if the number of modes involved is finite. Again, one
important aspect in this discussion has to do with initial con-
where in deriving Eq.(12) we made use of(c,cl) ditions. To be more specific, it is well known that infinitely
=AmSmn- If Un=Un(F1,2) and u*=u%(F,,z) and using Mmany partia_lly incqherent solitqns can 'be “synthesized,”
10312/ 9Z=1% A (UX UM/ IZ+ Umdu®/dz), then Eq.(10) each associated with a correlation functidp. These solu-
leads to tions correspond to infinite possibilities of partially incoher-
ent sources. Yet, givedy,(f,f»,z=0) at the input, it is at
3d, 1, 5 this point unknown which of these solitons will actually
S VT V2 izt Kolg(J10) —9(J22)H12=0, emerge. Starting from Eq12) and by using orthogonality
(13) considerations, thau,, functions that correspond to the
Karhumen-Loeve expansiaft the origin can be obtained
which is precisely Eq(3) previously derived in connection from the integral equation
to the mutual coherence function method.
Having established the equivalence of these three ap- Lo SN2 .
proaches it is perhaps important to highlight some of their f f J12F1,72,2= 0)Un(F2) Ao = Apali(Fy). - (14)
inherent characteristics. Being different representations, each
method has certain advantages and/or disadvantages over tliés clear from Eq.(14) thatu,, are the eigenfunctions of the
other. One important way they differ from each other, is theintegral equatior(14) with the mode occupancy factoks,
way they treat the initial conditions. If for example, as the eigenvalues. Given that the kerdgl is Hermitian,
J1,(F1,F»,2=0) is given at the origin, in principle its evolu- theu,, functions(if they can be determingdire expected to
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be orthogonal with\ ,, real[22,24]. In this case, the number spondence between the coherent density method and the
of the inputu,, eigenfunctions can be finite or infinite de- propagation equation governing the mutual coherence is de-
pending on the initial;,. How exactly these input eigen- rived via the Van Cittert—Zernike theorem. On the other
functions will excite the incoherent soliton mod@ghich in  hand, the equivalence of the self-consistent multimode
general differ from the inputi,,) remains an issue that is theory to the other two methods is proved using Karhunen-
largely unresolved and merits further investigation. Loeve expansions. Our results hold in any nonlinear system,

_ In conclusion, we have shown that three approaches preegardless of the character of the underlying nonlinearity
viously developed to describe partially incoherent waveyged.

propagation in inertial nonlinear media are in fact equivalent.

This is formally established by demonstrating that the evo- This research was supported in part by AFOSR, NSF,
lution equation for the mutual coherence function remainsARO, and MURI. E. Eugenieva acknowledges support
the same irrespective of the representation used. The corréfom NSF-NATO.
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