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Photonic topological insulator induced by a 
dislocation in three dimensions

Eran Lustig1,5, Lukas J. Maczewsky2,5, Julius Beck2, Tobias Biesenthal2, Matthias Heinrich2, 
Zhaoju Yang3, Yonatan Plotnik1, Alexander Szameit2 & Mordechai Segev1,4 ✉

The hallmark of topological insulators (TIs) is the scatter-free propagation of  
waves in topologically protected edge channels1. This transport is strictly chiral  
on the outer edge of the medium and therefore capable of bypassing sharp corners  
and imperfections, even in the presence of substantial disorder. In photonics, 
two-dimensional (2D) topological edge states have been demonstrated on several 
different platforms2–4 and are emerging as a promising tool for robust lasers5, 
quantum devices6–8 and other applications. More recently, 3D TIs were demonstrated 
in microwaves9 and  acoustic waves10–13, where the topological protection in the 
latter  is induced by dislocations. However, at optical frequencies, 3D photonic  
TIs have so far remained out of experimental reach. Here we demonstrate a photonic 
TI with protected topological surface states in three dimensions. The topological 
protection is enabled by a screw dislocation. For this purpose, we use the concept of 
synthetic dimensions14–17 in a 2D photonic waveguide array18 by introducing a further 
modal dimension to transform the system into a 3D topological system. The lattice 
dislocation endows the system with edge states propagating along 3D trajectories, 
with topological protection akin to strong photonic TIs19,20. Our work paves the way 
for utilizing 3D topology in photonic science and technology.

Photonic topological insulators (TIs) are systems that facilitate robust 
and unidirectional flow of light along the edges of the device2,3,4. On the 
basis of similar principles as electronic TIs1, these artificial electromag-
netic media are engineered to exhibit a topologically non-trivial band 
structure and constitute a promising platform for applications such as 
forcing extended ensembles of laser emitters to act as one laser5 and 
various applications in quantum optics6,7. However, unlike electronic 
TIs, topological photonics has so far mostly relied on one-dimensional 
(1D)21 and 2D geometries—essentially confining them to a small subset 
of possible topological phases. Because photons only interact weakly 
with surrounding fields, realizing 3D TIs for photons has remained a 
formidable challenge.

3D TIs that obey time-reversal symmetry are generally divided into 
two categories: weak and strong22. Strong TIs host 3D edge states on 
all of their surfaces and are impervious to variations in the shape of the 
medium or disorder that is small compared with the bandgap energy. By 
contrast, weak 3D TIs are topologically equivalent to stacked arrange-
ments of 2D TIs. In a similar vein, systems lacking time-reversal sym-
metry may also support 3D TIs by stacking 2D TIs. In the context of 
bosonic topological systems, these too are considered ‘weak’, as they 
do not exhibit topologically protected surface states20. For example, a 
3D cubic lattice with a constant magnetic field along one of the lattice 
axes is a weak TI in 3D in the following way (Fig. 1a). Because each of the 
2D layers supports an edge state (Fig. 1b), the 3D composite structure 
is characterized by several edge states propagating on four surfaces. 

However, the individual edge states couple to one another, giving rise to 
a dispersion curve on the surface of the lattice. Consequently, the edge 
states can form a gap, rendering them vulnerable to disorder similar 
to weak 3D TIs in electronic systems with time-reversal symmetry23.

Such structures were recently suggested24–26 and demonstrated9 with 
magneto-electric coupling at microwave frequencies. A notable situa-
tion occurs when a screw dislocation is introduced into such a system19 
(Fig. 1c). In contrast to the coupling between the planar topological 
edge states in the pure lattice of a weak TI, the entirety of all the edge 
states merges into a single edge channel that winds helically around 
the outer surface of the 3D system. As a result, the phases between 
neighbouring edges are strictly fixed, preventing the formation of a 
bandgap and rendering the transport immune to disorder (Fig. 1d). 
In other words, the dislocation forces the edge states to propagate 
in all three dimensions and endows the 3D weak TI with topological 
protection to its edge states20,27. Recently, such dislocations in three 
dimensions were demonstrated in acoustic10,11, mechanical12 and elec-
tronic systems13,28, in which 1D topologically protected channels formed 
between two dislocations in a 3D system.

In photonics, in which magnetic interactions are prohibitively weak 
at optical frequencies, unorthodox approaches are required to tackle 
the problem of implementing the physics of TIs on electromagnetic 
waves3,4. Recently, the concept of synthetic dimensions has gained 
popularity for exploring effects that are otherwise unapproach-
able owing to limitations in geometry, connectivity and fields in real 
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space14,29,30. In photonics, effects requiring three or more dimensions, 
such as Thouless pumping in high dimensions, Weyl points, disorder in 
high dimensions and other effects, were successfully demonstrated by 
reinterpreting certain parameters of the system’s Hamiltonian as spa-
tial coordinates29,31–33. Alternatively, the use of coupled modal ladders 
was shown to allow exploring the full dynamics in synthetic space34,35. 
Using this modal ladder technique, photonic TIs15–17 were demonstrated 
in hybrid lattices with one spatial axis and one modal axis18,36. So far, 
however, experimental realizations of 3D TIs at optical frequencies 

remain elusive and, more generally, topologically protected edge states 
propagating in three dimensions have never been observed with elec-
tromagnetic waves.

Here we demonstrate a photonic TI in three dimensions that support 
topologically protected edge states propagating in 3D trajectories, by 
virtue of a dislocation. This is also the first realization of a Floquet 3D TI. 
Hence this work paves the way for both the study of high-dimensional 
structures in photonics and the interplay of dislocations with topol-
ogy in general lattice systems. To implement the TI with a dislocation 
in 3D, we use waveguide lattices with two spatial (x, y) and one modal 
dimensions. In this configuration, the third spatial coordinate, z, plays 
the role of time. The evolution of the light is governed by the paraxial 
wave equation:

i ψ x y z k ψ x y z k n x y z ψ x y z n∂ ( , , ) = −1/(2 )∇ ( , , ) − ( Δ ( , , ) ( , , ))/ (1)z 0
2

0 0

in which ψ is the field, k0 is the wave number in vacuum, n0 is the ambi-
ent refractive index and Δn is the local variation in refractive index that 
forms the waveguides in our system. To explain how our waveguide 
structure implements a TI with a dislocation in 3D, we will first describe 
a single 2D layer lacking dislocations. An individual 2D layer consists 
of waveguides in a square lattice with lattice constant a (Fig. 2a). Each 
unit cell in this square lattice includes two waveguides, which rotate 
around their mean transverse coordinates with a spatial frequency Ω 
along the propagation axis z, but with a relative phase of π/2. The lattice 
therefore consists of two sublattices of helical waveguides with a rela-
tive phase difference of π/2. Such a structure was shown to be a 2D 
anomalous Floquet TI37–39.

To introduce the desired extra dimension, we replace each wave-
guide in Fig. 2a with a column of waveguides, differing only in their 
respective effective index of refraction (Fig. 2b,c). This manifests a 
Stark ladder of modes (Fig. 2d) that, in the following, will serve as 
the synthetic dimension. The overall structure in real space is shown 
in Fig. 2e. Crucially, although any column interacts with its neigh-
bouring columns, each mode of each column couples only to a mode 
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Fig. 1 | A weak TI versus a 3D TI with a dislocation in bosonic systems. a, 
Illustration of a cubic lattice with a constant magnetic field along one of its 
axes, which maps to stacking layers of 2D TIs. b, Edge states from the different 
square TIs that can couple to each other and form a gap. c, A weak TI (from a) 
with a dislocation defined by the Burgers vector v. d, In the presence of a screw 
dislocation, all individual edge states in a weak TI merge into edge states that 
wind around the entire 3D system. These edge states no longer map to 
degenerate edge states of a weak TI, but instead give rise to a topologically 
protected 3D TI.
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Fig. 2 | Weak TI with photonic waveguide arrays. a, The anomalous quantum 
Hall effect in a waveguide array as experimentally demonstrated in refs. 38,39. 
Each unit cell has two helical waveguides rotating with a phase difference of π/2 
between them. b,c, Gradually increasing refractive index contrast in each 
column of three waveguides as a function of position along the column, as 
indicated by the graded blue colours. d, Amplitude of the localized modes 
induced by the index gradient in b. e, Lattice constructed by replacing each 

waveguide from a with a three-waveguide column from b,c. The black ellipses 
represent the location of the centre of the columns in the modulation 
trajectory, highlighting that the trajectory is shifted by the dislocation. f, 
Synthetic-space diagram of the lattice in e, highlighting its correspondence to 
a 3D weak TI. The synthetic-space lattice contains layers of 2D TIs for each 
mode. The marked dislocation converts the 3D weak TI to a 3D TI with a 
dislocation.
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with similar wave number kz because of phase matching. Thus, in the 
entire lattice, each mode functions as a 2D layer that is weakly coupled 
to other modes (other 2D layers) owing to the modulation in z (the 
modulation is slow compared with the lattice spacing in the transverse 
plane18). Furthermore, the parameters Ω and a are chosen such that 
the 2D lattice of each mode is in the topological phase and is capable 
of supporting a topological edge state. Consequently, our structure 
constitutes a 3D weak TI in synthetic dimensions (Fig. 2f) that, before 
we introduce the dislocation, maps to stacked layers of 2D TIs. To 
introduce the dislocation, we introduce intermode coupling along 
a line stretching from the edge to the middle of the lattice. For the 
intermode coupling to be as efficient as the intramode coupling, we 
shift the oscillation path and modulate the refractive index, such that 
at the region of interaction the appropriate waveguides will be phase 
matched and in proximity (see Methods).

Unlike ordinary weak 3D TI, the edge states in our structure are topo-
logically protected in all three dimensions. The triad of topological 
invariants associated with our structure is (0, 0, 1), in which the first 
two invariants are associated with the spatial dimension and the last 
with the mode dimension, signifying a non-trivial Rudner number37. 
Because the Burgers vector (of the dislocation) points in the direction 
of the mode ladder and its length is one hopping in the mode ladder, 
the dislocation induces the topological protection of the surface states 
of the 3D TI (see Methods). Accordingly, as shown in Fig. 3a, when our 
waveguide array is devoid of dislocations, the resulting edge states 
are degenerate and remain strictly confined to individual layers in 
synthetic space. This can be viewed in Fig. 3c, in which the emerging 
edge states form degenerate groups of states. In this case, there is no 
topological protection from localization and other disorder-induced 
dispersion effects in the mode direction, and a gap can be formed by 
inducing various perturbations23.

Introducing a dislocation into this structure changes the situation 
profoundly. Figure 3b,d shows how the presence of the dislocation 
affects the structure of the edge states and their respective eigenen-
ergies: the degeneracy is lifted and the resulting dispersive branch 
diagonally bridges the gap between the bulk bands. Figure 3b also 
illustrates the path that an edge-wave packet will take: starting at the 
top layer and moving in a clockwise orientation, an initial excitation will 
descend to the layer below it each time it encounters the dislocation. 
Finally, after the lowest modal layer is reached, the wavepacket ascends 
along the dislocation axis back to the highest mode, thereby complet-
ing a genuine 3D loop. In this case, the edge states are topologically 

protected and thus will not be impaired by interlayer coupling, which 
naturally exists in our system as a result of the modulation.

We experimentally realize this phenomenon by fabricating the 
waveguide structure sketched in Fig. 2e using the femtosecond-laser 
direct-writing technique. To trace the propagation of the light along 
its protected 3D trajectory, we launch a 633-nm-wavelength laser beam 
by using a spatial light modulator40 on the edge of the structure and 
observe the intensity distribution after 15 cm of propagation at the 
output facet. We are aiming to show how the light is propagating in a 
topologically protected fashion in all three dimensions—the two spatial 
dimensions and the synthetic modal dimension. The propagation of 
the edge state in the 2D layers is demonstrated with excitations along 
three segments of the edge-states propagation marked with different 
colours (Fig. 4a–c). Figure 4a–c sketches the 3D spatial-modal structure, 
in which each panel corresponds to a different mode. In this figure, we 
plot the different excitations, in which a filled circle is an excited site, 
the polygons indicate a segment of the propagation and the roman 
numerals next to the filled circles indicate a specific excitation with 
a corresponding output in Fig. 4d–l. Because the modes are tightly 
localized, the position in modal space can be chosen by injecting light 
into one of the three waveguides (coloured circles in Fig. 4d–l). Far 
away from the dislocation, we indeed observe that the excitations 
remain mostly in their initial modes as they propagate along the edge 
and around a corner, as shown in the intensity pictures at the output 
facet of the waveguide array (Fig. 4d–f). Because the modes are local-
ized, we can directly identify the mode from observing the output 
intensity in the corresponding figure. For example, in Fig. 4c, we excite 
a wavepacket on the edge such that it is associated with the third mode, 
by exciting only the lowest waveguide in four columns along the upper 
edge (excitation I in blue). Accordingly, in the corresponding output 
(Fig. 4f), the light at the output couples weakly to other modes (that 
is, it remains at the lower waveguide—mode 3 of each column) and 
continues to propagate along the edge, bypassing the corner. The same 
occurs for modes 1 and 2 in excitations I in pink and orange in Fig. 4a,d 
and Fig. 4b,e, respectively.

It is instructive to view the propagation in modal space near the inter-
section of the dislocation and the edge (Fig. 4g–i), at which we excite 
the light near the dislocation, to observe the evolution in the modal 
dimension. Unlike the excitation presented in Fig. 4d–f, here the light 
is injected into a certain mode and descends to the mode below it on 
passing the dislocation (Fig. 4b,h and Fig. 4c,i). The exception is when 
the beam is launched in the first mode and has no layer to descend 
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Fig. 3 | 3D TI with a dislocation. a, Formation of an edge state of the 
three-mode synthetic-space lattice from Fig. 2e without the dislocation (using 
the experimental parameters in a 5 × 10 lattice). Each mode has a set of 2D edge 
states of its own. Because the layers are uncoupled, each edge state belongs to 
a different layer, highlighting that the structure is a weak 3D TI. b, Edge states of 
the weak 3D TI with a dislocation (the lattice of Fig. 2e), formed by the localized 

coupling between adjacent modes at a specific position. The edge states are 
extended over the entire 3D lattice. c,d, Floquet spatial frequency (kz) for the 
weak TI in a and for the weak TI with a dislocation in b, calculated with our 
experimental parameters. Note that in c, the edge states are degenerate (each 
edge state is in a different layer), whereas in d, there is no degeneracy.
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to—excitation II in Fig. 4a,g. In this case, the dislocation behaves as a 
barrier and the light will flow around it (along the dislocation) without 
scattering, staying in the lowest mode. For example, when launching 
a wavepacket in mode 2 (light localized on the middle waveguide of 
each column), near the dislocation, marked by the orange number 
II in Fig. 4b,h, the light propagates towards the dislocation and then 
descends to mode 1 (light localized on the upper waveguide of each 
column) at the other side of it (Fig. 4a), continuing to propagate on 
the 3D edge. On the other hand, when the light is launched at mode 1 
in the same location (excitation II in pink in Fig. 4a,g), the light simply 
bypasses the dislocation and stays in the same mode—at the upper 
waveguide.

Finally, we launch a light beam along the dislocation. In this case, 
instead of descending from mode 3 to mode 1 (as in Fig. 4g–i), the light 

ascends from mode 1 to mode 3. In Fig. 4a,j, the beam is launched from 
mode 1 towards the dislocation (excitation III). The output in Fig. 4j 
shows that the light is occupying mode 2 and localized near the disloca-
tion, as expected. In Fig. 4k (excitation IV), the beam is launched along 
the dislocation in all modes. In this case, the light ascends to mode 3 
and starts to return to encircling the outer circumference of the lattice. 
Figure 4l (excitation V) shows the rest of the motion, in which the light 
beam returns from the dislocation and starts to encircle the lattice .

In conclusion, our observations unequivocally show that the topo-
logical edge state indeed follows a trajectory in all three dimensions. 
We experimentally investigated the 3D dynamics of edge states in a 
photonic TI in 3D and showed that the introduction of a screw disloca-
tion endows the system with topological protection. This is the first 
observation of a photonic TI in 3D with topologically protected edge 
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represents mode 1 and the lowest waveguide is mode 3. The mode is 
determined according to the position of the light in the column. g–i, Same as  
d–f but for excitations II in the three coloured segments. Here the excitations 
lead to the light descending within the modes on the edge near the dislocation. 
j–l, Intensity images at the output facet for excitations III, IV and V, respectively, 
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states and also the first photonic TI in 3D synthetic space. We expect 
that this work will open the door for exploring higher-dimensional 
topological phases in laboratory experiments.
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Methods

Design
In this section, we explain the process of designing the 3D photonic 
TI. This design relies on the concept of synthetic dimensions14,41 on the 
platform of waveguide arrays18,42.

Our lattice is periodic (except for the dislocation) with lattice dis-
placement vectors:

a a a a= ( , )/2, = (1, 0), = (0, 1) (1)x y x y1 2a d d

in which ax and ay are the lattice constants, d1 and d2 are the primitive 
vectors and a is the displacement vector within the unit cell. Each 
‘site’ in our lattice is a column of three waveguides, equally distant 
from one another, separated by distance ΔS (Extended Data Fig. 1a). 
Our lattice is periodically modulated in the propagation direction z 
such that, in each period, each column exchanges energy with its four 
neighbouring columns in a clockwise (or counterclockwise) manner, 
which—in turn—induces anomalous edge states37–39,43. The trajectory 
of the waveguides in space is helical with an ‘hourglass’ projection on 
the x–y plane. We control the effective coupling between each column 
of waveguides and its neighbours by adjusting the ‘hourglass’ contour  
in the x–y plane while maintaining the periodicity in the propagation 
direction. The size of ΔS is dictated by a balance between the need to 
have both localized modes and confined trajectories to reduce losses.

To obtain the gradient in the refractive index in each column (indi-
cated by the size of the sites in Extended Data Fig. 1a; larger circles repre-
sent deeper waveguides), we use different writing speeds, which result 
in different index contrast for each site (Extended Data Fig. 1b). This 
translates into different coupling coefficients for different waveguides, 
hence it is essential to make sure that each mode is in the topological 
phase, despite the different index contrasts. We do that by tuning the 
spatial oscillation frequency of the waveguides Ω and the other param-
eters. We design the system with tight-binding simulations and follow 
up with paraxial beam-propagation simulations of the entire structure 
(the tight-binding simulations are presented Fig. 3a–d). Specifically, 
along the line of the dislocation, the waveguides are shifted at the point 
of closest proximity (Extended Data Fig. 1c). Near this point, the index is 
varied gradually and adiabatically in both columns in the unit cell, such 
that phase-matching conditions are satisfied (see size of the circles in 
the Extended Data Fig. 1c).

Fabricated structure
We use 15-cm-long samples of fused silica glass (Corning 7980) and 
fabricate the structure using the femtosecond-laser writing method44. 
We use 140-fs pulses created by a Ti:sapphire Coherent Vitara-S laser 
and amplified by a Coherent RegA optical parametric amplifier. Each 
pulse carries energy of 270 nJ at 800 nm, at a 100-kHz repetition rate. 
The focus of the laser beam generated by a 20× objective (0.35 numeri-
cal aperture) is translated in the glass sample using a high-precision 
positioning stage (Aerotech ALS180/130).

Dimensions of the lattice and waveguides trajectory
The lattice dimensions are given by ax = 49.56 μm and ay = 80 μm and 
the spatial frequency Ω is 1.163 cm−1. The lattice is composed of 8 × 8 
unit cells, each with six waveguides arranged in two columns. The dis-
tance between neighbouring waveguides in each column is ΔS = 22 μm. 
The helical ‘hourglass’ trajectory (green dashed line in Extended Data 
Fig. 1a,c) is constructed with the two vectors p1(∼z) and p2(∼z), in which 
z∼ is a unitless z-coordinate that changes from 0 to 1. These functions 
correspond to the line and curve of the helical ‘hourglass’ shape, respec-
tively:

z x z z( ) = ± /2 ⋅ sign( ) ⋅ (2)x p
z

1
(0.8−0.3 )p ∼ ∼ ∼ ∼

y= /2 (3)y p1 ∓p

∼ ∼ ∼p z x z z( ) = ± (1/2 − 0.4 ⋅ |cos(π(sign( ) ⋅ | |)/2)|) (4)x p2

p z y z z z( ) = ± /2(sign( ) ⋅ + (1 − )) (5)
y p

z
2

(2/5 ) 1/31/3
∣ ∣ ∣ ∣ ∣∼ ∼ ∼ ∼∣∼

in which equations (2)–(5) present the components of the vectors p1 and p2.
In our case, the parameters that dictate the dimensions of the 

‘hourglass’ are xp = 9.69 μm and yp = 40 μm and the exponential terms 
multiplying |z| control the transverse derivative ∇⊥. Recalling that z is 
equivalent to time in the corresponding Schrödinger equation, these 
terms represent the velocity in the x–y plane. This velocity should both 
induce proper coupling so that the structure is in the topological phase 
and, at the same time, it should also be low enough to reduce radiation 
losses (coupling to unbound waves outside the structure), such that the 
edge states should still be able to show considerable evolution during 
their propagation in the finite structure.

Numerical analysis of intermodal coupling
Unlike 3D ‘strong TIs’1,45–49, weak TIs in systems that obey time-reversal 
symmetry suffer from the possibility that their edge states will gap in the 
presence of interlayer coupling and disorder. Similarly, when our structure 
is absent of the dislocation, interlayer coupling or disorder may disrupt  
the transport of the edge states. However, on introducing the disloca-
tion to the system, robust edge states are formed and show topological 
protection.

To demonstrate this phenomenon, we numerically analyse the effect 
of intermodal coupling between different modes of the three-waveguide 
structure (each individual waveguide has a single guided mode) in the 
structure used in our experiments on the photonic TI in 3D.

We find that this intermodal coupling is reduced because of the 
slightly different refractive index contrast defining different wave-
guides, which results in large phase mismatch between the modes. 
Specifically, our structure, see Fig. 2b–d, shows that the refractive 
index contrast defining the three waveguides is around (5, 7, 9) × 10−4 
on a substrate of n = 1.45, which is manifested in a ‘coherence length’ 
(propagation distance after which the phase mismatch is π) of about 
1.5 mm. Essentially, had we used straight waveguides (instead of the 
helical waveguides), the intermodal coupling would have been zero. 
However, because our waveguides are helical, the intermodal coupling 
is not zero, in fact, it is not negligible. Because the synthetic modes are 
of the static lattice, the helicity of the waveguides (acting as modu-
lation along z) introduces coupling between them. Fortunately, the 
topological design is meant to cope with such coupling and the edge 
states are robust to it. Thus, although the coupling can introduce some 
intermodal transport of the light propagating in the 3D structure, the 
unidirectional flow on the edge is unaffected. In fact, the topological 
protection only truly works because of the dislocation, which is neces-
sary for the topological protection of the edge states on the surface 
of the 3D structure in synthetic space19,27,50,51. Beyond the topological 
analysis described in this Methods section, an exact mechanism in 
which the protection is lost if the dislocation is absent from our sys-
tem is addressed in Fig. 1 and in the following discussion. As shown in  
Figs. 1 and  3, without dislocation and without intermodal coupling, 
the topological surface states that encircle the bulk are composed 
of 1D degenerate edge states that are attributed to each 2D layer. 
Thus, although the spectrum of the topological surface states with 
the dislocation is linearly ascending (Fig. 3d) with the state number, 
the spectrum without the dislocation exhibits a collection of groups 
of degenerate edge states (Fig. 3c). Extended Data Figure 2 shows the 
spectrum and the typical edge-states occupancy on the lattice when 
introducing interlayer coupling. In Extended Fig. 2a–d, we introduce 



moderate interlayer coupling that is 20% of the coupling between lat-
tice sites in both cases of lattices without dislocation (Extended Data 
Fig. 2a,c) and with dislocation (Extended Data Fig. 2b,d). Extended 
Data Figure 2e–h shows the spectrum and edge-states occupancy for 
strong interlayer coupling of 60%. In the absence of dislocation, the 
resulting topological surface states are completely trivial in the mode 
dimension, hence the coupling introduces trivial dispersion between 
the 1D edge states that impairs the surface states.

The consequence in the trivial case is having modes that are not 
evenly distributed on the entire surface in the synthetic (modal) dimen-
sion, which obstruct the propagation on the entire surface. In fact, 
the structure of the spectrum in the modal space is sensitive and can 
be altered strongly and unexpectedly by having different interlayer 
couplings, and is also prone to Anderson localization. These prop-
erties are detrimental when using topological edge states for appli-
cations such as TI lasers5,52–55 and topologically protected quantum 
states6–8,56,57, which require fixed phase relation, fully extended states 
and smooth linear dispersion. Furthermore, the protection affects a 
plethora of 3D-related relevant effects, such as that of non-linearities58 
and localization in 3D (ref. 59). The situation is even more pronounced 
when tailored (non-random) perturbations are introduced23; these 
can open the (trivial) gap and cause localization along the edges in the 
spatial dimension, thereby breaking the protection of the edge states.

The situation is completely different when a dislocation attached to 
the edge is present in the structure. In this case, there is true topological 
protection and the topological surface states remain equally spaced in 
the mode space even for strong interlayer coupling and in the presence 
of disorder. This happens because the degeneracy of different layers 
is broken by a dislocation that respects the phase differences required 
to close a loop. Hence, it is the dislocation that makes the topological 
surface states ideal, with a smooth linear spectrum that is not prone to 
localization along the modal dimension in addition to the topological 
protection in the spatial plane.

Analytic and topological analysis
In this section, we give an analytic description of our experimental 
photonic TI in three dimensions. We first describe the 2D photonic 
TI occurring separately for each mode of the column of waveguides. 
Assuming no dislocation, each mode couples mostly to the same mode 
in the columns of waveguides that are in its proximity. Thus, for each 
mode, there is a 2D lattice of waveguides that is a bipartite lattice with 
‘driving’ that is similar, but not the same, as described in refs. 37,38,60.  
A driving cycle can be divided into four parts, in which in each part each 
column interacts by proximity with one of its four neighbouring col-
umns in a clockwise order. Thus, the 2D Hamiltonian for each mode is:

∑H k z
c z

c z
( , ) = −

0 ( )e

( )e 0
(6)m j

j
m k

j
m k

2D
=1

4
i
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in which the vectors {bj} are given by b1 = (a, 0), b2 = (0, a), b3 = −b1, 
b4 = −b2, and a is the lattice constant. cj

m(z) are the coupling coefficients 
of mode m, which are assumed for simplicity to be non-zero only at a 
specific z = {0, Z/4, Z/2, 3Z/4} in each period, with Z being the period 
length. Because the Hamiltonian is periodic in z, which plays the role of 
time, we use the Floquet theorem to find the quasi-momentum values kz 
that are analogous to quasi-energy values in a time-dependent system. 
The evolution in z is given by

∫ψ z P H ζ ζ ψ U z ψ( ) = exp[ − i ( )d ] (0) = ( ) (0) (7)
z

0

in which ψ is the wavefunction of the light beam and P is a z-ordering 
operator. The effective Hamiltonian Heff is obtained by the z evolution 
U over a period given by equation (7). The corresponding effective 

Hamiltonian describes a 2D TI with chiral edge states characterized 
by the winding number37:

∫W U z k k U U U U U U[ ] =
1

8π
d d d Tr( ∂ [ ∂ , ∂ ]) (8)x y z k k2

−1 −1 −1
x y

We judicially design the parameters cj
m(z) (see Methods) such that 

the winding number is 1 for each mode. Furthermore, the edge states 
predicted by equation (8) appear only in the case that the infinite 
system described by equation (6) is truncated such that it becomes 
finite. Next, we construct our 3D Hamiltonian by taking into account 
the several modes m that exist in our system and describe it in terms 
of equation (6) as follows:

∑H H C= + (9)m m
3D 2D

in which C is the matrix that represents the intermodal coupling 
that arises from the helical motion of the columns of waveguides, 
and it depends on the x–y lattice site, mode and z. In the ideal case, 
when the modes are well separated in kz and the motion is adiabatic, 
C can be neglected. H3D manifests stacking of 2D photonic TIs. The 
entire system is gapped if C is small enough and does not close the 
bandgap. In this case, the edge states experience trivial dispersion 
on the surfaces of the 3D space constructed from two spatial dimen-
sions, the location of the column in xy and the mode dimension m. 
This structure can be described by a triad of topological indices for 
the three directions:

n W k n W k n W km= ( ), = ( ), = ( ) (10)ym
x

xm
y

xy
1 2 3

in which in our case only n3 is non-trivial and n1 = n2 = 0. As mentioned 
in the previous part of the Methods, the surface state of the struc-
ture experiences trivial dispersion that can form a gap and deform 
(along the mode axis) because of the intermodal coupling C. To make  
the surface state topologically protected and extended to cover 
the entire surface of the 3D structure, we introduce a dislocation in  
the middle of the structure such that the dislocation is connected to the 
surface state25,27,50,51. Taking B to be the Burgers vector of the dislocation, 
the 3D TI with indices n = (n1, n2, n3) has n⋅B topologically protected 
modes along the dislocation. These protected modes are the same as 
those on the surface, as the dislocation is connected to the surface. In 
our system, the Burgers vector of the dislocation is given by B = (0, 0, 1), 
because it is stretched along one site in the mode dimension. Thus, 
our system has n⋅B = 1 topological surface state (one dispersion line 
crossing the bandgap).

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | Unit cell of the 3D photonic TI. a, The dashed green line 
is the projection of the trajectory of the two columns of waveguides (blue and 
red) on the x–y plane. The directions of the helical motion follow the green 
arrowheads. The two columns are presented here at their closest proximity to 
one another along the trajectory. The size of each waveguide indicates the 
different ‘depth’ of refractive index (the largest circle is the deepest 

waveguide). b, Coupling between adjacent waveguides as a function of their x 
separation, obtained by different speeds of the laser-writing process, which 
translates into different refractive index contrast. c, Same as a but at the 
dislocation, at which the shift creates coupling between localized modes of 
different 2D layers.
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Extended Data Fig. 2 | Spectrum of the topological surface states and their 
typical structure in the presence of intermodal coupling. a, The amplitude 
as a function of location and mode in the 3D synthetic space without 
dislocation for moderate intermodal coupling of 20% of the spatial coupling.  

b, Same as a but for a lattice with a dislocation. c,d, Floquet spectrum as a 
function of the state number of a and b, respectively. e–h, Same as a–d but  
for strong intermodal coupling of 60% of the spatial coupling.
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