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Abstract

Standard textbooks on quantum mechanics typically illustrate the theory using
examples from the microscopic world, such as atoms, electrons or molecules. At
this scale, quantum effects are striking and easily noticeable. At the macroscopic
level, quantum mechanics seems however often counter-intuitive. Features like
state superposition and entanglement lead to well-known logical paradoxes,
challenging our understanding of what we call ‘reality’. Controlling quantum
features in a macroscopic physical object could open the way for building a
new generation of quantum machines with tremendous computational power.
Superconducting electrical circuits are an example of such a macroscopic
quantum system. As of today, the cutting-edge level of control exhibited by these
circuits has led them to be considered as one of the foremost technologies for
physically implementing quantum computers. Moreover, it is possible to make
hybrid systems in which the quantum variables of an electrical circuit are coupled
to various microscopic degrees of freedom, thereby demonstrating that these
circuits constitute a general interface to the quantum world. The purpose of
this chapter is to provide an introduction to superconducting quantum circuits,
elucidating how such systems can exhibit quantum behavior and how they can be
controlled to serve as a building block of quantum processors.
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2.1 Quantization of an Electrical Circuit

2.1.1 The Lumped-Element Circuit Model

We will first begin with some reminders concerning classical electrical circuits in
the radio-frequency or microwave domain (f ~ 1 MHz-100 GHz). For simplicity,
we consider a circuit formed by a planar network of electrical dipoles. This lumped
element description is valid when the physical size of the circuit is much smaller
than the wavelength X of the signal.

2.1.1.1 Constitutive Relations

At any instant #, the classical state of a dipole can be fully determined by knowing
a single dynamical variable. One can measure either V (t) which represents the
voltage drop across the dipole or I () the current flowing through it. These two
dynamical variables are connected to each other by a constitutive relation. This
constitutive relation may be linear (e.g. Ohm law) or non linear and characterizes
the dipole element. It is often more convenient to describe the state of the dipole by
the charge and flux variables, namely Q(¢) and ®(¢) defined as

o) = 1(1)

. 2.1
Q1) = V(1)

Capacitive elements such as capacitors (V = Q/C) have constitutive relations
where the voltage drop depends only on charge. Their energy only depends on
charge:

E=/V(t)1(t) dt=fV(Q)Q(t) dt=/V(Q)dQ 2.2)

Inductive elements have constitutive relations where the current depends only on
flux. This function can be linear (I = ®/L) or non-linear (e.g. I = Ipsin (D/¢p)).
Their energy only depends on flux:

E=/I(t)V(t) dt:/[(@)cb(t) dt:/l(@) do (2.3)

2.1.1.2 Defining the Spanning Tree of a Circuit

To solve the circuit, one needs first to define a set of independent variables
taking into account these constitutive relations. According to graph theory, a planar
network of dipoles with similar constitutive relations (i.e. only resistors or only
capacitors) can be reduced to a single equivalent dipole. One can therefore find
systematically a set of independent variables by the so-called node method. This
method consists of:
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1. finding first all the nodes of the circuit which connect at least two elements
with distinct constitutive relations, and associating to each of them an electrical
potential.

2. Defining a set of independent fluxes (P, ®», ..., ®,) by drawing a spanning
tree which access every node without forming a loop, preferably passing through
inductors only.

To write the equation of motion of the circuit, we use Kirchhoff’s node law, which
expresses charge conservation, and which states that the sum of currents flowing
into a node is equal to the sum of currents flowing out of that node. The hypothesis
of charge conservation is well verified in usual metals below their plasma frequency,
which is usually in the deep UV range, far above microwave frequencies.

2.1.1.3 A Simple Example
To illustrate our point, let us consider the example shown in Fig.2.1. The points
A and B are nodes of the circuit and are characterized by electrical potentials V4
and Vp . Point C connects three purely resistive elements and thus the elements
connected to this point can be reduced to a single equivalent dipole of resistance
Rey = R + %. The spanning tree connecting node A and B defines here a
single independent flux variable &, the flux threading the inductance L.

We write the equation of motion of the circuit by writing Kirchhoff law at node

A and using the constitutive relations of each element:

I(t):iL(t)—l—iC(t)—l—iR(t):%+Cél5+ (2.4)

eq

>

e c L

L 4
B

Fig. 2.1 Simple example of a lumped element circuit. A current source /() is connected to a
network of dipole elements. Points A and B are nodes of the circuit. Point C connects three purely
resistive elements and thus can be reduced to a single resistive dipole. The flux threading the
inductance d>(t) = V4(t) — Vp(t) can be chosen as the dynamical variable of the system
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where CiJ(t) = Va@t) = V@) ,iL(t) = % is the current flowing in the inductor
branch, ic(t) = C & the current flowing in the capacitor branch, and ig () = Ri

eq
the current flowing in the resistive branch.

2.1.2 Quantization of a Lumped Element Circuit

To ensure the quantum mechanical behavior of a circuit, the first requirement is the
absence of dissipation. Specifically, all metallic components must be constructed
from materials that exhibit zero resistance at the circuit’s frequency and operating
temperature. Zero resistance is obtained by fabricating the circuit out of a metal,
which becomes superconducting at low temperatures. Superconductivity arises
from the pairing and condensation of electrons with opposite spins into a special
ground state [1]. This ground state possesses an excitation gap, 2A, which is the
energy required to disrupt one of the electron pairs and create an excited state.
It is this excitation gap that enables current to flow through a superconductor
without dissipation. Additionally, this gap reduces the number of effective degrees
of freedom in the circuit, allowing the construction of circuits that behave quantum
mechanically, despite being composed of approximately 10'? atoms.

In addition, the remaining degrees of freedom of the circuit must be cooled to
temperatures where the typical energy of thermal fluctuations is much less that
the energy associated with the transition frequency of the circuit. For instance,
if the circuit operates at 5 GHz, the required operating temperature should be
approximately 20 mK (keeping in mind that 5 GHz corresponds to about 0.25 K).
Achieving such temperatures can be accomplished by cooling the circuit using a
dilution refrigerator. However, it is equally crucial to cool the wires connected to
the circuit’s control and readout ports, which can bring a substantive amount of heat
to the system. This last point requires meticulous electromagnetic filtering.

2.1.2.1 Definition of the Conjugate Variables

For an arbitrary circuit composed of non dissipative elements, one obtains the
equation of motion by first identifying the independent variables as stated in
Sect. 1.1 and writing the Lagrangian of the system

L=K(®,&y...,d,) = U, Pa, ..., Dp) (2.5)

where K is the capacitive energy and U the inductive energy of the circuit. The
conjugate momenta of our system are given by

Y
Q=75 (2.6)
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Finally, one obtains the Hamiltonian of the system by writing H = ) dDi Qi — L.
From this point, the equation of motion can be directly obtained.

6, = H
00;

o _ M

T80,

The principle of correspondence of Dirac stipulates that one can quantize the
system by introducing the operators ®; and Ql which obey commutation relations

[&i, Q,-] — i 2.7)

2.1.2.2 From the Capacitance Matrix to the Hamiltonian of the Circuit
Let us now consider the example shown in Fig.2.2. The points A, B and C are
nodes of the circuit and are characterized by electrical potentials V4, Vp and V.
We define a spanning tree by choosing the flux ®; and ®, shown in the figure and
connecting these three nodes.

The inductive energy U of the system is simply given by

o2 D3
— 1, 72 (2.8)
2L 2L>
Cq A Cs3 B Cq
| | ® | | ® | |
Il 11 1]
»; Ly et G —— Ly >,
c

1,

Fig. 2.2 Quantization of two coupled resonators. Each bare resonator is composed of an inductor
of inductance L1 in parallel with a capacitor of capacitance C1 . They are coupled directly by
the capacitor C3 and indirectly via their coupling to the ground. The points A, B and C are nodes
of the circuit. The fluxes ®; and $, define a spanning tree connecting all the three nodes
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The capacitive energy K of the system is given by
1 2 1 2
K = §C1(VA - Vo) + §C2(VB - Vo)

1 2 1 2 1 2 1 2
+5C3(Va = V) 4 S CeVi + 5 Cy Vi + 5C, VE

It is possible to write the capacitive energy as K = %VTCV where VI =
(Va, Vg, Vc) and C is a 3 x 3 matrix which we will refer in the following as the
capacitance matrix. In our case,

Ci+C3+Cy —C3 —C
C= —C3 C+C3+Cy —C 2.9)
-C - Ci+C+Cy

Using the definitions Ci>1 =Vec—Va, Ci>2 = Vg — V¢ and Millman theorem [2]
for the ground voltage V, = V4 + Vg + V¢ = 0, we have

Va Z—%Cbl—%cbz
Vg =+1d;+3d,
Ve =+1d—1d,

Thus, one can define a passage matrix P that expresses V as a function of d =
(1, 7),i.e. V= Pa. It is therefore possible to write the Lagrangian £ as

l.7~. 1
L=-0'Cod--0"L "0 (2.10)
2 2
-1 ]/L] 0 ~ T .
where L™ = 0 1/L and C = P* CP. The conjugate momenta of our
2
system are given by Q = (Q1, Q2) = C & and the Hamiltonian is thus given by
1 rx-1 Lor, -1
WZEQ C Q+§<I>L L (2.11)

2.1.2.3 Coupling Between Two Resonators
The Hamiltonian herein above can be greatly simplified if one assumes that
1

C3, Cy K C1, Cy. In this case, one can write easily 6_ as

2 1
5_1 1 <C2+C3+§Cg C3 +3C, ) (2.12)

TG0\ G+ic, a+G+ic
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By grouping the quadratic terms of each independent variable with its conjugate,
it is straightforward to show that one can write H as the sum of two harmonic
oscillators with a coupling term V

H=H+Hr+V (2.13)
where
n 1
Hi = hoi(a] a) + 5) (2.14)
n 1
Ho = hawa(ay az + E) (2.15)
1 ~-1
2
2_ —[¢ ] 2.16
@i L; [ ii ( )
and
C3+1ic
V= Cl—gngle = hnywiwy(a) — a;)(a) — az) (2.17)
. Ctic, . L
with n >~ \/ﬁ and where a; > and affz are the creation and annihilation operators

of each harmonic oscillator. Even without a direct coupling capacitance C3 = 0,
an indirect coupling between the resonators is established via their coupling to the
ground. This point illustrates a general difficulty in the design of superconducting
quantum circuits. Indeed, isolating circuits is difficult due to to their large coupling
with the surrounding environment.

2.1.3 Transmission Lines

Contrary to lumped element circuits, the physical dimensions of transmission lines
are comparable to the wavelength A of the signal [3]. Thus, a transmission line is
a distributed-parameter network, where voltage and currents can vary in magnitude
and phase over its length.

2.1.3.1 Definition of the Propagation Wave Amplitudes

A transmission line can be modeled by a series of discrete lumped elements as
shown in Fig.2.3. The inductance per unit cell u is L, and the capacitance to the
ground per unit cell is C,.
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u—_ Co=—= C, Cy Cu
T T T 7

Fig. 2.3 Circuit model of a transmission line. The transmission line is modelled by a series of
discrete lumped elements. The unit cell length is #. The inductance per unit cell is L, and the
capacitance per unit cell is C,

We write the equations for the voltage and currents in the transmission line using
the constitutive relations of the dipole elements and Kirchhoff charge conservation

Va1l = Vo = =Ly 0t Iy nt1

—Cy0t Vi = Insnt1 — In—1-n
Going to the continuum limit where L, /u — £ and C,/u — €, we get

WV (x,t) = —LoI(x,1)
—EV (x,1) = 0,1 (x,1)

To solve these coupled differential equations, we define the propagation wave
amplitudes A~ and A< by

AT = % (V/JZT)JF u/zj)
=L 1)

(2.18)

where Zy = /£ /% and obtain two decoupled first order differential equations

HA” +cdA” =0
HAT — AT =0

where ¢ = 1/V.Z% is the propagation velocity in the transmission line. The
solutions are of the form A™ (x, 1) = P, (x —ct) and A< (x,1) = &, (x + ct)
where 7, and 7, are arbitrary functions of their arguments. For an infinite
transmission line, <7, and <,,, are completely independent. Interestingly, the
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instantaneous power P(x, t) is directly related to the square of the propagation wave
amplitudes

P, t)=I(x,1) x V(x, 1) = 2, — o>

out in

(2.19)

2.1.3.2 Fourier Components of the Propagation Wave Amplitudes
Since the equations are linear, it is possible to look at individual Fourier compo-
nents! of A~/ (x, r) at any given point in space x.

AT =Yy AT eI e (2.20)
k

In the following sections, we will consider monochromatic waves only, thus
dropping the sum and index k systematically. We write

A7 (e ) = A7 (x) e e 2.21)
Assuming 7, = 0 and using Eq. (2.19), we get
5 . 2
Plx,1) = A2, = (A” (x) et 4 c.c.)
=2]A~ 0 + ((A” (x))2 e~ 2t 4 c.c.)

Thus, the modulus of |A™ (x)|2 is proportional to the average power (P(x)) =
lim7 oo = fif P(x, 1) dt

(P0)) =2|A~ (0] (2.22)

2.1.3.3 Semi-Infinite Transmission Line

When a semi-infinite transmission line is terminated at x = 0 by some system S
the two solutions o7, and .7,,; are related by boundary conditions imposed by the
system.

V (x = 0,1) = /Zo( Aot () + S (1))

1
I(x=0,1)= «/_Z_()(%M(t) — in (1))

1'We adopt the quantum convention for wave propagation (i.e. _e“kx —), which differs by a sign
from the one found typically in the microwave textbooks (i.e. e! (@ —%*)),
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If the system S is an open circuit, / (x = 0,¢) = 0 and thus o,,;(t) = <, (¢).
If the system S is short circuit, V (x = 0,¢) = 0 and thus &%, (t) = —,(1).
The outgoing waves are simply the result of the incoming wave reflecting from the
open/short circuit termination.

In the absence of an incoming wave <7, () = 0, we have V(x = 0,7) =
Zol (x = 0, t) indicating that the transmission line acts as a resistance which instead
of dissipating energy by heat carries the energy away from the system as propagating
waves.

2.1.4 Quantization of a Transmission Line

Hamiltonian dynamics is inherently reversible and thus dissipationless. Irreversibil-
ity however arises when the number of degrees of freedom grows to infinity. In the
quantum framework, it was shown that a dissipative impedance can be rigourously
taken into account by using the so-called Caldeira Leggett decomposition [4], which
consists of modelling any dissipator by an infinite collection of LC resonators.
Another way to model dissipation for non-dissipative elements in electrical circuits
is to consider an ideal semi-infinite transmission line [5]. As shown in the classical
approach herein above, any signal sent down the line will never come back and thus
there is a loss of information and entropy creation.

2.1.4.1 Hamiltonian of a Transmission Line

In order to illustrate this point, let us consider a transmission line of length A formed
by a series of N cells as shown in Fig. 2.4. We assume periodic boundary conditions
such that Viy = Vj. For each cell of size u, the inductive (potential) energy can

2
be written as U, = % and the capacitive (kinetic) energy as K, = %Cu Vnz.

Fig. 2.4 Discrete model for quantization of a transmission line. We denote as V,, the voltage of
node n and ®,, the flux through the inductor between node n — 1 and n. The cell unit length is u ,
the inductance per unit cell is L, and capacitance per unit cell is C,,. We assume periodic boundary
conditions such that Vy = Vj



2 Introduction to Superconducting Quantum Circuits VAl

Using Ci>n+1 = V41 — V,, , one can write

i
Vi=) o+
Jj=1
By summing all the equations together and using Millman theorem [2]
(25;01 v, =0) weget Vo= — SNV, = — (N = )by + (N —2)dy + ..
+dy_1+ (N — 1)V0). These equations define a passage matrix P that expresses

the vector V = (Vp, ....Vy_1) as a function of b= (d>1, e, dDN), ie.V=Po.
It is thus possible to write the Lagrangian of the system £ as

L= %CudBTPTPé — ZlTuchcb (2.23)
The conjugate momenta of our system are givenby Q = (Q1,..., On) = M and
the Hamiltonian is thus given by

2 -1 0 ...-1

-1 2 —-1". :
0"l o 1. .0 |Q+

: 2 1
1. 0 =1 2

) (2.24)

2.1.4.2 Representation of the Hamiltonian in the Fourier space

This Hamiltonian can be easily diagonalized by introducing a unitary transformation
U such that

Uy = \/Lﬁ exp [ (2kmn/N)] (2.25)

where k, n are integers comprised between 1 and N. Applying the unitary operator
U on operators O, and @, define a new set of non-hermitian operators

N N
Or = uraQn = J__ Z exp [i @knn/N)] Oy (2.26)

Zexp [i 2kan/N)] O, .27

n=

N
d = Zukncbn =
n=1

ﬁ\
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These operators follow commutation relations of conjugate variables

N N

0 expli@thn — Km)/W)] (0, Ol

n=1m=1

(&, OF]

N
% > ihexp[i@un(k —k)/N)] = ihdye

n=1

Indeed when k =k, exp [i Qrjk — k’)/N)] = 1 and the sum Zflv:l exp[i(2nn
(k — k’)/N)] is equal to N, while if k # k/,

N
> exp[i@untk — k')/N)] = exp i@k — K)/N)]

n=1
( exp [iQr(k — k)] -1 ) 228)
explir(k —k')/N)] — 1

exp [i Qrk -k )] = 1 and thus the sum is equal to zero.
In this new basis, the non-diagonal elements of the Hamiltonian of Eq. (2.24) can
be written as

N N
> 0u(Qno1 + Qui1) =2 _cos[2kn/N]1 O} Ok (229)

n=1 k=1

Thus, the Hamiltonian of Eq. (2.24) can be written as

N N
2 — 2cos [2k/N fio
H= Z COS[n/ ]QkQ ZT (7" ax + o o)

k=1 =l

(2.30)
where
o \/(2 — 2cos[2kn/N]) 231
LuCy

and

lox. g1 = idw (2.32)



2 Introduction to Superconducting Quantum Circuits 73

2.1.4.3 Transmission Line Viewed as an External Bath
For each mode, it is possible to introduce creation and annihilation operators

0 1( +iqi)
ap = —= (@ k
k ﬁﬁﬁ q
1( )
a;, = — (pr —1qx
k 2<0 q
1 :
(@ )" = —z(fﬂ/j—lq;r)
1
@) = —=(¢of +iqf
\/—(k k)

The commutation relations of the a,” operators are such that

la;”, (a1 = S

lag, (ag) ] = S

If N is even, the system has exactly N /2 different eigenenergies. Each mode is
doubly degenerate and thus

N/2
H=> hox (@) e + (@) ap) (2.33)
k=1

As we increase the size A of the transmission line, the density of modes
increases. As we decrease the size of the unit cell, the bandwidth /1/L,C,
increases. One can therefore safely consider that k < N in a realistic situation.
This allows to make the approximation that cos [x] ~ 1 — x?/2 and thus

1 2km 234
wp =~ e .
K=\ L.C. N
Using /1/L,,C, = /1)L €u* = c/u and A = Nu we get
_ e (2.35)
wy = k. " .

2.1.4.4 Link Between Propagation Amplitudes and Photon Operators
The connection between the photon operators and the propagation amplitudes
introduced in the previous section is directly obtained by comparing the incoming
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power carried by the influx of photons with a well-defined wavevector k to the
modulus of the Fourier transform of the propagation amplitude using Eq. (2.22)

Py =2|Ap[* = (5) honlay *ap)

The expressions of A;” are thus given by

A7 = /%ha)ka,? (2.36)

2.1.5 Transmission Line Resonators

In this section, we will study the use of transmission line sections with various
lengths and terminations to form resonators.

2.1.5.1 Scattering Matrix

Let us consider an interface of two transmission lines with different characteristic
impedance Z1|Z;. The transmission line is separated into two separate regions,
namely the left side and the right side. When an incoming wave impinges on
the interface, the propagation wave amplitude can be transmitted and/or reflected
partially. We thus write the scattering matrix S.

S
——

AT\ (rote AT
(A;) = (m b) (A;) (37

We calculate the scattering coefficients by writing the Kirchhoff equations of voltage
and current at the interface assuming A5 = 0.

V. = Vet =VZi (AL + A7) = VAR
I, 0 =1 0 =(A7 — A7) VZi = (AR) V22

which we solve to get

T
R

_Zz—Zl
T Zi+ 2

Similarly, two other coefficients can be established by a swap operation Z; < Z5.
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(a)

Zo z Zo Zo Zo
A?—'Wv—e?' AQ???
(b) (©)

Fig. 2.5 Transmission and reflection coefficients for simple lumped elements. (a) Generic lumped
element intersecting a transmission line. (b) Circuit element of impedance Z in series with the
transmission line. (¢) Circuit element of impedance Z in parallel with the transmission line

2.1.5.2 Calculating Transmission and Reflection Coefficients for Simple
Lumped Elements
Let us consider the circuit described in Fig.2.5a. The transmission line is now
intersected by a lumped element system S.
For instance, we consider in Fig.2.5b a transmission line intersected by an
impedance Z in series. We get

1
I, =11 1n=— (A7 —A]) = —=A}

VZo
ZI(x, )=V, — V&t

=VZo[(AL +AL) - AF]

using the definitions of the scattering matrix, we have A" =tA;” and A]” =rA,”
and thus we get

r=z/2+z)
t=2/24+72)

(2.38)
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with z = Z/Z,. For instance, if the scatterer is a capacitor2 Z =1/ (—iwC), we
get

2
L= T Ciec o) (2.39)
1/ (—iwCZ0)

T2+ 1/ (—iwCZo)

Another interesting case to consider is a shorting circuit element as shown in
Fig. 2.5c. In that case, the Kirchhoff equations gives

Vi, 0 =Vat 0 =yZo (A7 +A) =V ZoAR
VaE, D =ZUx", 1) — 1T, 1)
_L(AH_A“)_LA%
VZo ot L N73

Thus we get

r=-1/2z+1)
t=2z/2z+1)

(2.40)

2.1.5.3 1 /2 Resonators with Symmetrical Terminations

The use of symmetrical terminations on both ends of a segment of length L,.; =
A /2 ensures that exactly at the resonant frequency w, = mwc/L,.s, a continuous wave
signal is fully transmitted, and no reflection is observed. This results from coherent
interference of transmission amplitudes which converges to a unitary transmission
coefficient

) . 00 .
I = ZteikLres <r262ikLms>J { = Tio/or Zﬂ (r262niw/w,)/ (2.41)
Jj=0 Jj=0

£2emio/wr(14i/ Qine)

= 1 — f2e2mio/or(1+i/ Qiny)

(2.42)

where kLyes = 2(14+i/Qint) X Lyes = na%(l +i/Qint) » Qins representing the
internal quality factor due to internal losses in the resonator.

2 We adopt the quantum convention for wave propagation (i.e. _e“kx —o1), which differs by a sign
from the one found typically in the microwave textbooks (i.e. e! (@ =%*)),



2 Introduction to Superconducting Quantum Circuits 77

An identity can be established relating the round trip frequency w,/2m, the
transmission coefficient, and the energy leakage « via the ports

k=2 w /)27 |t)? (2.43)

The factor 2 stems from the fact that two scattering events occur per round trip. We
thus get

Qext = orfc = 1/ 1] (2.44)

For instance, if the scatterer is a capacitor of capacitance C, we obtain from
Eq. (2.39), |t]* ~ 4C%»?Z} and thus

T

Qext - 4C2a)gz(2)

(2.45)

In Fig. 2.6a, b, we represented the frequency dependence of the amplitude of the
transmitted field |7| and of its relative phase. When Q;,; = 400 (blue curve), the
transmission at @ = w, is equal to one:

i

|z ()| = | ~1 (2.46)

1—r2|

The phase shifts by 7 at resonance. As one increases the ratio Qext/Qint, the
maximum transmission at resonance decreases (red and green curves).

2.1.5.4 1 /4 Resonators with Short Circuit Termination

Another important type of transmission line resonator is the so-called X /4 resonator.
In this type of resonator, the segment length L,.,; = X/4 and is terminated by a
short circuit, such that at the resonant frequency w, = wc/(2 * Lyes), a phase shift
is observed in the reflection of the signal. This results from coherent interference of
reflection amplitudes

_ 122K L res i (o 2ikLes )’
p=r— Z( D7 (re )

2
—y_ en’iw/wr(1+i/Qim) !
1+re71iw/w,<(1+i/Qint)

(2.47)

where 2kL,.; = %(1 +1i/Qint) X Lyes = 77_(1 i/Qint)-
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The energy leakage « via the port is related to the round trip frequency w, /27w
and to the transmission coefficient by

K=o /27 - |t]? (2.48)

We thus get

Qext = @rfx =2/ |t (2.49)

Depending on the ratio between Q;,; and Q..;,we can define three regimes
characterized by different behavior of the reflexion coefficent p.

The overcoupled regime (blue curve) occurs when Q,.; << Qjn:. In this regime,
|p| ~ 1 for all frequencies. However, the phase of p changes abruptly close to
multiples of the resonance frequency and undergoes a 2 shift as shown in Fig. 2.6.

The critical coupling (green curve) occurs when Q.x; = Qjn;. For this regime,
the amplitude reaches almost zero at resonance, while a discontinuity in the phase
brings a phase shift of .

The undercoupled regime (red curve) occurs when Q.yr > Qins. In this regime,
the resonance corresponds to a dip in the amplitude of p and a shift < 7 in its
phase. The undercoupled resonator is particularly difficult to measure in reflexion
since both the amplitude and the phase differs slightly from the out-of-resonance
value.
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Fig. 2.6 (a-b) Modulus of the transmitted field |z| and relative phase of the output field via a
A/2 resonator with symmetrical terminations (z = 50i, Q ~ 2000) assuming no internal losses
(Qin = o0, blue curve) or internal losses of quality factor Q;, = 4000 (green curve) and
Qin = 1000 (red curve). (c—d) Modulus of the reflected field | p| and relative phase of the reflected
field on a A /4 resonator with short circuit termination (z = 50, Q ~ 4000) assuming no internal
losses (Q;, = 00, blue curve) or internal losses of quality factor Q;, = 4000 (critical coupling
regime, green curve) and Q;, = 1000 (red curve)
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2.1.5.5 Expression for the Local Current and/or Voltage in the
Resonator as a Function of Propagation Wave Amplitudes

One can write the current/voltage at a given position in the resonator as a linear

response of the propagation wave amplitudes of incoming waves A;” and A} on

both side of the resonator. The obtained linear map can be summarized as

I (x,0) = \%Z_O (for (@, %) AL + fe (0, %) A}) (2.50)
V(x,0) = VZo (g (@, x) AT + g (0,x) AY) (2.51)

The exact numerical value of f_, /. and g_, /. can be calculated by considering
the coherent interference from the scattering of all the elements . In the case of a
symmetric A /2 resonator, we obtain

eikx _ reik(ZLm—x)

fo (@,x) =t (2.52)

1— gikLmrz

eik(Lres _X) J— reik(LreA‘ +X)

f(— (C(),x) =1 1 _eikLrexrz

similarly for the voltage, we get

eIk% 4 i k(2Lyes—)

g*) (C(), -x) =1 1 _ eikLre.vrz

eik(Lrex —X) + reik(Lres+X)

g(— (CU,.X) =t 1 _eikLresrz

2.1.6 Quantization of Transmission Line Resonators

2.1.6.1 1 /2 Resonators with Open Circuit Terminations

Let us first consider a transmission line resonator of length L,.; with open
circuit termination on both sides. Contrary to a lumped-element resonator, such
a distributed resonator possesses an infinite number of modes. The characteristic
impedance of the resonator is given by Zg = /. /% where % is the capacitance
per unit length and .Z the inductance per unit length. We introduce the flux @ (x)
such that V = 9;® at position x € [0, L,.s]. The Lagrangian writes as follows:

1

bres 2 2 Ll ey 1 2
LZE/O (ev2— 21 )dx:z/(; (m - 3:®) )dx (2.53)

Taking into account the boundary condition, it is possible to decompose V (x)
and / (x) into an infinite number of stationary wave modes. We thus decompose ©
into infinite stationary modes of mode number j, each verifying the open circuit
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boundary condition / = 0 at x = 0 and X = L, we thus write

d(x) = Z D cos (jX/Lyes) (2.54)
j=1

which we inject into the Lagrangian expression and get

Lies e (€ . 2 1 wj 2
= —b" - — | —O; 2.55
L= ; ( 2 22 \Lpes (2:39)
We obtain the Hamiltonian after performing the Legendre transformation
. < Q% n?j? 2
H = H; = — P 2.56
; 77 Lyeg =\ N7 (2:30)

where Q; = 9L/d®; = €' Ly.sP;/2 is the conjugated variable of ®; such that
[®i, Q;] = ihd;;. We can further simplify the Hamiltonian by introducing creation
and annihilation operators for each mode

H; = hoj (aja; +172) 2.57)
where a; = /7% ®i +i /20, w; = jo, = j(Zc)andc = /- the
j AZoh 2 Thr i @ r Lres Tz
wave velocity. Using I (x) = —9, D (x) /.Z, we get

81;(x)

10 = 810y/j sin (1jx/Lres) (a i+ aj) (2.58)

j=1

where § 1y = w,,/ HLZO Similarly, using V (x) = d(x), we get

8V;(x)

V) =-—i Z 8V0\fjcos (mjx/Lyes) (aj — aj) (2.59)

j=1
where 8 Vo = wy/ %
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2.1.6.2 Determining the Current Operator by Filter Function Formalism
Using Eqgs. (2.50) and (2.36) we get that

. [
fx) = /iz Zio"(fﬁ (0, ) aly + fe (o, x)agy) +He.  (2.60)
k

Let us introduce a new operator A as a linear combination of a;”, and ag,

Yk (f—> (g, x)ap’; + fe (x, x) a,?,k)
Ik (1= @0 + e @ 0P)

2.61)

which verifies [A, A*] = 1 and can rewrite the current operator under the form
() =81 () (A n A*)

where

81 (x) = \/Z mhwk | fos (k. )2 + | f (@1, )1?)
For convenience, we introduce the density of states

n(w) = L = A/2mc (2.62)
Aw

Injecting the expression of n we obtain an expression independent of A

51 (x) = \/ / e (1P @0 + 1P 0.) 2.63)

2.2  Superconducting Qubits

2.2.1 Using the Non-linearity of Josephson Junctions

A circuit formed by linear components, such as capacitors and inductors, behaves
as an harmonic oscillator and not as a qubit. A non-linear element is therefore
essential in order to differentiate the transitions between states |0) and |1) from other
higher-lying eigenstates transitions. In superconducting circuits, this non-linearity
is obtained by adding to the circuit one or several Josephson junctions. Josephson
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(b)
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Superconductor
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Aluminium‘i — - ><

Insulating oxide

Fig. 2.7 The Josephson junction: a non-linear, non-dissipative element. (a) Schematic representa-
tion of a Josephson junction showing two superconducting layers separated by a thin insulating
oxide layer (b) Colored SEM micrograph showing a Josephson junction. (¢) Circuit diagram
representing a Josephson junction, which corresponds to a capacitor of capacitance C in parallel
with a Josephson (non linear) inductor of inductance L; = ‘f—g and represented as a cross

junctions are formed by two superconducting islands separated by a thin insulating
layer (see Fig.2.7) that allows tunneling of Cooper pairs. They are characterized by
the so-called Josephson relations:

. [
I = Ipsin (—)
%0 (2.64)
V=20

where @ is the flux threading the junction, [y is the critical current of the junction
and ¢y = fi/2e is the reduced magnetic flux quantum.

Josephson junctions are almost non-dissipative. This property allows their use in
quantum circuits. The potential energy of the Josephson junction is given by:

t t [0)) . b
E= / 1)V (t)dt = f Iosin (-) ddt = —chos((p—) (2.65)
0

—00 —00 (0]

where E j=Iypy is called Josephson energy.

2.2.2 The Charge Qubit

The simplest version of superconducting qubit, also called Cooper pair box (CPB)
consists of two superconducting islands connected by a single Josephson junction
of capacitance C; and Josephson energy E;. One of the island is electrostatically
biased by a voltage source V, in series with a capacitor C,. The Cooper pair box
was initially developped in 1996 by the Quantronics group at CEA Saclay [6] . In
1999, a team from NEC used the CPB to demonstrate for the first time a coherent
superposition of states [7].
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Fig. 2.8 Circuit schematic of C a A

a Cooper Pair Box (CPB). C

The device consists of a ._I l_._
Josephson junction with
Josephson energy E; and

capacitance C, capacitively +
coupled to a voltage source Vg >< E, —=G
V, through a gate capacitor —
Ce

ol

2.2.2.1 Solving the Cooper Pair Box Hamiltonian
In Fig.2.8, we present a circuit schematic of a CPB. The points A, B and C are
nodes of the circuit and are characterized by electrical potentials V4,Vp and V. We
define a spanning tree by choosing the flux ® connecting nodes A and B.

The inductive energy U is simply given by Eq. (2.65)

P
U= —Ejcos(—) (2.66)
%0
The capacitive energy K of the system is given by
1 2, 1 2
K = ECJ(VA - Vg™ + Ecg(VA - Vo)

Using the definitions & = Va — Vg and V, = Ve — Vp, itis possible to express
V4,Vp and V¢ as a function of ® and V,, such that

Lo, 1
K = 3Cr9° +5C, (@ - AR 2.67)

It is thus possible to write the Lagrangian £ as

1

. 1 . 2 0]
L= 2c,c1>2 +5Ce (&= Ve) + E,cos(%) (2.68)

The conjugate momentum of our system is given by

9 .
0= a_é = (Cy+Co)® — C,V, (2.69)

and the Hamiltonian is thus given by

N S S 2_ P _ Loy
H=dQ L—z(cg+cj)(Q+Cng) Ejeos() = 5CeVy  (270)
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By dropping the constant term and introducing the new variables n = % and
Q= % such that [¢, n] = % [®, Q] =i, we can write the Hamiltonian as
H = 4Ec(i —ng)* — E;jcos(9) 2.71)
h = —%Y% and E¢c = 5~ In order to find the ei ies and
where n, = e and Ec = g,y In order to find the eigenenergies an

corresponding eigenstates, the Hamiltonian can be represented in the basis formed
by the eigenstates |n) of operator 7. Indeed, [¢, n] = i implies that (p|n) = ety
and thus, the operator cos(@) = 1/2(e'Y + ¢7'?) can be written in the eigenbasis
|n) as

1 .. . 1
cos(9) In) = S+ Y ) (gln) = S (I + D+l 1) 272

It is thus easy to represent the Hamiltonian in a truncated charge basis as

4Ec(=2—ng)? —E;/2 0 0 0
—E;/2  4Ec(—1—ny)? —E;/2 0 0
H= 0 —Ej/2  4Ec(0—ng)? —E;/2 0
0 0 —E;j/2 4Ec(1—ny)? —E;/2
0 0 0 —Ej/2 4Ec(2—ny)?
(2.73)

The choice of the truncation size depends on the parameters E; and Ec and
on the precision which is required. The results of such a diagonalization for the
ground and first excited states are shown in Fig. 2.9 for different ratios of E;/Ec.
The voltage V, allows controlling the transition energy of the qubit. As can be

E /E.=0.1 E/E =1 E /E.=10

E/EC
N
E/EC
N
EIEC

"o 0.5 1 15 2 0 0.5 1 15 2 o o5 1 15 2

Fig. 2.9 First four energy levels of the Cooper pair box as a function of the reduced gate charge
ng for E;/E. ratios equal to 0.1, 1 and 10 (left to right). As can be seen, for E; > E., the charge
dispersion curves becomes more and more flat
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seen, the charge-dispersion curve of the first two levels becomes almost flat when
E J> Ec.

2.2.2.2 The Split Cooper Pair Box

It is possible to get some additionnal control of the qubit energy by replacing
the Josephson junction of the CPB by a Superconducting Quantum Interference
Device (SQUID) [1]. In the following section we will show how the SQUID allows
controlling the qubit transition energy via the magnetic flux ®g threading its loop.
First, let us write the potential energy Ug of the SQUID, shown in Fig. 2.10:

1+d
Us =— > Ejcos (1) — E jcos (92) (2.74)

where d is the asymmetry parameter ,which can get any value in range of [0, 1]. A
DC magnetic flux @y is threading the loop of the SQUID such that ¢; — ¢ = %
leading to:

(1+d?) + (1 —d?)cos (%)

Us=—-E
s J 5
—Ej(®s,d)
0]
- COoS M—f-arctam —d -tan | — (2.75)
2 Z(p()

The potential energy of the SQUID is therefore equivalent to the potential energy
of a single Josephson junction with tunable Josephson energy E j(®g, d) that varies
between dE; to E;. When the asymmetry is large (d =~ 1), the Josephson energy
of the SQUID varies slightly and thus is less sensitive than for a symmetric SQUID
d=0).

The remaining part of the quantization process proceeds as before, yielding an
Hamiltonian of the split Cooper pair box of the form

H =4Ec (i — ng)* — E;(®s, d)cos(¢ + y(Ps, d)) (2.76)

where y (®g, d) = arctan [—d - tan (2‘2;)]

Fig. 2.10 Schematic of an

]
asymmetric SQUID d

1
13
E/ 2 "Dq
S
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2.2.2.3 The Transmon Qubit

The transmon qubit has been developed in 2006 in the group of R. Schoelkopf
at Yale [8]. It is a CPB whose charging energy is strongly reduced by putting a
large capacitance in parallel to the Josephson junction, such that the device is in
the regime E; ~ 100 Ec. As shown in Fig.2.11b, the charge dispersion of the
energy levels of the CPB, Aw(ng), becomes extremely weak and the transition
energy hwgy almost insensitive to the value of the gate charge ng,. This reduced
sensitivity to charge is highly advantageous in experiments since it makes the
qubit almost insensitive to charge noise and thus increases the coherence time.
However, when increasing the ratio E;/Ec one also reduces the anharmonicity
o = (w12—wo1)/wo1 (see Fig. 2.11a), therefore limiting the speed of gate operations
that can be realized with this qubit (Fig. 2.11b).

The Hamiltonian of the system is similar to Eq. (2.71). Yet, the high E; / E¢ ratio
reduces strongly the flux fluctuations and one can thus develop the cosine function
close to zero as cos(@) = 1 — 1¢? + L¢* + O (¢°).

When taking only into account the terms in @2, the system behaves as an
harmonic oscillator of frequency %w, = +/8E Ec. It is possible to express the
operators 72 and ¢ as a function of the creation and annihilation operator a and a™

2E 1/4
¢ = <_C> (a+a*)
E;

@ © ‘ ‘ ‘ ‘ ®)

-0.2r

5-04r1

Awl2m (Hz)

-06 1

08 . . . . 10° E|
0 20 40 60 80 100 0 20 40 60 80 100

E/E. EJE,

Fig. 2.11 Transmon Properties. (a) Anharmonicity « = (w12 — wo1)/wo1 versus E;/Ec ratio.
(b) Amplitude of the charge dispersion Aw = w(ng = 0.5) — w(ng = 0) versus E;/Ec for the

0 — 1 transition (in blue) and 1 — 2 transition (in red). The 0 — 1 transition frequency of the
qubit is kept around 4.8 GHz
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1/4
The zero point fluctuations of the phase operator, Ap = (2ELJC> , are small

when E; > Ec , which justifies our approximation a posteriori. Developing the
cosine potential to higher order gives

1 Ec 4
— + ) - = +
H = ho, (a a+2> 12( +at) (2.77)

The second term of the Hamiltonian can be viewed as a Kerr non-linearity. It can
be solved perturbatively using first order perturbation theory. The shift of the n™
energy level of the harmonic oscillator is given by

E
o= o35 o vy o
(2.78)
E
--= (6% +6n+3)

and thus AE, 11 — AE, = —Ec(n + 1). The Kerr non-linear term modifies the

equidistant interlevel spacing and defines a qubit with anharmonicity
o = (w12 —wo1)/wo1 = —y Ec/8Ey (2.79)

2.2.2.4 Improving Transmon Design
Typical values for a transmon are Ec/h = 200 MHz and E;/h = 15 GHz giving
aratio E;/Ec = 75, a qubit frequency wg; /2w = 4.7 GHz and an anharmonicity
a = —0.04. As mentioned earlier, the low anharmonicity requires that the gate time
should be much longer than i/ E. = 5 ns.

The typical relaxation times of transmons have been largely improved by the
introduction of three dimensional cavity, which reduce the impact of dielectric
losses in the circuit [9]. Various works have tried to reduce these losses in order to
increase the fidelity of the qubit while keeping a 2D scalable architecture [10, 11].
This can be done by reducing the interface defects between the metal and the
substrate [11]. In recent works [12], transmons with typical relaxation time of
Ty ~ 50 ws are controlled by ~ 40 ns two qubit gates, leading to two qubit gate
fidelity in the range of 99.3-99.8%.

2.2.3 The Superconducting Flux Qubit

The superconducting flux qubit is a superconducting circuit which consists of
a micron-size superconducting aluminum loop intersected by three (or more)
Josephson junctions, among which one of the junctions is smaller than the others
by a factor « (see Fig. 2.12). This qubit was initially developed at Delft University
in 1999 [13-17].
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Fig. 2.12 Scanning Electron
Microscope (SEM) image of
a 4-junction flux qubit

2.2.3.1 Potential Energy of a Flux Qubit

The potential energy of the circuit can be written as a sum of the potential energies
of each junction intersecting the loop (see Eq.(2.65)). A DC magnetic flux ® is
threading the loop, therefore due to Faraday law Z:’;ll Oi + Qo = % and thus:

n—1 n—1
P
U=-FE i — = i 2.80
J |:Zcos((p)+acos(¢0 pr)} (2.80)

i=1 i=1

For a flux qubit with n = 3 junctions, the potential energy can be plotted with a
pseudo-color plot shown in Fig. 2.13.

When ®/¢9p = 7 and for @« > «,, the potential energy U exhibits two
degenerated minima (Fig.2.13), the potential barrier between these two minima
being a function of the parameters of the junctions. The position of the minima
are given by solving the partial derivative equations d,, U = 0. The two solutions
verify the simple equation

sing* = asin ((n — 1)¢p*) (2.81)

and correspond to two opposite persistent currents Ip = £/ sin ¢* flowing in the
loop.
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Fig. 2.13 Potential energy landscape of a 3-island flux qubit with parameters &« = 0.7. (a) for
/o = 0.87; (b) for & /¢y = ; (c) for /¢y = 1.2

By inverting this equation, we find that U,,_, (cos ¢*) = é and

2
Ip = j:IO\/l — [Un__lz (é)] (2.82)

where U, _» is the (n-1)-th Chebyshev polynomial of the second kind. The following
table summarizes the common values for n = 3, 4 or 5.

n | Uy [1p| Ymin
1 2 1
3 2x fo /1= (%) !
4 14x2 -1 I3 - L 1
2/3
5804 nf1- (b)) 4

2.2.3.2 Kinetic Energy of a Flux Qubit

For a 4-junction qubit, the kinetic energy K of the system is the sum of the capacitive
energies of the circuit shown in Fig. 2.14

1
K=3 ;cj (v, —v)? (2.83)
i#]j

1
+ ECJ ((Vl — V)2 4+ (Va = Va)? + (V3 — Va)> +a (Vg — V1)2>
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Fig. 2.14 Equivalent circuit diagram of a flux qubit. The Josephson junctions are defined by their
Josephson energy E; and their bare capacitance C;. The island I is galvanically connected to a
coplanar waveguide resonator. Each island is capacitively coupled to its surrounding by geometric
capacitances denoted as C;; where (i, j) € (0, 1, .., 4), the index O representing the ground

It is a quadratic form of the island voltages V; and can thus be written as
lur
K = EV Cv (2.84)

where VT = (V1 , Vo, Vs, V4) and C is a 4 x 4 matrix which we will refer in the
following as the capacitance matrix. The matrix C can be written as the sum of the
Josephson capacitance matrix Cy and the geometric capacitance matrix Cgeom-

C = Cy + Cgeom (2.85)

where

l4a—-1 0 —«
-1 2 -1 0
Cy=Cy 0 -1 2 -1 (2.86)

—a 0 —-1l+a«
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and

Co O 0 O

C _ 0 Cpo O O

EOMT1l 0 0 Cy 0
0 0 0 Cyh
>i21Cii —Cn —C13 —Cia
—C 1y Cyj  —C —C

n 2 20 Coj 23 2% (2.87)

—C3 —C3 3 j23C35 —Cx
—Cy —Cp —Ca3 >;24C4j

2.2.3.3 Legendre Transformation and Hamiltonian
The Lagrangian of the system is £ = K —U. The conjugate momenta of our system
are given by

1 9L
nj=—— (2.88)
hog;
Since %gb i, = Vji1 — Vj, it is necessary to express the kinetic energy terms

in a new basis. Since island I; shown in Fig. 2.14 is galvanically connected to the
central conductor of a CPW, we can safely assume that V; = 0V, which simplifies
considerably the transformation:

Vi=0
0
Vo =W+ Vi
0
Vs =W+ Via + Va3

0
Vi= W+ Vi + Vo3 + V34

where V;; = V; — V;. The passage matrix P between these two bases can be thus
written as

000
100

P= 2.
110 (289)

111

The Hamiltonian H is then obtained by the Legendre transformation H =
7 Z’j":l @jn; — L and thus writes

_ e

H==

nT (PTCP)_l n+u (2.90)
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This Hamiltonian can be expressed in the so-called charge basis |ny, na, n3),
Vni,np,n3 € 73, noting that

1
cosgjlny, ny, n3) = 3 (In1 4 8j1,n2 + 82, n3
+8j3) + In1 — 8j1, n2 — 8j2, n3 — §;3)) (2.91)

In this basis the operator %nT (PTCP)_1 n is diagonal while the operator U is

sparse. The precision of the eigenvalues and eigenstates depends on the truncation of
the n; bases. Withny = —10... 10, we would need 213 coefficients just to describe

the wavefunction and another (213)2 to describe the Hamiltonian matrix. Thanks to
the the sparsity of the Hamiltonian operator, the number of nonzero entries in this
matrix is only 213 x (1 4 4 x 2). This resolution in charge space is computationally
feasible both to store and diagonalize matrices efficiently.

2.2.3.4 Pseudo-Hamiltonian

Following the full diagonalization of the Hamiltonian, we obtain the spectrum of
the flux qubit by subtracting the energy of the first excited state |1) from the energy
of the ground state |0). It can be shown that close to ® /¢y = 7, the system behaves
as a two level system and the spectrum can be fully described by two parameters:

 The value of the persistent current /,, already discussed previously.
* The so-called flux qubit gap, denoted as A, which corresponds to the tunneling
term between the two potential minima.

The value of the gap can be directly measured by the transition energy at half a flux
quantum ®/¢g = m. This point is known as the optimal point of the flux qubit due
to its immunity at first order in flux noise, as will be explained in later sections. In
the vicinity of the optimal point, the Hamiltonian of the system can be written using
perturbation theory as

H=Hy—aE;dp (cos (271% - 23:1 goj))q):%ﬂ . (CD — %)

= Ho+ L | aEysin (pa) <<I> _ %) TS (cb ~ %> (2.92)

9o

When the current operator is projected on the eigenstates |0} , |1) of Hy we get

©I710)y=0, (O T|1)=1,

(11710)=1,, (111]1)=0 293)
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Fig. 2.15 Flux qubit energy levels. (a) Calculated eigenenergies of the flux qubit circuit versus
applied magnetic field. The calculations were performed using a 3-junction qubit with E;/h =
350 GHz, Ec/h = 5 GHz and @ = 0.7. (b) Calculated qubit spectroscopy in the close vicinity of
/o = 7. At precisely ®/¢o = 7, the transition energy of the qubit is minimal and equal to the
gap A. (¢) Qubit minimal frequency (A /h) versus o parameter

Therefore, the Hamiltonian of the system can be written in this basis as

h
Hoer = 5 [Ao; + goy] (2.94)

where ¢ = % (® — mep). The frequency of the flux qubit is thus given by

wol =V A%+ 82 (2.95)

2.2.3.5 Improving Flux Qubit Design

As shown in Fig. 2.15b, the flux qubit resonance frequency is strongly dependent
on the value of the applied magnetic flux. Away from /¢y = m, the coherence
of the qubit will be compromised by the presence of flux noise. We will study this
question more in details in Sect.2.4.2.4. The only point where one can expect to
have long coherence time is the so-called “optimal point” where the qubit frequency
is minimal and thus immune to flux noise at first order. At that point the flux qubit
transition energy is equal to the flux qubit gap A. The flux qubit gap is strongly
dependent on the design parameters of the junctions (E;, Ec) and on the value of
« as shown in Fig. 2.15¢. This means that an extreme precision in the fabrication of
the qubit is needed if one wishes to control the value of the gap [18].

Tunable Flux Qubits

It is possible to create a tunable flux qubit by replacing one of the junction by a
SQUID as is done for the split Cooper pair box in Sect.2.2.2.2. This approach
brings necessarily a new channel of decoherence to the qubit [19] which should
be controlled properly, for instance by using SQUIDS with large assymetry [20].
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Fluxonium

The fluxonium has been developed in 2009 at Yale University [21]. The main
idea of this design consists of reducing the flux sensitivity of the qubit by
increasing the number of junctions intersecting the loop of the circuit. As shown
in Sect.2.2.3.1, the introduction of a large number of junctions (typically ~ 50)
reduces dramatically the value of the persistent current flowing in the loop of the
qubit and thus its magnetic dipole moment. In addition, this qubit is immune to
charge noise and exhibits a large increase of its relaxation time at ®/py = 7w
due to destructive interference of quasiparticles [22]. A large enhancement of
the coherence time compared to flux qubits was indeed observed [23]. The main
limitations of this design are its rather low transition frequencies (in the range of
few hundreds of MHz at optimal point), which require dynamical initialization of
the qubit. Moreover, the tiny magnetic moment of the fluxonium reduces its ability
to be easily coupled to other qubits, resonators and/or quantum devices.

Capacitively-Shunted Flux Qubits

In this design developed at MIT in 2016, the flux qubit is connected to a big
capacitance which reduces strongly the persistent current and anharmonicity of the
qubit [24,25]. In a recent work [25], a capacitively shunted flux qubit embedded
into a three-dimensional cavity has shown relaxation times up to 77 ~ 90 ps and
Ramsey decoherence time of Tog ~ 18 us.

2.3  Coupling Qubits and Resonators

In this chapter, we will describe succinctly how qubits and resonators can be coupled
together in order to establish the main ingredients required for the functioning of a
quantum processor. Our objective is not to give a comprehensive overview of the
field of circuit-QED but rather to focus on the basic principles of qubit readout and
manipulation.

2.3.1 Coupling a Qubit with a Resonator

Charge and flux qubit can be coupled to a resonator by capacitive or inductive
coupling. The value of this coupling depends on the electric/magnetic zero-field
fluctuations of the resonator at the qubit position and on the electric or magnetic
moment of the qubit.

2.3.1.1 Transmon Embedded in a Three-Dimensional Cavity

For instance, let us consider a transmon embedded into a three-dimensional
rectangular cavity shown in Fig.2.16. The transmon is composed of two pads
separated by a short distance d and connected by a wire intersected by a single
Josephson junction (see [9]). The zero-field fluctuations of the electric field in the
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Fig. 2.16 Transmon qubit TE101
embedded into a three
dimensional cavity. The qubit
is coupled to the electric field

E of the fundamental mode N T T T T Ya

(TE101) of the cavity

cavity can be easily estimated by integrating the electric field energy density over
the whole volume V and thus calculating the energy stored in the cavity

2 ha)
e0dEy(x,y,2)dxdydz = EX (2.96)
1%

The coupling between the fundamental cavity mode (TE101 represented in
Fig. 2.16) and a qubit situated in the center of the cavity is thus given by

ed hw
hig = edSEy = <2
§ = €a0B0 =50 260V

(2.97)

This simple back-of-the-envelope estimation can be applied for instance to the
cavity-qubit system described in [9] where d = 100 um, @ = 8 GHzand V = 3 cm?
and gives % = 125 MHz, which is very close to the coupling constant extracted
experimentally from spectroscopic measurement in the same publication.

2.3.1.2 Flux Qubit Coupled Inductively to a Lumped Element Resonator
Another interesting example consists of a flux qubit coupled inductively to a lumped
element resonator as shown in Fig. 2.17. The flux qubit is placed at a distance d from
the resonator inductance and is coupled to the current fluctuations of the resonator.

Assuming the current is flowing in an infinitely-thin wire, it is possible to
calculate analytically the magnetic field in the vicinity of the qubit using Biot Savart
law. Namely,

81
2mr
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Fig. 2.17 Flux qubit coupled R 15
inductively to a resonator.

The magnetic field is —
calculated from the current r e =
flowing in the resonator using
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The coupling between the resonator and the qubit is obtained by integrating the
magnetic field threading the loop of the qubit. Using Eq. (2.94),

hg=1, / 8BodS = M1Ipdly (2.99)

where M = g—gln (1 + %) is the mutual inductance and &/ are the current
quantum fluctuations of the resonator (see Eq.(2.58)). This simple back-of-the-
envelope estimation can be applied for instance to the system shown in Fig.2.17
where d = 1 um, w =1 = 3 wm, I, = 300 nA and 51p = 40 nA. We obtain
M = 0.8 pH and 5% = 15MHz.

The mutual inductance can be increased further by connecting galvanically the
qubit loop to the resonator. In this configuration, the mutual inductance per unit
length M /[ reaches approximately 3 pH/pm for wires of cross section 200 x 40nm?>
and thus the coupling can reach % = 170 MHz, assuming I, = 300 nA and 51y =
40 nA.

2.3.1.3 Qubit Readout by Dispersive Shift
The Hamiltonian of a qubit coupled to a resonator can be written as

1
H = hwya™a + Ehwmoz +V (2.100)

where V = fig (6+ +07) (a + a™), g being the coupling calculated in the sections
herein above. The expansion of this product of operators involves four terms. The
terms proportional to o Ta and o ~a™correspond to transitions from lower (resp.
upper) level of the qubit together with the annihilation (resp. creation) of a photon
in the resonator. The two other terms o *a™ and o ~a correspond to transitions from
lower (resp. upper) level of the qubit together with creation (resp. annihilation)
of a photon in the resonator. When the frequency of the qubit and the resonator
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are sufficiently close, these terms correspond to highly non-resonant processes.
Neglecting these anti-resonant terms is a standard approximation in Quantum
Electrodynamics called Rotative Wave Approximation (RWA).

For simplicity, we will make this approximation in the following and consider

V=nhg(cta+o"a") (2.101)

Within this approximation, the qubit and the resonator frequencies are assumed
to be relatively close. When the qubit and the resonator are detuned and the coupling
is sufficiently small (g < |wg1 — wr|), one can transform the Hamiltonian using a
unitary transformation U = ¢5, where S is an anti-hermitian operator chosen to
satisfy (see Sect.2.5.2.3)

1
[S, hwyata + Eﬁwmoz] =-V (2.102)

It is straightforward to show that this condition is satisfied by choosing

S=—2 (ota—o"a") (2.103)
w1 — Wr

Using this transformation, the Hamiltonian can be described in a perturbative
approach (see Sect.2.5.2.3) as

~ 1 2 1
H ~ hwyata + ~hwy o, + g—az <a+a + —) (2.104)
2 (wo1 — wy) 2

This last term corresponds to a Lamb shift effect. The frequency of the qubit
is shifted by the presence of photons in the cavity. This will have important
consequences on the qubit coherence as will be seen in Sect. 2.4.2.5. The same term
viewed from the resonator perspective corresponds to a change of the resonator
frequency depending on the state of the qubit. When the qubit is in the excited state,
the resonator frequency is offset from w, by

g2

_ 2.105
(wo1 — wy) ( )

S1wp =

When the qubit is in the ground state, the resonator frequency is offset from its
bare frequency w, by an opposite value

g2

_ 2.106
(wo1 — wy) ( )

Sow, =
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This frequency shift is usually called dispersive shift and allows the detection of
the qubit state by looking at the frequency shift of its coupled resonator. In order
to be able to detect it easily, this shift should be comparable with the resonator
linewidth.

2.3.2 Single Qubit Gates

2.3.2.1 Driving a Qubit by a Classical Drive
Arbitrary single-qubit rotations can be realized by applying a classical drive for a
certain time duration. The Hamiltonian of the system can be written as

H = h%az + 1 Q0 cos (Wmw! + @) (2.107)

where wy; is the qubit frequency, wy,,, is the drive frequency, ¢ the phase of the
drive and €2 is the Rabi frequency and is proportional to the drive amplitude.
The equations of motion which describe the qubit evolution taking into account
decoherence are derived in Appendix 2.5.1.7.

Under unitary transformation U = exp (i az%t), the Hamiltonian becomes
(see Appendix 2.5.2.1)

~ ) Q
H = hzaz + h; (o™ exp (iwmwt) + 0~ exp (—iwmw!)) (€xp (i (Wmw! + ¢))

+exp (—i(wmwt + ¢))) (2.108)
where § = wp] — wpyy is the detuning between the drive and the qubit frequency.

Neglecting the terms rotating at 2 w,,,, (Rotative Wave Approximation), one obtains
a time-independent effective Hamiltonian

~ 1) Q
H= hzoz +h3 (0T exp (—ip) + 0~ exp (+ip)) (2.109)

For § = 0, the evolution under such Hamiltonian is relatively simple

_( cos(%) —isin(%)e—hﬂ)
U(T)_<—isin(%)eiw cos (%1) (2.110)

In particular a 7r/2 pulse (2t = /2) will take a qubit in the ground state |0) to
an equal superposition of ground and excited:

0 = —= (100 — e 1)

) — %(—ie"‘/’ 0) +11))
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A 7 pulse (2t = m) will take a qubit in the ground state |0) to the excited state
and vice versa

10) = —ie 1)

1) — —ie'?|0)

2.3.2.2 Driving a Qubit via a Resonator Port

It is possible to drive the qubits that are positioned inside of a resonator by using
one of the resonator ports. In the following we calculate the Rabi frequency of a flux
qubit coupled inductively to a A/2 transmission line resonator (see Sect.2.1.5.5).
According to (2.60)

[ (x)= fos (@nX) ATy + f (0, x) Af,) + He. 2.111)

1
77 2

Let us assume that we drive a monochromatic wave (w, = wg;) from the left such
that Ay, = 0, V. The resulting Rabi frequency (see Eq. (2.94)) is

L oomr, |1 -
Q7 = —= [ | £~ (@or, 0) AT (o) 2.112)
Zy

Since |A}” (a)01)|2 = (P) /2 (see (2.22)), we get

2MI,)?
(hQ7)? /(P) = % |fo (wor1, X)) (2.113)

The same can be done for a monochromatic drive from the right, assuming A}, =
0, Vn. Thus we get

2M1,)°

(hQ )/ (P) = ( 270 V< (wo1, X)|? (2.114)

2.3.3 Two-Qubit Gates

2.3.3.1 Coupling Two Qubits by Fixed Coupling
One of the simplest two-qubit coupling scheme consists of coupling neighboring
qubits with a static coupling. These neighboring qubits are naturally coupled by
dipole-dipole interaction. The coupling is mainly electric (capacitive) for charge
qubits and magnetic (inductive) for flux qubits. It is possible to increase the coupling
strength by using an intermediate lumped element as shown in Fig. 2.18.

In the following, we will illustrate how this coupling is established between two
transmon qubits. This kind of coupling has already been described for resonators in
Sect.2.1.2.3.
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Fig. 2.18 Different coupling schemes (a) Inductive coupling by geometric mutual inductance
Mg, between two flux qubits. (b) Inductive coupling by sharing a lumped element inductance
My, between the qubits. (¢) Capacitive coupling by sharing a coupling capacitance C. between
two transmon qubits. (d) Controllable coupling by tuning the frequency of a tunable transmon via
a DC flux

The Lagrangian of two capacitively coupled transmon qubits (shown in
Fig. 2.18c) is given by

1 . 1 . 1 . .
L=T-V= |:§Clq>12 + ECQCDZZ + ECC ((131 — <D2)2i|

hal h)
+|Ejcos\ — )+ Eycos| —
%o 0

The conjugate momenta are defined by

0L . . .
= ——=C1® Cc(d;—
01 e 1®1 + Ce (P 2)

0L . . .
(05) 25, 22 c (P 2)

We then obtain the Hamiltonian of the system H = Q1451 + Q2d52 — L and
decompose it into three elements H = H; + H, + V such that

1 ) D 1 Z
Hy = =B (C2+Cc) O — Ej cos | — | ~ —hwo]
2 %0 2

1 2 CDZ 1 z
H, = 5,3 (C1+Cc) Q1 — Ey, cos % ~ Ehwz(fz

V =BCcQ10>~ g (o] —o) (05 —0y) (2.115)
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,/Ejl/zﬂ(CZ/lJrCc)

1
where f = e—=recerae @12 = 2 an
1
g= —E,BCQ/_a)la)z\/(Cc+C1)(CC+C2). (2.116)

The product expansion of V involves four terms. Performing a Rotating Wave
Approximation (RWA) allows us to neglect the two non-resonant terms, and obtain

V =hg (oo, +o70)). (2.117)

2.3.3.2 iSWAP Gate

This interaction allows us to perform a two qubit gate when the detuning § = w; —
w7 between the two qubits is smaller than g (§ << g). In order to better understand
this point, we calculate the time-evolution matrix of the system

1 0 0 0
0 cos [g.t] — i 2 sin [g,t i28 sin[g,t 0
U = [gf 22 Nz [ge?] g S Esge .] 2.118)
0 i sin [get] cos [get] + i sin [g.t] 0
0 0 0 1

where g, = +/4g2 + 82 is the effective swapping frequency. We can see that in the
case where 6 >> g, the off-diagonal matrix elements goes to 0, and no energy
transfer can be made between the two qubits. However, in the case where § = 0,
the qubits can exchange their excitations. For example, after time ¢ = % we can
perform the so-called iISWAP gate defined by

4998
zSWAP:(OH’)O)
0001

In practice, it is difficult and undesirable to fabricate qubits at the same resonance
frequency. Indeed, if all qubits were at the same frequency, it would be impossible
to control them separately. In Fig. 2.18d, we present a slightly different realization
of a two-qubit gate dealing with this challenge. The frequency of one qubit is tuned
to match the resonance frequency of the other by adding a SQUID which acts as
a tunable-inductor (see Sect.2.2.2.2). The inductance of a SQUID L ;(®) depends
on the magnetic flux ® threading its loop. Therefore, applying DC pulses on the
SQUID enables one to tune § such that § << g turning the gate ‘on’ and ‘off’
on demand. On one hand, this realization surely shows advantages in controlled
gate operations. On the other hand, adding the SQUID to the qubit introduces some
decoherence.
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2.3.3.3 Controlled-Z Gate

The transmon weak anharmonicity allows implementing a so-called controlled-Z
gate. Contrary to the iSWAP gate, this gate is not based on tuning the qubit transition
frequencies into resonance with each other but rather exploits the third energy level
of the transmon (see Sect. 2.2.2.3).

The idea of this gate consists of tuning the qubits to a point where the |1, 1) and
|0, 2) are degenerate in the absence of coupling [12]. In presence of the coupling,
the two states can exchange energy and it is thus possible by letting them evolve
freely during an appropriate delay time to transfer state |1, 1) to — |1, 1) and thus
have

100 0
CZ = (85? 3) (2.119)
000 —1

2.3.3.4 Tunable Coupling Mediated by a Resonator or a Qubit

Two-qubit gates can also be mediated by an intermediate resonator [26,27] or by
a coupling qubit [12]. In Fig. 2.19, we present a possible implementation of such a
scheme. Two transmon qubits are coupled by capacitors C.1 and C,, to a common
coupler whose frequency is controllable by a flux & threading a SQUID loop. In
addition, the two transmons are coupled directly by capacitor C1;.

As we will see in the following, the advantage of this implementation is the
ability to control directly the coupling between the two qubits without having to
detune them out of their optimal working point. In addition, one can also cancel
completely the direct coupling due to Cy; by adjusting the frequency of the coupler
and it is thus possible to operate properly each qubit independently with good
fidelity.

In the following, we will derive the Hamiltonian of two qubits while considering
the coupler as an intermediate resonator. Assuming Rotating Wave Approximation,
we have

h h
H = ﬂof + ﬂ02Z + hoyata + hgi <ol+a + al_aT> + higy (02"11 + az_aT>

2 2
(2.120)
Il

I
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Il |1
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Fig. 2.19 Mediated Coupling between two transmon qubits. The two qubits are coupled to a
coupler element by capacitors C.1 and C.,. The frequency of the coupler is controllable by a
flux threading the SQUID loop
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In the case where the detunings are much larger than the coupling constants, it is
possible to trace out the degree of freedom of the intermediate coupler by using a
Schrieffer Wolff transformation (see Sect. 2.5.2.3)

81 + -+ 82 + -+
S=—"—(0ya—-o0 + — -0
wl—a)r(la 1“) wz_wr(‘fza 2“)
and get an effective Hamiltonian
H_hwlzhwzzh z z\ T A + - -+
off = 70'1 =+ 70'2 + (wr + X107 + XZGz)a a+ 8eff (61 0y +Gl ) )
(2.121)
g2
where x; = 3 and an effective interaction
8182 (81 +82)
e = BTN (2.122)
By tuning properly the frequency of the coupler at o, = ©3@2 4

2
% |:1 + \/ 1+ (%) j| it is possible to cancel the small direct coupling

term Vi = hg2 (0 0, + 0, 0;") between the qubits. This choice enables to
operate single qubit gates with maximum fidelity. When the coupling between two
qubits is needed, the coupler frequency is changed quickly by applying DC current
on a flux line in the vicinity of the SQUID shown in Fig. 2.19.

2.3.3.5 Microwave Dynamic Coupling

A different approach is to apply a resonant microwave-drive on a qubit in order to
dress this qubit in effective resonance with another. The advantage of this coupling
scheme is that one can turn on and off the coupling by the application of a microwave
tone. In this section, we will try to explain briefly this strategy in a simple case. We
consider two qubits which are coupled directly by coupling constant g. One applies
a time-dependent resonant Rabi drive on qubit 1. The driven Hamiltonian writes

h
H = h%of + %O'ZZ + hgoi oy + hQoj cos (wir) (2.123)

Under unitary transformation Uy = exp (i 4 (o] + 05)t), the Hamiltonian becomes
(see Appendix 2.5.2.1) after rotating wave approximation

~ 8 Q -
Hy = h50; +hof +hg (0]f0y + 07 05) (2.124)
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The eigenstates associated to eigenvalues £2/2 of i /207 are

10) + |1)
V2
10) — 1)
V2

The splitting of these two levels is at the origin of Rabi oscillations. The operators
can be rewritten in the basis of |F) as

+) =

)=

o = 110l = (14) — =) (+] + (=) /2
o = 10)(1] = (I4) + =) (+ = (=) /2

Under this basis change, the above operators can be replaced by

crljE — (Gf T ial’v) /2

X z
01 —)O’l

In this basis H can be written as

H, = Hy+V
ot o’

Hy = m% + h&% (2.125)
of —io) _ of+io’

V:hg(l2 102+12 10’2+

The expression of operators o, ofr 0y s 02+ under unitary transformation U, =
exp (i(%oz1 + %O‘Zz)t) can be easily estimated using Baker Campbell Hausdorff
formula (see Sect. 2.5.2.2)

01+ — al""e“m

o, — al_e_lm
+ + +idt
o, — oy e

— — —i8t
0, —>0,e
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Therefore under this transformation, the Hamiltonian becomes

z P 19/ + +iQt

~ o +0, e — o0, e .
+ 1 1 1 — —idt

H, = UgVU2 =hg > 0, e

z + ,+iQt — ,—iQt
oy +o,/e —0, e .
1 1 2 1 O'2+€+l8t (2126)

If Q ~ §, only two terms of this Hamiltonian will be time independent giving
rise to an effective Hamiltonian

Hos =~ (of 05 +o707)

One of the main advantage of the dynamical coupling techniques is that they can
be directly generalized to large registers with minimal extra hardware and control
lines. Along these lines, several protocols have been proposed and realized in recent
years. For instance, one can apply a resonant Rabi frequency drive on both qubits
at the same time as suggested in Ref. [28,29] or one can even drive one qubit at the
resonant frequency of the other qubit [30], inducing dynamics in the latter across
the connecting resonator. These techniques (FLICFORQ, Cross Resonance,. .. ) are
frequently used in recent experiments.

24 Relaxation and Decoherence

One of the main limitations of quantum computers is related to the uncontrolled
influence of the environment. An efficient quantum processor should have a scalable
register of qubits that is easy to initialize, readout and manipulate but that is at
the same time well-protected from variations of the parameters of its environment.
These variations of parameters can cause uncontrolled changes in the qubits state,
reducing our ability to perform well-defined operations. This process is called
decoherence and is characterized by two distinct rates. The depolarization rate I'y
corresponds to an energy exchange with the environment. The pure dephasing rate
I"y, is associated to low-frequency noise, which affects the Larmor frequency of the
qubit without energy exchange. The two processes of relaxation and pure dephasing
combine to the so-called decoherence rate’

1
== r
2 ) 1+ 1)

3 Note that the definition of I'; as a sum of rates is only strictly valid when the noise spectra are
Lorentzians centers around zero frequency and decay functions are exponential.
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2.4.1 Relaxation

2.4.1.1 Fermi Golden Rule
The relaxation rate I'; corresponds to energy exchange between the qubit and its
environment. In principle, this rate is the sum of excitation and relaxation rates of
the qubit with its environment

Iy =T+ 8, (2.127)

—

Within the assumption that the qubit is weakly coupled to its environment, I'] e_l)o
and ['§YS, can be estimated using Fermi Golden Rule

2
[P =27 2 Pun KL 1 Vine | 0, m)2 6 (0 — 00 — wo1) (2.128)
n,m
rexe —2—”2 10, 7 | Vine| 1, 1)1% 8 (wm — wn + wo1) (2.129)
0—1— h2 Pnn s intl 1, m n 01 .
n,m

where p;,, are the diagonal elements of the density operator of the surrounding bath.
There are no quantum correlations in the bath and thus all non-diagonal elements of
the density operator are equal to zero.

2.4.1.2 Link Between the Fermi Golden Rule and the Power Spectrum of
a Bath Operator

In the following we assume that the coupling of the qubit to the environment can be

written as V;,; = Aoy F where F is an arbitrary operator acting on the environment

degrees of freedom. The correlations of operator F (¢) are given by

(F (1) F (0)) =Tr (pF (1) F (0)) = Y pun (n |F() F(0)| n)
= ann (n|F(t)|m) (m|F(0)|n)
= ann <n

=D pune' 7 |(m | F| n)|?

n,m

eth/hF(O)e—iH’/h’m> (m |F(0)|n)

According to Wiener-Khintchine theorem, the power spectrum Sr (w) is related to
the correlations by

1 .
SF (w) = E/ . (F (1) F(0)) &'
te

= pun l{m |F1n)|> 8 (0 — o — )

n,m
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It is thus possible to express the relaxations rates as a function of the power
spectrum of operator F'

2
e, = I X2 SF (wor) (2.130)

27
ree, = = A2 SF (—wor) (2.131)

In superconducting qubits, the temperature of the bath is usually much smaller

than the qubit frequency and thus I'(*¢, is exponentially suppressed by a Boltzmann

factor exp [—fwo1/kpT].
2.4.1.3 Wigner Weisskopf Theory of Relaxation
In the following, we will consider a qubit coupled to a bath of harmonic oscillators

within the Wigner-Weisskopf theory of relaxation. The system is described by the
following Hamiltonian

w01
H = hTO'Z + Z ﬁa)ka;'ak + hoy Z gk(a,;|r ~+ ag) (2.132)
We write the Heisenberg equations for a; and o, operators as

) i . .

a = [H, ax] = —iwrar — igkoy

) i . .

a,j =z [7{, a,j] = la)ka,j' + igroy

) i

o; = 7 [7—(, oz] =20, ng(az' + ay)

We assume that at time + = 0, the spin is in its excited state and thus
(o,(t =0)) = 1 and the bath is empty Vk (ay(r = 0)) = 0. At time t = 400,
the spin is de-excited and Vk <a,j' (t= +oo)> = 0. Using these boundary conditions,
we can easily integrate the first two equations

t
ar(t) = —ige / e ng (1) a
0

400 | ,
af (@) = —igk/ =g (1)) dt’

t
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By replacing these expression we get

+oo | ,
oo(t) = =20 ) gt |:oy(t) ( / dot=g (') dﬂ)
t
t
+oy (1) ( / et t=1 g (1) dz’)] (2.133)
0

We can simplify this expression assuming g = g Yk (Markovian approximation)
and using

Aw Z eI ~ /m e doy = [8(t) + iPl]
0 t

where P denotes the Cauchy principal value and Aw the constant spacing between
different values of wy. Moreover,

t —+00
/ o (t)8(t =t dt' = / o (N8t —t)dt' =0.(1)/2 (2.134)
0 t
Thus, we get
6.(1) = —2ng2iaz(z) = —Ti0,(1) (2.135)
Aw

This last expression enables us to extract an expression of the relaxation rate I'y
of the qubit

_ 27 g?

r
! Aw

2.4.1.4 Relaxation of a Qubit Coupled to a Single Mode Resonator:
Purcell Effect

In the following, we will consider a qubit embedded into a single mode resonator.

For simplicity, we consider a system described by the so-called Jaynes-Cummings

Hamiltonian

H= h%oz + hwrata+hgeta+o"at) (2.136)

We assume the resonator is coupled to the external environment with a Lindblad
jump operator L = ./ka. The presence of a dissipation channel for the resonator
opens an effective dissipation for the qubit due to the presence of the coupling g.
This effect is called Purcell effect and should be carefully taken into account when
designing a circuit-QED experiment.
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When the qubit and the resonator are sufficiently detuned g < |wo; — |, the
Hamiltonian can be replaced by an effective Hamiltonian using a Schrieffer-Wolff
transformation U = % where § = wmg_wr (c7a—o0~a") (see Chap.2.5.2.4).
This transformation enables us to estimate the Purcell effect. Indeed, the equations
of motion of the density operator in this new frame £ should include Lindblad jump

operators expressed in the same frame

L=eSLe™S (2.137)
Using Baker Campbell Hausdorff formula (see Sect.2.5.2.2), we get

L~L+[S. L]=ka+—"—Jxo~ (2.138)
w1 — Wy

We can now write the equation of motion of operator o using Sect.2.5.1.6

) g%«
6,(t) = (o + 1) (2.139)

(w01 — @)

and thus we can extract the Purcell relaxation rate FfD

P g

[ = m (2.140)

2.4.1.5 Purcell Rate in a Transmission Line Resonator
In the following, we will consider as an illustration the Hamiltonian of a flux qubit
coupled inductively to a transmission line resonator

H = hwm% +MI,T (x) oy (2.141)

We denote as FfJ the Purcell relaxation rate of the qubit due to its coupling with the
resonator. Using Egs. (2.130) and 2.131, we have

2
rf = ﬁMZI[% [S7 (wo1) + St (—wo1)]

We recall that according to Eq. (2.50), I (x, ) can be expressed as a function of
the propagation wave amplitudes A;” (@) and A} () in the incoming lines as

I(x,0) = L (f> (x, @) A7 (@) + f (x,0) AR (0)) (2.142)
VZy

Due to the independence of signals Az’ (w) and AI(Q_ (w), we have

1
S1@) = 5 (I~ @ 0P Sap @ +1f @ 0P Sz @) 2143)
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Using A;” = /55 fiora;” (see Sect.2.1.4.4) we calculate

Sap (@)

1/<AatAa0)iwt
ZreR L()L()e

1 ( c / ¥ .
o — hw ) (< a—> a—> >e+twnt
27 = 2A n (R ( L,n) L.,n
+<azn (al—:n)T>e—iwnt) eia)t

=3 (5hon) (((z) faz)s @ntor{ag, (az,) ) o))

By replacing the discrete sum ano by its equivalent integral f doer, 1 (w), we get

SA? (w) =fd h_a/ <<aTa>8 (a)/ + a)) + <aaT)5 (—a)/ + a)))

w/eR+ 47T

ho |1 0
= <“f> @ = (2.144)
b= <a a) w<0

By considering that the photon bath is thermalized at a given temperature 7,

hw 1
I+ 1 _ . —Fho w > 0

Saz (@) = {;"; e (2.145)
IrTome @<0

where 8 = k1+T' Finally, the Purcell decay rate writes

o maN\2 oo coth (5E5) (11 @1, 0 +1 £ @01, 0
I :( ) (2.146)

h 27
which we separate into two parts
rf=rp+r; (2.147)

where

je (MIN?h h
r;/ =< h”) 20 oy (wor, x)| coth (@) (2.148)



2 Introduction to Superconducting Quantum Circuits 111

2.4.1.6 Calculating the Purcell Rate from Rabi Frequency
Considering Eqgs. 2.148, (2.113), and (2.114), we establish a relationship valid at
zero temperature

hao (7<)

0K = =T

(2.149)

We thus get

hoor [(Q7)2 + ()]
4(P)

r’ oK)= (2.150)

The advantage of this formula is that it gives directly the Purcell rate via the
measurement of the Rabi frequency for a given average power (P) with a precision
limited by the uncertainty on (P), which is typically =1 dB.

2.4.1.7 Dielectric Losses
The typical relaxation times of superconducting qubits have been largely improved
by the introduction of three dimensional cavity, which reduce the impact of
dielectric losses in the circuit [9, 17, 25]. Various works have tried to reduce these
losses in order to increase the fidelity of the qubit [10, 11, 18] while keeping a 2D
scalable architecture. This can be done by reducing the interface defects between
the metal and the substrate [11].

Dielectric losses take place in the capacitors and can be modeled by a small
resistor of resistance R in series with each capacitor. The value of R is determined
by the loss tangent of the dielectric material separating each island and is given by

RCwp; = tand (2.151)

As a result, the noise voltage generated by the (lossy) capacitor is given by

Ssv (@01) + Syy (—wo) = SHOOL oy (ﬂh‘”‘“) ~ Moo R (2.152)
T 2 T

To calculate the relaxation rate of a qubit, one must determine the transverse term
oy y in the Hamiltonian introduced by a small perturbation 6 V. For instance, one can
calculate the relaxation of a transmon due to dielectric losses in the substrate. The
variation of the charge across the capacitor C due to §V is givenby 6 Q = —C§V. At
first order in §V, this modifies the kinetic term of the Hamiltonian by dK = §Q V.
Using Eq. (2.130), we get

2

diel __
rie =23

2 ‘(1 ‘v‘ 0>’2 Ssv (wo1) (2.153)
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Fig. 2.20 Dielectric losses of a flux qubit. An external bias §V;;(cyan) is applied. Here we show
the example of (i, j) = (4, 2), where we write Q4> = Caa (V4 - <V2 + 042))

which gives

- 16
P = —Ec |(1]a]0)] tans (2.154)
where Ec = % n o= % For a typical transmon on sapphire substrate

(tan(S ~ 10’6) with E;/h = 20 GHz and Ec/h = 200 MHz, the value of the

transition matrix element is |(1 |ﬁ| O)|2 ~ 1.7 and thus F?iel ~ 5 kHz.

In the following, we will calculate the dielectric losses for a flux qubit with four
junctions. As we can see in Fig. 2.20, the variation of charge across the capacitor
C4 due to § Vs is given by

3042 = —Cy28Va (2.155)
At first order in §V;;, this modifies the kinetic term by

dKy =804 (Vo — Vy)

= —CpdVpV7

S = O
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Let us recall that P from (2.89) is the 4 x 3 transfer matrix from the junction

coordinates to the island phases such that V = P® = P (PTCP)_1 O (upto a
constant). Injecting and generalizing to all other indices ij, we can write the total
perturbation of the Hamiltonian to all perturbations 8 V;;.

dH = Z (—dK,'j)
i#]

=Y cijvi; 0" (PTCP>_1 P’ (e — e;)
=y

where e; is the sparse column vector with 1 only at position i.
Let us define the 3 x 3 real symmetrical matrix comprised of the quantum overlaps
of the charge operators
Q% = ((11Q:10)(01Q;11). Vi, j € {1,2,3}) (2.156)
Seeing that d H is linear in the @ operators we can write d H under the form
dH =5V - (0" Lij)
-1
Lij =Cjj (PTCP> P’ (e,' — ej)

Subsequently, the loss rate due to §V;; writes

. [Ssv;; (@o1) + Ssv;; (—wor)] Li;TQL;;
hZ

rij=2
= Qwo1R/h) Tr (LijLijTQz)
= (2tand;; /hCij) Tr (LijLijTQz)

where we replace the expression of R in the last equality according to (2.151). We
get

Pij = %Tr ((PTCP)_1 [PT (e —e) Cijtandy; (e —e;)" P] (PTCP>_1 Qz)
(2.157)

After summation over all island pairs i, j in [-], we get

rdiel — %Tr ((PTCP)1 (PTP) (PTCP)il Q2) (2.158)
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where = Zi ; (ei — ej) Cij tan §;; (e,' — ej)T is the capacitance matrix weighted
by the tané of individual capacitive elements (we recover, for the unweighted

. . . T
expression, the usual capacitance matrix C = )~ (ei —e;) Cij (ei —e;) ). In the
case where tan § is homogeneous over all the different capacitances , we get

. 2 -1
riel — ETr ((PTCP> Q2> tan 8 (2.159)

2.4.2 Pure Dephasing

2.4.2.1 General Framework for the Pure Dephasing of a Qubit
In an ideal system, the decoherence rate I'; is limited by the energy relaxation rate
of the qubit and is given by I'; = I'{/2. In practice, the decoherence rate of a
qubit may be much larger than this theoretical limit due to pure dephasing. The pure
dephasing rate I'y, is associated to low-frequency noise, which affects the Larmor
frequency of the qubit without energy exchange.

In order to estimate this effect more precisely, we write the Heisenberg equations
of a qubit in free precession in the frame rotating at the average Larmor frequency
of the qubit (wo1)

do™
dr
do~
dr
do;
dr

=i8(t)o™

= —is(t)o~

where §(t) = wo1(t) — (wo1) . These differential equations are decoupled and can
be solved straightforwardly

o (1) = e 20 i+ ()
o7 (1) = e~ 50 dig= ()

The phase ¢(t) = fot 8(t) dt depends on small fluctuations A(#) which slightly
modify the qubit Hamiltonian. At first order, §(¢) is given by 6(¢) = Bg’%)\(t). The
pure dephasing rate of the system corresponds to the decay of the expectation value
<0i(t)) and is given by

(0% 0) = (50} o (0) (2.160)
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If the fluctuations §A(z) are small enough, they can be considered as a random
variable with Gaussian distribution [31]. Thus, using Isserlis theorem, we get

fr(t) = <eii*"(’>> ~ 1727 0) (2.161)

The expectation value of (oi(t)> will therefore decay according to

(%) {( rrar'))

frt) =e (2.162)

We can write
2
<( s A(t/)dt’) >= L Jrocg dt'du (A" = w)A0)) H(¢"YH (') (2.163)

Where H(u) is the boxcar function such that H(u) = 1if 0 < u < t and
zero elsewhere. Using Wiener Khinchine theorem to express the correlations as a
function of the power spectrum S (w)

(A () A (0)) = / dwe 'S, (v) (2.164)
Noting that
- ¢
/ du H(u)eH " = rsinc(2L) (2.165)
uelR 2
we get
Fr(®) e (2en 2]Od $i.(0) sinc2(2) (2.166)
= ¢€X _— _— SINC™ (— .
K P72\ Tax @oniw 2
—00

2.4.2.2 Dynamical Decoupling
Experimentally, the pure dephasing rate of a qubit can be estimated by the so-called
Ramsey sequence, where two identical /2 pulses are played consecutively after a
time delay ¢. It is possible to dynamically decouple the noise responsible for this
dephasing by playing a more complex set of pulses. The most popular technique
to achieve this is called Hahn Echo technique and consists of playing a m-pulse in
between the two 7 /2 pulses. This 7 pulse inverses the time evolution and therefore
cancels the contribution to dephasing of low frequency noise.

In a Hahn echo sequence, the first 7/2-pulse puts the state of the qubit in a
coherent superposition state. During the time #1, the qubit performs a free evolution
and accumulates phase ¢ (¢1) = f(;] 81(t")dt’. The m—pulse flips the time evolution
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of the qubit such that during the time #, it acquires an opposite phase ¢,(f;) =
— fttll+'2 8>(t")dt’. Assuming that the environment is static during the free evolution,
the phase accumulated is completely canceled if 1 = 1, = ¢/2.

In practice the noise is not static and the decoherence rate of the qubit—
corresponding to the decay fg(t) = (o* (#))—is given by

fe(t) = (gii<51—52>> ~ exp (—1 /2 <5% 82— 818, — 5251» (2.167)

After a calculation similar to the one performed in previous section [31], one can
show that the expectation value of (O’:t(t)> will decay according to

f) = _t2 aw01>2.70d 5.0 .2“”)- z(wt) (2.168)
fE(t) =exp S\ w Sy (w) sin (T sinc T .

—00

White Spectrum
If the power spectrum is white (S)(w) = Si(w = 0)) , it is possible to calculate
analytically the pure dephasing rate. Indeed,

o0 o

t t t 2
/dwsincz(%)z / da)sinz(%)sincz(%): T” (2.169)
—00

—00

The dynamical decoupling is therefore not effective for white noise. The Ramsey
and Echo sequence give the same exponential decay, namely

dwor \ 2
Py =Tye =1 (") Si@=0) (2.170)

This result can be generalized if the power spectrum is regular at @ = 0 on a
frequency scale |w| < 1/¢. Indeed,

o0 o
t t
/da)S;L(a)) sincz(%):SA(O) / da)sincz(%) (2.171)
—00 —00
1/f Spectrum

Here we assume that the power spectrum follows a 1/f law in a wide range of
frequencies limited by an infrared cutoff w;r and an ultraviolet cutoff w,

A
Si(w)=—, o <lo| <o (2.172)

13]
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The infrared cutoff is usually determined by the total length of the measurement
protocol (typically 1Hz) and the ultraviolet cutoff is typically in the range of a few
MHz. Using

/ sinc (—) ~ 2In <L> (2.173)
Wi Rt
da)
ﬁ sin (—) sinc (—) = 2In(2) (2.174)

we get a Gaussian decay for both Ramsey and Echo pure dephasing with

Tyr = VA (@) In (L> (2.175)

oA wJRt

Tyr = VA (E’;”—Am) Vin@) (2.176)

In particular, lln<w1Rl) ~ 3.7 and T'yp/Typ ~ 4.5 for typical cutoff

frequencies. This limited echo efficiency is due to the high frequency tail of 1/f
noise.

2.4.2.3 Charge Noise in a Transmon Qubit
An important source of pure dephasing for qubits is noise on the charge of each
island of the qubit. This noise is due to microscopic charged fluctuators that can be
either trapped electrons or ions in defects of the material that move between two
or several metastable positions. These charge fluctuators are partly located in the
substrate and partly on the oxide layers covering the electrodes of the device.

The charge noise power spectrum follows approximately a 1/f behavior up to
frequencies of approximately 1 MHz

Ag
So(w) = Tol (2.177)

The typical amplitude Ay depends on the parameters of the experiment (tem-
perature, size of the island, screening by other electrodes). A typical value is
VAg ~ 1073¢ where e = 1.6 x 107!° C is the electron charge.

Several qubit design have been used to reduce the influence of this noise. In
particular, a transmon with a large ratio E;/E¢ will have a small charge dispersion
(see Fig.2.11b), which will reduce the dephasing due to charge noise.
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Taking a charge qubit with wg1/2mr = 5 GHz and Ej/Ec = 10, we see in
Fig. 2.11b that 3;”70; ~ 107 rad/s. Thus, using Eq. (2.176), we get r;‘}?ge ~ 10 kHz.
If we increase further E;/ E¢ to the transmon regime, it is possible to cancel almost
completely the charge dispersion, reducing therefore the contribution of charge
noise to decoherence.

2.4.2.4 Dephasing of a Flux Qubit Away from its Optimal Point

Flux noise is also an important source of dephasing for qubits which posses a
superconducting loop, such as flux qubits. The origin of this noise is most likely
due to microscopic spins in the vicinity of the qubit which generate a magnetic
noise threading the loop of the qubit. The flux noise power spectrum follows
approximately a 1/f behavior up to high frequencies [16]

Ao
So(@) = (2.178)

The typical value of the flux noise amplitude is v/Ag ~ 107%d( where &g =
2 x 1013 Wb is the magnetic flux quantum.

To illustrate our discussion, we will consider in the following a flux qubit away
from its optimal point. As already mentioned in Sect.2.2.3.5, the high magnetic
moment of the flux qubit make its frequency very sensitive to flux

21, \* (& — ®g/2
dwor _ e dwor _ <_p> ( 0/2) (2.179)

ad 9P de h o1
Taking a flux qubit with wg1 /2w = 5 GHz, I, = 300 nA, ® — ®¢/2 = 50 p Py,
and using Eq. (2.176), we get [1%* ~ 170 kHz.

2.4.2.5 Calculating the Dephasing Rate Due to Photon Noise

Stochastic fluctuations in the number of photons in a resonator coupled to a qubit
create random dispersive shifts which translates into dephasing. Using Eq. (2.104) ,
the frequency of the qubit is given by

wo1(t) = {wo1) +2x8n(t) (2.180)

where x = g2/(wo1 — w,) and 8n(t) = n(t) — 7.
Using Eq. (2.162), one can thus determine the decoherence rate due to photon
noise

SRy

frR@) =e

In the following, we compute the correlations (6n(7)én(0)) using quantum

regression theorem (see Sect. 2.5.1.8) for thermal and coherent states. More complex

photon states in the resonator such as squeezed states can be handled with the same
formalism [32].



2 Introduction to Superconducting Quantum Circuits 119

Thermal Photons
In order to estimate the photon correlations in thermal state of a resonator, we write

a set of equations of motion for O = (n ®), ]l)T in presence of Lindblad operators

Ly = /k (1 + Da and Ly = +/kna*. We obtain coupled differential equations
that can be written in the form of

d = —
— 0@ =GO (2.182)
dt
where
—K Kn
G = < 0 0) (2.183)

The steady-state expectation values are obtained by the null eigenstate of G,
defined by G(0) = 0, leading to (n(t))so = n. Similarly, we calculate the steady-
state expectation value (n2(r))so using the kernel of the equation of motion for 72
and find

(> (1))oo = 1271 + 1) (2.184)

To obtain the two-time correlation (n(t + 7)n(t))~o, We use the quantum regression
theorem (see Sect.2.5.1.8), namely

d [n(t +0)n@)\ _ (—« ki [n(t + O)n(t)
d_r< 1 n(r) >_(0 0>< 1 n(r) > (189

Using the initial conditions (n(t + O)n(t))oo = n(2n + 1), we solve the linear
differential equation and find

()N (0))oo = > + (ﬁ2 + ﬁ) eIl (2.186)

Using Wiener Khinchine theorem, we obtain the power spectrum

S (@) = —— / () et = £ (fﬂ n ﬁ) (2.187)
21 JieRr T

k2 4+ @?

Typically, the decay rate « of the resonator is much higher than the decoherence
rate of the qubit. The power spectrum S, (w) is almost constant in the range of
interest and thus we obtain

, dwor \ 2 4x* (n* + i
F(tphermdl =7 ( 61)01) Sp(w=0) = M (2.188)

on
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Coherent States

When the resonator is driven by a classical drive, the resonator is in a coherent state.
In the following, we consider the Hamiltonian of an harmonic oscillator in presence
of a well-chosen Lindblad operator

H = hwra™a (2.189)
L=k (a - ae"wrf) (2.190)

The steady state of this system correqupds to a pure state p(t) = |Y (@) (¥ (@)],
where the coherent state | (¢)) = |ae'®’) satisfies L|y(t)) = 0. Applying the

transformation U = ¢®r'4" % on the Hamiltonian and the Lindblad operator above
we obtain
H=0 (2.191)
L =k(a—a)e. (2.192)

In this new frame, we can write the coupled equations of motion for O, where
— —

0 = (n(t), a(t), a' (1), 11)T, in the form of £ O (1) = G O (¢) with

—K %a*/c %ak 0

0 —%K 0 %ouc

G = 2.193
0 0 —%K %O(*K ( )
0 O 0 0
The steady state solutions result in
5 T
(0) = (Ial , o, of, 1) (2.194)

In order to find (n(r)n(0)) we diagonalize the system and plug in the initial
conditions in the steady-state solution for t = 0 . Thus, we obtain

(OO0 = lar]* + [ar]? e~ 2¢I7] (2.195)

Using Wiener Khinchine theorem, we obtain the power spectrum

Sy (@) = 1 / () (0)) & = ~ 72 ! (2.196)
21 Jier

27 (k/2)? + w?

We obtain therefore the dephasing rate due to photon noise in a coherent-state

2 -
Pttt = (—8”01> Suw=0) = L7
on

(2.197)
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2.4.3 Decoherence Under Driven Evolution

The decoherence rate of a driven qubit involves the noise spectral density at its Rabi
frequency. To demonstrate this, we will consider in the following a qubit under
driven evolution with a drive tuned at the average frequency of the qubit (wo)
assuming that some external fluctuators may modify its instantaneous frequency
o1 (¢). The Hamiltonian of the system can be written as

wo1 (1)

H=h o; + hQoy cos ({wo1) t) (2.198)

We introduce a Lindblad jump operator L1 = +/I"10 ™~ to describe the relaxation
processes. In the following, we assume that I"yis a constant and does not depend on
the frequency of the qubit.

We first transform this Hamiltonian with a unitary transformation Uj(f) =

{on1) . . . L
e' 72 %! such that the Hamiltonian becomes after rotating wave approximation

H= h@ o+ = ﬁQ (2.199)

The eigenstates associated to eigenvalues £2/2 of A2 /20, are

10) + |1)
V2
10) —11)
V2

The Hamiltonian can be rewritten in the basis of |F). Under this basis change, the
above operators can be replaced by

I+) =

)=

o, —> Oy

ox — O3

In this basis, the Hamiltonian becomes

H = —ﬁQ +h@ oy (2.200)

Using Fermi-Golden rule (see Eq. (2.130)), we get

3
ry=r_ =2 ( ;’;’1) (S5 (+9)) (2.201)
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The equations of motion of the density operator in this new frame p should
also include Lindblad jump operators expressed in the same frame. Under this
transformation, the Lindblad jump operator becomes L1 = /T (o, +ioy) /2.
Introducing this transformed operator into the equations of motion for o *operator
(Eq. (2.218)), we get

3
ry= T +T, (2.202)

This rate corresponds to the decay rate of the so-called Rabi oscillations.

2.5 Appendix

2.5.1 Master Equation Formalism

The quantum state of a qubit register is fragile and evolve in a non-unitary way,
making it impossible to model its evolution using Schrodinger equation alone. The
Master Equation formalism allows to treat the qubit register as an open system
which interacts with its environment [33, 34].

2.5.1.1 Density Matrix Representation
The density matrix p for a system is a positive semi-definite Hermitian operator
of trace one acting on the Hilbert space of the system. It is a generalization of
the more usual state vectors or wavefunctions: while those can only represent pure
states, density matrices can also represent mixed states, i.e. states where the physical
system under study is entangled with its environment.

The general description of a density operator is

p=_pi|¥ivil (2.203)
;

where |l/f j) is a pure state of the system and p; its probability. A density operator

represents a pure state (o = |) (¥]) if and only if tr(pz) =1.
Interestingly, the expectation value of an operator O is given by

L{0®) =Tt [0p(1)]] (2.204)

2.5.1.2 Density Matrix of a Qubit
For a single qubit, the density operator is a 2 x 2 matrix and can be written as

o= % (11 + 73.?) (2.205)
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where @ = (0x, 0y, 0;) Tepresents a vector of Pauli matrices, and ?’) represents a
vector of the so-called Bloch sphere.

It is important to emphasize the difference between a probabilistic mixture of
quantum states and their superposition. For instance, if the qubit is prepared as
a statistical mixture of eigenstates |0) and |1) with equal probability, it can be
described by the density matrix operator

1/10
=3 (0 1) (2.206)

On the other hand, a quantum superposition of these two states with equal
probability amplitudes results in the pure state |y) = \/Li (]0) +|1)) and is

associated with density matrix operator

1/11
p=5 (1 1) (2.207)

ﬁ
In a general manner, the state of a qubit is a pure state if ‘ P ‘ = 1 and is entangled
with the environment if ‘7’)‘ < 1.
2.5.1.3 Liouville-von Neumann Equation

The time evolution of the density operator is directly obtained from Schrodinger
equation

—ZP/ (|rwi) (wi| + ;) (aiw;]) = ZPJ (H|wi) (] = [v)) (| H)

>.
|

m L [#4.0)

The evolution of the density operator according to Louville-von Neumann
equation is unitary. However, a quantum system interacts with its environment and
thus some unavoidable non-unitary evolution will happen.

2.5.1.4 Krauss Theorem

In general, any evolution of a quantum system can be described by a quantum
map [33,34] . Such quantum map is a linear super-operator that transforms the
density operator p into a new operator £(p). To be valid, the quantum map must
fulfill several conditions:

 Linearity—The super-operator must be linear L(ap + Bp’) = aL(p) + BL(0)
witha + 8 = 1.

* Preservation of the trace—The super-operator must conserve the trace of the
density matrix tr(.Z(p)) = 1
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* Complete positivity—/(0) must be positive semi-definite for any composite
quantum system including the system and parts of its environment.

Under these conditions, the Krauss theorem states that any quantum map can be
expressed as a sum of operators

K—1
ZL(p) =Y MupM,; (2.208)
n=0

where one can choose K — 1 < d?, d being the dimension of the Hilbert space
of the system and K is the Krauss number. In order to conserve the trace, it is
straightforward to show that the Krauss operators M, must satisfy the normalization
condition

K—1
> MM, =1 (2.209)
n=0

2.5.1.5 Lindblad Equation
Assuming the system is Markovian (no memory), we define the derivative of the
density operator as

. Z(p)—p
p=———""
T

(2.210)

In order to be defined for infinitesimal t, one of the Krauss operators My should
satisfy the condition lim;_,qg My = 1. At first order in t, we can thus write it as

My=1—iLyt (2.211)

We write the operator Lo as a sum of hermitian and antihermitian operators
Lo = %(L0+Lg) + %(LO—L(J)“) and introduce H = %(L0+L3') and J =
% (Lo — L{). Up to first order in 7, we have

MopMy = p —it/A[H, pl = (Jp + pJ) (2.212)

All other Krauss operators (u # 0) will contribute at first order only and thus
can be written as

M, = J7L, (2.213)

Using the normalization condition, we get

K—1
oMM, =1-2Jt +7) LiL,=1 (2.214)
n=0 n#0
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we can thus express J as a function of L, as

1
J=3 Z LYL, (2.215)
u#0

Reorganizing the terms of the equation, we get the Lindblad equation

d i . ) )
Tp=——IH. p]—I-ZLMpLL—%(LLLMp—i—pLI'LLM) (2.216)
u#0

2.5.1.6 Equations of Motion
For a system described by the Lindblad master-equation, the time evolution of an
arbitrary operator O(t) is given by

d o —dT 0 =T Od t 2.217
T (0W) = ST [0p(1)] = r[ d—fp()] (2217)

Using Eq. (2.216), and noting that
Tr[O[H, pll =Tr[[O, H] p] = {[O), H])
Te[OLupL) | =Te[L}OLup] = (LL0OOL,)
Tr[OpLiL,] = Te[L]L,0p] = (LiL,0W)
Tr[OL;Lup] = (O(I)L;LM>

We get

% (0@) = % ([H, 00)) +M§)(<LLO(I)L,L> - %<LLLMO(t)> - %(O(t)LLLM»

(2.218)

2.5.1.7 Some Simple Examples
As a matter of illustration, we will consider in the following two simple examples.

» Cavity with damping

In this first example, we consider the equation of motion of an harmonic oscillator
driven by a classical field assuming an Hamiltonian H = fAw,ata + he(a + a™)
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in presence of a Lindblad jump operator L = ./ka, where w, is the resonance
frequency of the resonator and ¢ the strength of the field. Using Eq. (2.218), we get

da _ e — ~ (2.219)
— =i —ig— — .
T wra 2a
from which we obtain that
—ig[w]
alw] = —m8M8MM— (2.220)

i(wp —w)+kK/2

¢ Qubit evolution under classical drive

In this second example, we consider the equations of motion of a qubit driven by
a classical field assuming an Hamiltonian H = 1780, + %hﬂox in presence of
Lindblad jump operators L1 = 4/I'jo0™ and Ly, = 4/ %UZ where § = w1 — wp is
the detuning between the pump and the resonance frequency of the qubit and €2 is
the Rabi frequency. Using Eq. (2.218), we get

dO’x F]
= —doy — 7+1"¢ Ox

dt

dﬂ:SJX—QJ —<E~I—I‘>a,
dt ¢ 2 )
99 _ ey~ T (0. + 1)

dt Y z

a _

dt

This system of equations can be written in a matrix for with _O) =
— —
(03 (1), oy (1), o2(1) 1) as L0 (1) = GO (1) with

r
- (7‘ + F¢) ) 0 0
r
G = 8 - (7‘ + Fw) -2 0 (2.221)
0 Q B P
0 0 0 0

The steady-state expectation values are obtained by the null eigenstate of G,
defined by G(0) = 0, leading to

$QT;?
= ) wo
148277 + Q2T 1,

(2.222)

(0x) 0
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QT

T+ eI r T (2:223)

<Uy)oo

() 1+ 8277 2.224)
0. = .
Yo T I eI T

where le = % + I'y and wy is the expectation value of o, when the system is not
driven (2 = 0).

2.5.1.8 Quantum Regression Theorem

As shown in the example herein above, it is often possible to write an equation of
motion for an operator A(7) as a linear combination of a set of system’s operators
Bj, namely

A(t) Z G;(Bj(1)) (2.225)
Using Lindblad master-equation ‘fh Z p, we can thus write
Tr[AZLp]=Tr| Y G;Bjp (2.226)

This equation being satisfied for any p(¢), we obtain that

AL = Z G;Bj (2.227)

This result allows us to compute the time derivative
d d
LA+ 0)00) = —Tr [Aeff Op(t)] (2.228)
dt dt
—Tr [ALeLf 0p (r)] : (2.229)

Using Eq. (2.227) we obtain

d
A+ D0W) =Tr Z G;B;ef 0p(1) (2.230)
J
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= G/Te[Bje 0p0)] (2.231)

j
=Y Gi(Bjt+1)0®)) (2.232)

i

Equation (2.232) is the quantum regression theorem [32].

2.5.2 Schrieffer Wolff Transformation

2.5.2.1 Unitary Transformation
Let’s consider a unitary transformation U (¢) acting on the Hilbert space &y and
characterized by the relation U TU = 1. Under this transformation, the state of the
system |W¥) becomes |W) = U(r) |W). Writing the Schrodinger equation for | W)
gives
ihd, |(17) =ihd, (U @) |V)) =ihd,U@) V) +ihU()0; | V)
=ik UUT (1) |[0)+ Ut H |W)

= (ihUMUT () + U HUT (1)) |¥)

Thus, under this unitary transformation the Hamiltonian becomes

(H=U0HU () +ih0OU ()| (2.233)

In particular, if the unitary transformation does not depend on time, H =
UHU™. If the transformation is time dependent, a new term will be added in the
Hamiltonian. This term is the quantum equivalent of fictitious forces that appear in
a non-inertial frame of reference in classical physics.

2.5.2.2 Baker Campbell Hausdorff Formula

For two operators A and B, we consider the expression B() = ¢*4 Be=*A where
A € C. The Baker Campbell Hausdorff formula states that it is possible to express
B (1) as a formal series of operators A and B and iterated commutators thereof,
namely

~ )\'2
B(A) =e*Be™* = B+ 1[A, B] + 5[4, 14, B1]

A'ﬂ
+...+ ] [A,[A, ... [A, B]]III. (2.234)
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The demonstration of this formula is extremely simple. For A = 0, the formula
is true. Moreover, it is straightforward to show that the two sides of the equality are
solutions of the same linear first order differential equation

IB(A) o, =
T =[A, BW)] (2.235)

Thus, according to the Cauchy Lipschitz theorem, the two sides of the equation
must be identical.

2.5.2.3 Schrieffer Wolff Transformation

In quantum mechanics, the Schrieffer—Wolff transformation is a unitary transforma-
tion used to simplify the Hamiltonian of a system H = Hy + V to second order
in the interaction V. Under a unitary transformation, the Hamiltonian of the system
becomes

H=¢He™S (2.236)
where S is an anti-hermitian operator. Using Baker Campbell Hausdorff formula
ﬁ=H0+V+[S,Ho+V]+%[S,[S,H0+V]]
+...+ % [S,[S,... [S, Ho+ V1. (2.237)
If one chooses properly S such that
[S, Hol = =V (2.238)

~ 1 1
H=H0+V—V+[S,V]—E[S,V]+§[S,[S,V]]+--~

Thus, the transformed Hamiltonian can be written up to second order in V as

H=Hy+ % (S, V]I4+ 0(V?) (2.239)

2.5.2.4 A Simple Application of Schrieffer Wolff Transformation

As an illustration, we consider we consider the Hamiltonian of a spin coupled non-
resonantly to a resonator (assuming for simplicity rotating wave approximation).
The Hamiltonian of the system can be written as

1
H = howra*a + Eﬁa)moz +hg(cta+oa") (2.240)
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We consider the coupling term V = hg (U+a + 0‘a+) as a small perturbation

and introduce the operator § = —£— (o7a — o ~a™). It is easy to check that S is
wo] —wr

anti-hermitian (S = —S™) and that

8

1
m |:(O'+a — U_a+) ’ C()ra+a + 5(,()()]01:| =—g (U+a + O_—a+) _

(2.241)

The commutator [S, V] can be calculated straightforwardly

hg? 2hg?
[S,V]= e [o+a —o"aT,0Ta+ a_a+] = _nE [a+a, o_a+]
wo] — Wr wo] — Wy
(2.242)
Thus, the transformed Hamiltonian can be written as
~ L1 hg* L1
H >~ hwya’a + zhwyio0;, + ————o, laTa+ = (2.243)
2 (wo1 — wy) 2

This Hamiltonian exhibits the so-called dispersive shift of the resonator. The
resonance frequency of the resonator is slightly shifted from its bare resonance due
to the presence of the spin. The sign of this shift depends on the state of the spin and
thus is used frequently in circuit QED for reading out a qubit state. Inversely, the
number of photons in the resonator will give rise to a shift in the transition frequency
of the spin (Lamb shift). This reverse effect is in general detrimental for the spin
coherence. Shot noise of photons in the resonator (photon noise) will give rise to
noise in the resonance frequency of the spin which will lead to loss of coherence.
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Abstract

In recent years, experimental advances have made it possible to achieve an
unprecedented degree of control over the properties of subgap bound states in
hybrid nanoscale superconducting structures. This research has been driven by
the promise of engineering subgap states for quantum applications, including
Majorana zero modes predicted to appear at the interface of superconductor and
other materials, like topological insulators or semiconductors. In this chapter,
we revise the status of the field towards the engineering of quantum devices
in controllable semiconductor-superconductor heterostructures. We begin the
chapter with a brief introduction about subgap states, focusing on their math-
ematical formulation. After introducing topological superconductivity using the
Kitaev model, we discuss the advances in the search for Majorana states over
the last few years, highlighting the difficulties of unambiguously distinguish
these states from nontopological subgap states. In recent years, the precise
engineering of bound states by a bottom-up approach using quantum dots has led
to unprecedented experimental advances, including experimental demonstrations
of Andreev qubits based on a quantum dot Josephson junctions and a minimal
Kitaev chains based on two quantum dots coherently coupled by the bound states
of an intermediate superconducting segment. These experimental advances have
revitalized the field and helped to understand that, far from being a disadvantage,
the presence of subgap bound states can be exploited for new qubit designs and
quantum coherence experiments, including Majorana-based qubits.
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