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Fractal photonic topological insulators
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Topological insulators constitute a newly characterized state of matter that contains
scatter-free edge states surrounding an insulating bulk. Conventional wisdom regards the
insulating bulk as essential, because the invariants that describe the topological properties
of the system are defined therein. Here, we study fractal topological insulators based on
exact fractals composed exclusively of edge sites. We present experimental proof that,
despite the lack of bulk bands, photonic lattices of helical waveguides support topologically
protected chiral edge states. We show that light transport in our topological fractal system
features increased velocities compared with the corresponding honeycomb lattice. By
going beyond the confines of the bulk-boundary correspondence, our findings pave the way
toward an expanded perception of topological insulators and open a new chapter of
topological fractals.

T
opological insulators (TIs) (1) have per-
meated various fields of physics, such as
photonics (2–5), cold atoms (6), mechan-
ics (7), acoustics (8), electronics (9), and
exciton-polaritons (10). Fractals, on the

other hand, are a class of systems in which
topological phenomena still remain elusive.
By definition, fractals are objects in which
each constituent exhibits the same charac-
ter as the whole (11) (see also supplementary
text). Photonics, in particular, allows fractals
to unfold their multifaceted influence, for
example, as fractal diffraction (12), complex
lasing modes (13), temporal fractals forming
from self-similar spatial structures (14), anom-
alous transport governed by the fractal dimen-
sion (15), or flatbands in fractal-like photonic
lattices (16).
The Sierpinski gasket (17) is one of the best-

known examples of an exact fractal and has
been theoretically predicted to allow for topo-
logical edge states when exposed to an appro-
priate modulation (18). The structure emerges
when an equilateral triangle is iteratively par-
titioned into four identical segments while
leaving the central one as void. In this pro-
cedure, each subsequent step constitutes a
“generation.” Appearing self-similar under ar-
bitrary degrees of magnification, the lattice
exhibits symmetry across scales. In contrast to
quasi-crystals, whose bulk exclusively displays
long-range order but not self-similarity (19, 20),
each segment of the Sierpinski gasket repli-

cates not only the statistical properties but
also the very structure of the whole (17). Being
a nowhere-dense, locally connected metric
continuum, it features a noninteger Hausdorff
dimension of d = log23 ≈ 1.585 with vanishing
Lebesgue measure over its area (11). Notably,
the Sierpinski gasket does not contain any
bulk in the conventional sense and therefore
falls outside the purview of a cornerstone of
topological physics: the bulk-edge correspon-
dence (21). Despite defying characterization
by conventional (bulk) topological invariants
such as the Chern (22) or winding number
(23), it has been suggested that the Sierpinski
gasket may serve as the underlying structure
for fractal TIs (18, 24, 25). Yet, the Sierpinski
gasket is composed of about one-third fewer
sites than the underlying honeycomb lat-
tice, and a random removal of such a large
proportion of bulk sites generally destroys
the nontrivial characteristics of honeycomb-
based TIs (18). Moreover, recent observations
in self-assembled thin films seemed to in-
dicate that fractal structuring suppresses the
intrinsic topological properties of the host
system (26).
Here, we report the observation of fractal

TIs and demonstrate that periodically driven
photonic lattices with Sierpinski geometry
support topologically protected chiral edge
states, despite the absence of any actual bulk.
Our work hints at the possibilities of observing
topological transport in other fractal platforms
with two or more spatial dimensions, such
as the Cantor dust, the Cantor cube, and the
Sierpinski tetrahedron.
We constructed our fractal TI from helically

driven photonic lattices of coupledwaveguides
(2). Without modulation, the structure remains
topologically trivial and lacks protected trans-
port or any property of a topological nature.
The transport dynamics in our structure can
be described by a set of tight-binding coupled-
mode equations (27)
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where z is the optical axis, yn is the electric
field amplitude in the nth waveguide, c is the
intersite-hopping strength, and r

→
m;n is the dis-

placement vector pointing from waveguide m
to waveguide n and summation over nearest
neighbors hmi. The periodic driving of the lat-
tice induces a gauge vector potential A

→
zð Þ ¼

kRW sinWz;�cosWz; 0ð Þ, where k is the wave-
number of the light in the medium, R is the
radius, and W is the longitudinal frequency
of the helix corresponding to a periodicity of
T = 2p/W.
To compute the eigenvalue spectrum, we

diagonalized the unitary evolution operator
for one period (27). Figure 1A shows a fourth-
generation Sierpinski gasket of static waveguides
[i.e., A

→
zð Þ ¼ 0]. Comparing its numerically

calculated fractal eigenvalue spectrum (Fig.
1B) with that of a static honeycomb lattice
(Fig. 1C) of the same dimensions, the notable
differences to the continuous eigenvalue spec-
trum (Fig. 1D) of the latter become apparent:
Whereas the honeycomb exhibits a single
gap (with, owing to its finite size, a number of
trivial states in its center), the eigenvalue
spectrum of the fractal hosts multiple gaps that
increase in complexity for higher generations.
Both the Sierpinski gasket and the honeycomb
lattice are topologically trivial and feature de-
generate zero-energy mid-gap states. In turn,
modulating the trajectories of thewaveguides
in a helical fashion [A

→
zð Þ ≠ 0] (Fig. 1E) trans-

forms these mid-gap states into topological
edge states (Fig. 1F). To illustrate their topo-
logical character, we compute the real-space
Chern number C rsð Þ (18), represented as color-
coded vertical stripes in Fig. 1, B, D, F, and H.
We note that whereas C rsð Þ is globally zero in
the static systems (Fig. 1, B and D), the driven
Sierpinski lattice exhibits nontrivial behavior
[C rsð Þ ≠ 0] in multiple regions. As shown in
Fig. 1F, the central region of the spectrum is
dominated by topological states [C rsð Þ ¼ þ1]
circulating along the outer boundary in a
counterclockwise direction and in opposite
fashion around inner edges—a direct mani-
festation of the topological fractal nature of
the Floquet Sierpinski gasket. In higher gen-
erations of the fractal, more and more voids
and associated inner edges emerge. By in-
ductive reasoning, it follows that every in-
ternal edge of fourth- or higher-generation
gaskets supports at least one protected edge
state. By contrast, the conventional honeycomb
TI (Fig. 1G) only exhibits unidirectional edge
states with C rsð Þ ¼ þ1 along its outer perime-
ter, embedded between two bulk bands with
C rsð Þ ¼ 0 (Fig. 1H).
For our experiments, we used laser-direct-

writtenphotonicwaveguide lattices (seemethods
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for details). To ensure that our system conforms
to the requirements of an exact fractal, wemade
sure that the individual constituent waveguides
are all identical and therefore would be suitable
building blocks for arbitrary generations of our
fractal system. First, we studied bulk transport
in the fractal Sierpinski lattice (Fig. 2A) using
the honeycomb lattice (Fig. 2B) as a reference.
To this end,we recorded the discrete diffraction
patterns obtained by launching light into
each of the nine sites (marked “1” to “9” in
the respective inserts) comprising the smallest
plaquette of the fourth-generation Sierpinski
gasket. The ensemble of diffraction patterns
obtained from the equivalent single-site ex-
citations in the honeycomb lattice served as
reference. To allow for a direct quantitative
comparison of the respective spread, we calcu-
lated the inverse participation ratios (IPRs) of
the recorded intensity patterns for sites 1 to
9 and normalized them according to their
respective ensemble average in each system.
Under static conditions (Fig. 2C), the specific
choice of the injection site in the Sierpinski
structure has a profound impact on whether
light diffracts widely (Fig. 2D) or remains
tightly localized (Fig. 2E). In agreement with
theoretical findings (28), this behavior directly
results from the fractal nature of the Sierpinski
gasket and is reflected in the wide standard
deviation of the normalized IPR (sS;staticIPR ≈ 0:40).
By contrast, in the honeycomb lattice, despite

generally spreading further (Fig. 2, F and
G), the resulting normalized IPR is much
more uniform (sH;static

IPR ≈ 0:18). In the Floquet
regime (Fig. 2H), the average spread in the
driven Sierpinski lattice actually increases by
more than 20% comparedwith that of the static
fractal lattice. At the same time, the decreasing
standard deviation (sS;drivenIPR ≈ 0:22) shows the
impact on the transport properties in the fractal
TI (Fig. 2, I and J). As in all Floquet TIs, the
edge states have nonzero group velocity—a
feature that can be used in various applica-
tions, for example, to force injection locking of
many laser emitters (29). Because the Sierpinski
gasket lacks bulk states and simultaneously
supports a larger number of topological edge
states than a driven honeycomb of equivalent
size, its single-site excitations are generallymore
likely to project onto at least one such state of
nonzero velocity. By contrast, bulk diffraction
in the driven honeycomb (Fig. 2, K and L)
becomes more homogeneous (sH;driven

IPR ≈ 0:06),
whereas transport decreases by more than
30% in the ensemble average.
Next, we observed the topologically pro-

tected unidirectional states along the outer
perimeter (Fig. 3, A to J, and fig. S4) and ex-
plored a hybrid structure: partially fractal
and partially honeycomb. Driven by the same
modulation, it has been predicted that the
perimeter states seamlessly combine (18). As
shown in Fig. 3, K to O, we directly injected a

broad beam of appropriate phase front tilt at
the edge of a rhomboid array composed of a
Sierpinski gasket and a honeycomb triangle
of the same size. This direct excitation (Fig.
3K) injects a substantial fraction of light into
the topological Sierpinski perimeter state,
which then freely continues along the honey-
comb edge (Fig. 3L) after circumnavigating
the corner that marks the domain boundary
(Fig. 3M). Conversely, when the topological
edge state is excited in the honeycomb lat-
tice (Fig. 3N), it readily transitions into the
fractal lattice and continues along its perime-
ter (Fig. 3O).
Having confirmed the compatibility of

Sierpinski and honeycomb edge transport,
we compared the properties of the topological
edge states in the two systems in greater de-
tail. To facilitate quasi-energy–specific excita-
tions of states, we appended planar waveguide
arrays to a corner (Fig. 4A). These “straws” of
driven waveguides enable synthesizing input
wave packets that populate edge states with
high specificity and, owing to the equivalent
corner geometry of the Sierpinski and honey-
comb triangles, provides identical local coupling
conditions required for quantitative compar-
isons (see methods). The measured edge-state
occupation ratio for the Sierpinski gasket is
shown in Fig. 4B. We find that straw wave
numbers that correspond to quasi-energies
outside the topological gap result in notable
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Fig. 1. Fractal TIs. (A to H) Comparison of a fourth-generation Sierpinski gasket (A)
and its numerically calculated eigenvalue spectrum (B) with a photonic honeycomb
lattice (C) of the same edge length and its respective eigenvalue spectrum (D). Both
static systems are topologically trivial and exhibit a number of degenerate mid-gap
states. Uniform periodic modulation via helical trajectories transforms the Sierpinski
gasket into a Floquet fractal TI (E) and creates topological edge states from the

mid-gap flatband (F). Spatially, they reside on the outer perimeter and the inner edges.
Under identical modulation (G), the mid-gap states of the honeycomb lattice likewise
transform into topological edge states (H). The real-space Chern number (+1 for
topologically protected states) is illustrated by color-coded vertical stripes in (B), (D),
(F), and (H). The topological nature of the driven Sierpinski lattice is also confirmed by
the Bott index (see fig. S1); representative mode profiles are provided in fig. S2.
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penetration into the lattice interior (Fig. 4C).
On the other hand, pronounced population of
the topological edge state occurs at the reso-
nant angle of excitation (Fig. 4D). Similar to
the behavior in the honeycomb (Fig. 4, E toH),
these observations provide direct evidence for
the existence of a topological band gap and
associated chiral states at the perimeter of the
fractal Sierpinski structure. Beyond demon-
strating the existence of topological states,
evaluating the angle-dependent occupation
ratio of the outer perimeter provides a
quantitative estimate of the width of the
corresponding topological gap. Along these
lines, ourmeasurements show that thesewidths
in the Sierpinski gasket (DS = 1.95 cm−1) are
similar to those of the honeycomb (DH =
1.95 cm−1) lattice, determined as full width
at half maximum of Gaussian fits of the re-
spective resonances in the quasi-energy (see
Fig. 4, B to F, and fig. S7).
Notably, we find that the fractal perimeter

states systematically outpace their counter-
parts in the conventional lattice. As depicted
in Fig. 4, I and J, the center of mass n

E
of their

Gaussian envelope is found several lattice sites
further along the perimeter than for compa-
rable excitation placements n

X
in the straw,

corresponding to an ~11% larger velocity in
the fractal (Fig. 4K and figs. S8 and S9). This

higher rate of topological transport is partic-
ularly surprising because the Sierpinski gasket
has many more corners than the honeycomb,
which normally act as defects (2) and tend to
stall transport as the edge statenavigates around
them. We attribute the observed speed in-
crease to the absence of bulk sites that gives
propagating edge wave packets less opportu-
nities to linger. Numerical investigations of the
dispersive properties of these dynamics indicate
that the self-similar hierarchy of voids in the
fractal lattice serves to selectively annihilate
topological states that, in the conventional
honeycomb system, would propagate at less-
than-optimal speed because of their ener-
getic proximity to the bulk bands. Notably, as
confirmed by long-range propagation simula-
tions, this decreased density of states does not
significantly increase the dispersive broadening
of narrow excitations. Perhaps most surpris-
ingly, the fractal speed enhancement persists
even if the “edge” is supported only by a chain
of first-generation Sierpinski gaskets (see figs.
S10 and S11).
Having demonstrated the topologically pro-

tected edge states in a deterministic Sierpinski
gasket, the question naturally arises as to
whether there are any other fractal TI sys-
tems, and, if so, what unifying principles can
be identified between them. Clearly, the de-

gree of internal connectedness has to play a
major role in this regard, because randomly
removing large proportions of sites reliably
destroys nontrivial characteristics of TI lattices
as their bulk gradually disintegrates (18). Per-
haps the most intriguing question is whether
there is a critical value of the fractal dimension
below which TI characteristics are categori-
cally precluded. As a first step toward chart-
ing the varied landscape of fractal topology,
we studied several other fractal systems with
dimensions above as well as below the value
d = log23 ≈ 1.58. To that end, we numerically
calculated their eigenmodes in the presence
of a magnetic flux and simulated the dy-
namics of edge modes in the presence of dis-
order to verify their topological features (see
fig. S12). We found that both the Sierpinski
carpet (d ≈ 1.89) and hexagon (d ≈ 1.63) dis-
play chiral edge modes, whereas the triflake
(d ≈ 1.26) does not. We note that, in contrast
to the gasket, topological transport of light
in the carpet (see fig. S13) occurs in the
anomalous Floquet TI regime (23). For the
class of Sierpinski fractal systems, the gasket
has the lowest dimension that allows for
topological edge transport.
Similarly, these questions can also be pur-

sued for random fractals, where topological
edge states were recently reported (30) to exist
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Fig. 2. Bulk transport in fractal and honeycomb lattices. (A and B) Transport
properties of the Sierpinski gasket (A) and the honeycomb lattice (B) as quantified
by the normalized IPR of diffraction patterns from representative sites (marked
one to nine in the respective inserts). (C to G) Static regime: In the Sierpinski gasket
(C), the specific choice of the injection site determines whether light diffracts
strongly (D) or remains tightly localized (E). By contrast, light spreads widely
across the honeycomb lattice regardless of the specific injection site [(F) and (G)].
(H to L) Topological regime: Single-site excitations in the driven Sierpinski lattice (H)

exhibit substantially larger broadening [(I) and (J)] compared with the static case,
whereas the overall range of variation is decreased. By contrast, bulk transport in the
honeycomb is substantially decreased [(K) and (L)]. As a guide to the eye, the
standard deviations around the average normalized IPR values are shown as shaded
regions in (C) and (H). The observed diffraction patterns corresponding to the
largest and smallest broadening are shown in (D) to (G) and (I) to (L), respectively.
Moreover, the outlines of the respective lattices are indicated by a semitransparent
overlay. The full sets of observed diffraction patterns are shown in fig. S3.
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in two-dimensional percolation clusters with
d ≈ 1.90. Our studies confirm that recent the-
oretical finding but do not indicate any other
topological random fractal systems below
this value. Given the above results, it seems
that for deterministic (exact) fractals con-
structed from straight lines, the Sierpinski
gasket marks the lower bound for topological
behavior.Moreover, because the only known
example of a topological random fractal fea-
tures a Hausdorff dimension substantially
closer to d = 2, d = log23 may be a more
general threshold. Certainly, the role of the
dimension for fractal TIs and its interplay
with randomness merit further theoretical as
well as experimental study.
We have reported on the observation of a

fractal TI and showed that even structures
that lack any conventional bulk can support

topologically protected edge states when sub-
jected to an appropriate Floquet drive. Our
results highlight the fundamentally different
nature of fractal TIs that radically departs
from the established understanding that largely
depends on the bulk-edge correspondence.
The complete absence of a bulk not only
fails to hamper the existence of topologically
protected states along the outer perimeter but
also actually enables a whole hierarchy of in-
ternal edges within. By breaking the link
between increased edge conductance and sup-
pressed bulk transport, the self-similar struc-
ture of the Sierpinski gasket serves to boost
the mobility of the topological edge channel.
The experiments presented here constitute
only the first of many steps in the experimen-
tal exploration of topological phenomena in
systems with noninteger dimensionality. We

envision an entirely new generation of hybrid
systems that fruitfully combine the robustness
and protection of conventional TIs with new
degrees of freedomarising from self-similarity.
Beyond photonic applications, where fractal
designs may accelerate protected transport
and enable precisely tailored topological band
structures for high-end sensing devices, sim-
ilar ideas may inspire methods for the syn-
thesis of advanced topological materials that
harness self-organized processes, for example,
in thin-film deposition (26) or cluster forma-
tion (30). The key questions to tackle in this
regard will be under which circumstances a
given fractal is a suitable host lattice for topo-
logical edge states and whether there is an
underlying set of general rules that governs
which types of fractals are fundamentally ca-
pable of topological behavior.
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Fig. 3. Topological edge transport in the Sierpinski lattice. (A to F) By
varying the position of a broad Gaussian excitation along the outer perimeter, we
observe unidirectional counterclockwise propagation of the perimeter state
around the upper corner. (G to J) Likewise, varying the excitation position at the
central inner edge yields unidirectional transport with the opposite (clockwise)
chirality (see fig. S4 for additional measurement data and a direct comparison to
the honeycomb). (K to O) Transport in a hybrid fractal-honeycomb lattice.
Placing a broad beam with an appropriately tilted phase front at the front facet
of a rhombic lattice composed of a Sierpinski gasket in its upper half and a
honeycomb lattice in its lower part allows for a direct excitation of the topological

edge state. Light injected into the fractal domain passes the corner marking
the border between the two lattices (K) and continues along the edge of the
honeycomb with virtually no bulk leakage (L). Despite the fundamentally different
lattice geometries in the two domains, the helically driven hybrid structure (M)
supports a joint edge state along its outer perimeter. Similarly, an edge wave
packet launched in the honeycomb domain (N) continues along the outer edge of
the Sierpinski domain (O). The front-face micrographs show the placement
of the excitation beam, whereas the output intensities were observed after
propagation through the 150-mm-long sample. In all panels, the outline of the
waveguide arrays is indicated by a semitransparent overlay as a guide to the eye.
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Fig. 4. Edge-state spectroscopy and velocity in topological fractals.
(A) Broad-beam excitations in planar “straw” arrays appended to a corner of
the driven Sierpinski gasket serve to synthesize wave packets with a narrow
k-space spectrum, allowing for specific quasi-energies to be addressed by
selecting an appropriate wavefront tilt (for details, see figs. S5 and S6).
(B) Measured edge-state occupation ratio at the end of the 150-mm-long
sample. (C) Quasi-energies outside the topological gap allow light to diffract
deep into the lattice. (D) By contrast, excitations within the gap yield a
pronounced population of the topological edge state near the resonant angle
of excitation. A certain leakage into the lattice interior occurs because of
the presence of internal topological edge states with similar quasi-energies.
(E to H) Applying the same excitation conditions to the honeycomb shows that,
whereas mismatched excitations primarily populate the bulk of the lattice (G), a

substantial fraction of the injected light is deposited into the topological edge
state (H). In (C), (D), (G), and (H), the lattice outlines, excluding the straws,
are indicated by semitransparent overlays as a guide to the eye, and the
sites that were evaluated for the edge occupation ratio are outlined in white.
In (B) and (F), the width of the respective resonances was measured as full
width at half maximum of a Gaussian fit in the quasi-energy (dashed red lines;
see fig. S7 for the plot with a linear energy scale). (I and J) A direct comparison
for equivalent excitation conditions shows that the Sierpinski edge state
systematically outpaces its conventional counterpart. (K) A series of
measurements with varying placement of the broad Gaussian excitation,
indicated by its initial central position nX within the straw, shows that the fractal
topological edge transport is about 11% faster than it is in the honeycomb lattice.
More details on these measurements are provided in figs. S8 and S9.
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Fractal photonic topological insulators
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Fractal topology
Topological insulators are formed with insulating bulk states surrounded by conducting surfaces. The insulating bulk
states were thought to be crucial, stemming from the theoretical framework of the bulk-boundary correspondence;
however, Biesenthal et al. found that need not be the case. Using a fractal structure in which there is no “bulk” as such,
and thus no bulk insulating states, they show nonetheless that there are chiral conducting states confined to the edge.
The results provide a possible new route to manipulate the topological transport of light with engineered structures. —
ISO
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