
RAPID COMMUNICATIONS

PHYSICAL REVIEW E, VOLUME 63, 035601~R!
Equivalence of three approaches describing partially incoherent wave propagation in inertial
nonlinear media
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We show that three approaches previously developed to describe partially incoherent wave propagation in
inertial nonlinear media are in fact equivalent. This equivalence is formally established through the evolution
of the mutual coherence function and by means of Karhunen-Loeve expansions.
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One of the most important recent advances in nonlin
science is the discovery of incoherent solitons@1–3#. In gen-
eral, spatial incoherent solitons are multimode self-trap
entities, which are possible only in materials with noninsta
taneous~inertial! nonlinearities. Prompted by the experime
tal results, the theory of this newly found class of spa
solitons has been the focus of considerable attention@4–13#.
To date, the theory of partially incoherent wave propagat
in inertial nonlinear media has proceeded alongthree seem-
ingly different approaches: ~i! the propagation equation fo
the mutual coherence function@14,17#, ~ii ! the coherent den
sity method@4–6#, and ~iii ! the self-consistent multimod
theory @7–13#. In addition, approximate ray transport met
ods also exist@15–17#. These, however, are only valid in th
limit of broad incoherent beams~much larger than the cor
relation distance! and by their very nature, they cannot a
count for any processes that have been initiated by ph
manipulation@3,6,18#. Analytically, incoherent spatial soli
tons were first demonstrated in saturable nonlinear medi
the logarithmic type where the strong link between their c
relation statistics and the properties of these self-trapped
tities became apparent@5#. Subsequently, the development
the self-consistent modal theory@7# led to the identification
of several other important incoherent soliton families in bo
Kerr and saturable nonlinear media@7–13#. Generally, inco-
herent solitons differ from their coherent counterparts in s
eral ways. Unlike coherent solitons, which can be establis
through an appropriate choice of their complex envelo
incoherent solitons are required to evolve in such a way s
to conform to the correlation statistics of the exciting inp
beam @6#. The modulation instability of partially coheren
wave packets along with the self-focusing collapse of tw
dimensional incoherent beams has also been recently in
tigated@19–20#.

The correspondence between the results of the cohe
density approach and those of the self-consistent multim
theory was first established in systems with saturable lo
rithmic nonlinearities where closed form solutions ex
1063-651X/2001/63~3!/035601~4!/$15.00 63 0356
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@5,8#. In this case, both approaches were found to lead
exactly the same results. In this same logarithmic syst
this correspondence was later extended to include the re
obtained from the propagation equation of the mutual coh
ence function@21#. In a recent study concerning modulatio
instabilities of partially incoherent beams in Kerr and sa
rable nonlinear media, the numerical results of the cohe
density approach were found to be in excellent agreem
with the analytical predictions based on the evolution of
mutual coherence function@19#. The question naturally
arises as to whether these three approaches, which at
sight look dissimilar, are in fact equivalent. And if this is th
case, is it truein generalin any nonlinear system and unde
any circumstances?

In this Rapid Communication, we prove that these th
approaches are formally equivalent. Our result holds in a
nonlinear system, regardless of the character of the unde
ing nonlinearity. This equivalence is formally established
demonstrating that the evolution equation for the mutual
herence remains the same irrespective of the represent
used. The correspondence between the coherent de
method and the propagation equation governing the mu
coherence function is derived via the Van Cittert–Zern
theorem. On the other hand, the equivalence of the s
consistent multimode theory to the other two methods
proved using Karhunen-Loeve expansions. Having differ
~albeit equivalent! formulations describing the same physic
reality is, of course, not new in physics. For example, qu
tum phenomena can be described either within the fra
work of Heisenberg’s matrix mechanics or Schroedinge
wave formulation. Or for that matter, the equations of ele
trodynamics can be investigated by either directly solving
actual electromagnetic field quantities or by introducing a
iliary potential functions. In all cases, the choice as to wh
representation is to be used depends heavily on the natu
the underlying physical problem.

Let us consider a slowly responding nonlinear mediu
the refractive index of which varies with the optical intens
I according ton25n0

212n0g(I ). Heren0 is the linear part of
©2001 The American Physical Society01-1



-
ic
as

m
he

y

io

ity

-
f
an
s

y
tio

.

be
-

ce
that

e
y
be

t

RAPID COMMUNICATIONS

DEMETRIOS N. CHRISTODOULIDESet al. PHYSICAL REVIEW E 63 035601~R!
the refractive index and the functiong(I) represents its non
linear intensity dependence. The partially coherent opt
field propagating in this material is also assumed to be qu
monochromatic. The average intensityI is taken over a time
interval that exceeds the response time of the nonlinear
dium that is also much greater than the characteristic co
ence time within the optical beam@1–3#. Starting from the
Helmholtz equation¹2E1k0

2n2E50, and by writing E
5f exp(ikz), wherek5k0n0 , one then finds that the slowl
varying envelopef evolves according to

i
]f

]z
1

1

2k
¹T

2f1k0g~ I !f50. ~1!

Let us now consider two functionsf(rW1 ,z),f(rW2 ,z) each
satisfying Eq. ~1! at different transverse coordinatesrW j
5xj x̂1yj ŷ, wherej 51,2. By multiplying Eq.~1! at rW1 with
f* (rW2 ,z) and the complex conjugate of Eq.~1! at rW2 with
f(rW1 ,z), and after subtracting, the statistical expectat
J125^f(rW1 ,z)f* (rW2 ,z)& is found to obey

i
]J12

]z
1

1

2k
$¹T1

2 2¹T2
2 %J12

1k0^f~rW1 ,z!g@ I ~rW1 ,z!#f* ~rW2 ,z!&

2k0^f~rW1 ,z!g@ I ~rW2 ,z!#f* ~rW2 ,z!&50, ~2!

where J12 is the mutual coherence function~or mutual
intensity! @22#. Since on the other hand the nonlinear
is not instantaneous, ^f(rW1 ,z)g@ I (rW j ,z)#f* (rW2 ,z)&
.g@ I (rW j ,z)#^f(rW1 ,z)f* (rW2 ,z)& @14#. As a result,

i
]J12

]z
1

1

2k
$¹T1

2 2¹T2
2 %J121k0$g~J11!2g~J22!%J1250,

~3!

whereJ115I (rW1 ,z) andJ225I (rW2 ,z) are respectively the in
tensities atrW1 , rW2 . Equation~3! describes the evolution o
the mutual coherence and was first derived by Pasm
@14#. In fact, it is a nonlinear version of Wolf’s equation
@22# in the paraxial regime.

The second approach builds on an auxiliary functionf, the
so-called coherent density@4#. As previously shown@4–6#,
the coherent densityf evolves according to

i H ] f

]z
1uW •¹Tf J 1

1

2k
¹T

2 f 1k0g~ I ! f 50. ~4!

In Eq. ~4!, uW 5uxx̂1uyŷ is the angle at which this densit
propagates with respect to the z axis. In this representa
the mutual coherence function is given by@6#

J12~rW1 ,rW2 ,z!5E d2uW f 1f 2* exp@ ikuW •~rW12rW2!#, ~5!

where f j5 f (rW j ,uW ,z). Note, that the intensity atrW j can also
be obtained from Eq.~5!, i.e., I j5I (rW j ,z)5Jj j 5*d2uW u f j u2,
and thus Eq.~4! is in reality an integro-differential equation
Associated withJ12 is the complex coherence factorm12
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5J12/AJ11J22 from where the correlation distances can
determined@6,22#. Equation~5! represents a modified ver
sion of the Van Cittert–Zernike theorem@23#. The equiva-
lence of this approach with that of the mutual coheren
propagation method can then be established by proving
Eqs. ~4! and ~5! lead to Eq.~3!. To do so, we use]J12/]z

5*d2uW exp@ikuW•(rW12rW2)#$ f 2*]f1 /]z1f1]f 2* /]z%. By employ-
ing Eq. ~4! and its complex conjugate atrW1 and rW2 , respec-
tively, it is then straightforward to show that

i
]J12

]z
5k0@g~ I 2!2g~ I 1!#J121E d2uW exp@ ikuW •~rW12rW2!#

3H S 2 i f 2* uW •¹T1f 12
1

2k
f 2* ¹T1

2 f 1D
1S 2 i f 1uW •¹T2f 2* 1

1

2k
f 1¹T2

2 f 2* D J . ~6!

Substituting the transverse Laplacian operators ofJ12 at rW1 ,
rW2 ,

1

2k
¹T1

2 J125E d2uW exp@ ikuW •~rW12rW2!# f 2*

3H 1

2k
¹T1

2 f 11 iuW •¹T1f 12
k

2
u2f 1J , ~7a!

1

2k
¹T2

2 J125E d2uW exp@ ikuW •~rW12rW2!# f 1

3H 1

2k
¹T2

2 f 2* 2 iuW •¹T2f 2* 2
k

2
u2f 2* J , ~7b!

in Eq. ~6! we then obtain

i
]J12

]z
1

1

2k
$¹T1

2 2¹T2
2 %J121k0$g~ I 1!2g~ I 2!%J1250,

~8!

which is exactly the same as Eq.~3! if one keeps in mind that
I j5Jj j . In other words, the coherent density approach@de-
scribed by Eqs.~4! and~5!# is formally equivalent to Eq.~3!,
which governs the propagation of mutual coherence.

We will next show that the self-consistent multimod
theory also leads to Eq.~3!. Let us assume that the slowl
varying envelope of the partially incoherent beam can
written in terms of an orthonormal set of functions~or
‘‘modes’’! um(rW,z),

f~rW,z!5(
m

cmum~rW,z!, ~9!

where the modal coefficientscm are random variables tha
are uncorrelated with one another, that is^cmcn* &5lmdmn ,
wherelm ~the modal occupancy! is a real positive quantity.
This sort of representation@Eq. ~9!# is better known as a
Karhunen-Loeve expansion@22,24#. For this expansion to be
valid, one expects that the functionsum(rW,z) remain orthogo-
1-2
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nal during propagation provided that this was so the cas
the origin, i.e.,**dxdyum(rW,z50)un* (rW,z50)5dmn . From
Eq. ~1!, each eigenfunctionum is found to evolve according
to

i
]um

]z
1

1

2k
¹T

2um1k0g~ I !um50, ~10!

whereI 5(mlmuumu2. Using Eq.~10! and its complex coun-
terpart, one gets

2ik
]

]z E E dxdy~umun* !

5E E dxdy~um¹T
2un* 2un* ¹T

2um!

5 R
c
dln̂•~um¹Tun* 2un* ¹Tum!, ~11!

where n̂ is an outward unit vector normal to the infinit
contourc enclosing the interaction region. In obtaining E
~11! we made use of Green’s second identity. It can
shown, that in general, the contour integral in Eq.~11! van-
ishes, and that is irrespective of the nature of the eigenfu
tions involved@25#. Therefore, theum system remains ortho
normal during propagation. This in turn enables adynamical
Karhunen-Loeve expansion@i.e., Eq.~9!#. It is important to
note that this same result could have been obtained u
more general conditions~that is, during nonlinear collisions
interactions with passive waveguides, etc.!. This stems from
the fact theg(I ) term in Eq.~10! can be replaced with an
other real potentialV(rW,z) that can represent any arbitra
interaction without affecting the end result.

The mutual coherence function can then be written
terms of these orthonormal eigenfunctions,

J12~rW1 ,rW2 ,z!5^f~rW1 ,z!f* ~rW2 ,z!&

5(
m

lmum~rW1 ,z!um* ~rW2 ,z!, ~12!

where in deriving Eq. ~12! we made use of^cmcn* &
5lmdmn . If um5um(rW1 ,z) and um* 5um* (rW2 ,z) and using
i ]J12/]z5 i (mlm (um* ]um /]z1um]um* /]z), then Eq.~10!
leads to

i
]J12

]z
1

1

2k
$¹T1

2 2¹T2
2 %J121k0$g~J11!2g~J22!%J1250,

~13!

which is precisely Eq.~3! previously derived in connection
to the mutual coherence function method.

Having established the equivalence of these three
proaches it is perhaps important to highlight some of th
inherent characteristics. Being different representations, e
method has certain advantages and/or disadvantages ov
other. One important way they differ from each other, is
way they treat the initial conditions. If for example
J12(rW1 ,rW2 ,z50) is given at the origin, in principle its evolu
03560
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tion can be followed by solving the propagation equation
the mutual coherence function, that is Eq.~3!. Even numeri-
cally this is not an easy task. Analytically, the involved cha
acter of the nonlinear partial differential equation~3! is such
that it does not easily lend itself to physical interpretatio
Thus, it is not surprising that the first exact analytical so
tions for incoherent solitons were obtained using the ot
two methods@5,7#.

On the other hand, the integro-differential equation~4!
describing the coherent density is the closest one can g
the more familiar nonlinear Schro¨dinger equation, where
considerable wealth of results exists. This in turn can all
the transfer of analytical tools and methods from the coh
ent to the partially incoherent regime~see, for example, Ref
@20#!. As previously mentioned, in certain special cases t
method can analytically identify soliton solutions~Gaussian
Schell solitons! @5#. However, the coherent density approa
is by nature better suited to study dynamical evolution
incoherent systems as demonstrated in several studies. M
over, it can be easily implemented using standard be
propagation methods. Incoherent quasisolitons can also
isolated numerically by exploiting their robustness@6#. One
of the drawbacks of this method has to do with determin
the f function right at the origin. More specifically, give
J12(rW1 ,rW2 ,z50), the input f (rW j ,uW ,z50) can only be ob-
tained by solving the nonlinear integral equation~5!, which
is by itself a nontrivial task. This problem is greatly simp
fied in the case of statistically stationary ‘‘sources,’’ whe
the input density can be written in terms of the source an
lar power spectrum and a complex modulation functi
@4–6#. The angular power spectrum is obtained from t
Fourier transform of the source correlation function.

The self-consistent multimode theory is the method
choice in identifying incoherent soliton families. In the ca
of integrable nonlinearities~such as that of 1D Kerr!, such
families can be constructed using knowledge from the g
eral area of vector solitons@26–27#. As shown above, in
addition to isolating static soliton solutions, it can also
used under dynamical conditions, which can be advan
geous if the number of modes involved is finite. Again, o
important aspect in this discussion has to do with initial co
ditions. To be more specific, it is well known that infinite
many partially incoherent solitons can be ‘‘synthesized
each associated with a correlation functionJ12. These solu-
tions correspond to infinite possibilities of partially incohe
ent sources. Yet, givenJ12(rW1 ,rW2 ,z50) at the input, it is at
this point unknown which of these solitons will actual
emerge. Starting from Eq.~12! and by using orthogonality
considerations, theum functions that correspond to th
Karhumen-Loeve expansion~at the origin! can be obtained
from the integral equation

E E J12~rW1 ,rW2 ,z50!um~rW2!d2rW25lmum~rW1!. ~14!

It is clear from Eq.~14! thatum are the eigenfunctions of th
integral equation~14! with the mode occupancy factorslm
as the eigenvalues. Given that the kernelJ12 is Hermitian,
the um functions~if they can be determined! are expected to
1-3
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be orthogonal withlm real @22,24#. In this case, the numbe
of the inputum eigenfunctions can be finite or infinite de
pending on the initialJ12. How exactly these input eigen
functions will excite the incoherent soliton modes~which in
general differ from the inputum) remains an issue that i
largely unresolved and merits further investigation.

In conclusion, we have shown that three approaches
viously developed to describe partially incoherent wa
propagation in inertial nonlinear media are in fact equivale
This is formally established by demonstrating that the e
lution equation for the mutual coherence function rema
the same irrespective of the representation used. The c
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spondence between the coherent density method and
propagation equation governing the mutual coherence is
rived via the Van Cittert–Zernike theorem. On the oth
hand, the equivalence of the self-consistent multimo
theory to the other two methods is proved using Karhun
Loeve expansions. Our results hold in any nonlinear syst
regardless of the character of the underlying nonlinea
used.
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