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Self-Trapping of “Necklace” Beams in Self-Focusing Kerr Media
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We show that an azimuthally periodically modulated bright ring “necklace” beam can self-trap in
self-focusing Kerr media and can exhibit stable propagation for very large distances. These are the
first bright(2 + 1)D beams to exhibit stable self-trapping in a system described by the @ubicl)D
nonlinear Schrédinger equation. [S0031-9007(98)07747-3]

PACS numbers: 42.65.Tg, 03.40.Kf

Solitons in Kerr media are the most well-studied solitonscate that this necklace ring is stable in the absolute sense,
in nature. The reason for that is twofold. First, thealthough we cannot prove this analytically. The necklace
Kerr nonlinearity can be found in many systems: Itring slowly expands, with a rate of expansion dependent
represents a weak symmetric anharmonicity, which ion the number of pearls in the ring, the width of the ring,
equivalent to a weak saturation in a simple harmoniche initial peak intensity, and ring’s diameter. When the
oscillator. For electromagnetic waves propagating in aaumber of pearls is large, holding the parameters of each
weakly nonlinear centrosymmetric dielectric media, thepearl fixed, the beams are almost fully stationary, and in
Kerr nonlinearity manifests itself in the cubic nonlinear some cases allow approximate analytic solutions.
Schrédinger equation (NLSE) [1], which in many cases The normalized cubi€2 + 1)D NLSE is
describes the envelope of waves in plasmas, shallow water, I 1 (2 8% )
deep water, gravity, etc. [2]. The second reason is that it {ﬁ + F} + gty =0. ()
Kerr solitons are mathematically elegant: The cubic NLSE < * Y
is integrable in(1 + 1) dimensions. Its solitons can in Cartesian coordinates. One might think that, since
be found analytically and form a closed set; in theiromitting the third term in Eq. (1) reduces it to tiie +
collisions, the total power and momentum in the solitons,]1)D NLSE, the solutions should include all those of the
and the number of solitons are always conserved [3](1 + 1)D NLSE in x andz that are uniform iny. How-
The (2 + 1)D NLSE, although not integrable, has many ever, such solitons are transversely unstable: large length-
conserved quantities, but, in the context of self-focusingscale perturbations im grow with propagation distance,
is haunted by stability problems [32 + 1)D bright Kerr  and the soliton disintegrates [5]. In optical systems, this in-
solitons are unstable and undergo catastrophic collapssability can be arrested by spatially modifying the refrac-
or expansion [4], andl + 1)D bright Kerr solitons in a tive index so thak(y) provides waveguiding iy, while
3D medium suffer from transverse instability [5]. Thesethe self-trapping occurs in[8]. For this to work, the scale
instabilities occur for solitons of all orders, including, of waveguiding iny must be smaller than (or equal to) the
e.g., the higher order self-trappdd + 1)D solutions x width of the soliton. The first experimental observation
[6]. In optics, bright Kerr solitons are observed only asof optical spatial solitons [9] has employed an “effective
temporal solitons [7], which are inherently + 1)D,oras waveguide,’n(y), that was self-induced (via Kerr nonlin-

(1 + 1)D spatial solitons in single mode waveguides [8], earity) by the same beam that was a solitonxin This

for which transverse instability is eliminated by stringentworks when the(1 + 1)D (x and z) soliton of Eq. (1)
boundary conditions. Thus interactions between brightaries iny on a scale smaller than the “wavelengths” of
solitons are restricted to planar systems. Consequentlperturbations that make the comparableniform soli-
much of the beautiful similarity between solitons andton transversely unstable. These wavelengths are typically
particles is lost; e.g., angular momentum has no equivalertarger than or equal to the width of the soliton. There-

in the strictly planar system of bright solitons representedore, periodic modulation ity superimposed on a soliton
by the(1 + 1)D NLSE. in x, arrests the transverse instability, provided thatythe

Here, we present self-trapped bright “necklace”-ringperiod is smaller than the width of the soliton [9]. Ex-
beams that exhibit stable propagation for very large disperimentally, two equivalent sheets of light were superim-
tances £50 diffraction lengths) in Kerr media. The posed. Both were very long in and perpendicular te.
intensities of the necklace beams are azimuthally periodiThe sheets propagated mostly alangvith a small angle
cally modulated (in the form of “pearls”), and the widths to one another. The sheets interfered, producing a sinu-
of the beams are very narrow compared to their radia. Aoidal pattern iny, whose period was smaller than the
necklace beam is actually a ring array (@f+ 1)D qua-  width of each sheet. This superposition was launched into
sisolitons (pearls), which we find to be stable wheneven self-focusing Kerr medium. At a high enough power, the
the azimuthal period length of the ring is smaller than orbeams evolved into a soliton (k) while remaining trans-
equal to the width of the ring. Computer simulations indi-versely stable (iry). However, as the two beams were not
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infinite in y, they eventually stopped overlapping and theadjacent bright “spots” on the ring differ in phasesbythat
system disintegrated. is, neighboring pearls repel each other [10]. In a circularly
Encouraged by Ref. [9], we take(& + 1)D soliton (in ~ symmetric ring the net force exerted on each pearl is
x and z) whose intensity is periodically modulated jn  radially outwards, making the ring expand. However, if
and wrap it around its own tail, hoping to find a stablewe increasel. while holding w, @, and L/ constant,
(2 + 1)D ring array of quasisolitons in self-focusing Kerr the net radial force vanishes. In the limit of vanishing
medium. We start with Eq. (1) in cylindrical coordinates curvature of the ring, the ring should not grow at all.
oy 1 [9%y 1 oy 1 0%y s Th(_a e>_<pansion of the necklace begm brings back the
e + 3{ =+t —} + ¢l = 0. stability issue, because the propagation of the array of
2 (I + 1)D solitons in Refs. [9] is stationary, thus different
from that of the necklace. However, as we show below,
the expanding necklace seems to be stable. The intuitive
reason for this is that, ifs(r, 6, z) is a solution of Eq. (2),
thengy(gr, 6, ¢*z) is also a solution for any reaj, and
both solutions have the same total power. As the radius
of the ring slowly grows, there is always a stable shape
close to the beam’s instantaneous shape. If the distance
needed for the beam to evolve into a stable shape is
smaller than the rate of the expansion, our necklace array

ar? r or r2 962

Consider ringlike solutions whose ring thicknesgs much
smaller than the ring radius, such as those in the first
row of Fig. 1. In this case, the third term in Eq. (2) can
be neglected since it i©®(w/L) smaller than the second
term. Furthermore, sincevaries negligibly over the ring
thickness] /r? can be replaced bl/L? in the fourth term.
Redefining the variables as= r andy = L6 reduces
Eq. (2) to Eq. (1). Consequently, if the intensity of the
beam is periodically modulated i, the system looks e X
much like the one in Ref. [9], apart for a small curvature. 1t°f guasisolitons has a good chance of being stable.

is, therefore, reasonable to expect that such ring beams are"We have simulated numerically (using the standard
stable. Physically, if the solitons from Ref. [9] are stable,SPlit Step beam propagation method) the propagation of

we do not expect a small curvature to destabilize them; and'€cklace-ring beams and indeed all the above predictions

the experimental evidence from Ref. [9] certainly shows>€€M correct. We have checked a large number of case

that these solitons without curvature are stable. examples of necklace rings and propagated them over
Led by the intuition gained from Ref. [9], we expect large distances. We find that all the examples with pearls
that the self-trapped shapes are closeatcéeclﬁ(r _ of azimuthal width narrower than (or equal to) the radial

L)/w]cogQ6) for somea’'s, even wheny's are not much width of the ring, and radial width much smaller than ring

smaller than the correspondiids. In this case the radius radiu_s, are stable. Wi_thin our computation cgpability,
of our ring should slowly grow with propagation, because'V€ find that they remain stable even under fairly large
perturbationg~5%) in the initial widths or powers, and

z=00Lp z=200L, z=60.0Lp at the presence of random noise (e.g., we have injected
up to 1% of the total power of white noise in the Fourier
*‘” KRR space every diffraction length). Typical examples (for
& L S . Q = 15,8,4) are presented in Fig. 1, in which the initial
Lo : : : . shape is¢(r,0,z = 0) = asech(r — L)/w]codQ0),
where L>w, a=1,w=1, and L/Q = 1.707.

As a measure for the propagation distance, we define the
diffraction length,Lp = 27rnw§/A, whereA is the carrier
wavelength in vacuumy is the refractive index, and the

RALH . ~ minimum waist of a(2 + 1)D Gaussian beam of width
T . . ’ . 2 w(z = 0) = 2wy. After a fewLp’s, the initial shape
z=00L, z=6.0L,
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FIG. 1. Examples of evolution of necklace-ring beams with

QO =15 Q =38, and Q = 4 (first, second, and third rows, —2_020 0 20

respectively). In all cases the initial peak intensity isvl= 1,

andL/Q = 1.707. The axes are the same for all plots. Dark FIG. 2. Evolution of the initial shape of the third row of
color indicates high intensity. In all figures in this paper, Fig. 1, but with nonlinearity set to zero. The beam diffracts
contrast is enhanced for better clarity. within O(1Lp).
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evolves into a stable necklace of pearls which then slowlhsolitons of the cubic NLSE increases with increasing the
grows in size, via a uniform expansion (scaling) of thegradient of the intensity (or decreasing distance between
entire necklace ring. As the necklace-ring beam expandsolitons). The final result is that decreasiiigvhile keep-
uniformly, the peak intensities of the pearls drop roughlying everything else constant typically slows down the ring
asl/L*(z). Therefore, the total power within the necklace growth. However, one cannot fully stop the expansion by
ring beam is conserved and does not “escape” to radia-exploiting {)’s that are too low, since the transverse (azi-
tion. This necklace ring of quasisolitons remains stable fomuthal) instability occurs if. /) > w. The expansion
the propagation distances of100 diffraction lengths. In  dynamics of the relative radii of the necklace beams from
fact, the only thing that prevents us from stating that thesé&ig. 1 is shown in Fig. 3. In the beginning of the expan-
necklace-ring beams are always stable (in the numeriion there is a short period of acceleration, as the intensity
cal sense), is the fact that, as the necklace beams expambaks speed up in the radial direction. The acceleration
they fill up our computational window and are affecteddiminishes once the pearls are far away from each other
by reflections from the window’s boundaries and causesince the interaction forces decrease. Eventually, the ad-
some (seemingly) artifacts of instability. Finally, we havejacent peaks interact only very weakly, and the rate of the
tested the stability of these necklace beams under azéxpansion becomes constant. Very similar features are ob-
muthally asymmetric variations in input conditions. We served in evolution of a ring of equally charged patrticles,
launched the input shapes of Fig. 1, but with2%  demonstrating again very picturesquely that solitons be-
ellipticity, and found that these imperfect rings exhibit have like particles. Increasin@ while holdingw, L/,
stable self-trapping, yet they do not evolve into a circularand « fixed decreases the growth rate as predicted. As
shape. We conclude that, at least for small azimutha{) — oo, the beams become fully stationary.
perturbations, the necklace beam is stable, but its circular To put things in a physical perspective, it is useful
shape is not an “attractor.” to note how our necklace rings would look in a typi-

When we launch our necklace beams into a lineacal experiment. Fon = 500 nm, refractive index: =
medium, they simply diffract withinO(1) L, and the 1.5, w = 10 A/n, andQ) = 45, one findsw = 3.3 um,
necklace structure is not preserved (e.g., see Fig. 2 fat = 0.26 mm, and60L, = 12.6 mm. Consequently, the
Q) = 4). If we launch a single isolate@ + 1)D beam necklace-ring solitons should be easily observable experi-
with the same dimensions as one of the pearls in thenentally. Within60Lp, a necklace beam with) = 45
necklace ring, into this self-focusing Kerr medium, thewill not change its shape or size almost at all. On the
isolated beam undergoes catastrophic collapse and disiother hand, when the nonlinearity is “off” (or when the
tegrates afte0 (1) Lp, as expected for a singl@ + 1)D  peak intensity is very low), the ring will undergo natural
bright beam propagating in Kerr media [4]. Itis the nonlin- diffraction within severalp’s, say,200 um.
earityandthe presence of the other peaks in our necklace- Since our necklace beams expand, it is not possible to
ring beam that keeps the whole configuration stable. find a stationary solution for them in thed, z frame. But

We now investigate the expansion dynamics of ourin the limit 1 < w() /L < L/w approximate stationary
necklace-ring beams. The rates of expansion are muatinglike solutions to Eq. (2) are
slower for the rings of large® than for the rings of smaller el
Q, keepingw, L/Q, anda constant. One mightthinkthat #(r.0.2) = ¢ 72> > {a,,, cod(2n — 1)Q6]

increasing), while keepingy andL constant, would also n=lm=1
decrease the expansion rate because the angle that deter- X sech"~'[(r — L)/w]},
mines the net radial component of the repulsion force gets (3)
smaller. But, this is not the case because the force between
a b
< 4 O cos(46) o 20
5 x cos(86) o
(o))}
o 31 % cos(1560) ©
= O
g ¢ cos(450) o 0 .
g 2 o 5 % X ] . -
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zinL
? FIG. 4. Propagation of an initially azimuthally uniform ring
FIG. 3. Growth of ratio(radiug/initial radiug, as a function beam (withL = 13.7, w = 1, and initial peak intensity of 1)
of propagation distance. In all the cases the initial peakin Kerr media. In this media, the background numerical noise
intensity is 1, w =1, and L/Q = 1.707. Holding these (only) destabilizes the ring, and it eventually disintegrates. (a)
parameters fixed, a larg€l implies slower dynamics. The initial shape; (b) the shape after= 24L .
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with I'(w, L, Q), a, m(w, L, Q), O = integer, wherex, differences from it. We have discussed them here just to
is of O[(wQ/L)*] larger than any other,,. In this clarify what our self-trapped necklace ring beam is not.
limit, (r,0,7) = a sech(r — L)/w]cogQ8)e 1z, In conclusion, we have presented a new form of a self-

with @? = 4/3w?, T = (Q/L)>. The necklace beam trapped beam in self-focusing Kerr media: a necklace-
becomes fully stationary a6 — «. We compare this ring beam [15]. Even though we do not know if this
solution to our simulations and find that indeed thisnecklace beam is stable in the absolute sense, we find
analytic approximation is excellent. For example, in thenumerically that it exhibits stable propagation for at least
casew()/L = 10 andL — <, the difference between the 0(100) diffraction lengths, which is more than enough
lowest term in Eq. (3) and the true numerical self-trappedor experimental observations. Such necklace-ring beams
shape is onlyO(1%). This solution also applies to the slowly expand but fully preserve their structure. To our
periodically modulated1 + 1)D soliton stripe in Ref. 9 knowledge, this necklace-ring beam is the ofdy+ 1)D
with r, @ replaced byx,y/L. One might think that as self-trapped structure that can propagate in a stable form in
w > L/Q, the beam might become transversely unstablaelf-focusing Kerr media. This new kind of quasisolitons
in the radial direction. This does not happen because thare of a particular fundamental importance because the
intensity is just high enough to cause self-focusing orcubic NLSE appears in many nonlinear systems in nature.
length scales oiv, and not on any smaller scale. We acknowledge illuminating discussions with Profes-
Itis now instructive to compare our solitonlike necklacesor Yuri Kivshar of the Australian National University
beams to other (known) ring beams. As mentionedand Professor Demetri Christodoulides of Lehigh Univer-
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