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O P T I C S

Observation of Anderson localization beyond the 
spectrum of the disorder
Alex Dikopoltsev1†, Sebastian Weidemann2†, Mark Kremer2†, Andrea Steinfurth2,  
Hanan Herzig Sheinfux1,3, Alexander Szameit2*, Mordechai Segev1,4

Anderson localization predicts that transport in one-dimensional uncorrelated disordered systems comes to a 
complete halt, experiencing no transport whatsoever. However, in reality, a disordered physical system is always 
correlated because it must have a finite spectrum. Common wisdom in the field states that localization is dominant 
only for wave packets whose spectral extent resides within the region of the wave number span of the disorder. 
Here, we show experimentally that Anderson localization can occur and even be dominant for wave packets residing 
entirely outside the spectral extent of the disorder. We study the evolution of wave packets in synthetic photonic 
lattices containing bandwidth-limited (correlated) disorder and observe strong localization for wave packets 
centered at twice the mean wave number of the disorder spectral extent and at low wave numbers, both far be-
yond the spectrum of the disorder. Our results shed light on fundamental aspects of disordered systems and offer 
avenues for using spectrally shaped disorder for controlling transport.

INTRODUCTION
It has been known for two millennia that particles experience 
stochastic motion while falling through voids (1), which was later 
understood as diffusive motion due to random walk. After the 
discovery of the electron, P. Drude (2) showed that the random 
walk of electrons is at the heart of electrical conduction, giving rise 
to Ohm’s law. It came as a surprise when, half a century later, 
P. W. Anderson (3) argued that the wave nature of electrons plays a 
crucial role in their dynamics in random media and predicted that 
interference effects can bring all transport to a complete halt. This 
phenomenon of Anderson localization requires the potential to be 
stationary and the absence of interactions. However, electrons in-
evitably interact with one another; hence, Anderson localization of 
electrons in solids remained elusive. Nevertheless, almost four decades 
ago, it was realized that localization is a universal wave phenome-
non (4–7) and since then was demonstrated in a variety of systems, 
ranging from light scattering in dielectric media (8–10), microwaves 
(11, 12), and disordered photonic lattices (13–15) to sound waves (16) 
and cold atoms (17, 18). The study of waves in disordered media and 
localization is an extremely rich field, generating unexpected pre-
viously unknown phenomena such as Levy flight (19), hyper-transport 
(20), localization by deep subwavelength disorder (21), and localiza-
tion phenomena in unusual settings such as amorphous media (22, 23), 
Moire lattices (24), and non-Hermitian systems (25).

The propagation of waves in random media is characterized 
by localized eigenstates with exponentially decaying tails such that 
their ensemble average, taken over multiple realizations of the 
disorder, yields a measure called the localization length, lloc, equal 
to the inverse of the decay rate of the ensemble-averaged wave func-
tion. Using a universal model, it was predicted that in infinite 
one-dimensional (1D) or 2D systems with uncorrelated disorder, all 

eigenstates become exponentially localized (26, 27). The outcome of 
the process, whether the system supports transport or not, is different 
for finite systems, where some eigenstates have lloc larger than the 
system size L. These modes can facilitate transport in finite systems 
and are typically termed extended (28, 29), whereas the modes with 
lloc substantially smaller than L are considered localized and do not 
support transport. Moreover, lloc depends on the spectrum of the 
disorder, and therefore, spatially correlated systems can display 
spectrally dependent transport. Essentially, the spectrum of the 
disorder in a physical system always has a finite extent, determined 
by the smallest length scale in the system. This implies that any 
disorder in physical systems is always correlated in space (through 
simple Fourier relations). The spectral extent of the disorder sets 
bounds on lloc, which directly depends on the spatial correlations of 
the disorder. For example, it has been shown that correlations in 1D 
systems can induce a mobility edge (29). It is therefore instructive to 
consider localization from a spectral perspective.

Consider a 1D system with a disordered potential V(x). This 
system may have a real dimension x like when light propagates in a 
1D lattice of waveguides (30, 31) or a synthetic dimension, where 
the dynamics occurs in the modal space (32) or time-bin–encoded 
lattices (33). The spatial power spectrum of the disorder S(k) ∝ 
∣FT{V(x)}∣2 is the Fourier transform (FT) of the two-point correla-
tion function of the potential, CV(x, x′), and it determines the range 
of possible scattering processes allowed by the momentum 
exchanges between the waves and the disordered potential (Fig. 1A) 
(28, 34, 35). One may think of the localization phenomenon as 
the outcome of multiple scattering processes of waves from the 
disordered potential, where the disorder is constructed as an ensemble 
of random gratings whose wave numbers define S(k)  (36). Every 
spectral component of the disorder behaves as a diffraction grating 
that scatters one plane wave component into another, which is 
essentially a transition between different wave vectors. The primary 
scattering process of a plane wave is mediated by only a single 
spectral component of the disorder, similar to a Bragg reflection off 
a grating with a spectral component k. In this picture, multiple 
transitions of these first-order scattering events from a collection 
of gratings with random amplitudes and phases (constituting the 
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disordered system) may bring transport to a halt, giving rise to 
Anderson localization (36).

Accordingly, for localization mediated by first-order transitions, 
the localization length lloc is inversely proportional to the mean 
amplitude of the power spectrum of the disorder S(k) (37). Following 
this reasoning, it seemed, for some time, that localization in systems 
with correlated disorder can occur only for wave packets whose 
spectrum is fully contained within the spectral extent of the 
disorder (12, 17, 28, 38). However, it was later found that localization 
can also be induced by two (or more) consecutive contributions of 
the potential (37, 39, 40), which may lead to localization outside 
the spectral extent of S(k). We henceforth refer to the scattering 
processes involving intermediate wave numbers outside the spec-
trum of the disorder as “virtual,” in analogy (explained later) to 
atomic transitions through a virtual energy level. In general, these 
second-order processes are significantly weaker than first-order 
transitions. Consequently, thus far, in all experiments showing 
Anderson localization in all fields of science, the main contribution 
came from “first-order” transitions. Therefore, experimentally, 
Anderson localization was always limited to the spectral reach of 
the disorder (8, 10–14, 16–18).

Here, we observe Anderson localization for wave packets residing 
entirely outside the spectral extent of the disorder, mitigated solely 
by virtual transitions. Our experiments are carried out in synthetic 
photonic lattices containing bandwidth-limited disorder and demon-
strate how virtual (two-step) transitions lead to Anderson localiza-
tion around twice the mean wave number of the spectral extent of 
the disorder. In addition, we predict and observe universal localiza-
tion at low wave numbers, implying that any low–wave number wave 
packet can strongly localize even when the disorder is strictly at 
high wave numbers. The underlying mechanism requires only for 
the spectrum of the disorder to be symmetric, irrespective of its 

spectral shape. The symmetric transitions, which are natural to any 
Hermitian system, induce scattering to virtual states and back and 
eventually lead to very short localization lengths for low wave 
number wave packets.

RESULTS
We begin by explaining the underlying concepts using the trans-
verse localization scheme (7, 13) as a convenient example to frame 
the discussion. This scheme exploits the mathematical equivalence 
between the paraxial wave equation for light and the Schrödinger 
equation (see the first section of the Supplementary Materials). This 
equivalence has been used to experimentally observe a plethora of 
wave phenomena, such as Floquet topological insulators (41), bound 
states in the continuum (42), topological Anderson insulators (43), 
and Anderson localization in a lattice containing disorder (13). The 
paraxial wave equation for the slowly varying amplitude of the light 
propagating in a 2D dielectric medium is

	​ i ​ ∂ (x, z) ─ ∂ z  ​  =  − ​  1 ─ 2 ​​ 0​​ ​ ​ 
​∂​​ 2​ ─ 

∂ ​x​​ 2​
 ​ (x, z ) − ​ ​​ 0​​ ─ ​n​ 0​​ ​ n(x ) (x, z)​	 (1)

where 0 = n0/c is the wave number, z is the propagation direction 
(analogous to time in the Schrödinger equation), x is the transverse 
coordinate, n0 is the ambient refractive index, and n(x) is the local 
perturbation on n0 acting as a random potential. We are specifically 
interested in n that does not depend on the evolution coordinate 
z and, hence, can cause localization (13). From the linearity of the 
equations, n(x) can be written as a superposition of periodic 
functions, such as sin(kx + k) (see section S2 in the Supplementary 
Materials), where k is the spatial frequency, and k is the phase, each 
acting as a grating component causing the spectral components of 
(x, z) to experience diffraction off this grating (Fig. 1A). In this 
system, wave functions (x, z), composed of wave components with 
transverse wave numbers within the spectral extent of the disorder, can 
become localized after some finite propagation distance (7, 13, 14, 31). 
The evolution of a wave packet in k-space is defined by the spatial 
FT of Eq. 1

	​ i ​ ∂​ ~ ​(k, z) ─ ∂ z  ​  =   ​  1 ─ 2 ​​ 0​​ ​ ​k​​ 2​​ ~ ​(k, z ) − ​ ​​ 0​​ ─ ​n​ 0​​ ​∫ ​ ~ n ​(k′) ​ ~ ​(k − k′,  z ) dk′​	 (2)

where ​​ ~ ​(k, z)​ and ​​ ~ n ​(k)​ are the transverse FT of (x, z) and n(x), 
respectively, and k is the transverse wave number (where k ≪ 0). 
We can treat plane waves as eigenstates of a spatially homogeneous 
system, with the disorder coupling between them by convolutions 
(right hand side of Eq. 2) with components in the spectrum of 
the disorder. These transitions in momentum space are naturally 
described by coupled-mode formalism (44). The coupling between 
two different plane waves can occur if the potential contains a suit-
able disorder component that can momentum-match between the 
incident and scattered waves (Fig. 1A). Using this coupled-mode 
formalism is fully equivalent to solving Eq. 1 in real space, and it is 
regularly used in analyzing wave phenomena. It relies on phase-
matched interactions, which, in the analogous Schrödinger equa-
tion, represent transitions that conserve energy.

Consider first a disordered potential n(x) such that its spectrum 
​​ ~ n ​(k)​ consists of two regions in momentum space, with random 
amplitude and phase (Fig. 1B). Let us assume that spectral regions 
of the disorder are nonzero only in a small region k around wave 
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Fig. 1. Localization through spectrally dependent scattering and transitions. 
(A) Localization via first-order scattering: waves with different wave numbers k 
(different colors) undergo scattering events that depend on the spectral decompo-
sition of the potential. (B) The bandwidth-limited spectrum of correlated disorder, 
​​ ~ n ​(k)​, represents gratings with random amplitude and phase. The nonzero 
components lie in the intervals [ ±k0 − k/2, ± k0 +k/2]. (C) Scattering processes 
mediated by a single spectral component k0 [from ​​ ~ n ​(k)​], with the dispersion curve 
(k) = k2/2 describing the phase mismatch. A first-order phase-matched transition: 
A wave of wave number −k0/2 scatters efficiently to k0/2 because (−k0/2) = 
(k0/2). A second-order phase-matched transition takes place when a wave scatters 
from −k0 to 0 and subsequently to k0. The intermediate state at k = 0 is called virtual 
because it is phase mismatched with the initial wave ( − k0) unequal to (0). With 
the grating component at ±k0, there is no phase-matched scattering for a wave 
that starts with −0.75k0.
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numbers ±k0. When n(x) is real (as in our optical experiments, 
where the photonic system is Hermitian), ​∣​ ~ n ​(k ) ∣​ is symmetric. 
For a plane wave incident upon this potential with transverse wave 
number kin ≈ −k0/2, there are many possible phase-matched first-
order transitions to the spectral region around k0/2, obeying the 
paraxial dispersion relation (kin) = (k0/2), where (k) = 0 −k2/20 
is the wave vector component in z (see the first section of the Sup-
plementary Materials). This plane wave undergoes many sequential 
first-order transitions, from positive to negative wave numbers and 
back, leading to the buildup of Anderson localization (36). In this 
process, the spectrum of the localized wave packet reshapes but 
remains confined around ±k0/2.

However, our primary interest here are plane waves for which 
no phase-matched first-order transitions exist, and hence, only 
second-order transitions can contribute to localization. For an inci-
dent wave with transverse wave number kin ≈ − k0, the first-order 
transitions in the bandwidth-limited potential of Fig. 1B, namely, 
​− ​k​ 0 ​​ ​  −​k​ 0​​   ⎯ → ​ − 2 ​k​ 0​​​ and ​− ​k​ 0 ​​ ​  +​k​ 0​​   ⎯ → ​ 0,​ are not phase matched. However, 
the two-step transition ​− ​k​ 0 ​​ ​  +​k​ 0​​   ⎯ → ​ 0  ​  +​k​ 0​​   ⎯ → ​ ​k​ 0​​​ is in fact phase matched. 
We call the sequential transition virtual because energy does not 
accumulate in the intermediate state at k = 0 (Fig. 1C), in similarity 
to the role played by virtual levels in atomic systems where an elec-
tron can absorb two photons for a single atomic transition. Another 
possible virtual transition is from kin ≈ 0 to k0 and back to k = 0, 
which is analogous to Kerr nonlinearity, where an electron is excited 
to a virtual level and back, while changing the refractive index in the 
process. These transitions require two scattering events mediated 
by two spectral components (two random gratings), which may 
have the same or different transverse wave numbers, as long as both 
gratings have nonzero amplitudes, i.e., they are both contained 
within the spectral extent of the correlated disorder (40).

To study the process of localization driven by spectrally shaped 
disorder, we investigate the evolution of wave packets with different 
initial transverse wave numbers kin ∈ [0,1.25k0] in our system with 
bandwidth-limited disorder centered on k0 with bandwidth 0.25k0 
(Fig. 2). The creation of the bandwidth-limited disorder is ex-
plained in the second section of the Supplementary Materials. To 
describe the physics of random processes, statistical tools are re-
quired, and hence, meaningful results are obtained from ensemble 
averaging over multiple realizations of the disorder (13, 31) (see the 
third section in the Supplementary Materials). Figure 2A shows 
the propagation of the ensemble-averaged wave packets in a system 
with bandwidth-limited disorder. At kin = 0, the wave packet evolves 
without expanding, due to second-order processes. In the absence 
of disorder (i.e., in a homogeneous medium), the same input wave 
packet expands in width by ~5 times for the same propagation 
distance. Thus, the absence of diffraction broadening due to disorder 
is a clear and direct evidence for localization by two-step processes. 
At kin = 0.25k0, the wave packet is within the spectral extent of the 
strong disorder; hence, the wave packet shows feature of localiza-
tion due to a bandwidth increase. It is a direct result of a strong 
disorder level, which increases the spectral extent of the localized 
eigenmodes around 0.5k0 beyond the range defined solely by the 
shape of the spectrum (see detailed explanation on that phenomenon 
in the fourth section of the Supplementary Materials). For kin = 
k0/2, multiple first-order transitions are phase matched; hence, the 
wave packet is localized: Its expansion stops, and it propagates on 
axis despite its initial momentum. This case is the ordinary outcome 
of Anderson localization. On the other hand, for kin = 0.83k0, the 

transitions are phase mismatched, so the wave packet expands as if 
it is unaffected by the disorder and propagates at its initial trajectory. 
When kin = k0, we again find evolution in the regime of second-
order localization. Initially, the wave packet expands, but after some 
distance, the expansion stops, and the propagation remains on axis. 
The lack of expansion and the on-axis propagation show that this 
case is again localization by two-step processes. For kin = 1.25k0, the 
transitions are again phase mismatched, so the wave packet is 
(again) unaffected by the disorder: It expands and continues on its 
initial trajectory.

The most important signature of a localized wave packet is the 
asymptotic halt of its expansion. To quantify the width of the wave 
packets and compare the expansion for different angles, we use the 
effective width, weff (13, 41), which is the width of the ensemble-averaged 
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Fig. 2. Simulated first-order and second-order localization under correlated 
disorder. (A) Ensemble-averaged propagation taken over 100 disorder realizations, 
governed by Eq. 1, in an idealized system with bandwidth-limited disorder, all 
contained within a k region centered on ±k0. The input beam is a Gaussian wave 
packet launched at chosen initial momenta corresponding to different wave number 
(kin) values. At kin = 0, the natural diffraction broadening is arrested due to a second-
order process. At kin = 0.25k0, the wave packet is within the extended spectral 
extent of the strong correlated disorder and therefore localizes. For kin = k0/2, localiza-
tion occurs due to phase-matched first-order transitions. On the other hand, for kin = 
0.83k0 and kin = 1.25k0, all transitions are phase mismatched, so the wave packet 
evolves almost unaffected by the disorder. When kin = k0, second-order processes 
induce localization. Initially, the wave packet expands, but after some distance, the 
expansion stops. We use normalized units for x and z (with the initial beam width 
w0 and the Rayleigh length z0, respectively). (B) Effective width of wave packets 
after propagation. The dip in the effective width indicating localization occurs in 
three regions: first-order localization (blue) and localization due to second-order 
transitions (red and orange). Notice three local minima in the effective widths at kin = 
0, k0/2, and k0 (see Supplementary Materials for parameters). a.u., arbitrary units.
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wave function of the intensity, with the ensemble taken over many 
realizations of the disorder of the same characteristics (power 
spectrum, average amplitude, etc.). For a 1D exponentially decaying 
function, weff is linearly proportional to its localization length lloc. 
Figure 2B shows the effective width weff for several initial momenta. 
We mark the regions where weff is reduced by the scattering process 
(indicative for localization) and divide them into two types: (i) a 
region driven by first-order transitions (blue), where we find a local 
minimum around kin = k0/2, and (ii) regions where only second-order 
processes dominate, where we find local minima in weff at kin = 0 
(red) and k0 (orange). The low effective width at kin = k0 is a direct 
result of strictly second-order localization processes. The very low 
weff at low wave numbers (kin~0) implies that, although second-order 
processes are generally weak, wave packets with low group velocities 
can be localized, with localization as strong as first-order localiza-
tion. These simulations indicate that wave packets with wave number 
k0, which are outside of the immediate influence zone of the poten-
tial, can indeed become localized. Together, as shown in Fig.  2, 
these multiple scattering processes induce Anderson localization by 
virtual transitions, with the localized wave packets residing com-
pletely outside the spectral extent of the disorder, specifically at 
twice the first-order localization wave numbers and also at very low 
wave numbers at the vicinity of zero.

To experimentally demonstrate Anderson localization strictly 
by second-order scattering, we use a synthetic 1D photonic lattice 
encoded in a time-bin system based on the propagation of light 
in coupled optical fiber loops (33, 46, 47). The implementation is 
based on the idea that the dynamics in the 1 + 1D double-discrete 
lattice (Fig. 3A), which is similar to the quantum walk of a single 
particle, describes the propagation of light pulses in coupled optical 
fiber loops (Fig. 3C). The corresponding mapping between the 
propagation of light and the evolution in the synthetic lattice is 
explained in the fifth section of the Supplementary Materials. The 
precisely tunable optical system makes it possible to create a multi-
tude of photonic lattices, especially lattices with correlated disorder. 
This experimental setting allows to measure the squared modulus 
of the wave function at all steps of the evolution, such that one can 
obtain the full dynamics. These fiber-loop photonic lattices have 
proven to be powerful for experiments on numerous phenomena, 
such as Bloch oscillations and solitons in PT-symmetric systems 
(46–49), topological lattices (50), and even topological funneling 
of light (51).

The recursive equations describing the dynamics in our synthetic 
lattice are

	​​
​u​n​ m+1​  = ​  1 ─ 

​√ 
_

 2 ​
 ​(​u​n+1​ m  ​ + i ​v​n+1​ m  ​ ) ​e​​ i​φ​ u​​(n,m)​

​      
​v​n​ m+1​  = ​  1 ─ 

​√ 
_

 2 ​
 ​(i ​u​n−1​ m  ​ + ​v​n−1​ m  ​) 

  ​​	 (3)

where ​​u​n​ m​, ​v​n​ m​​ are the complex amplitudes of the pulses, corresponding 
to the wave function, at position (time-bin) n and time step m, in 
the short and long fiber loop, respectively. The parameters of this 
time-bin system can be adjusted to correspond to the localization 
phenomena described by Eq. 1. Specifically, in our system, we con-
struct the real propagation-invariant potential, n(x), by introducing 
phase modulation φu = φu(n, m) in the u loop (33). Hence, through 
the phase modulation φu, we shape the disorder at will and control 
its spectral properties. To evaluate the ensemble average character-
istics, it is sufficient to consider the intensity distribution in one of 

the optical fiber loops. The reason for this is that the differences in 
the intensity distributions between the short and the long loop are 
only on local scales, which vanish in the averaging process. The 
experimental data and the corresponding simulations are therefore 
based on the pulse intensities ​​∣​u​n​ m​∣​​ 2​​ of the shorter loop.

To evaluate the first- and second-order scattering processes, we 
derive the dispersion relation for the disorder-free system. For a 
uniform time-independent potential, φu(n, m) = φ0 ∈ ℝ, we introduce 
the Floquet-Bloch ansatz to deduce the dispersion relation 2 cos () = 
cos (Q) − 1, with solutions of the form ​​u​n​ m​  =  U(Q, ) ​e​​ iQn/2​ ​e​​ −im/2​​ and 
​​v​n​ m​  =  V(Q, ) ​e​​ iQn/2​ ​e​​ −im/2​​ (Fig. 3B). Each plane wave solution is 
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Fig. 3. Synthetic photonic lattices and experimental setup. (A) Double-discrete 
synthetic photonic lattice consisting of a mesh of beam splitters and its equivalent 
1D chain of sites. Phase modulation φu of spatially random distribution (blue circles 
with strength varying in n) corresponds to a disordered on-site potential of the 
chain. (B) Dispersion relation of the disorder-free homogeneous photonic lattice, 
where Q corresponds to the quasi-momentum and  to the quasi-energy (propagation 
constant), respectively. (C) Experimental setup (simplified) consisting of two optical 
fiber loops, one shorter than the other, coupled by a beam splitter (BS). A laser 
pulse is injected into the loops. The pulse propagation in the loops can be mapped 
onto a 1 + 1D double-discrete lattice shown in (A). The pulse intensities are measured 
with a photodetector (PD). A phase modulator (PM) shapes the real part of the 
lattice potential. (D) Experimental data showing the creation of a Gaussian wave 
packet to excite Q = 0.8 in the upper band of the dispersion relation. Starting from 
a single pulse, a discrete diffraction pattern is formed and manipulated to reach a 
Gaussian shape with a defined momentum (time steps m = 1…155). From m = 156, 
the Gaussian beam of width nw =30 with a mean momentum of Q = 0.8 propagates 
in the homogeneous (disorder-free) Hermitian lattice.
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characterized by a Bloch momentum Q ∈ [−, ] and a propaga-
tion constant  ∈ [−, ] (corresponding to k and , respectively, 
in Eqs. 1 and 2). Typically, in this system, wave packets in the 
vicinity of Q = ± have the highest group velocity but the lowest 
group velocity dispersion, whereas wave packets with the lowest 
momentum Q ≈ 0 experience low group velocity but the highest 
dispersion.

Since we are interested here in studying the propagation of wave 
packets in different spectral regions (corresponding to Fig. 2), we 
excite a spectrally narrow region by creating a spatially broad 
Gaussian beam ​​​u​ n​​  =  exp​(​​−​n​​ 2​ / 2 ​n​w​ 2 ​​)​​exp​(​​−iQn / 2​)​​​​, with nw = 30, 
launched with a controlled central momentum Q. The generation of 
the Gaussian beam relies on a non-Hermitian diffusion process 
(52), allowing to maintain an extremely stable phase relation between 
the optical pulses (see details in the fifth section of the Supplemen-
tary Materials). The experimental results (Fig. 3D) show the se-
quential buildup of the Gaussian beam (time steps m ≤ 155) and, 
subsequently, its free propagation in a homogeneous system (φu = 0) 

at time steps m > 155, for the specific example of Q = 0.8. The 
propagation of this synthetically constructed Gaussian wave packet 
displays the width expansion and tilt angle (Fig. 3D), which, in the 
absence of any disorder, coincide with the diffraction broadening 
akin to propagation in homogeneous linear media.

To study the effects of disorder in our synthetic lattice, it is 
essential to explain that the phase the pulses accumulate, φu, is analo-
gous to the phase accumulated by passing through a potential 
term in Schrödinger’s equation. For example, a phase φu(n, m) = 
sin(Q0n) is equivalent to a periodic single-frequency (sinusoidal) 
potential that scatters a plane wave with wave number Q to a plane 
wave with Q + Q0. As in almost every scattering process, here too, 
first-order transitions dominate the process, but in principle, 
two-step transitions, e.g., ​− ​Q​ 0​​ ​  +​Q​ 0​​   ⎯ → ​ 0​ followed by a second transition 
​0 ​  +​Q​ 0​​   ⎯ → ​ ​Q​ 0​​​, are also possible because the overall transition conserves 
the quasi-energy  (analogous to the longitudinal momentum in 
Eqs. 1 and 2). The efficiency of these second-order transitions is, 
here too, usually low because Q = 0 is a virtual level. This makes it 
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Fig. 4. Experimental observation of localization outside the spectral extent of the disorder. (A) Simulated and experimentally measured ensemble-averaged propagation, 
taken over 100 disorder realizations with ADS = 0.4, for a Gaussian wave packet with width nw = 50 launched at various initial momenta Qin. The green lines mark the beam 
trajectory in the absence of disorder. At Qin = 0, the wave packet evolves without expanding due to second-order processes combined with the weak diffraction broadening. 
At Qin = 0.25Q0, the wave packet is within the spectral extent of the disorder and therefore localizes. For Qin = 0.5Q0 , multiple first-order transitions are phase matched; 
hence, the wave packet localizes: It evolves to on-axis propagation and stops expanding. For Qin = 0.75Q0, the transitions are energy mismatched, so the wave packet 
continues on its initial trajectory and expands, as if it was unaffected by the disorder. At Qin = Q0, we find evolution in the regime of strictly second-order localization 
processes. Initially, the wave packet expands, but after some distance, the expansion stops, and the beam propagates on axis. For Qin = 1.2Q0, the transitions are again 
phase mismatched, so the wave packet is unaffected by the disorder. (B) Effective width versus initial quasi-momentum Q at the end of the propagation, showing local 
minima exactly in the first-order (blue) and second-order localization (red and orange) regions. The measured values [circles with error bars (SD)] qualitatively agree with 
the theoretical calculation (black). The blue curve stands for simulated results of a larger lattice (N = 1000) with longer evolution time (m = 300) and a larger initial width 
(nw = 80) (beyond reach of our experiments), underlining the main trends found in the experiments.
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clear why Anderson localization via these second-order transitions 
has thus far never been observed.

We now proceed to implement the bandwidth-limited disordered 
potential as described above (Fig. 1B) in our synthetic lattice. First, 
the potential has to be evolution invariant; otherwise, if the poten-
tial varies throughout propagation, the beam will undergo diffusion 
or hyper-transport but not localization (20). To do that, we choose 
a random potential φu(n) that is constant with every time step m. 
We generate the disorder to have the power spectrum Sφ(Q) = 
∣FT{φu(n)}∣2 comprising many spectral components with random 
amplitude and phase, all restricted to a small region around some 
frequency Q0. The spectrum of the disordered potential is nonzero 
only around Q0 = ±0.4 with width Q0 ≃ 0.2∣Q0∣ (similar to k0 
and k in Fig. 1B). Last, we launch a broad Gaussian beam (nw = 50) 
with a central momentum Q into the disordered synthetic lattice. 
Figure 4A presents the calculated and measured ensemble-average 
squared modulus of the wave function. The average is taken over 
100 experiments, each for a different realization of the disorder, 
with the same (nonzero) range of Sφ(Q) and the same disorder 
strength, ADS = 0.4, defined by ​​A​ DS​​  = ​ √ 

_
 ​Σ​ n​​ ​φ​ u​​ ​(n)​​ 2​ ​ / ​N _ 2 ​​. We repeat this 

experiment for several initial momenta Q of the Gaussian beam, 
which is equivalent to several angles of incidence in the transverse 
localization scheme of Eq. 1.

Figure 4 shows the ensemble-averaged intensity as it evolves in 
the disordered synthetic lattice. We examine the trajectories of the 
ensemble-averaged beams and search for the hallmark feature of 
Anderson localization: localized wave packets that come to a halt 
irrespective of their initial momentum. We find that for certain Q 
values, the beams maintain their initial trajectories and exhibit dif-
fraction broadening, unaffected by localization processes, as if there 
is no disorder, whereas beams with other Q values change their 
initial trajectories to propagate parallel to the time step axis (zero 
transverse velocity), irrespective of their initial momentum, and 
stop expanding in their width (Fig. 4A). These latter Q values corre-
spond to localization by first-order transitions at Q = 0.5Q0 (more 
efficient transitions, narrower localized beam) and by second-order 
transition at Q = Q0 (less efficient, broader beam). The dominant 
process that causes this type of localization is a series of symmetric 
scatterings to virtual states and back, which naturally occurs in any 
Hermitian system. We find that localization by strictly small-scale 
disorder (smaller than the wavelength of the wave packet) takes a 
larger propagation distance to set in (see the fifth section in the Supple-
mentary Materials); hence, the losses should be minimized for ob-
serving this phenomenon in experiments. In addition, we also find 
localization at Qin = 0.25Q0, which occurs by the process of band-
width expansion due to strong disorder (see the discussion in the 
fourth section of the Supplementary Materials). On the other hand, 
we find that at other Q values, e.g., Qin = 0.75Q0 and 1.2Q0, the beam 
has almost no interaction with the disordered potential and con-
tinues on its initial trajectory undergoing nearly free diffraction, as 
if the underlying lattice was disorder free.

Next, we extract the effective width for each initial momentum 
(Fig. 4B), after a large propagation time in the system. The effective 
width displays several local minima around initial momenta 0, 
Q0/2, and Q0, which serves as a direct indication for Anderson localiza-
tion, and conforms with the respective theoretical plot in Fig. 2B 
(calculated for the transverse localization scheme of Eq. 1). Here, 
similar to Fig. 2B, although second-order processes are generally 
weak, the low group velocities of low wave numbers (Qin ~ 0) can 

generally lead to stronger localization and therefore to lower weff, 
with localization as strong as first-order localization. The zero 
transverse velocity and the decreased diffraction broadening for 
Qin = Q0, displayed in Fig. 4, are direct experimental evidence for 
localization outside the spectral extent of the disorder.

Last, we study the exponential decay characterizing the ensemble-
averaged wave packet localized through second-order transitions. 
We do that by extracting the spatial intensity distribution (after 
large propagation times) from the experimental data and comparing 
to those of “ordinary” (first-order) localization. Figure 5 shows 
the characteristic exponential decay of the ensemble-average wave 
packets, at Q = 0, at Q0/2, and at Q0, respectively.
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Fig. 5. Experimental signatures of Anderson localization inside and outside 
the spectral extent of the disorder. (A to C) Shape of the ensemble-averaged 
wave packet, taken over 100 disorder realizations, after propagating 200 time 
steps in the synthetic photonic lattice with bandwidth-limited disorder, each for 
three different values of disorder strength, ADS, ranging from zero to strong 
disorder. The initial widths of the wave packets for Q = 0,0.5Q0, Q0 are nw = 3.5,10,30, 
respectively. As the disorder is made stronger, the wave functions become localized 
and exhibit exponential decay. This happens not only at Q = 0.5Q0 by first-order 
processes (B) but also at Q = 0 (A) and at Q = Q0 (C), where localization stems strictly 
from second-order processes. For strong disorder, all wave packets are exponen-
tially localized and are centered on the initial site n = 0, irrespective of their initial 
momentum. We extract the localization length in all cases and find it to be at 
least an order of magnitude smaller than the system size (n = −200…200). The 
slightly different baselines stem from different optical noise levels in the different 
experimental runs.
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For each initial Q, we use a suitable width for the initial wave 
packet to excite a minimal number of localized modes in each regime 
(i.e., a too wide initial beam might excite many narrow localized 
modes, so that the shape of the propagating wave packet would 
remain similar to the input beam). As the disorder is made stronger, 
the localized wave functions become narrower and acquire an expo-
nential shape despite some asymmetry present due to their initial 
nonzero group velocity. This happens not only at Q0/2 (first-order 
localization) but also at Qin = 0 and Qin = Q0, where localization is 
strictly by second-order localization processes. At the strongest 
disorder, all wave packets are exponentially localized and are all 
centered on n = 0 (effectively zero transverse velocity), irrespective 
of their initial momentum. We extract the localization length and 
find that, in all cases, it is at least an order of magnitude smaller than 
the system size, assuring that all the effects observed are not affected 
by the system size. Moreover, this length is found to be shorter for 
lower initial quasi-momenta due to their low group velocities.

DISCUSSION
In conclusion, we presented the first experiments showing Anderson 
localization completely outside the spectral extent of the disorder, 
both at very low and at very high wave numbers. The localization at 
low wave numbers is especially intriguing: It implies that localiza-
tion can also occur at low wave numbers, even when the spectrum 
of the disorder is strictly at high wave numbers. This feature is 
universal, arising from the symmetry of the power spectrum of the 
disorder, and it is therefore expected to occur for any Hermitian 
system. This feature may also apply to non-Hermitian systems, but 
non-Hermiticity can break the symmetry of ∣V(k)∣, so we leave 
this topic to future studies. Overall, the phenomenon of localization 
by higher-order scattering processes implies that even if a system is 
highly correlated [e.g., amorphous structures (22, 53–55) or hyper-
uniform materials (56)], waves of any wave number, even those 
beyond the disorder spectrum, can experience Anderson localiza-
tion. In this vein, it should be possible to observe short localization 
lengths induced strictly by third-order transitions or higher. We 
anticipate that new mobility edges would be induced by virtual 
transitions in 2D and 3D and also in higher dimensions that include 
disorder in synthetic space (32). Our results expand the under-
standing of disordered systems and suggest developing the notion 
of bandwidth-limited disorder for controlling the localization and 
transport in desired spectral ranges.

MATERIALS AND METHODS
Experimental implementation
In this section, we briefly describe the experimental setup. The setup 
consists of two optical fiber loops, coupled by a beam splitter as 
shown in Fig. 3C. For technical reasons, in each fiber loop, additional 
optical components are incorporated. Each loop contains a spool of a 
single-mode fiber (Corning Vascade LEAF EP) to extend the round-
trip time to approximately 30 s. By adding a standard single-mode 
fiber patch cord into the u loop, we create a difference in the round-
trip time between the loops of approximately 100 ns. We use an 
optical fiber coupler (AC Photonics) to couple the photodetector 
(1.2-GHz indium gallium arsenide) and the seed pulse injection 
(see Fig. 3C). The seed pulse generation is based on a continuous 
wave distributed feedback (DFB) laser diode (JDS Uniphase, 2-MHz 

linewidth, 1550-nm center), where a rectangular 40- to 60-ns pulse is 
cut out via intensity modulation. The intensity modulation relies on 
a Mach-Zehnder intensity modulator (SDL Integrated Optics 
Limited) and an acousto-optical modulator (Brimrose Corp.). To 
maintain a high signal-to-noise ratio, we use erbium-doped fiber 
amplifiers (EDFAs; from Thorlabs), which are optically gain-clamped 
by a continuous wave DFB laser diode at 1538 nm. This pilot laser is 
inserted into the amplifier via wavelength division multiplexing cou-
plers (AC Photonics) and afterward removed using an optical band-
pass filter (WL Photonics). The filters also drastically reduce the level 
of amplified spontaneous emission originating from the EDFAs. In 
this way, a sufficiently high signal-to-noise ratio can be maintained 
throughout the used number of time steps. We set the peak power of 
the pulses to be low enough to avoid effects of gain saturation, which 
can serve as undesired nonlinearities in this experiment. However, 
we also maintain a signal that is strong enough to be dominant de-
spite the noise created by amplified spontaneous emission from the 
EDFAs. To incorporate gain and loss for the preparation of the syn-
thetic Gaussian beam, we place an acousto-optical intensity modula-
tor in each loop. The output of the modulators is aligned to the 0th 
diffraction order to avoid frequency shifts. The working point of the 
modulators is set to a value between 0 and 1. The amplifiers compen-
sate the overall round-trip losses in this setting. By varying the trans-
mission of the intensity modulator, one can effectively achieve gain 
or loss. The beam splitter connecting the fiber loops is a variable fiber 
optical coupler (Agiltron Inc.) that can electronically control the 
coupling between the two loops. We use a phase modulator (iXBlue 
Phot.) to control the phase of the pulses and therefore the real part 
of the analog lattice potential. In addition, we use a polarization 
controller (Thorlabs) for aligning the correct polarization for the 
LiNbO3-based components. The waveforms of the modulators are 
prepared with MATLAB and generated with arbitrary waveform 
generators (Keysight Tech.). For the data acquisition, the output 
voltages of the photodetectors are amplified (FEMTO HLVA-100) 
and then sampled with an oscilloscope (Rohde & Schwarz). The basis 
time scales T and t, which are required for mapping the pulse inten-
sities on the 1 + 1D lattice, are extracted from a control experiment in 
a homogeneous lattice with a single-site excitation. Last, we apply a 
baseline correction to the experimental data, which filters out the 
optical noise floor.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn7769
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