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Self-Trapping of “Necklace” Beams in Self-Focusing Kerr Media

Marin Soljǎcić, Suzanne Sears, and Mordechai Segev*
Princeton University, Princeton, New Jersey 08544

(Received 29 June 1998)

We show that an azimuthally periodically modulated bright ring “necklace” beam can self-tra
self-focusing Kerr media and can exhibit stable propagation for very large distances. These a
first bright s2 1 1dD beams to exhibit stable self-trapping in a system described by the cubics2 1 1dD
nonlinear Schrödinger equation. [S0031-9007(98)07747-3]

PACS numbers: 42.65.Tg, 03.40.Kf
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Solitons in Kerr media are the most well-studied soliton
in nature. The reason for that is twofold. First, th
Kerr nonlinearity can be found in many systems:
represents a weak symmetric anharmonicity, which
equivalent to a weak saturation in a simple harmon
oscillator. For electromagnetic waves propagating in
weakly nonlinear centrosymmetric dielectric media, th
Kerr nonlinearity manifests itself in the cubic nonlinea
Schrödinger equation (NLSE) [1], which in many case
describes the envelope of waves in plasmas, shallow wa
deep water, gravity, etc. [2]. The second reason is th
Kerr solitons are mathematically elegant: The cubic NLS
is integrable in s1 1 1d dimensions. Its solitons can
be found analytically and form a closed set; in the
collisions, the total power and momentum in the soliton
and the number of solitons are always conserved [3
The s2 1 1dD NLSE, although not integrable, has man
conserved quantities, but, in the context of self-focusin
is haunted by stability problems [3];s2 1 1dD bright Kerr
solitons are unstable and undergo catastrophic collap
or expansion [4], ands1 1 1dD bright Kerr solitons in a
3D medium suffer from transverse instability [5]. Thes
instabilities occur for solitons of all orders, including
e.g., the higher order self-trappeds2 1 1dD solutions
[6]. In optics, bright Kerr solitons are observed only a
temporal solitons [7], which are inherentlys1 1 1dD, or as
s1 1 1dD spatial solitons in single mode waveguides [8
for which transverse instability is eliminated by stringen
boundary conditions. Thus interactions between brig
solitons are restricted to planar systems. Consequen
much of the beautiful similarity between solitons an
particles is lost; e.g., angular momentum has no equivale
in the strictly planar system of bright solitons represente
by thes1 1 1dD NLSE.

Here, we present self-trapped bright “necklace”-rin
beams that exhibit stable propagation for very large di
tances (.50 diffraction lengths) in Kerr media. The
intensities of the necklace beams are azimuthally perio
cally modulated (in the form of “pearls”), and the widths
of the beams are very narrow compared to their radia.
necklace beam is actually a ring array ofs2 1 1dD qua-
sisolitons (pearls), which we find to be stable whenev
the azimuthal period length of the ring is smaller than o
equal to the width of the ring. Computer simulations ind
0031-9007y98y81(22)y4851(4)$15.00
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cate that this necklace ring is stable in the absolute se
although we cannot prove this analytically. The neckla
ring slowly expands, with a rate of expansion depend
on the number of pearls in the ring, the width of the rin
the initial peak intensity, and ring’s diameter. When th
number of pearls is large, holding the parameters of e
pearl fixed, the beams are almost fully stationary, and
some cases allow approximate analytic solutions.

The normalized cubics2 1 1dD NLSE is
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in Cartesian coordinates. One might think that, sin
omitting the third term in Eq. (1) reduces it to thes1 1

1dD NLSE, the solutions should include all those of th
s1 1 1dD NLSE in x andz that are uniform iny. How-
ever, such solitons are transversely unstable: large len
scale perturbations iny grow with propagation distance
and the soliton disintegrates [5]. In optical systems, this
stability can be arrested by spatially modifying the refra
tive index so thatns yd provides waveguiding iny, while
the self-trapping occurs inx [8]. For this to work, the scale
of waveguiding iny must be smaller than (or equal to) th
x width of the soliton. The first experimental observatio
of optical spatial solitons [9] has employed an “effectiv
waveguide,”ns yd, that was self-induced (via Kerr nonlin
earity) by the same beam that was a soliton inx. This
works when thes1 1 1dD (x and z) soliton of Eq. (1)
varies iny on a scale smaller than the “wavelengths”
perturbations that make the comparabley-uniform soli-
ton transversely unstable. These wavelengths are typic
larger than or equal to thex width of the soliton. There-
fore, periodic modulation iny superimposed on a soliton
in x, arrests the transverse instability, provided that they
period is smaller than thex width of the soliton [9]. Ex-
perimentally, two equivalent sheets of light were superi
posed. Both were very long iny and perpendicular tox.
The sheets propagated mostly alongz, with a small angle
to one another. The sheets interfered, producing a s
soidal pattern iny, whose period was smaller than thex
width of each sheet. This superposition was launched i
a self-focusing Kerr medium. At a high enough power, t
beams evolved into a soliton (inx) while remaining trans-
versely stable (iny). However, as the two beams were n
© 1998 The American Physical Society 4851
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infinite in y, they eventually stopped overlapping and th
system disintegrated.

Encouraged by Ref. [9], we take as1 1 1dD soliton (in
x and z) whose intensity is periodically modulated iny,
and wrap it around its own tail, hoping to find a stab
s2 1 1dD ring array of quasisolitons in self-focusing Ker
medium. We start with Eq. (1) in cylindrical coordinate
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(2)
Consider ringlike solutions whose ring thicknessw is much
smaller than the ring radiusL, such as those in the first
row of Fig. 1. In this case, the third term in Eq. (2) ca
be neglected since it isOswyLd smaller than the second
term. Furthermore, sincer varies negligibly over the ring
thickness,1yr2 can be replaced by1yL2 in the fourth term.
Redefining the variables asx  r and y  Lu reduces
Eq. (2) to Eq. (1). Consequently, if the intensity of th
beam is periodically modulated inu, the system looks
much like the one in Ref. [9], apart for a small curvature.
is, therefore, reasonable to expect that such ring beams
stable. Physically, if the solitons from Ref. [9] are stabl
we do not expect a small curvature to destabilize them; a
the experimental evidence from Ref. [9] certainly show
that these solitons without curvature are stable.

Led by the intuition gained from Ref. [9], we expec
that the self-trapped shapes are close toa sechfsr 2

Ldywg cossVud for somea’s, even whenw’s are not much
smaller than the correspondingL’s. In this case the radius
of our ring should slowly grow with propagation, becaus

FIG. 1. Examples of evolution of necklace-ring beams wit
V  15, V  8, and V  4 (first, second, and third rows,
respectively). In all cases the initial peak intensity is 1,w  1,
andLyV  1.707. The axes are the same for all plots. Dar
color indicates high intensity. In all figures in this pape
contrast is enhanced for better clarity.
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adjacent bright “spots” on the ring differ in phase byp, that
is, neighboring pearls repel each other [10]. In a circula
symmetric ring the net force exerted on each pearl
radially outwards, making the ring expand. However,
we increaseL while holding w, a, and LyV constant,
the net radial force vanishes. In the limit of vanishin
curvature of the ring, the ring should not grow at all.

The expansion of the necklace beam brings back
stability issue, because the propagation of the array
s1 1 1dD solitons in Refs. [9] is stationary, thus differen
from that of the necklace. However, as we show belo
the expanding necklace seems to be stable. The intui
reason for this is that, ifcsr , u, zd is a solution of Eq. (2),
thenqcsqr , u, q2zd is also a solution for any realq, and
both solutions have the same total power. As the rad
of the ring slowly grows, there is always a stable sha
close to the beam’s instantaneous shape. If the dista
needed for the beam to evolve into a stable shape
smaller than the rate of the expansion, our necklace ar
of quasisolitons has a good chance of being stable.

We have simulated numerically (using the standa
split step beam propagation method) the propagation
necklace-ring beams and indeed all the above predicti
seem correct. We have checked a large number of c
examples of necklace rings and propagated them o
large distances. We find that all the examples with pea
of azimuthal width narrower than (or equal to) the radi
width of the ring, and radial width much smaller than rin
radius, are stable. Within our computation capabilit
we find that they remain stable even under fairly larg
perturbationss,5%d in the initial widths or powers, and
at the presence of random noise (e.g., we have injec
up to 1% of the total power of white noise in the Fourie
space every diffraction length). Typical examples (fo
V  15, 8, 4) are presented in Fig. 1, in which the initia
shape is csr , u, z  0d  asechfsr 2 Ldywg cossVud,
where L ¿ w, a  1, w  1, and LyV  1.707.
As a measure for the propagation distance, we define
diffraction length,LD  2pnw2

0yl, wherel is the carrier
wavelength in vacuum,n is the refractive index, and the
minimum waist of as2 1 1dD Gaussian beam of width
2 wsz  0d  2w0. After a few LD ’s, the initial shape

FIG. 2. Evolution of the initial shape of the third row o
Fig. 1, but with nonlinearity set to zero. The beam diffrac
within Os1LDd.
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(a)
evolves into a stable necklace of pearls which then slow
grows in size, via a uniform expansion (scaling) of th
entire necklace ring. As the necklace-ring beam expan
uniformly, the peak intensities of the pearls drop rough
as1yL2szd. Therefore, the total power within the necklac
ring beam is conserved and does not “escape” to radia
tion. This necklace ring of quasisolitons remains stable f
the propagation distances of,100 diffraction lengths. In
fact, the only thing that prevents us from stating that the
necklace-ring beams are always stable (in the nume
cal sense), is the fact that, as the necklace beams expa
they fill up our computational window and are affecte
by reflections from the window’s boundaries and caus
some (seemingly) artifacts of instability. Finally, we hav
tested the stability of these necklace beams under a
muthally asymmetric variations in input conditions. W
launched the input shapes of Fig. 1, but with,2%
ellipticity, and found that these imperfect rings exhib
stable self-trapping, yet they do not evolve into a circula
shape. We conclude that, at least for small azimuth
perturbations, the necklace beam is stable, but its circu
shape is not an “attractor.”

When we launch our necklace beams into a line
medium, they simply diffract withinOs1d LD and the
necklace structure is not preserved (e.g., see Fig. 2
V  4). If we launch a single isolateds2 1 1dD beam
with the same dimensions as one of the pearls in t
necklace ring, into this self-focusing Kerr medium, th
isolated beam undergoes catastrophic collapse and dis
tegrates afterOs1d LD, as expected for a singles2 1 1dD
bright beam propagating in Kerr media [4]. It is the nonlin
earityand the presence of the other peaks in our necklac
ring beam that keeps the whole configuration stable.

We now investigate the expansion dynamics of ou
necklace-ring beams. The rates of expansion are mu
slower for the rings of largerV than for the rings of smaller
V, keepingw, LyV, anda constant. One might think that
increasingV, while keepingw andL constant, would also
decrease the expansion rate because the angle that d
mines the net radial component of the repulsion force ge
smaller. But, this is not the case because the force betwe

FIG. 3. Growth of ratiosradiusyinitial radiusd, as a function
of propagation distance. In all the cases the initial pea
intensity is 1, w  1, and LyQ  1.707. Holding these
parameters fixed, a largerV implies slower dynamics.
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solitons of the cubic NLSE increases with increasing t
gradient of the intensity (or decreasing distance betwe
solitons). The final result is that decreasingV while keep-
ing everything else constant typically slows down the rin
growth. However, one cannot fully stop the expansion
exploiting V’s that are too low, since the transverse (az
muthal) instability occurs ifLyV ¿ w. The expansion
dynamics of the relative radii of the necklace beams fro
Fig. 1 is shown in Fig. 3. In the beginning of the expan
sion there is a short period of acceleration, as the intens
peaks speed up in the radial direction. The accelerat
diminishes once the pearls are far away from each ot
since the interaction forces decrease. Eventually, the
jacent peaks interact only very weakly, and the rate of t
expansion becomes constant. Very similar features are
served in evolution of a ring of equally charged particle
demonstrating again very picturesquely that solitons b
have like particles. IncreasingV while holdingw, LyV,
and a fixed decreases the growth rate as predicted.
V ! `, the beams become fully stationary.

To put things in a physical perspective, it is usef
to note how our necklace rings would look in a typ
cal experiment. Forl  500 nm, refractive indexn 
1.5, w  10 lyn, andV  45, one findsw  3.3 mm,
L  0.26 mm, and60LD  12.6 mm. Consequently, the
necklace-ring solitons should be easily observable exp
mentally. Within 60LD, a necklace beam withV  45
will not change its shape or size almost at all. On th
other hand, when the nonlinearity is “off” (or when th
peak intensity is very low), the ring will undergo natura
diffraction within severalLD ’s, say,200 mm.

Since our necklace beams expand, it is not possible
find a stationary solution for them in ther , u, z frame. But
in the limit 1 ø wVyL ø Lyw approximate stationary
ringlike solutions to Eq. (2) are

csr , u, zd  e2iGz
X̀
n1

X̀
m1

han,m cosfs2n 2 1dVug

3 sech2m21fsr 2 Ldywgj ,
(3)

FIG. 4. Propagation of an initially azimuthally uniform ring
beam (withL  13.7, w  1, and initial peak intensity of 1)
in Kerr media. In this media, the background numerical noi
(only) destabilizes the ring, and it eventually disintegrates.
The initial shape; (b) the shape afterz  24LD .
4853
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with Gsw, L, Vd, an,msw, L, Vd, V  integer, wherea1,1
is of OfswVyLd2g larger than any otheran,m. In this
limit, csr , u, zd . a sechfsr 2 Ldywg cossVude2iGz,
with a2  4y3w2, G  sVyLd2. The necklace beam
becomes fully stationary asL ! `. We compare this
solution to our simulations and find that indeed thi
analytic approximation is excellent. For example, in th
casewVyL  10 andL ! `, the difference between the
lowest term in Eq. (3) and the true numerical self-trappe
shape is onlyOs1%d. This solution also applies to the
periodically modulateds1 1 1dD soliton stripe in Ref. 9
with r , u replaced byx, yyL. One might think that as
w ¿ LyV, the beam might become transversely unstab
in the radial direction. This does not happen because
intensity is just high enough to cause self-focusing o
length scales ofw, and not on any smaller scale.

It is now instructive to compare our solitonlike necklac
beams to other (known) ring beams. As mentione
earlier, higher orders2 1 1dD solitons in Kerr media are
all unstable [6]. It is then interesting to study azimuthall
uniform rings. When w ø L, these rings are azi-
muthally unstable, as shown in Fig. 4. This is expecte
since the azimuthal length scale is much larger than t
thickness of the ring; the instability is of the same origi
as in the case of as1 1 1dD soliton which is uniform in
the y direction. Whenw , L we find (numerically) that
uniform rings tend to coalesce and eventually underg
catastrophic collapse ass2 1 1dD bright Kerr solitons
do. One can also superimpose some radial “velocit
on a bright ring beam [11], which can provide som
control over the rate of the inherent tendency to shrink a
collapse, and also convert the dynamics to expansion.
some specific cases the expansion dynamics of such a r
can last up to several diffraction lengths before becomin
unstable [11].

Another possibility to seek stable self-trapped rin
beams is to multiply an intensity-uniform ring byeiVu

[instead of cossVud, as we did]. These vortex rings carry
angular momentum [12], in contrast to our necklace-rin
beam which is a coherent superposition of two vortex ring
with equal topological charge but opposite handedness;
suchour necklace-ring beam carries no angular momen
tum. When launched into a self-focusing Kerr medium
a vortex seiVud ring beam disintegrates into filaments
[12], which are themselves unstable and undergo eith
catastrophic collapse or expansion, as isolateds2 1 1dD
Kerr solitons do [4]. If the self-focusing nonlinearity is
saturable, the filaments created after the breakup fro
stable s2 1 1dD solitons [12]. Since the initial beam
carries angular momentum, after the breakup each of
solitons shoots off tangentially. This transformation o
vortex-ring beams intos2 1 1dD solitons seems universal
to all saturable self-focusing nonlinearities, includin
quadratic [13] and photorefractive [14] media. All o
these examples are related to the self-trapped neckla
ring beam we have found, but have important majo
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differences from it. We have discussed them here just
clarify what our self-trapped necklace ring beam is not.

In conclusion, we have presented a new form of a sel
trapped beam in self-focusing Kerr media: a necklace
ring beam [15]. Even though we do not know if this
necklace beam is stable in the absolute sense, we fi
numerically that it exhibits stable propagation for at leas
Os100d diffraction lengths, which is more than enough
for experimental observations. Such necklace-ring beam
slowly expand but fully preserve their structure. To ou
knowledge, this necklace-ring beam is the onlys2 1 1dD
self-trapped structure that can propagate in a stable form
self-focusing Kerr media. This new kind of quasisolitons
are of a particular fundamental importance because th
cubic NLSE appears in many nonlinear systems in natur
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