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Amplified emission and lasing in photonic
time crystals
Mark Lyubarov1,2,3, Yaakov Lumer1,2, Alex Dikopoltsev1,2, Eran Lustig1,2,
Yonatan Sharabi1,2, Mordechai Segev1,2,4*

Photonic time crystals (PTCs), materials with a dielectric permittivity that is modulated periodically
in time, offer new concepts in light manipulation. We study theoretically the emission of light
from a radiation source placed inside a PTC and find that radiation corresponding to the
momentum bandgap is exponentially amplified, whether initiated by a macroscopic source,
an atom, or vacuum fluctuations, drawing the amplification energy from the modulation. The
radiation linewidth becomes narrower with time, eventually becoming monochromatic in the middle
of the bandgap, which enables us to propose the concept of nonresonant tunable PTC laser.
Finally, we find that the spontaneous decay rate of an atom embedded in a PTC vanishes at the band
edge because of the low density of photonic states.

P
hotonic time crystals (PTCs) are dielectric
media with a refractive index that ex-
periences large,ultrafastperiodicvariations
in time (1–5). Generally, a wave propagat-
ing in a medium undergoing an abrupt

change in the refractive index experiences
time reflection and time refraction. The time
reflection is especially interesting because
causality imposes that the wave reflected from
the temporal interface propagates backward
in space rather than in time (6). Periodic mod-
ulation of the refractive index makes these
time reflections and time refractions inter-
fere giving rise to bands and bandgaps in the
momentum (1, 3, 4). The dispersion relation of
PTCs seems analogous to spatial photonic
crystals (SPCs), in which the refractive index
is periodic in space. However, despite the sim-
ilarity, there are fundamental differences: SPCs
are stationary in time so energy conservation
governs most processes, whereas in PTCs, en-
ergy is not conserved and causality dictates
the dynamics in the system. Conversely, waves
propagating in SPCs exchange momentum
with the spatial lattice, whereas in spatially
homogeneous PTCs, momentum is conserved.
The most important feature of PTCs is the

existence of a bandgap inmomentum, because
the modes associated with this gap have two
solutions in which the mode amplitude grows
or decays exponentially with time, and both
solutions are physical. The exponential growth
of the gap modes is nonresonant; it occurs for
all wave vectors associated with the momen-
tum gaps, which offers an avenue for ampli-
fication of radiation by drawing energy from

the modulation. PTCs bear some relation to
optical parametric amplifiers, but the latter
are resonant phenomena: the frequency of the
pump is equal to the sum of the frequencies
of the signal and idler and phase matching
guarantees conservation of momentum, so
only a specific wave is amplified. In contra-
distinction, PTCs display a significantmomen-
tum gap inwhich every wave is amplified. For
a detailed comparison of PTCs and optical
parametric amplifiers, see (7).
Apart from a momentum band structure,

the abrupt temporal modulation of the per-
mittivity also opens up new possibilities such
as a frequency conversion (2), photon pair
creation (8–12), topological temporal edge
states (5), antireflection temporal coatings
(13), extreme energy transformations (14),
interaction with free electrons (15), and am-
plified localization in temporally disordered
media (16). Experimentally, time refraction
has already been observed in photonics (17),
whereas time reflection has thus far only been
observed with water waves (18), acoustic waves
(19), and elastic waves (20). This is because
of the highly demanding requirements for ob-
serving time reflections: The refractive index
change should act as a “wall,” analagous to
a spatial interface causing Fresnel reflection.
For light in the near infrared, the modulation
should be at few femtosecond rates with an
absolute permittivity change of De > 0.1, which
is difficult to realize in experimental conditions.
However, recent progress with epsilon-near-
zero materials (21–24) brings these ideas close
to experimental realization (25).
The existence of momentum bands and gaps

in a PTC raise fundamental questions about the
emission of light by a radiation source embed-
ded in a PTC. An analogous study has led to the
discovery of the inhibition of spontaneous
emission in the bandgap of SPCs (26), which
has hadmajor consequences, such as threshold-
less lasing (27, 28).

Here, we explore the radiation emitted by
a radiation source embedded in a PTC. We
formulate the quantum theory describing the
emission of light by atoms in an excited state
and the classical theory of radiating dipoles
embedded in PTCs, and show that radiation
is always exponentially amplified when as-
sociated with the momentum gap and its
linewidth becomes narrower with time. This
effect allows us to propose nonresonant tun-
able PTC lasers which draw their energy from
the modulation.
Our model consists of a PTC with a source

of radiation inside (Fig. 1A). First, we consider
an empty PTC medium (no radiation source)
and derive the eigenmodes, and then add
an arbitrary radiation source. Starting with
Maxwell equations with e = e(t), m = 1, we can
write the wave equation for the magnetic field
as follows:

@t e tð Þ@t½ � þ c2k2
� �

Hk ¼ 0 ð1Þ

where we use a Fourier transform in space
because the system is homogeneous and k
is a good quantum number. Physically, this
means that the eigenmodes are shaped as
plane waves, defined by their wave number k.
For each k, this equation has two Floquet
eigenmodes:

H1;2
k tð Þ ¼ Hk0 tð Þeiw1;2

k t ð2Þ

where w1;2
k are Floquet quasifrequencies and

Hk0(t) is a periodic function in time, con-
structed from harmonics of the modulation
period T. We assume that e is real (i.e., the
medium is lossless), so if H(t) is an eigenmode,
i.e., solution of (Eq. 1), then so is H*(t), which
means that w1

k ¼ �w2
k ¼ wk . Solving for the

dispersion relation, we find that the dispersion
curve forms a band structure (Fig. 1C). In the
bands, the frequency wk is real and the two
modes are oscillating at the same frequency,
whereas in the gaps, wk has an imaginary part,
with one mode exponentially growing with
time and the other exponentially decaying. To
explore the response of the PTC to the exci-
tation, we add to Eq. (1) a radiation source as-
sociated with a temporally dependent current
density j(r,t):

@t e tð Þ@t½ � þ c2k2
� �

Hk tð Þ ¼ 4pickñjk tð Þ ð3Þ

where jk(t) is a Fourier k component of cur-
rent j(r,t). For a point dipole, we assume
jðr; tÞ ¼ d0dðrÞeiwt q(t), where q(t) is a Heavi-
side step function denoting that the current is
turned on at t = 0. Physically, the field Hk(t)
is the response of the medium to this current.
We can express it in a general form through
Green’s function as follows:

Hk tð Þ ¼ 4ipc∫∞�∞Gk t; t′ð Þk � jk t ′ð Þdt′ ð4Þ
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where

@t e tð Þ@tð Þ þ c2k2
� �

Gk t; t′ð Þ ¼ d t � t′ð Þ ð5Þ

and then express this Green’s function through
the eigenmodes from Eq. (2):

Gk t; t′ð Þ ¼

0; t < t0
H2

k t′ð ÞH1
k tð Þ �H1

k t′ð ÞH2
k tð Þ

e t ′ð Þ H2
k t′ð Þ@t′H1

k t′ð Þ �H1
k t′ð Þ@t0H2

k t′ð Þð Þ ;

8<
:

t > t′ ð6Þ

Green’s function, Gk(t,t′), represents the re-
sponse of the medium at time t to a single
homogeneous “flash” at time t′. The detailed
derivation of Eq. (6) is provided in (7). A closer
look at Eqs. 4 to 6 reveals that, in themomentum
bandgap where Im(wk) ≠ 0, the medium re-
sponds with exponentially growing emission
even to the slightest flash of radiation emitted
from the current source. This seemingly coun-
terintuitive feature is a consequence of the
lack of energy conservation in the medium. In
fact, the energy deposited into the exponen-
tially growing gap modes comes not from the
source but rather from the external modula-
tion of the medium. The exponentially grow-
ing dipole emission is shown in Fig. 1B for
various dipole frequencies and permittivity
profiles. The growth rate barely depends on the
frequency of the dipole but strongly depends
on the amplitude of the permittivity modu-
lation. The larger the modulation, the sooner
the growth takes place and the steeper it is.
The energy spectrum (k) of the dipole emis-
sion and its evolution with time are depicted
in Fig. 1D. The numerical simulation of the

fields in Fig. 1, B and D, is described in detail
in section 4 of (7). Initially, the point dipole
with frequency w0 excites all the eigenmodes
with proper wave number k0 such thatwk(k0) =
w0. This is because these waves lie on the dis-
persion curve and thus are perfectly phase
matched. However, within a few oscillation
cycles, the gap modes start to dominate even
if k0 does not belong to the gap. Thesemodes
are not phase matched with the dipole fre-
quency, but they nevertheless grow exponen-
tially in time, which overshadows any phase
matching.
We can understand the exponentially grow-

ing response in a PTC through Fig. 2, which
shows the difference between excited gap
modes in SPC and in PTC, where the excitation
in the SPC is by a point source in real space
and the excitation in the PTC is by a flash in
time. The solution of Eq. (5) should be ex-
pressed through two eigenmodes on either
side of the excitation point and stitched with
two stitching conditions. The physical con-
straints in both cases reveal which contribu-
tions are unphysical and should be removed.
In the case of the SPC (Fig. 2A), the solution
must obey energy conservation, so only eva-
nescent waves are allowed on either side of
the excitation point in space. Therefore, the
response to the excitation at a frequency in the
gap of a SPC are evanescentwaves. Conversely,
in the PTC (Fig. 2B), two of the four modes are
propagating back in time and therefore can-
not be excited because they are restricted by
causality. Thus, Green’s function must be ex-
pressed with two forward-propagating waves
in time, one ofwhich is exponentially decaying
and the other exponentially growing, which is
allowed because there is no energy conserva-
tion in PTCs.

This analysis explains the exponentially
growing dipole emission in a PTC. The dipole
excites the gap modes, which, once excited,
grow exponentially regardless of the dipole,
even when mismatched. The key issue here
is that a point dipole excites modes with all
k, jk ≠ 0 ∀k, including the exponentially
growing gap modes. Thus, any point source
in a PTC results in a exponentially growing
emission, even when the excitation is a single
flash in time. The emission from this flash will
grow exponentially, drawing energy from the
modulation.
Next, we quantize ourmodel. First, we write

the electromagnetic fieldHamiltonian in a PTC
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Fig. 2. Excitation of gap modes in SPC and PTC.
(A) The one-dimensional SPC is excited by a point
source at position x0 and emits at a given
frequency within the photonic bandgap. The
source can couple only to the spatially evanescent
part on either side of x0 because of energy
conservation. (B) In the PTC, the source is a flash
at t0 and can excite only the parts of the modes
that evolve forward in time, as dictated by
causality. One of these two modes is exponentially
growing in time.

Fig. 1. Emission by a point
dipole embedded in a PTC.
(A) Sketch of the PTC, with
permittivity varying as e(t) = eav +
D/2·cos(Wt), W = 2p/T with a
dipole antenna inside. The dipole
radiation is exponentially amplified
with time. (B) Exponential
growth of electromagnetic energy
associated with the dipole
emission for different dipole fre-
quencies w0 and modulation
amplitudes D. (C) Complex dis-
persion relation (band structure)
of the PTC for eav = 2, D = 1. The
values of wk at the bandgap
around kg are complex, indicating
exponentially growing and decaying eigenmodes. (D) Power spectrum of dipole emission versus wave number as it evolves with time. Initially, the point dipole with
frequency w0 excites all eigenmodes. k0 is a wave number of the mode resonantly excited by the dipole with frequency w0: wk(k0) = w0. The emission linewidth initially
occupies all bands and gaps, located at kg, but eventually, after a short time, the radiation in the gap becomes dominant and narrower with time, reflecting the
stronger emission at midgap. In each moment in time, the spectrum is normalized by the total radiation power. The horizontal axes in (C) and (D) coincide.
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as follows:

Hf ¼ ℏ
X
k

ck

n tð Þð n tð Þ
nr

þ nr
n tð Þ

2
a†kak þ a†�ka�k
� �þ

n tð Þ
nr

� nr
n tð Þ

2
aka�k þ a†ka

†
�k

� �Þ ð7Þ

where n tð Þ ¼ ffiffiffiffiffiffiffiffi
e tð Þp

is the time-varying re-
fractive index, nr is the mean value of refrac-
tive index obtained by averaging through one
modulation cycle, anda†k akð Þ are the creation
(annihilation) operators formodewith thewave
vector k. This Hamiltonian is derived in (7)
following the quantization procedure de-
scribed in (29). It follows our intuition gained
in the classical case: It is time dependent
through n(t) and it conserves momentum,

Hf ;

X
k
ka†kak

� �
¼ 0, but it does not con-

serve the number of photons. The Hamiltonian
(Eq. 7) allows describing the dynamics of the
free field for each photon pair {k, –k} separately.
The resultingdynamics agreeswith the classical
case: Formodeswith k associatedwith the band
of thePTC, theexpectationvalueof thenumberof
photons, Nk tð Þ ¼ hy tð Þ a†kak þ a†�ka�k

		 		y tð Þi,
oscillates near some constant value, whereas
if k belongs to the PTC bandgap, Nk grows
exponentially with time at the same rate as in
the classical case. The periodic variation of n(t)
allows introducing the Floquet eigenmodes
yk tð Þj i ¼ e�iwkt ϕk tð Þj i of the Hamiltonian
(Eq. 7), with wk being the Floquet eigen-
frequency. Let us first list the main features
of the quantum Floquet eigenmodes, the de-
tailed analysis of which is provided in (7). In
the bands, wk coincides with the Floquet fre-
quency calculated in the classical analysis, and
the Floquet eigenstates experience weak os-
cillations in the number of photons. Con-
versely, in the bandgap, the eigenstates of the
Hamiltonian cannot exist: By correspondence

with the classical case, Nk in the gap eigen-
modes should grow exponentially, which is im-
possible with Hermitian Hamiltonians such as
the one in Eq. (7). The absence of eigenstates
in the gap brings complexity in studying the
dynamics of the excited atom, interacting with
the radiation field described below, but the
exponential growth of the number of pho-
tons in the momentum gap and the classical/
semiclassical intuition allow us to make some
safe statements on the dynamics in this unusual
quantum system.
To describe the emission from excited atoms

in PTC, we add the atomic and the interaction
parts to the Hamiltonian (Eq. 7):

H ¼ Hf þHa þHint ð8Þ

Ha ¼ ℏw0sz ð9Þ

Hint ¼
X

k

ℏgk
e tð Þ ak þ a†k

� �
sþ þ s�ð Þ ð10Þ

where we assume a two-level atom and dipole
interaction. We first analyze what happens
with an initially excited atom interacting
with the vacuum field. In the case of a static
medium, the result is the exponential decay
of the atom from the excited state to the
ground state, known as spontaneous emission.
In a PTC, no analytic solution is feasible,
because the number of photons in the initially
empty gap modes grows exponentially regard-
less of the atom. This means that the atom
emission into these modes cannot be clearly
divided into spontaneous and stimulated emis-
sions: The rate of transitions growswith time as
a consequence of the photons already created
by the PTC. In addition to stimulated emission,
stimulated absorption also takes place, which
results in complex dynamics of the atom. As in
the classical case, the growth in the number
of photons barely depends on the frequency

of atomic transition. Moreover, even if the
two-level atom is not in resonance with the
momentum-gap, i.e., w0 ≠ W/2, the emission
into gap modes eventually governs the dy-
namics of the atom.
It is now natural to ask if there are any

circumstances under which we can still talk
about spontaneous emission (in the usual sense
of being induced by quantum fluctuations with
no photons around) in a PTC and what the
physical consequences of this might be. This
question can be answered partially by address-
ing the Floquet modes associated with the
band, ignoring the influence of the gapmodes.
This assumption can be justified if the decay
time of the atom is shorter than the inverse
growth rate of the number of photons in the
gap modes tsp < 1/Im(wk) or if the PTC with
the embedded atom is placed in a resonator
with all resonator eigenmodes residing inside
the PTC bands (rather than in the gaps). In
this case, we show in (7) that the spontaneous
emission rate is:

g ¼ V

ℏ2p

X
m
Vm
fi

			 			2 k2m
@wf

@k

			 			
k¼km

ð11Þ

where

Vm
fi ¼ 1

T
∫
T

0 ϕf tð Þ
 		Hint tð Þ ϕi tð Þj ieimWtdt ð12Þ

is the coupling constant between the initial
and the final Floquet eigenstates through Hint

andkm : wf kmð Þ ¼ w0 þmW is the wave num-
ber of the mode corresponding to mth har-
monic of the atomic transition (30). Analyzing
the dynamics of the emission rate g(k) with-
in the band, we observe that there are two
competing contributions: the closer to the
band edge the larger the Vm

fi

			 			, because for
modes in the vicinity of the gap the oscil-
lations are larger, whereas at the band edge,
the density of states, rºk2 @w

@k

� ��1
is smaller.

Fig. 3A shows that at the band edge, the rate
of spontaneous emission vanishes because the
density of states goes down to zero. The low
density of states is apparent from the vertical
slope of the dispersion near the band edge
(Fig. 3B). The implication is intriguing: Even
though the Floquet modes have larger oscil-
lations closer to the band edge, which natu-
rally increases the strength of the light-matter
interaction, the emission rate at the edge goes
to zero because there are no states to radiate
into. Thus, an “atom” or a nano-antenna with
directional emission at the band edgewould stay
in the excited state forever, unable to relax to the
ground state through spontaneous emission.
In one-dimensional PTCs, the presence of a

gap in the momentum alters the light-matter
interactions in a profound way, bringing to
question foundational issues suchas themeaning
of spontaneous and induced emission in such
media and the lifetime of an atom in excited
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Fig. 3. Spontaneous emission rate into the Floquet modes associated with the first band.
(A) Spontaneous emission rate in the first band of the PTC. Starting at a low wave number, the emission rate
increases and then reaches a maximum, but then declines and goes to zero at the band edge kb, where the
band structure is curved. (B) Dispersion in the first band of the PTC. The slope of the bandstructure becomes
more vertical closer to the bandgap, indicating the vanishing density of states.
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states. The exponential growth of energy in
the modes associated with the PTC gap and
the nonmonotonous growth rate raise the
exciting idea of PTC lasers extracting their
energy from the modulation. The simplest
setting for such a laser is to construct a res-
onator by placing mirrors on either side of
the dielectric medium with its permittivity
modulated in time. The cavity length should
be much larger than the wavelength of the
waves of interest, such that momentum con-
servation applies despite the finite size of the
resonator. Cavities with shorter lengths can
also exhibit momentum gaps but require
additional treatment of the spatial modes.
Because the amplification of the waves asso-
ciated with the gapmodes attains a maximum
at midgap, any saturation mechanism will
eventually result in stable monochromatic
emission. Thus, controllable periodic change
of the permittivity can give rise to coherent
radiation from an almost arbitrary source and,
under some conditions, the emission can be
shaped into pulses by designing themodulation.
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Amplification in photonic time crystals
Regular photonic crystals are structures in which the refractive index is spatially periodic and can suppress the
spontaneous emission of light from an emitter embedded in the structure. In photonic time crystals, the refractive index
is periodically modulated in time on ultrafast time scales. Lyubarov et al. explored theoretically what happens when an
emitter is placed in such a time crystal (see the Perspective by Faccio and Wright). In contrast to the regular photonic
crystals, the authors found that time crystals should amplify emission, leading to lasing. —ISO
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