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Abstract

We analyze the self-action of light waves mediated by cascaded optical rectification in a quadratic nonlinear crystal

in the framework of the full local-field equations and show that the process can lead to a rich variety of self-effects. We

put forward a general scheme to calculate the full nonlinear response mediated by the self-generated rectified fields and

thus show that acting on the shape, the polarization of the light beam and the geometric arrangement of the nonlinear

crystal allows tuning the sign, the strength, and the type of the induced nonlinearities, opening the door to the ex-

ploration of a variety of self- and cross-phase modulations, and solitary-waves. We also show configurations where even

though the macroscopic rectified field vanishes, the macroscopic self-effects do not.

� 2002 Elsevier Science B.V. All rights reserved.

Elucidation of new physical settings where wave

excitations act on themselves is one of the ultimate

goals of nonlinear optics, hence the self-action of

light mediated by quadratic and cubic nonlineari-
ties is a subject of intense research. In this context,

systems supporting solitons, or self-sustained en-

ergy packets, occupy a special position [1–3]. The

types of possible solitary-wave structures depends

on the variety of self-effects that can be generated

with each type of nonlinear material response.

Such variety can be routed back to the detailed

process that induces the nonlinear response and it

manifests itself on the richness of the equations

that describe the light evolution. Therefore, iden-
tification of new nonlinear mechanisms is of par-

amount importance. Here we address the

nonlinear interaction of optical waves with static

fields, a process which contains contributions from

different origins whose effect on soliton formation

has never been explored to date in its full potential.

Gustafson and co-workers [4] noticed long ago

that the combination of optical rectification (OR)
and the electro-optic effect can give rise to self-

phase modulation. More recently, Bosshard et al.

[5] showed that the effect gives rise to an effective

Kerr-like nonlinear refractive index. However, in

this work the macroscopic rectified field that arises
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because of the spatial modulation of the rectified

polarization was not taken into account. The same

assumption was made by Steblina and co-workers

[6] to examine soliton formation in systems where

an optical beam is coupled to a microwave signal

through OR and the electro-optic effect. On the
other hand, the propagation equations for optical

fields coupled to macroscopic rectified fields were

derived by Ablowitz et al. [7] using a multiple scale

expansion approach. However, in such a work the

contribution of the rectified nonlinear response to

the rectified microscopic field was neglected.

Nevertheless, as it was recognized in the early days

of nonlinear optics, in such processes the actual
macroscopic nonlinear response can depend

strongly on the difference between the macroscopic

fields and polarization and the microscopic fields,

the field acting on each individual molecule

(termed the local field) [8–11]. Evidence of such

effects was revealed only very recently in the

investigation of degenerate four-wave mixing

[12–14]. The important point for our present pur-
poses is that taking into full account both the

rectified polarization and the macroscopic field it

induces creates combinations of nonlinearities

which can importantly impact the detailed mech-

anisms that lead to soliton formation.

In this paper we put forward the general scheme

that can lead to the formation of solitary waves

through the interaction of light signals with self-
generated static fields in noncentrosymmetric

crystals, by considering the full nonlinear response

due to optical rectification and the electro-optic

effect. We derive general evolution equations and

illustrate their richness with specific examples.

From an experimental viewpoint, the central result

reported is that for a given illuminating wave-

length, a rich variety of different types of self-
effects are possible. We show that the strength of

the different contributions can be controlled by

acting on the polarization and shape of the input

beam. Hence, a variety of solitary-wave structures,

of different features and characteristics, can be

potentially implemented using this mechanism,

opening the door to new opportunities.

Consider the propagation of a light beam in
noncentrosymmetric crystals with a large qua-

dratic nonlinearity, and let the coordinate axes

(x; y; z) coincide with the crystal optical axes

(a; b; c). We assume that the electric field is per-

pendicular to the wave vector, so that the macro-

scopic electric field at frequency x writes ~EEð~rr; tÞ ¼
1=2~AAð~rrÞ expð�ixtÞ þ c:c:, where the phasor ~AA is

given by ~AAð~rrÞ ¼ x̂xAxðx; y; zÞ expðikxzÞ þ ŷyAyðx; y; zÞ
expðikyzÞ. Here kj ¼ k0nj (j ¼ x; y), where k0 is the
wavenumber in vacuum and nj are the linear re-

fractive indices. The evolution equation for the jth

component of ~AA in the slowly varying approxi-

mation is

2ikj
oAj

oz
þr2

?Aj þ
k20
�0
PNL
j ðxÞ expð�ikjzÞ ¼ 0; ð1Þ

where �0 is the vacuum permittivity and ~PPNLðxÞ is
the nonlinear polarization at frequency x. The
nonlinear polarization contains the three contri-

butions

~PPNLðxÞ ¼ ~PP ð3ÞðxÞ þ~PP ðORÞðxÞ þ~PP ðSHGÞðxÞ: ð2Þ

In a centrosymmetric material, the only contribu-

tion to ~PPNLðxÞ comes from third-order nonlinear

optical effects [~PP ð3ÞðxÞ]. In a noncentrosymmetric

material, there is an additional ‘‘cascading’’ con-

tribution arising from second-order nonlinear op-

tical effects. These are the combination of optical

rectification and the linear electro-optic effect

[~PP ðORÞðxÞ], and second harmonic generation
[~PP ðSHGÞðxÞ] [15]. In a crystal configuration where

frequency generation processes are largely phase-

mismatched, the corresponding contributions to
~PPNLðxÞ are negligible. In what follows we consider
only the contribution from optical rectification,

because it is the one that yields combinations of

nonlinearities, and thus a new way to control the

properties of optical solitons.
The electric field ~EE induces a real macroscopic

static nonlinear polarization given by

P ð2Þ
i ð0Þ ¼ �0

2

X
p;q

vð2Þ
ipqð0;�x;xÞA�

pAq expðiDkqpzÞ;

ð3Þ

where vð2Þ
ipqð0;�x;xÞ is the second-order nonlinear

susceptibility for optical rectification and Dkij ¼
ki � kj. Such macroscopic nonlinear polarization

induces a complex microscopic nonlinear polari-

zation piðxÞ due to the electro-optic effect given by
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piðxÞ ¼ 2�0
X
j;k

að2Þ
ijk ð�x; 0;xÞ expðikjzÞ; ð4Þ

where að2Þ
ijk ð�x; 0;xÞ is the second-order nonlinear

molecular polarizability, ei is the static local field,
and ai is the slowly varying part of the local field at
frequency x. The static local field ei can be cal-

culated using the Lorentz approximation to get

[16],

ei ¼
�iið0Þ þ 2

3
Ei þ

P ð2Þ
i ð0Þ
3�0

; ð5Þ

where Ei is the macroscopic static electric field

induced by the macroscopic nonlinear polarization
~PP ð2Þ
i ð0Þ, and �iið0Þ are the diagonal elements of the

dielectric relative permittivity tensor at zero fre-
quency. The local field ai and the macroscopic

fields at frequency x are related by the expression

ai ¼
�iiðxÞ þ 2

3
Ai ð6Þ

with �iiðxÞ being the diagonal elements of the di-

electric permittivity tensor at frequency x. Taking
into account the relationship between the macro-
scopic nonlinear polarization PNLðxÞ and the mi-

croscopic nonlinear polarization pðxÞ, and the

relationship between að2Þ
ijk ð�x; 0;xÞ and vð2Þ

ijk ð�x;
0;xÞ [8–11], one finds that the sought-after mac-

roscopic nonlinear polarization at frequency x can

be written as

PNL
i ðxÞ ¼ �0

X
j

GijAj expðikjzÞ; ð7Þ

where Gij ¼ Gð3Þ þ G
ðORÞ
ij ðAx;AyÞ. The intrinsic third-

order contribution is given by

G
ð3Þ
ij ¼ 3

4

X
pq

vð3Þ
iqpjð�x;�x;x;xÞ½AqðxÞ
�ApðxÞ:

ð8Þ

The matrix function G
ðORÞ
ij ðAx;AyÞ, hereafter to be

referred to as nonlinear structure factor, is given by

the expression (see [11,13] for further details)

G
ðORÞ
ij ¼

n2i n
2
j

4

X
pqs

n2pn
2
qripsrqjs

�ssð0Þ þ 2
ApðxÞ½AqðxÞ
�

� expðiDkpqzÞ � n2i n
2
j

X
p

rijpEp; ð9Þ

where Ei is the ith component of the rectified

macroscopic field, and �iið0Þ is the diagonal ele-

ment of the electric permittivity at zero frequency.

To derive this expression, use has been made of the

definition vð2Þ
ijk ð�x;x; 0Þ ¼ �1=2n2i n2j rijk, and we

assumed that Kleimann symmetry holds. The

macroscopic static electric field ~EE appearing in (9)

has to fulfill the equation r�~EE ¼ 0, together withX
i

�iið0ÞoiEi ¼ � 1

�0

X
i

oiP
ð2Þ
i ð0Þ; ð10Þ

where oi stands for the derivative with respect to

the ith coordinate. This equation comes from

r � ~DD ¼ 0, where ~DD is the electric displacement

vector.
Throughout this paper we consider settings in

which the scale of variation of the nonlinear po-

larization source over the longitudinal coordinate

z is much larger than that over the transverse axes

x; y. Then, the longitudinal component of the static
electric field, as well as all its derivatives can be

neglected [17]. Under such conditions we arrive at

the general evolution equation for Aj, which can be
written as

2ikj
oAj

oz
þr2

?Aj þ k20
X
jm

GjmðAx;AyÞAm expðiDkjmzÞ

¼ 0; ð11Þ

which is coupled to the equation for the two

components of the rectified electric fieldX
i

�iið0Þo2i Ej ¼ ojHðAx;AyÞ; ð12Þ

where

H ¼ 1

4

X
pqm

n2pn
2
qrpqmom½A�

pAq expðiDkqpzÞ: ð13Þ

Eqs. (11)–(13) are one of the central results of this

paper. They reveal that the type and strength of
the nonlinearity that rules the evolution of the

light beam ~AA depends critically on the shape and

polarization of the beam, as well as on the crys-

tallographic structure and orientation of the ma-

terial relative to the light propagation direction.

Eq. (12) describes the material response, similarly

to the Bloch equations that describe the nonin-

stantaneous response of a nonlinear material [18],
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or to the description of carrier dynamics in

photorefractive media [19,20]. It can be formally

solved in the spatial frequency domain, to obtain

Ejðx; yÞ ¼ F�1 �ikjF½HðAx;AyÞ

�xxð0Þk2x þ �yyð0Þk2y

( )
: ð14Þ

Here F and F�1 stand for the direct and the in-

verse Fourier transforms, respectively, and (kx; ky)
are the coordinates in the spatial frequency do-
main. The concrete form of (11)–(14) strongly

depends on the crystal symmetry and light

pumping conditions. Inspection of (14) shows that,

by and large, the contribution of the macroscopic

rectified field to the nonlinear response is to in-

troduce non-local effects, in the sense that the va-

lue of the rectified field ~EE depends on the whole

structure of the optical beam shape. Therefore,
only with special crystal geometries, illuminating

configurations, and soliton dimensionality it is

possible to obtain the reduced evolution discussed

in [5–7]. To illustrate this point and the different

existing possibilities, in what follows we discuss a

few concrete examples.

Example I. A linearly polarized beam that propa-
gates in a material with point group symmetry

mm2. Let the crystal be oriented relative to the di-

rection of light propagation so that fxkc; yka; zkbg,
and nx � n3, ny � n2, nz � n1, �xxð0Þ � �33, �yyð0Þ �
�22 and �zzð0Þ � �11. Under such conditions, (11) and
(12) yield

2ik3
oAx

oz
þr2

?Ax þ k20 ½ðc þ aÞjAxj2 � lEx
Ax

¼ 0; ð15Þ

�33
o2Ex

ox2
þ �11

o2Ex

oy2
¼ l
4

o2jAxj2

ox2
; ð16Þ

where a ¼ ðn83r2333=4Þ=ð�33 þ 2Þ, l ¼ n43r333, k3 ¼
k0n3 and c ¼ 3=4vð3Þ

3333ð�x;�x;x;xÞ. The first

contribution to the nonlinear term in Eq. (15)

corresponds to a self-focusing Kerr-like nonlin-

earity. Except for the factor �33 þ 2, the contribu-

tion from second-order cascading corresponds to

the contribution reported by Bosshard and co-
workers [5]. The additional new contribution is

proportional to the rectified electric field Exðx; y; zÞ,
and introduces non-local (i.e., in general Ex is not

simply proportional to jAxj2) nonlinear self-guiding
effects. Their strength depends on the magnitude

and spatial shape of the static electric field induced

by the optical beam, and can be important as

shown in Fig. 1. We plotted the scaled nonlinear
contribution gxx ¼ GðORÞ

xx =jA0j2 computed at the

center of a beam with a transverse Gaussian shape

(i.e., Ax ¼ A0 expð�x2=x2
x � y2=x2

yÞ), as a function

of the ellipticity of the beam f ¼ xx=xy . For f ¼ 1

and an isotropic crystal, one recovers the limit case

analyzed in [21]. The important result uncovered

by the plot is that one can tune the value of gxx by
varying the beam ellipticity.

The limit cases corresponding to highly ellipti-

cal beams can be solved analytically. When f � 1,

the intensity of the optical beam in the spatial

frequency domain is negligible for kx 6¼ 0, thus (16)

yields a vanishing macroscopic static electric field

(i.e., Ex ¼ 0). Hence, gxx ¼ ðn83r2333=4Þ=ð�33 þ 2Þ.
This is always a positive value. When f � 1, the
intensity of the optical beam in the spatial fre-

quency domain is negligible for ky 6¼ 0, so from

(16) one obtains Ex ¼ ljAxj2=ð4�33Þ, and gxx ¼
�ð2=�33Þðn83r2333=4Þ=ð�33 þ 2Þ. Notice that the neg-

ative value of gxx is 2=�33 times smaller than the

positive one, and that in most materials, at low

frequencies �33 � 1. For example, in potassium

Fig. 1. Scaled nonlinear structure factor gxx computed at the

center of a beam with a Gaussian shape, as a function of the

beam ellipticity f. The beam ellipticity is given in logarithmic

scale. To be specific, the scaled nonlinear structure factor was

calculated for the actual parameters of potassium niobate

pumped at k � 1 lm.
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niobate (KNbO3) at k � 1 lm, one obtains

gxx ’ 36� 10�22 m2=V2 for f � 1, whereas gxx ’
�3� 10�22 m2=V2 for f � 1. For comparison, the

intrinsic third-order nonlinearity amounts to

about 45� 10�22 m2=V2 [13].

Example II. Consider a beam that propagates

along the optic axis of a crystal with point group

symmetry 3m. Let ẑz ¼ ĉc, thus nx ¼ ny � n1,
�xxð0Þ ¼ �yyð0Þ � �11, and �zzð0Þ � �33. Substitution
in (11) and (14) gives

2ik1
oAx

oz
þr2

?Ax þ k20 ½ajAxj2Ax þ bjAy j2Ax þ cA2
yA

�
x

þlðAyEx þ AxEyÞ
 ¼ 0; ð17Þ

2ik1
oAy

oz
þr2

?Ay þ k20 ½ajAy j2Ay þ bjAxj2Ay þ cA2
xA

�
y

þlðAxEx þ AyEyÞ
 ¼ 0: ð18Þ
Here a ¼ a þ m þ c, b ¼ a þ 2c=3, c ¼ m þ 2c=3,
and l ¼ n41r222, where a ¼ ðn81r2113=4Þ=ð�33 þ 2Þ, m ¼
ðn81r2222=4Þ=ð�11þ2Þ; and c¼3=4vð3Þ

1111ð�x;�x;x;xÞ.
The macroscopic static field is given by

o2Ex

ox2
þ o2Ex

oy2
¼ l
4�11

o2f1
oxoy

�
� o2f2

ox2

�
; ð19Þ

o2Ey

ox2
þ o2Ey

oy2
¼ l
4�11

o2f1
oy2

�
� o2f2
oxoy

�
; ð20Þ

where f1 ¼ jAy j2 � jAxj2, and f2 ¼ A�
xAy þ AxA�

y .

Therefore, in general one can generate light evolu-

tions dictated by a whole family of vector
Schr€oodinger equations with tunable nonlinearities.

In the limit case of a highly elliptical beam (f � 1),

(20) and (21) can be solved analytically to obtain

Ey ’ 0, and Ex ’ �lf2=4�11. Substitution into (17)

and (18), and using that �11 � 1 (as it is the case in

most materials), yields self-phase modulation,

cross-phase modulation, and three-wave-mixing

coefficients given by a, ð3bþ c� 2aÞ, and ð2b þ
2c� 2aÞ, respectively.

Example III. Consider a beam that propagates in

a material with point group symmetry �442m. We let

ẑz ¼ ĉc, thus nx ¼ ny � n1, �xxð0Þ ¼ �yyð0Þ � �11, and
�zzð0Þ � �33. Then, one finds that the macroscopic
rectified field vanishes ðEx ¼ Ey ¼ 0Þ, but the

macroscopic nonlinearities induced by the rectified
fields do not. Instead, (11) yields

2ik1
oAx

oz
þr2

?Ax þ k20fajAxj2Ax þ ðm þ cÞ½jAy j2Ax

þ A2
yA

�
x 
g ¼ 0; ð21Þ

2ik1
oAy

oz
þr2

?Ay þ k20fajAy j2Ay þ ðm þ cÞ½jAxj2Ay

þA2
xA

�
y 
g ¼ 0; ð22Þ

where m ¼ n81r
2
123=4ð�33 þ 2Þ, a ¼ 3=4vð3Þ

1111ð�x;�x;

x;xÞ, and c ¼ 3=2vð3Þ
1111ð�x;�x;x;xÞ. Truncated

versions of these equations, supplemented by

Ginzburg–Landau nonlinearities, describe stand-

ing waves in water channels [22], and are known to

have solitary-wave solutions at some suitable limit

[23]. The existence of families of solitons generated

by (21) and (22) is one of the programs we put
forward here for future investigation.

Settings where the macroscopic rectified field

vanishes but the macroscopic nonlinearity does

not are also found, e.g., with similar conditions as

above but in materials with point group symmetry

4mm. In such cases, one readily finds that the

nonlinear polarization arising from optical rectifi-
cation yields evolutions equations for Ax;Ay along

the diffracting beam axis given by the Manakov

equations [24], which gives a detailed setting where

experimentally explore the properties of Manakov-

like solitons when induced by the combination of

OR and the electro-optic effect [6]. Manakov-like

solitons has been demonstrated experimentally in

other configurations [25].
The central result put forward in this paper is

that taking into account the full self-rectified ef-

fects and beam shape when calculating the inter-

action of optical waves with static fields through

optical rectification introduces a combination of

nonlinearities that can manifest themselves in a

rich variety of different ways. Here we considered a

few illustrative examples of the potential of the
new scheme, but many other possibilities con-

tained in (11)–(14) remain open to future explo-

ration. In particular, the mechanism uncovered

here can be also implemented in geometries with

large photorefractive or frequency-mixing qua-

dratic nonlinearities, correspondingly enhancing

the variety of solitary-wave structures sustained by

competing nonlinearities. For example, a direct
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application of this scheme is the generation of

engineerable competing quadratic and cubic non-

linearities in systems where second-harmonic gen-

eration is accompanied by optical rectification, by

exploiting the geometrical conditions that deter-

mine the magnitude of the rectified fields [28].
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