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Abstract 

Standard textbooks on quantum mechanics typically illustrate the theory using 
examples from the microscopic world, such as atoms, electrons or molecules. At 
this scale, quantum effects are striking and easily noticeable. At the macroscopic 
level, quantum mechanics seems however often counter-intuitive. Features like 
state superposition and entanglement lead to well-known logical paradoxes, 
challenging our understanding of what we call ‘reality’. Controlling quantum 
features in a macroscopic physical object could open the way for building a 
new generation of quantum machines with tremendous computational power. 
Superconducting electrical circuits are an example of such a macroscopic 
quantum system. As of today, the cutting-edge level of control exhibited by these 
circuits has led them to be considered as one of the foremost technologies for 
physically implementing quantum computers. Moreover, it is possible to make 
hybrid systems in which the quantum variables of an electrical circuit are coupled 
to various microscopic degrees of freedom, thereby demonstrating that these 
circuits constitute a general interface to the quantum world. The purpose of 
this chapter is to provide an introduction to superconducting quantum circuits, 
elucidating how such systems can exhibit quantum behavior and how they can be 
controlled to serve as a building block of quantum processors. 
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2.1 Quantization of an Electrical Circuit 

2.1.1 The Lumped-Element Circuit Model 

We will first begin with some reminders concerning classical electrical circuits in 
the radio-frequency or microwave domain .(f ∼ 1 MHz–100 GHz). For simplicity, 
we consider a circuit formed by a planar network of electrical dipoles. This lumped 
element description is valid when the physical size of the circuit is much smaller 
than the wavelength . λ of the signal. 

2.1.1.1 Constitutive Relations 
At any instant t , the classical state of a dipole can be fully determined by knowing 
a single dynamical variable. One can measure either .V (t) which represents the 
voltage drop across the dipole or .I (t) the current flowing through it. These two 
dynamical variables are connected to each other by a constitutive relation. This 
constitutive relation may be linear (e.g. Ohm law) or non linear and characterizes 
the dipole element. It is often more convenient to describe the state of the dipole by 
the charge and flux variables, namely .Q(t) and .Ф(t) defined as 

.

Q̇(t) = I (t)

Ф̇(t) = V (t)
(2.1) 

Capacitive elements such as capacitors .(V = Q/C) have constitutive relations 
where the voltage drop depends only on charge. Their energy only depends on 
charge: 

.E =
⎰

V (t)I (t) dt =
⎰

V (Q)Q̇(t) dt =
⎰

V (Q) dQ (2.2) 

Inductive elements have constitutive relations where the current depends only on 
flux. This function can be linear .(I = Ф/L) or non-linear (e.g. .I = I0 sin (Ф/ϕ0)). 
Their energy only depends on flux: 

.E =
⎰

I (t)V (t) dt =
⎰

I (Ф)Ф̇(t) dt =
⎰

I (Ф) dФ (2.3) 

2.1.1.2 Defining the Spanning Tree of a Circuit 
To solve the circuit, one needs first to define a set of independent variables 
taking into account these constitutive relations. According to graph theory, a planar 
network of dipoles with similar constitutive relations (i.e. only resistors or only 
capacitors) can be reduced to a single equivalent dipole. One can therefore find 
systematically a set of independent variables by the so-called node method. This 
method consists of:
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1. finding first all the nodes of the circuit which connect at least two elements 
with distinct constitutive relations, and associating to each of them an electrical 
potential. 

2. Defining a set of independent fluxes .(Ф1,Ф2, . . . , Фn) by drawing a spanning 
tree which access every node without forming a loop, preferably passing through 
inductors only. 

To write the equation of motion of the circuit, we use Kirchhoff’s node law, which 
expresses charge conservation, and which states that the sum of currents flowing 
into a node is equal to the sum of currents flowing out of that node. The hypothesis 
of charge conservation is well verified in usual metals below their plasma frequency, 
which is usually in the deep UV range, far above microwave frequencies. 

2.1.1.3 A Simple Example 
To illustrate our point, let us consider the example shown in Fig. 2.1. The points 
A and B are nodes of the circuit and are characterized by electrical potentials . VA

and .VB . Point C connects three purely resistive elements and thus the elements 
connected to this point can be reduced to a single equivalent dipole of resistance 
.Req = R1 + R2R3

R2+R3 . The spanning tree connecting node A and B defines here a 
single independent flux variable . Ф, the flux threading the inductance L. 

We write the equation of motion of the circuit by writing Kirchhoff law at node 
A and using the constitutive relations of each element: 

.I (t) = iL(t) + iC(t) + iR(t) = Ф

L
+ CФ̈ + Ф̇

Req

(2.4) 

Fig. 2.1 Simple example of a lumped element circuit. A current source .I (t) is connected to a 
network of dipole elements. Points A and B are nodes of the circuit. Point C connects three purely 
resistive elements and thus can be reduced to a single resistive dipole. The flux threading the 
inductance .Ф̇(t) = VA(t) − VB(t) can be chosen as the dynamical variable of the system
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where .Ф̇(t) = VA(t) − VB(t) , .iL(t) = Ф
L

is the current flowing in the inductor 

branch, .iC(t) = CФ̈ the current flowing in the capacitor branch, and . iR(t) = Ф̇
Req

the current flowing in the resistive branch. 

2.1.2 Quantization of a Lumped Element Circuit 

To ensure the quantum mechanical behavior of a circuit, the first requirement is the 
absence of dissipation. Specifically, all metallic components must be constructed 
from materials that exhibit zero resistance at the circuit’s frequency and operating 
temperature. Zero resistance is obtained by fabricating the circuit out of a metal, 
which becomes superconducting at low temperatures. Superconductivity arises 
from the pairing and condensation of electrons with opposite spins into a special 
ground state [1]. This ground state possesses an excitation gap, 2. Δ, which is the 
energy required to disrupt one of the electron pairs and create an excited state. 
It is this excitation gap that enables current to flow through a superconductor 
without dissipation. Additionally, this gap reduces the number of effective degrees 
of freedom in the circuit, allowing the construction of circuits that behave quantum 
mechanically, despite being composed of approximately .1012 atoms. 

In addition, the remaining degrees of freedom of the circuit must be cooled to 
temperatures where the typical energy of thermal fluctuations is much less that 
the energy associated with the transition frequency of the circuit. For instance, 
if the circuit operates at .5 GHz, the required operating temperature should be 
approximately .20 mK (keeping in mind that 5 GHz corresponds to about 0.25 K). 
Achieving such temperatures can be accomplished by cooling the circuit using a 
dilution refrigerator. However, it is equally crucial to cool the wires connected to 
the circuit’s control and readout ports, which can bring a substantive amount of heat 
to the system. This last point requires meticulous electromagnetic filtering. 

2.1.2.1 Definition of the Conjugate Variables 
For an arbitrary circuit composed of non dissipative elements, one obtains the 
equation of motion by first identifying the independent variables as stated in 
Sect. 1.1 and writing the Lagrangian of the system 

.L = K(Ф̇1, Ф̇2 . . . , Ф̇n) − U(Ф1,Ф2, . . . , Фn) (2.5) 

where K is the capacitive energy and U the inductive energy of the circuit. The 
conjugate momenta of our system are given by 

.Qi ≡ ∂L
∂Ф̇i

(2.6)
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Finally, one obtains the Hamiltonian of the system by writing .H = ∑
Ф̇iQi − L. 

From this point, the equation of motion can be directly obtained. 

. Ф̇i = ∂H
∂Qi

Q̇i = − ∂H
∂Фi

The principle of correspondence of Dirac stipulates that one can quantize the 
system by introducing the operators . Ф̂i and . Q̂i which obey commutation relations 

.

⎡
Ф̂i, Q̂i

⏋
= iℏ (2.7) 

2.1.2.2 From the Capacitance Matrix to the Hamiltonian of the Circuit 
Let us now consider the example shown in Fig. 2.2. The points A, B and C are 
nodes of the circuit and are characterized by electrical potentials . VA, .VB and . VC . 
We define a spanning tree by choosing the flux . Ф1 and . Ф2 shown in the figure and 
connecting these three nodes. 

The inductive energy U of the system is simply given by 

.U = Ф2
1

2L1
+ Ф2

2

2L2
(2.8) 

Fig. 2.2 Quantization of two coupled resonators. Each bare resonator is composed of an inductor 
of inductance .L1,2 in parallel with a capacitor of capacitance .C1,2. They are coupled directly by 
the capacitor . C3 and indirectly via their coupling to the ground. The points A, B and C are nodes 
of the circuit. The fluxes . Ф1 and . Ф2 define a spanning tree connecting all the three nodes
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The capacitive energy K of the system is given by 

. K = 1

2
C1(VA − VC)2 + 1

2
C2(VB − VC)2

+ 1

2
C3(VA − VB)2 + 1

2
CgV

2
A + 1

2
CgV

2
B + 1

2
CgV

2
C

It is possible to write the capacitive energy as .K = 1
2V

T CV where . VT =
(VA, VB, VC) and . C is a .3 × 3 matrix which we will refer in the following as the 
capacitance matrix. In our case, 

.C =
⎛
⎝ C1 + C3 + Cg −C3 −C1

−C3 C2 + C3 + Cg −C2

−C1 −C2 C1 + C2 + Cg

⎞
⎠ (2.9) 

Using the definitions .Ф̇1 = VC − VA , .Ф̇2 = VB − VC and Millman theorem [2] 
for the ground voltage .Vg = VA + VB + VC ≡ 0, we have  

. 

⎧⎪⎪⎨
⎪⎪⎩

VA = − 2
3 Ф̇1 − 1

3 Ф̇2

VB = + 1
3 Ф̇1 + 2

3 Ф̇2

VC = + 1
3 Ф̇1 − 1

3 Ф̇2

Thus, one can define a passage matrix . P that expresses . V as a function of . Ф̇ =
(Ф̇1, Ф̇2), i.e. .V = PФ̇. It is therefore possible to write the Lagrangian . L as 

.L = 1

2
Ф̇

T ~CФ̇ − 1

2
ФT L−1Ф (2.10) 

where .L−1 =
⎛

1/L1 0
0 1/L2

⎞
and . ~C = PT CP. The conjugate momenta of our 

system are given by .Q = (Q1,Q2) ≡ ~CФ̇ and the Hamiltonian is thus given by 

. H = 1

2
QT ~C−1

Q + 1

2
ФT L−1Ф (2.11) 

2.1.2.3 Coupling Between Two Resonators 
The Hamiltonian herein above can be greatly simplified if one assumes that 

.C3, Cg ⪡ C1, C2. In this case, one can write easily . ~C
−1

as 

. ~C
−1 ≃ 1

C1C2

⎛
C2 + C3 + 2

3Cg C3 + 1
3Cg

C3 + 1
3Cg C1 + C3 + 2

3Cg

⎞
(2.12)
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By grouping the quadratic terms of each independent variable with its conjugate, 
it is straightforward to show that one can write . H as the sum of two harmonic 
oscillators with a coupling term V 

.H = H1 +H2 + V (2.13) 

where 

.H1 = h̄ω1(a
+
1 a1 + 1

2
) (2.14) 

.H2 = h̄ω2(a
+
2 a2 + 1

2
) (2.15) 

.ω2
i = 1

Li

⎡
~C

−1⏋
ii

(2.16) 

and 

.V = C3 + 1
3Cg

C1C2
Q1Q2 = ℏη

√
ω1ω2(a1 − a+

1 )(a+
2 − a2) (2.17) 

with .η ≃ C3+ 1
3 Cg√

C1C2
and where .a1,2 and .a+

1,2 are the creation and annihilation operators 
of each harmonic oscillator. Even without a direct coupling capacitance .C3 ≡ 0, 
an indirect coupling between the resonators is established via their coupling to the 
ground. This point illustrates a general difficulty in the design of superconducting 
quantum circuits. Indeed, isolating circuits is difficult due to to their large coupling 
with the surrounding environment. 

2.1.3 Transmission Lines 

Contrary to lumped element circuits, the physical dimensions of transmission lines 
are comparable to the wavelength . λ of the signal [3]. Thus, a transmission line is 
a distributed-parameter network, where voltage and currents can vary in magnitude 
and phase over its length. 

2.1.3.1 Definition of the Propagation Wave Amplitudes 
A transmission line can be modeled by a series of discrete lumped elements as 
shown in Fig. 2.3. The inductance per unit cell u is . Lu and the capacitance to the 
ground per unit cell is . Cu.
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u 

Fig. 2.3 Circuit model of a transmission line. The transmission line is modelled by a series of 
discrete lumped elements. The unit cell length is u. The inductance per unit cell is .Lu and the 
capacitance per unit cell is . Cu

We write the equations for the voltage and currents in the transmission line using 
the constitutive relations of the dipole elements and Kirchhoff charge conservation 

. Vn+1 − Vn = −Lu∂t In→n+1

−Cu∂tVn = In→n+1 − In−1→n

Going to the continuum limit where .Lu/u → L and .Cu/u → C , we get 

. ∂xV (x, t) = −L ∂t I (x, t)

−C ∂tV (x, t) = ∂xI (x, t)

To solve these coupled differential equations, we define the propagation wave 
amplitudes .A→ and .A← by 

.

A→ = 1

2

⎛
V/

√
Z0 + I

√
Z0

⎞

A← = 1

2

⎛
V/

√
Z0 − I

√
Z0

⎞ (2.18) 

where .Z0 = √
L /C and obtain two decoupled first order differential equations 

. ∂tA
→ + c∂xA

→ = 0

∂tA
← − c∂xA

← = 0

where .c = 1/
√

L C is the propagation velocity in the transmission line. The 
solutions are of the form .A→ (x, t) = Aout (x − ct) and . A← (x, t) = Ain (x + ct)

where .Ain and .Aout are arbitrary functions of their arguments. For an infinite 
transmission line, .Ain and .Aout are completely independent. Interestingly, the
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instantaneous power .P(x, t) is directly related to the square of the propagation wave 
amplitudes 

. P(x, t) = I (x, t) × V (x, t) = A 2
out − A 2

in (2.19) 

2.1.3.2 Fourier Components of the Propagation Wave Amplitudes 
Since the equations are linear, it is possible to look at individual Fourier compo-
nents1 of .A→/← (x, t) at any given point in space x. 

.A→/← (x, t) =
⎲

k

A
→/←
k (x) e−iωkt + c.c. (2.20) 

In the following sections, we will consider monochromatic waves only, thus 
dropping the sum and index k systematically. We write 

.A→/← (x, t) = A→/← (x) e−iωt + c.c. (2.21) 

Assuming .Ain = 0 and using Eq. (2.19), we get 

. P(x, t) = A 2
out =

⎛
A→ (x) e−iωt + c.c.

⎞2

= 2
||A→ (x)

||2 +
⎛
(A→ (x))2 e−2iωt + c.c.

⎞

Thus, the modulus of .|A→(x)|2 is proportional to the average power . 〈P(x)〉 =
limT →∞ 1

T

⎰ T

0 P(x, t) dt

. 〈P(x)〉 = 2
||A→ (x)

||2 (2.22) 

2.1.3.3 Semi-Infinite Transmission Line 
When a semi-infinite transmission line is terminated at .x = 0 by some system S 
the two solutions .Ain and .Aout are related by boundary conditions imposed by the 
system. 

.V (x = 0, t) = √
Z0(Aout (t) + Ain(t))

I (x = 0, t) = 1√
Z0

(Aout (t) − Ain(t))

1 We adopt the quantum convention for wave propagation (i.e. .ei(kx−ωt)), which differs by a sign 
from the one found typically in the microwave textbooks (i.e. .ei(ωt−kx)). 
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If the system S is an open circuit, .I (x = 0, t) = 0 and thus .Aout (t) = Ain(t). 
If the system S is short circuit, .V (x = 0, t) = 0 and thus .Aout (t) = −Ain(t). 
The outgoing waves are simply the result of the incoming wave reflecting from the 
open/short circuit termination. 

In the absence of an incoming wave .Ain(t) = 0, we have . V (x = 0, t) =
Z0I (x = 0, t) indicating that the transmission line acts as a resistance which instead 
of dissipating energy by heat carries the energy away from the system as propagating 
waves. 

2.1.4 Quantization of a Transmission Line 

Hamiltonian dynamics is inherently reversible and thus dissipationless. Irreversibil-
ity however arises when the number of degrees of freedom grows to infinity. In the 
quantum framework, it was shown that a dissipative impedance can be rigourously 
taken into account by using the so-called Caldeira Leggett decomposition [4], which 
consists of modelling any dissipator by an infinite collection of LC resonators. 
Another way to model dissipation for non-dissipative elements in electrical circuits 
is to consider an ideal semi-infinite transmission line [5]. As shown in the classical 
approach herein above, any signal sent down the line will never come back and thus 
there is a loss of information and entropy creation. 

2.1.4.1 Hamiltonian of a Transmission Line 
In order to illustrate this point, let us consider a transmission line of length . Λ formed 
by a series of N cells as shown in Fig. 2.4. We assume periodic boundary conditions 
such that .VN = V0. For each cell of size u, the inductive (potential) energy can 

be written as .Un = Ф2
n

2Lu
and the capacitive (kinetic) energy as .Kn = 1

2CuV
2
n . 

Fig. 2.4 Discrete model for quantization of a transmission line. We denote as . Vn the voltage of 
node n and .Фn the flux through the inductor between node .n − 1 and . n. The cell unit length is u , 
the inductance per unit cell is . Lu and capacitance per unit cell is . Cu. We assume periodic boundary 
conditions such that .VN = V0
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Using .Ф̇n+1 = Vn+1 − Vn , one can write 

. Vi =
i⎲

j=1

Ф̇j + V0

By summing all the equations together and using Millman theorem [2] 

.

⎛∑N−1
n=0 Vn = 0

⎞
, we get . V0 = − ∑N−1

n=1 Vn = − (
(N − 1)Ф̇1 + (N − 2)Ф̇2 + . . .

+ Ф̇N−1 + (N − 1)V0
)
. These equations define a passage matrix . P that expresses 

the vector .V = (V0, . . . .VN−1) as a function of .Ф̇ = (Ф̇1, . . . , Ф̇N ), i.e. .V = PФ̇. 
It is thus possible to write the Lagrangian of the system . L as 

.L = 1

2
CuФ̇

T PT PФ̇ − 1

2Lu

ФT Ф (2.23) 

The conjugate momenta of our system are given by .Q = (Q1, . . . , QN) ≡ ∂L
∂Ф̇

and 
the Hamiltonian is thus given by 

.H = 1

2Cu

QT

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . −1

−1 2 −1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . . 2 −1

−1 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Q + 1

2Lu

ФT Ф (2.24) 

2.1.4.2 Representation of the Hamiltonian in the Fourier space 
This Hamiltonian can be easily diagonalized by introducing a unitary transformation 
U such that 

.ukn = 1√
N

exp [i(2kπn/N)] (2.25) 

where .k, n are integers comprised between 1 and N . Applying the unitary operator 
U on operators .Qn and .Фn define a new set of non-hermitian operators 

. ~Qk =
N⎲

n=1

uknQn = 1√
N

N⎲
n=1

exp [i(2kπn/N)] Qn (2.26) 

.~Фk =
N⎲

n=1

uknФn = 1√
N

N⎲
n=1

exp [i(2kπn/N)] Фn (2.27)



72 M. Stern

These operators follow commutation relations of conjugate variables 

. 
⎡~Фk, ~Q+

k'
⏋ = 1

N

N⎲
n=1

N⎲
m=1

exp
⎡
i(2π(kn − k'm)/N)

⏋
[Фn,Qm]

= 1

N

N⎲
n=1

ih̄ exp
⎡
i(2πn(k − k')/N)

⏋ = ih̄δkk'

Indeed when .k = k', .exp
⎡
i(2πj (k − k')/N)

⏋ = 1 and the sum . 
∑N

n=1 exp [i(2πn

. (k − k')/N)
⏋

is equal to N, while if .k /= k', 

. 

N⎲
n=1

exp
⎡
i(2πn(k − k')/N)

⏋ = exp
⎡
i(2π(k − k')/N)

⏋

⎛
exp

⎡
i(2π(k − k')

⏋ − 1

exp [i(2π(k − k')/N)] − 1

⎞
(2.28) 

.exp
⎡
i(2π(k − k')

⏋ = 1 and thus the sum is equal to zero. 
In this new basis, the non-diagonal elements of the Hamiltonian of Eq. (2.24) can 

be written as 

.

N⎲
n=1

Qn(Qn−1 + Qn+1) = 2
N⎲

k=1

cos [2kπ/N] ~Q+
k

~Qk (2.29) 

Thus, the Hamiltonian of Eq. (2.24) can be written as 

. H =
N⎲

k=1

2 − 2 cos [2πk/N]

2Cu

~Q+
k

~Qk + 1

2Lu

~Ф+
k

~Фk =
N⎲

k=1

ℏωk

2

(
q+
k qk + ϕ+

k ϕk

)

(2.30) 

where 

.ωk =
/

(2 − 2 cos [2kπ/N])

LuCu

(2.31) 

and 

.[ϕk, q
+
k' ] = iδkk' (2.32)
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2.1.4.3 Transmission Line Viewed as an External Bath 
For each mode, it is possible to introduce creation and annihilation operators 

. a→
k = 1√

2
(ϕk + iqk)

a←
k = 1√

2
(ϕk − iqk)

(a→
k )+ = 1√

2

(
ϕ+

k − iq+
k

)

(a←
k )+ = 1√

2

(
ϕ+

k + iq+
k

)

The commutation relations of the .a→
k operators are such that 

. [a→
k , (a→

k' )+] = δkk'

[a←
k , (a←

k' )+] = δkk'

If N is even, the system has exactly .N/2 different eigenenergies. Each mode is 
doubly degenerate and thus 

. H =
N/2⎲
k=1

ℏωk

(
(a→

k )+a→
k + (a←

k )+a←
k

)
(2.33) 

As we increase the size . Λ of the transmission line, the density of modes 
increases. As we decrease the size of the unit cell, the bandwidth . 

√
1/LuCu

increases. One can therefore safely consider that .k ⪡ N in a realistic situation. 
This allows to make the approximation that .cos [x] ≃ 1 − x2/2 and thus 

.ωk ≃
/

1

LuCu

2kπ

N
(2.34) 

Using .
√

1/LuCu = √
1/L C u2 = c/u and .Λ = Nu we get 

. ωk = k.
2πc

Λ
(2.35) 

2.1.4.4 Link Between Propagation Amplitudes and Photon Operators 
The connection between the photon operators and the propagation amplitudes 
introduced in the previous section is directly obtained by comparing the incoming
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power carried by the influx of photons with a well-defined wavevector k to the 
modulus of the Fourier transform of the propagation amplitude using Eq. (2.22) 

. 〈P 〉 = 2
||A→

k

||2 =
⎛ c

Λ

⎞
h̄ωk

〈
a→+
k a→

k

〉

The expressions of .A→
k are thus given by 

. A→
k =

/
c

2Λ
h̄ωka

→
k (2.36) 

2.1.5 Transmission Line Resonators 

In this section, we will study the use of transmission line sections with various 
lengths and terminations to form resonators. 

2.1.5.1 Scattering Matrix 
Let us consider an interface of two transmission lines with different characteristic 
impedance .Z1|Z2. The transmission line is separated into two separate regions, 
namely the left side and the right side. When an incoming wave impinges on 
the interface, the propagation wave amplitude can be transmitted and/or reflected 
partially. We thus write the scattering matrix S. 

.

⎛
A←

L

A→
R

⎞
=

S◜ ◞◟ ◝⎛
r←ʾ t←
t→ r→ͨ

⎞ ⎛
A→

L

A←
R

⎞
(2.37) 

We calculate the scattering coefficients by writing the Kirchhoff equations of voltage 
and current at the interface assuming .A←

R = 0. 

. V (x−, t) = V (x+, t) = √
Z1

(
A→

L + A←
L

) = √
Z2A

→
R

I (x−, t) = I (x+, t) = (
A→

L − A←
L

)
/
√

Z1 = (
A→

R

)
/
√

Z2

which we solve to get 

. t→ = 2
√

Z1Z2

Z1 + Z2

r←ʾ = Z2 − Z1

Z1 + Z2

Similarly, two other coefficients can be established by a swap operation .Z1 ↔ Z2.
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(a) 

S 

(b) (c) 

Fig. 2.5 Transmission and reflection coefficients for simple lumped elements. (a) Generic lumped 
element intersecting a transmission line. (b) Circuit element of impedance Z in series with the 
transmission line. (c) Circuit element of impedance Z in parallel with the transmission line 

2.1.5.2 Calculating Transmission and Reflection Coefficients for Simple 
Lumped Elements 

Let us consider the circuit described in Fig. 2.5a. The transmission line is now 
intersected by a lumped element system S. 

For instance, we consider in Fig. 2.5b a transmission line intersected by an 
impedance Z in series. We get 

. I (x−, t) = I (x+, t) = 1√
Z0

(
A→

L − A←
L

) = 1√
Z0

A→
R

ZI (x, t) = V (x−, t) − V (x+, t)

= √
Z0

⎡(
A→

L + A←
L

) − A→
R

⏋

using the definitions of the scattering matrix, we have .A→
R = tA→

L and . A←
L = rA→

L

and thus we get 

.

r = z/ (2 + z)

t = 2/ (2 + z)
(2.38)
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with .z = Z/Z0. For instance, if the scatterer is a capacitor2 
.Z = 1/ (−iωC), we  

get 

.t = 2

2 + 1/ (−iωCZ0)
(2.39) 

r = 
1/ (−iωCZ0) 

2 + 1/ (−iωCZ0) 

Another interesting case to consider is a shorting circuit element as shown in 
Fig. 2.5c. In that case, the Kirchhoff equations gives 

. V (x−, t) = V (x+, t) = √
Z0

(
A→

L + A←
L

) = √
Z0A

→
R

V (x±, t) = Z(I (x−, t) − I (x+, t))

= Z√
Z0

(
A→

L − A←
L

) − Z√
Z0

A→
R

Thus we get 

.

r = −1/ (2z + 1)

t = 2z/ (2z + 1)
(2.40) 

2.1.5.3 λ/2 Resonators with Symmetrical Terminations 
The use of symmetrical terminations on both ends of a segment of length . Lres =
λ/2 ensures that exactly at the resonant frequency .ωr = πc/Lres , a continuous wave 
signal is fully transmitted, and no reflection is observed. This results from coherent 
interference of transmission amplitudes which converges to a unitary transmission 
coefficient 

.τ =
∞⎲

j=0

teikLres

⎛
r2e2ikLres

⎞j

t = eπiω/ωr

∞⎲
j=0

t2
⎛
r2e2πiω/ωr

⎞j

(2.41) 

.τ = t2eπiω/ωr (1+i/Qint )

1 − r2e2πiω/ωr (1+i/Qint )
(2.42) 

where .kLres = ω
c
(1 + i/Qint ) × Lres = π ω

ωr
(1 + i/Qint ) , .Qint representing the 

internal quality factor due to internal losses in the resonator.

2 We adopt the quantum convention for wave propagation (i.e. .ei(kx−ωt)), which differs by a sign 
from the one found typically in the microwave textbooks (i.e. .ei(ωt−kx)). 
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An identity can be established relating the round trip frequency . ωr/2π , the  
transmission coefficient, and the energy leakage . κ via the ports 

.κ = 2 · ωr/2π · |t |2 (2.43) 

The factor 2 stems from the fact that two scattering events occur per round trip. We 
thus get 

. Qext = ωr/κ = π/ |t |2 (2.44) 

For instance, if the scatterer is a capacitor of capacitance C, we obtain from 
Eq. (2.39), .|t |2 ≃ 4C2ω2

r Z
2
0 and thus 

.Qext = π

4C2ω2
r Z

2
0

(2.45) 

In Fig. 2.6a, b, we represented the frequency dependence of the amplitude of the 
transmitted field . |τ | and of its relative phase. When .Qint = +∞ (blue curve), the 
transmission at .ω = ωr is equal to one: 

. |τ(ωr)| =
||t2

||||1 − r2
|| ≃ 1 (2.46) 

The phase shifts by . π at resonance. As one increases the ratio .Qext/Qint , the  
maximum transmission at resonance decreases (red and green curves). 

2.1.5.4 λ/4 Resonators with Short Circuit Termination 
Another important type of transmission line resonator is the so-called .λ/4 resonator. 
In this type of resonator, the segment length .Lres = λ/4 and is terminated by a 
short circuit, such that at the resonant frequency .ωr = πc/(2 ∗ Lres), a phase shift 
is observed in the reflection of the signal. This results from coherent interference of 
reflection amplitudes 

. ρ = r − t2e2ikLres

∞⎲
j=0

(−1)j
⎛
re2ikLres

⎞j

= r − eπiω/ωr (1+i/Qint )
t2

1 + reπiω/ωr (1+i/Qint )
(2.47) 

where .2kLres = ω
c
(1 + i/Qint ) × Lres = π ω

ωr
(1 + i/Qint ).
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The energy leakage . κ via the port is related to the round trip frequency . ωr/2π

and to the transmission coefficient by 

.κ = ωr/2π · |t |2 (2.48) 

We thus get 

. Qext = ωr/κ = 2π/ |t |2 (2.49) 

Depending on the ratio between .Qint and .Qext ,we can define three regimes 
characterized by different behavior of the reflexion coefficent . ρ. 

The overcoupled regime (blue curve) occurs when .Qext << Qint . In this regime, 
.|ρ| ∼ 1 for all frequencies. However, the phase of . ρ changes abruptly close to 
multiples of the resonance frequency and undergoes a . 2π shift as shown in Fig. 2.6. 

The critical coupling (green curve) occurs when .Qext = Qint . For this regime, 
the amplitude reaches almost zero at resonance, while a discontinuity in the phase 
brings a phase shift of . π . 

The undercoupled regime (red curve) occurs when .Qext > Qint . In this regime, 
the resonance corresponds to a dip in the amplitude of . ρ and a shift .< π in its 
phase. The undercoupled resonator is particularly difficult to measure in reflexion 
since both the amplitude and the phase differs slightly from the out-of-resonance 
value. 

Fig. 2.6 (a–b) Modulus of the transmitted field . |τ | and relative phase of the output field via a 
.λ/2 resonator with symmetrical terminations (.z = 50 i, .Q ∼ 2000) assuming no internal losses 
(.Qin = +∞, blue curve) or internal losses of quality factor .Qin = 4000 (green curve) and 
.Qin = 1000 (red curve). (c–d) Modulus of the reflected field . |ρ| and relative phase of the reflected 
field on a .λ/4 resonator with short circuit termination (.z = 50 i, .Q ∼ 4000) assuming no internal 
losses (.Qin = +∞, blue curve) or internal losses of quality factor .Qin = 4000 (critical coupling 
regime, green curve) and .Qin = 1000 (red curve)
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2.1.5.5 Expression for the Local Current and/or Voltage in the 
Resonator as a Function of Propagation Wave Amplitudes 

One can write the current/voltage at a given position in the resonator as a linear 
response of the propagation wave amplitudes of incoming waves .A→

L and .A←
R on 

both side of the resonator. The obtained linear map can be summarized as 

.I (x, ω) = 1√
Z0

(
f→ (ω, x) A→

L + f← (ω, x) A←
R

)
. (2.50) 

V (x, ω) = √
Z0

(
g→ (ω, x) A→

L + g← (ω, x) A←
R

)
(2.51) 

The exact numerical value of .f→/← and .g→/← can be calculated by considering 
the coherent interference from the scattering of all the elements . In the case of a 
symmetric .λ/2 resonator, we obtain 

.f→ (ω, x) = t
eikx − reik(2Lres−x)

1 − eikLres r2
(2.52) 

f← (ω, x) = t 
eik(Lres−x) − reik(Lres+x) 

1 − eikLres r2 

similarly for the voltage, we get 

. g→ (ω, x) = t
eikx + reik(2Lres−x)

1 − eikLres r2

g← (ω, x) = t
eik(Lres−x) + reik(Lres+x)

1 − eikLres r2

2.1.6 Quantization of Transmission Line Resonators 

2.1.6.1 λ/2 Resonators with Open Circuit Terminations 
Let us first consider a transmission line resonator of length .Lres with open 
circuit termination on both sides. Contrary to a lumped-element resonator, such 
a distributed resonator possesses an infinite number of modes. The characteristic 
impedance of the resonator is given by .Z0 = √

L /C where . C is the capacitance 
per unit length and . L the inductance per unit length. We introduce the flux . Ф(x)
such that .V = ∂tФ at position .x ∈ [0, Lres]. The Lagrangian writes as follows: 

.L = 1

2

⎰ Lres

0

⎛
C V 2 − L I 2

⎞
dx = 1

2

⎰ Lres

0

⎛
C Ф̇2 − 1

L
(∂xФ)2

⎞
dx (2.53) 

Taking into account the boundary condition, it is possible to decompose . V (x)
and .I (x) into an infinite number of stationary wave modes. We thus decompose . Ф
into infinite stationary modes of mode number j , each verifying the open circuit
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boundary condition .I = 0 at .x = 0 and .x = Lres , we thus write 

.Ф(x) =
∞⎲

j=1

Фj cos (πjx/Lres) (2.54) 

which we inject into the Lagrangian expression and get 

.L = Lres

2

∞⎲
j=1

⎛
C

2
Ф̇j

2 − 1

2L

⎛
πj

Lres

Фj

⎞2
⎞

(2.55) 

We obtain the Hamiltonian after performing the Legendre transformation 

.H =
∞⎲

j=1

Hj = 1

Lres

∞⎲
j=1

⎛
Q2

j

C
+ π2j2

4L
Ф2

j

⎞
(2.56) 

where .Qj = ∂L/∂Ф̇j = C LresФ̇j /2 is the conjugated variable of .Фj such that 
.
⎡
Фi,Qj

⏋ = ih̄δij . We can further simplify the Hamiltonian by introducing creation 
and annihilation operators for each mode 

.Hj = h̄ωj

⎛
a

†
j aj + 1/2

⎞
(2.57) 

where .aj =
/

jπ
4Z0h̄

Фj + i

/
Z0
j h̄π

Qj , .ωj = jωr = j
⎛

π
Lres

c
⎞

and .c =
/

1
C L the 

wave velocity. Using .I (x) = −∂xФ (x) /L , we get 

.I (x) =
∞⎲

j=1

δIj (x)◜ ◞◟ ◝
δI0

√
j sin (πjx/Lres)

⎛
aj + a

†
j

⎞
(2.58) 

where .δI0 = ωr

/
h̄

πZ0
. Similarly, using .V (x) = Ф̇(x), we get 

.V (x) = −i

∞⎲
j=1

δVj (x)◜ ◞◟ ◝
δV0

√
j cos (πjx/Lres)

⎛
aj − a

†
j

⎞
(2.59) 

where .δV0 = ωr

/
h̄Z0
π

.
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2.1.6.2 Determining the Current Operator by Filter Function Formalism 
Using Eqs. (2.50) and (2.36) we get that 

.Î (x) =
/

c

2Λ

⎲
k

/
h̄ωk

Z0

(
f→ (ωk, x) a→

L,k + f← (ωk, x) a←
R,k

) + H.c. (2.60) 

Let us introduce a new operator . A as a linear combination of .a→
L,k and . a←

R,k

.A =
∑

k

√
k

⎛
f→ (ωk, x) a→

L,k + f← (ωk, x) a←
R,k

⎞
/∑

k k
(|f→ (ωk, x)|2 + |f← (ωk, x)|2) (2.61) 

which verifies .
⎡
A,A†

⏋ = 1 and can rewrite the current operator under the form 

. Î (x) = δI (x)
⎛
A + A†

⎞

where 

. δI (x) =
/⎲

k

c

2ΛZ0
h̄ωk

(|f→ (ωk, x)|2 + |f← (ωk, x)|2)

For convenience, we introduce the density of states 

.η (ω) ≡ 1

Δω
= Λ/2πc (2.62) 

Injecting the expression of . η we obtain an expression independent of . Λ

. δI (x) =
/⎰

dω

h̄ω

4πZ0

(|f→|2 (ω, x) + |f←|2 (ω, x)
)

(2.63) 

2.2 Superconducting Qubits 

2.2.1 Using the Non-linearity of Josephson Junctions 

A circuit formed by linear components, such as capacitors and inductors, behaves 
as an harmonic oscillator and not as a qubit. A non-linear element is therefore 
essential in order to differentiate the transitions between states . |0〉 and . |1〉 from other 
higher-lying eigenstates transitions. In superconducting circuits, this non-linearity 
is obtained by adding to the circuit one or several Josephson junctions. Josephson
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Fig. 2.7 The Josephson junction: a non-linear, non-dissipative element. (a) Schematic representa-
tion of a Josephson junction showing two superconducting layers separated by a thin insulating 
oxide layer (b) Colored SEM micrograph showing a Josephson junction. (c) Circuit diagram 
representing a Josephson junction, which corresponds to a capacitor of capacitance .CJ in parallel 
with a Josephson (non linear) inductor of inductance .LJ = ϕ0

I0
and represented as a cross 

junctions are formed by two superconducting islands separated by a thin insulating 
layer (see Fig. 2.7) that allows tunneling of Cooper pairs. They are characterized by 
the so-called Josephson relations: 

.

I = I0 sin

⎛
Ф

ϕ0

⎞

V = Ф̇

(2.64) 

where . Ф is the flux threading the junction, . I0 is the critical current of the junction 
and .ϕ0 = h̄/2e is the reduced magnetic flux quantum. 

Josephson junctions are almost non-dissipative. This property allows their use in 
quantum circuits. The potential energy of the Josephson junction is given by: 

.E =
⎰ t

−∞
I (t)V (t)dt =

⎰ t

−∞
I0 sin

⎛
Ф

ϕ0

⎞
Ф̇dt = −EJ cos(

Ф

ϕ0
) (2.65) 

where . EJ =.I0ϕ0 is called Josephson energy. 

2.2.2 The Charge Qubit 

The simplest version of superconducting qubit, also called Cooper pair box (CPB) 
consists of two superconducting islands connected by a single Josephson junction 
of capacitance .CJ and Josephson energy . EJ . One of the island is electrostatically 
biased by a voltage source . Vg in series with a capacitor . Cg . The Cooper pair box 
was initially developped in 1996 by the Quantronics group at CEA Saclay [6] . In  
1999, a team from NEC used the CPB to demonstrate for the first time a coherent 
superposition of states [7].
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Fig. 2.8 Circuit schematic of 
a Cooper Pair Box (CPB). 
The device consists of a 
Josephson junction with 
Josephson energy .EJ and 
capacitance . CJ , capacitively 
coupled to a voltage source 
. Vg through a gate capacitor 
. Cg

2.2.2.1 Solving the Cooper Pair Box Hamiltonian 
In Fig. 2.8, we present a circuit schematic of a CPB. The points A, B and C are 
nodes of the circuit and are characterized by electrical potentials . VA,. VB and . VC . We  
define a spanning tree by choosing the flux . Ф connecting nodes A and B. 

The inductive energy U is simply given by Eq. (2.65) 

.U = −EJ cos(
Ф

ϕ0
) (2.66) 

The capacitive energy K of the system is given by 

. K = 1

2
CJ (VA − VB)2 + 1

2
Cg(VA − VC)2

Using the definitions .Ф̇ = VA − VB and .Vg = VC − VB , it is possible to express 
. VA,. VB and . VC as a function of . Ф̇ and . Vg , such that 

.K = 1

2
CJ Ф̇2 + 1

2
Cg

(
Ф̇ − Vg

)2
(2.67) 

It is thus possible to write the Lagrangian . L as 

.L = 1

2
CJ Ф̇2 + 1

2
Cg

(
Ф̇ − Vg

)2 + EJ cos(
Ф

ϕ0
) (2.68) 

The conjugate momentum of our system is given by 

.Q ≡ ∂L
∂Ф̇

= (CJ + Cg)Ф̇ − CgVg (2.69) 

and the Hamiltonian is thus given by 

.H = Ф̇Q −L = 1

2(Cg + CJ )
(Q + CgVg)

2 − EJ cos(
Ф

ϕ0
) − 1

2
CgV

2
g (2.70)
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By dropping the constant term and introducing the new variables .n = Q
2e

and 
.ϕ = Ф

ϕ0
such that .[ϕ, n] = 1

h̄
[Ф,Q] = i, we can write the Hamiltonian as 

. H = 4EC(n̂ − ng)
2 − EJ cos

(
ϕ̂

)
(2.71) 

where .ng = −CgVg

2e
and .EC = e2

2(CJ +Cg)
. In order to find the eigenenergies and 

corresponding eigenstates, the Hamiltonian can be represented in the basis formed 
by the eigenstates .|n〉 of operator . ̂n. Indeed, .[ϕ, n] = i implies that . 〈ϕ|n〉 = einϕ

and thus, the operator .cos
(
ϕ̂

) = 1/2(eiϕ̂ + e−iϕ̂) can be written in the eigenbasis 
. |n〉 as 

. cos
(
ϕ̂

) |n〉 = 1

2
(eiϕ̂ + e−iϕ̂)

⎲
|ϕ〉 〈ϕ|n〉 = 1

2
(|n + 1〉 + |n − 1〉) (2.72) 

It is thus easy to represent the Hamiltonian in a truncated charge basis as 

. H =

⎛
⎜⎜⎜⎜⎜⎝

4EC(−2 − ng)
2 −EJ /2 0 0 0

−EJ /2 4EC(−1 − ng)
2 −EJ /2 0 0

0 −EJ /2 4EC(0 − ng)
2 −EJ /2 0

0 0 −EJ /2 4EC(1 − ng)
2 −EJ /2

0 0 0 −EJ /2 4EC(2 − ng)
2

⎞
⎟⎟⎟⎟⎟⎠

(2.73) 

The choice of the truncation size depends on the parameters .EJ and .EC and 
on the precision which is required. The results of such a diagonalization for the 
ground and first excited states are shown in Fig. 2.9 for different ratios of . EJ /EC.

The voltage . Vg allows controlling the transition energy of the qubit. As can be 

Fig. 2.9 First four energy levels of the Cooper pair box as a function of the reduced gate charge 
. ng for .EJ /Ec ratios equal to 0.1, 1 and 10 (left to right). As can be seen, for .EJ ⪢ Ec, the charge 
dispersion curves becomes more and more flat
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seen, the charge-dispersion curve of the first two levels becomes almost flat when 
. EJ ⪢ Ec.

2.2.2.2 The Split Cooper Pair Box 
It is possible to get some additionnal control of the qubit energy by replacing 
the Josephson junction of the CPB by a Superconducting Quantum Interference 
Device (SQUID) [1]. In the following section we will show how the SQUID allows 
controlling the qubit transition energy via the magnetic flux .ФS threading its loop. 
First, let us write the potential energy . US of the SQUID, shown in Fig. 2.10: 

.US = −1 + d

2
EJ cos (ϕ1) − 1 − d

2
EJ cos (ϕ2) (2.74) 

where d is the asymmetry parameter ,which can get any value in range of . [0, 1]. A  
DC magnetic flux .ФS is threading the loop of the SQUID such that . ϕ1 − ϕ2 = ФS

ϕ0
leading to: 

. US = −EJ

⎡||⏌(
1 + d2

) + (
1 − d2

)
cos

⎛
Фs

ϕ0

⎞

2◟ ◝◜ ◞
−EJ (ФS,d)

· cos

⎛
ϕ1 + ϕ2

2
+ arctan

⎡
−d · tan

⎛
ФS

2ϕ0

⎞⏋⎞
(2.75) 

The potential energy of the SQUID is therefore equivalent to the potential energy 
of a single Josephson junction with tunable Josephson energy .EJ (ФS, d) that varies 
between .dEJ to . EJ . When the asymmetry is large (.d ≃ 1), the Josephson energy 
of the SQUID varies slightly and thus is less sensitive than for a symmetric SQUID 
(.d = 0). 

The remaining part of the quantization process proceeds as before, yielding an 
Hamiltonian of the split Cooper pair box of the form 

.H = 4EC(n̂ − ng)
2 − EJ (ФS, d) cos

(
ϕ̂ + γ (ФS, d)

)
(2.76) 

where .γ (ФS, d) = arctan
⎡
−d · tan

⎛
Фs

2ϕ0

⎞⏋
. 

Fig. 2.10 Schematic of an 
asymmetric SQUID
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2.2.2.3 The Transmon Qubit 
The transmon qubit has been developed in 2006 in the group of R. Schoelkopf 
at Yale [8]. It is a CPB whose charging energy is strongly reduced by putting a 
large capacitance in parallel to the Josephson junction, such that the device is in 
the regime .EJ ∼ 100 EC . As shown in Fig. 2.11b, the charge dispersion of the 
energy levels of the CPB, .Δω(ng), becomes extremely weak and the transition 
energy .ℏω01 almost insensitive to the value of the gate charge .ng. This reduced 
sensitivity to charge is highly advantageous in experiments since it makes the 
qubit almost insensitive to charge noise and thus increases the coherence time. 
However, when increasing the ratio .EJ /EC one also reduces the anharmonicity 
.α = (ω12−ω01)/ω01 (see Fig. 2.11a), therefore limiting the speed of gate operations 
that can be realized with this qubit (Fig. 2.11b). 

The Hamiltonian of the system is similar to Eq. (2.71). Yet, the high .EJ /EC ratio 
reduces strongly the flux fluctuations and one can thus develop the cosine function 
close to zero as .cos

(
ϕ̂

) = 1 − 1
2 ϕ̂2 + 1

4! ϕ̂
4 + O (

ϕ̂6
)
. 

When taking only into account the terms in . ϕ̂2, the system behaves as an 
harmonic oscillator of frequency .h̄ωr = √

8EJ EC . It is possible to express the 
operators . ̂n and . ϕ̂ as a function of the creation and annihilation operator a and . a+

. ϕ̂ =
⎛

2EC

EJ

⎞1/4 (
a + a+)

n̂ = − i

2

⎛
EJ

2EC

⎞1/4 (
a − a+)

Fig. 2.11 Transmon Properties. (a) Anharmonicity .α = (ω12 − ω01)/ω01 versus .EJ /EC ratio. 
(b) Amplitude of the charge dispersion .Δω = ω(ng = 0.5) − ω(ng = 0) versus .EJ /EC for the 
.0 → 1 transition (in blue) and .1 → 2 transition (in red). The .0 → 1 transition frequency of the 
qubit is kept around .4.8 GHz
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The zero point fluctuations of the phase operator, .Δϕ =
⎛

2EC

EJ

⎞1/4
, are small 

when .EJ ⪢ EC , which justifies our approximation a posteriori. Developing the 
cosine potential to higher order gives 

. H = h̄ωr

⎛
a+a + 1

2

⎞
− EC

12

(
a + a+)4

(2.77) 

The second term of the Hamiltonian can be viewed as a Kerr non-linearity. It can 
be solved perturbatively using first order perturbation theory. The shift of the . nth

energy level of the harmonic oscillator is given by 

.

ΔEn =
/
n

||||−EC

12

(
a + a+)4

|||| n

\

= −EC

12

⎛
6n2 + 6n + 3

⎞ (2.78) 

and thus .ΔEn+1 − ΔEn = −EC(n + 1). The Kerr non-linear term modifies the 
equidistant interlevel spacing and defines a qubit with anharmonicity 

.α = (ω12 − ω01)/ω01 = −√
EC/8EJ (2.79) 

2.2.2.4 Improving Transmon Design 
Typical values for a transmon are .EC/h = 200 MHz and .EJ /h = 15 GHz giving 
a ratio .EJ /EC = 75, a qubit frequency .ω01/2π = 4.7 GHz and an anharmonicity 
.α = −0.04. As mentioned earlier, the low anharmonicity requires that the gate time 
should be much longer than .h/Ec = 5 ns. 

The typical relaxation times of transmons have been largely improved by the 
introduction of three dimensional cavity, which reduce the impact of dielectric 
losses in the circuit [9]. Various works have tried to reduce these losses in order to 
increase the fidelity of the qubit while keeping a 2D scalable architecture [10, 11]. 
This can be done by reducing the interface defects between the metal and the 
substrate [11]. In recent works [12], transmons with typical relaxation time of 
.T1 ∼ 50 μs are controlled by .∼ 40 ns two qubit gates, leading to two qubit gate 
fidelity in the range of 99.3–99.8%. 

2.2.3 The Superconducting Flux Qubit 

The superconducting flux qubit is a superconducting circuit which consists of 
a micron-size superconducting aluminum loop intersected by three (or more) 
Josephson junctions, among which one of the junctions is smaller than the others 
by a factor . α (see Fig. 2.12). This qubit was initially developed at Delft University 
in 1999 [13–17].
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Fig. 2.12 Scanning Electron 
Microscope (SEM) image of 
a 4-junction flux qubit 

2.2.3.1 Potential Energy of a Flux Qubit 
The potential energy of the circuit can be written as a sum of the potential energies 
of each junction intersecting the loop (see Eq. (2.65)). A DC magnetic flux . Ф is 
threading the loop, therefore due to Faraday law .

∑n−1
i=1 ϕi + ϕα = Ф

ϕ0
and thus: 

.U = −EJ

⎡
n−1⎲
i=1

cos(ϕi) + α cos(
Ф

ϕ0
−

n−1⎲
i=1

ϕi)

⏋
(2.80) 

For a flux qubit with .n = 3 junctions, the potential energy can be plotted with a 
pseudo-color plot shown in Fig. 2.13. 

When .Ф/ϕ0 = π and for .α > αmin, the potential energy U exhibits two 
degenerated minima (Fig. 2.13), the potential barrier between these two minima 
being a function of the parameters of the junctions. The position of the minima 
are given by solving the partial derivative equations .∂ϕi

U = 0. The two solutions 
verify the simple equation 

. sin ϕ∗ = α sin
(
(n − 1)ϕ∗)

(2.81) 

and correspond to two opposite persistent currents .IP = ±I0 sin ϕ∗ flowing in the 
loop.
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Fig. 2.13 Potential energy landscape of a 3-island flux qubit with parameters .α = 0.7. (a) for  
.Ф/ϕ0 = 0.8π ; (b) for .Ф/ϕ0 = π ; (c) for . Ф/ϕ0 = 1.2π

By inverting this equation, we find that .Un−2 (cos ϕ∗) = 1
α

and 

. IP = ±I0

/
1 −

⎡
U−1

n−2

⎛
1

α

⎞⏋2

(2.82) 

where .Un−2 is the (n-1)-th Chebyshev polynomial of the second kind. The following 
table summarizes the common values for .n = 3, 4 or . 5.

n .Un−2 .|IP | . αmin

3 2X .I0

/
1 −

⎛
1

2α

⎞2
. 12

4 .4X2 − 1 .I0

/
3
4 − 1

4α
. 13

5 .8X3 − 4 .I0

/
1 −

⎛
1
2 + 1

8α

⎞2/3
. 14

2.2.3.2 Kinetic Energy of a Flux Qubit 
For a 4-junction qubit, the kinetic energy K of the system is the sum of the capacitive 
energies of the circuit shown in Fig. 2.14 

.K = 1

2

⎲
i /=j

Cij

(
Vj − Vi

)2 (2.83) 

+ 
1 

2 
CJ

⎛
(V1 − V2)

2 + (V2 − V3)
2 + (V3 − V4)

2 + α (V4 − V1)
2
⎞
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Fig. 2.14 Equivalent circuit diagram of a flux qubit. The Josephson junctions are defined by their 
Josephson energy .EJ and their bare capacitance . CJ . The island . I1 is galvanically connected to a 
coplanar waveguide resonator. Each island is capacitively coupled to its surrounding by geometric 
capacitances denoted as .Cij where .(i, j) ∈ (0, 1, .., 4), the index 0 representing the ground 

It is a quadratic form of the island voltages . Vi and can thus be written as 

.K = 1

2
VT CV (2.84) 

where .VT = (
V1 , V2 , V3, V4

)
and . C is a .4 × 4 matrix which we will refer in the 

following as the capacitance matrix. The matrix . C can be written as the sum of the 
Josephson capacitance matrix . CJ and the geometric capacitance matrix .Cgeom. 

.C = CJ + Cgeom (2.85) 

where 

.CJ = CJ

⎛
⎜⎜⎝

1 + α −1 0 −α

−1 2 −1 0
0 −1 2 −1

−α 0 −1 1 + α

⎞
⎟⎟⎠ (2.86)
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and 

. Cgeom =

⎛
⎜⎜⎝

C10 0 0 0
0 C20 0 0
0 0 C30 0
0 0 0 C40

⎞
⎟⎟⎠

+

⎛
⎜⎜⎜⎝

∑
j /=1 C1j −C12 −C13 −C14

−C21
∑

j /=2 C2j −C23 −C24

−C31 −C32
∑

j /=3 C3j −C34

−C41 −C42 −C43
∑

j /=4 C4j

⎞
⎟⎟⎟⎠ (2.87) 

2.2.3.3 Legendre Transformation and Hamiltonian 
The Lagrangian of the system is .L = K −U . The conjugate momenta of our system 
are given by 

.nj ≡ 1

h̄

∂L
∂ϕ̇j

(2.88) 

Since .Ф0
2π

ϕ̇j, = Vj+1 − Vj , it is necessary to express the kinetic energy terms 
in a new basis. Since island . I1 shown in Fig. 2.14 is galvanically connected to the 
central conductor of a CPW, we can safely assume that .V1 = 0 V, which simplifies 
considerably the transformation: 

. V1 = 0

V2 = ���
0

V1 + V12

V3 = ���
0

V1 + V12 + V23

V4 = ���
0

V1 + V12 + V23 + V34

where .Vij = Vj − Vi . The passage matrix P between these two bases can be thus 
written as 

.P =

⎛
⎜⎜⎝

0 0 0
1 0 0
1 1 0
1 1 1

⎞
⎟⎟⎠ (2.89) 

The Hamiltonian . H is then obtained by the Legendre transformation . H =
h̄

∑3
j=1 ϕ̇j nj −L and thus writes 

.H = (2e)2

2
nT

⎛
PT CP

⎞−1
n + U (2.90)
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This Hamiltonian can be expressed in the so-called charge basis .|n1, n2, n3〉, 
.∀n1, n2, n3 ∈ Z

3, noting that 

. cos ϕj |n1, n2, n3〉 = 1

2

(|n1 + δj1, n2 + δj2, n3

+δj3〉 + |n1 − δj1, n2 − δj2, n3 − δj3〉
)

(2.91) 

In this basis the operator . (2e)2

2 nT
(
PT CP

)−1
n is diagonal while the operator U is 

sparse. The precision of the eigenvalues and eigenstates depends on the truncation of 
the . nj bases. With .nk = −10 . . . 10, we would need .213 coefficients just to describe 

the wavefunction and another .
(
213

)2
to describe the Hamiltonian matrix. Thanks to 

the the sparsity of the Hamiltonian operator, the number of nonzero entries in this 
matrix is only .213 × (1 + 4 × 2). This resolution in charge space is computationally 
feasible both to store and diagonalize matrices efficiently. 

2.2.3.4 Pseudo-Hamiltonian 
Following the full diagonalization of the Hamiltonian, we obtain the spectrum of 
the flux qubit by subtracting the energy of the first excited state . |1〉 from the energy 
of the ground state . |0〉. It can be shown that close to .Ф/ϕ0 = π , the system behaves 
as a two level system and the spectrum can be fully described by two parameters:

. The value of the persistent current . Ip, already discussed previously.

. The so-called flux qubit gap, denoted as . Δ, which corresponds to the tunneling 
term between the two potential minima. 

The value of the gap can be directly measured by the transition energy at half a flux 
quantum .Ф/ϕ0 = π . This point is known as the optimal point of the flux qubit due 
to its immunity at first order in flux noise, as will be explained in later sections. In 
the vicinity of the optimal point, the Hamiltonian of the system can be written using 
perturbation theory as 

.

H = H0 − αEJ ∂Ф

⎛
cos

⎛
2π Ф

Ф0
− ∑3

j=1 ϕj

⎞⎞
Ф=Ф0/2

·
⎛
Ф − Ф0

2

⎞

= H0 + 1
ϕ0

⎡
⎢⎣αEJ sin (ϕα)◟ ◝◜ ◞

Î ·ϕ0

⎛
Ф − Ф0

2

⎞
⎤
⎥⎦ = H0 + Î ·

⎛
Ф − Ф0

2

⎞ (2.92) 

When the current operator is projected on the eigenstates .|0〉 , |1〉 of .H0 we get 

.
〈0| Î |0〉 = 0 , 〈0| Î |1〉 = Ip

〈1| Î |0〉 = Ip , 〈1| Î |1〉 = 0
(2.93)
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Fig. 2.15 Flux qubit energy levels. (a) Calculated eigenenergies of the flux qubit circuit versus 
applied magnetic field. The calculations were performed using a 3-junction qubit with . EJ /h =
350 GHz, .EC/h = 5 GHz and .α = 0.7. (b) Calculated qubit spectroscopy in the close vicinity of 
.Ф/ϕ0 = π . At precisely .Ф/ϕ0 = π , the transition energy of the qubit is minimal and equal to the 
gap . Δ. (c) Qubit minimal frequency .(Δ/h) versus . α parameter 

Therefore, the Hamiltonian of the system can be written in this basis as 

. Heff = h̄

2
[Δσz + εσx] (2.94) 

where .ε = 2Ip

h̄
(Ф − πϕ0). The frequency of the flux qubit is thus given by 

.ω01 =
√

Δ2 + ε2 (2.95) 

2.2.3.5 Improving Flux Qubit Design 
As shown in Fig. 2.15b, the flux qubit resonance frequency is strongly dependent 
on the value of the applied magnetic flux. Away from .Ф/ϕ0 = π , the coherence 
of the qubit will be compromised by the presence of flux noise. We will study this 
question more in details in Sect. 2.4.2.4. The only point where one can expect to 
have long coherence time is the so-called “optimal point” where the qubit frequency 
is minimal and thus immune to flux noise at first order. At that point the flux qubit 
transition energy is equal to the flux qubit gap . Δ. The flux qubit gap is strongly 
dependent on the design parameters of the junctions .(EJ ,EC) and on the value of 
. α as shown in Fig. 2.15c. This means that an extreme precision in the fabrication of 
the qubit is needed if one wishes to control the value of the gap [18]. 

Tunable Flux Qubits 
It is possible to create a tunable flux qubit by replacing one of the junction by a 
SQUID as is done for the split Cooper pair box in Sect. 2.2.2.2. This approach 
brings necessarily a new channel of decoherence to the qubit [19] which should 
be controlled properly, for instance by using SQUIDS with large assymetry [20].
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Fluxonium 
The fluxonium has been developed in 2009 at Yale University [21]. The main 
idea of this design consists of reducing the flux sensitivity of the qubit by 
increasing the number of junctions intersecting the loop of the circuit. As shown 
in Sect. 2.2.3.1, the introduction of a large number of junctions (typically .∼ 50) 
reduces dramatically the value of the persistent current flowing in the loop of the 
qubit and thus its magnetic dipole moment. In addition, this qubit is immune to 
charge noise and exhibits a large increase of its relaxation time at . Ф/ϕ0 = π

due to destructive interference of quasiparticles [22]. A large enhancement of 
the coherence time compared to flux qubits was indeed observed [23]. The main 
limitations of this design are its rather low transition frequencies (in the range of 
few hundreds of MHz at optimal point), which require dynamical initialization of 
the qubit. Moreover, the tiny magnetic moment of the fluxonium reduces its ability 
to be easily coupled to other qubits, resonators and/or quantum devices. 

Capacitively-Shunted Flux Qubits 
In this design developed at MIT in 2016, the flux qubit is connected to a big 
capacitance which reduces strongly the persistent current and anharmonicity of the 
qubit [24, 25]. In a recent work [25], a capacitively shunted flux qubit embedded 
into a three-dimensional cavity has shown relaxation times up to .T1 ∼ 90 μs and 
Ramsey decoherence time of .T2R ∼ 18 μs. 

2.3 Coupling Qubits and Resonators 

In this chapter, we will describe succinctly how qubits and resonators can be coupled 
together in order to establish the main ingredients required for the functioning of a 
quantum processor. Our objective is not to give a comprehensive overview of the 
field of circuit-QED but rather to focus on the basic principles of qubit readout and 
manipulation. 

2.3.1 Coupling a Qubit with a Resonator 

Charge and flux qubit can be coupled to a resonator by capacitive or inductive 
coupling. The value of this coupling depends on the electric/magnetic zero-field 
fluctuations of the resonator at the qubit position and on the electric or magnetic 
moment of the qubit. 

2.3.1.1 Transmon Embedded in a Three-Dimensional Cavity 
For instance, let us consider a transmon embedded into a three-dimensional 
rectangular cavity shown in Fig. 2.16. The transmon is composed of two pads 
separated by a short distance d and connected by a wire intersected by a single 
Josephson junction (see [9]). The zero-field fluctuations of the electric field in the
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Fig. 2.16 Transmon qubit 
embedded into a three 
dimensional cavity. The qubit 
is coupled to the electric field 
. Ey of the fundamental mode 
(TE101) of the cavity 

cavity can be easily estimated by integrating the electric field energy density over 
the whole volume V and thus calculating the energy stored in the cavity 

.

⎰
V

ε0δE
2
0(x, y, z) dx dy dz = h̄ω

2
(2.96) 

The coupling between the fundamental cavity mode (TE101 represented in 
Fig. 2.16) and a qubit situated in the center of the cavity is thus given by 

.ℏg = edδE0 = ed

2

/
h̄ω

2ε0V
(2.97) 

This simple back-of-the-envelope estimation can be applied for instance to the 
cavity-qubit system described in [9] where .d = 100 μm, .ω = 8 GHz and . V = 3 cm3

and gives . g
2π

= 125 MHz, which is very close to the coupling constant extracted 
experimentally from spectroscopic measurement in the same publication. 

2.3.1.2 Flux Qubit Coupled Inductively to a Lumped Element Resonator 
Another interesting example consists of a flux qubit coupled inductively to a lumped 
element resonator as shown in Fig. 2.17. The flux qubit is placed at a distance d from 
the resonator inductance and is coupled to the current fluctuations of the resonator. 

Assuming the current is flowing in an infinitely-thin wire, it is possible to 
calculate analytically the magnetic field in the vicinity of the qubit using Biot Savart 
law. Namely, 

.δB0 = μ0
δI0

2πr
(2.98)
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Fig. 2.17 Flux qubit coupled 
inductively to a resonator. 
The magnetic field is 
calculated from the current 
flowing in the resonator using 
an electromagnetic simulator 
(Sonnet) 
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The coupling between the resonator and the qubit is obtained by integrating the 
magnetic field threading the loop of the qubit. Using Eq. (2.94), 

.ℏg = Ip

⎰
δB0dS = MIP δI0 (2.99) 

where .M = μ0l
2π

ln
(
1 + w

d

)
is the mutual inductance and .δI0 are the current 

quantum fluctuations of the resonator (see Eq. (2.58)). This simple back-of-the-
envelope estimation can be applied for instance to the system shown in Fig. 2.17 
where .d = 1 μm, .w = l = 3 μm, .Ip = 300 nA and .δI0 = 40 nA. We obtain 
.M = 0.8 pH and . g

2π
= 15 MHz.

The mutual inductance can be increased further by connecting galvanically the 
qubit loop to the resonator. In this configuration, the mutual inductance per unit 
length .M/l reaches approximately .3pH/μm for wires of cross section . 200×40nm2

and thus the coupling can reach . g
2π

= 170 MHz, assuming .Ip = 300 nA and . δI0 =
40 nA. 

2.3.1.3 Qubit Readout by Dispersive Shift 
The Hamiltonian of a qubit coupled to a resonator can be written as 

.H = ℏωra
+a + 1

2
ℏω01σz + V (2.100) 

where .V = ℏg
(
σ+ + σ−) (

a + a+)
, g being the coupling calculated in the sections 

herein above. The expansion of this product of operators involves four terms. The 
terms proportional to .σ+a and .σ−a+correspond to transitions from lower (resp. 
upper) level of the qubit together with the annihilation (resp. creation) of a photon 
in the resonator. The two other terms .σ+a+ and .σ−a correspond to transitions from 
lower (resp. upper) level of the qubit together with creation (resp. annihilation) 
of a photon in the resonator. When the frequency of the qubit and the resonator
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are sufficiently close, these terms correspond to highly non-resonant processes. 
Neglecting these anti-resonant terms is a standard approximation in Quantum 
Electrodynamics called Rotative Wave Approximation (RWA). 

For simplicity, we will make this approximation in the following and consider 

.V = ℏg
(
σ+a + σ−a+)

(2.101) 

Within this approximation, the qubit and the resonator frequencies are assumed 
to be relatively close. When the qubit and the resonator are detuned and the coupling 
is sufficiently small .(g ⪡ |ω01 − ωr |), one can transform the Hamiltonian using a 
unitary transformation .U = eS , where S is an anti-hermitian operator chosen to 
satisfy (see Sect. 2.5.2.3) 

.

⎡
S, ℏωra

+a + 1

2
ℏω01σz

⏋
= −V (2.102) 

It is straightforward to show that this condition is satisfied by choosing 

.S = g

ω01 − ωr

(
σ+a − σ−a+)

(2.103) 

Using this transformation, the Hamiltonian can be described in a perturbative 
approach (see Sect. 2.5.2.3) as  

. ~H ≃ ℏωra
+a + 1

2
ℏω01σz + g2

(ω01 − ωr)
σz

⎛
a+a + 1

2

⎞
(2.104) 

This last term corresponds to a Lamb shift effect. The frequency of the qubit 
is shifted by the presence of photons in the cavity. This will have important 
consequences on the qubit coherence as will be seen in Sect. 2.4.2.5. The same term 
viewed from the resonator perspective corresponds to a change of the resonator 
frequency depending on the state of the qubit. When the qubit is in the excited state, 
the resonator frequency is offset from . ωr by 

. δ1ωr = g2

(ω01 − ωr)
(2.105) 

When the qubit is in the ground state, the resonator frequency is offset from its 
bare frequency . ωrby an opposite value 

. δ0ωr = − g2

(ω01 − ωr)
(2.106)



98 M. Stern

This frequency shift is usually called dispersive shift and allows the detection of 
the qubit state by looking at the frequency shift of its coupled resonator. In order 
to be able to detect it easily, this shift should be comparable with the resonator 
linewidth. 

2.3.2 Single Qubit Gates 

2.3.2.1 Driving a Qubit by a Classical Drive 
Arbitrary single-qubit rotations can be realized by applying a classical drive for a 
certain time duration. The Hamiltonian of the system can be written as 

.H = h̄
ω01

2
σz + h̄Ωσx cos (ωmwt + ϕ) (2.107) 

where .ω01 is the qubit frequency, .ωmw is the drive frequency, . ϕ the phase of the 
drive and . Ω is the Rabi frequency and is proportional to the drive amplitude. 
The equations of motion which describe the qubit evolution taking into account 
decoherence are derived in Appendix 2.5.1.7. 

Under unitary transformation .U = exp
(
iσz

ωmw

2 t
)
, the Hamiltonian becomes 

(see Appendix 2.5.2.1) 

. ~H = h̄
δ

2
σz + h̄

Ω

2

(
σ+ exp (iωmwt) + σ− exp (−iωmwt)

)
(exp (i(ωmwt + ϕ))

+ exp (−i(ωmwt + ϕ))) (2.108) 

where .δ = ω01 − ωmw is the detuning between the drive and the qubit frequency. 
Neglecting the terms rotating at .2ωmw (Rotative Wave Approximation), one obtains 
a time-independent effective Hamiltonian 

.~H = h̄
δ

2
σz + h̄

Ω

2

(
σ+ exp (−iϕ) + σ− exp (+iϕ)

)
(2.109) 

For .δ = 0, the evolution under such Hamiltonian is relatively simple 

.U(τ) =
⎛

cos
(

Ωτ
2

) −i sin
(

Ωτ
2

)
e−iϕ

−i sin
(

Ωτ
2

)
eiϕ cos

(
Ωτ
2

)
⎞

(2.110) 

In particular a .π/2 pulse .(Ωτ = π/2) will take a qubit in the ground state . |0〉 to 
an equal superposition of ground and excited: 

. |0〉 → 1√
2

⎛
|0〉 − ie−iϕ |1〉

⎞

|1〉 → 1√
2

⎛
−ieiϕ |0〉 + |1〉

⎞
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A . π pulse .(Ωτ = π) will take a qubit in the ground state . |0〉 to the excited state 
and vice versa 

. |0〉 → −ie−iϕ |1〉
|1〉 → −ieiϕ |0〉

2.3.2.2 Driving a Qubit via a Resonator Port 
It is possible to drive the qubits that are positioned inside of a resonator by using 
one of the resonator ports. In the following we calculate the Rabi frequency of a flux 
qubit coupled inductively to a .λ/2 transmission line resonator (see Sect. 2.1.5.5). 
According to (2.60) 

.Î (x) = 1√
Z0

⎲
n

(
f→ (ωn, x) A→

L,n + f← (ωn, x) A←
R,n

) + H.c. (2.111) 

Let us assume that we drive a monochromatic wave (.ωn = ω01) from the left such 
that .A←

R,n = 0,∀n. The resulting Rabi frequency (see Eq. (2.94)) is  

.Ω→ = 2MIp

h̄

/
1

Z0

||f→ (ω01, x) A→
L (ω01)

|| (2.112) 

Since .
||A→

L (ω01)
||2 = 〈P 〉 /2 (see (2.22)), we get 

. (h̄Ω→)2 / 〈P 〉 =
(
2MIp

)2

2Z0
|f→ (ω01, x)|2 (2.113) 

The same can be done for a monochromatic drive from the right, assuming . A→
L,n =

0,∀n. Thus we get 

. (h̄Ω←)2 / 〈P 〉 =
(
2MIp

)2

2Z0
|f← (ω01, x)|2 (2.114) 

2.3.3 Two-Qubit Gates 

2.3.3.1 Coupling Two Qubits by Fixed Coupling 
One of the simplest two-qubit coupling scheme consists of coupling neighboring 
qubits with a static coupling. These neighboring qubits are naturally coupled by 
dipole-dipole interaction. The coupling is mainly electric (capacitive) for charge 
qubits and magnetic (inductive) for flux qubits. It is possible to increase the coupling 
strength by using an intermediate lumped element as shown in Fig. 2.18. 

In the following, we will illustrate how this coupling is established between two 
transmon qubits. This kind of coupling has already been described for resonators in 
Sect. 2.1.2.3.
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Fig. 2.18 Different coupling schemes (a) Inductive coupling by geometric mutual inductance 
.Mgeo between two flux qubits. (b) Inductive coupling by sharing a lumped element inductance 
.Mkin between the qubits. (c) Capacitive coupling by sharing a coupling capacitance . Cc between 
two transmon qubits. (d) Controllable coupling by tuning the frequency of a tunable transmon via 
a DC flux  

The Lagrangian of two capacitively coupled transmon qubits (shown in 
Fig. 2.18c) is given by 

. L = T − V =
⎡

1

2
C1Ф̇1

2 + 1

2
C2Ф̇2

2 + 1

2
CC

(
Ф̇1 − Ф̇2

)2
⏋

+
⎡
EJ1 cos

⎛
Ф1

ϕ0

⎞
+ EJ2 cos

⎛
Ф2

ϕ0

⎞⏋

The conjugate momenta are defined by 

. Q1 = ∂L
∂Ф̇1

= C1Ф̇1 + CC

(
Ф̇1 − Ф̇2

)

Q2 = ∂L
∂Ф̇2

= C2Ф̇2 − CC

(
Ф̇1 − Ф̇2

)

We then obtain the Hamiltonian of the system .H = Q1Ф̇1 + Q2Ф̇2 − L and 
decompose it into three elements .H = H1 + H2 + V such that 

. 

H1 = 1

2
β (C2 + CC) Q2

1 − EJ1 cos

⎛
Ф1

ϕ0

⎞
∼ 1

2
h̄ω1σ

z
1

H2 = 1

2
β (C1 + CC) Q2

1 − EJ2 cos

⎛
Ф2

ϕ0

⎞
∼ 1

2
h̄ω2σ

z
2

. V = βCCQ1Q2 ∼ h̄g
(
σ−

1 − σ+
1

) (
σ+

2 − σ−
2

)
(2.115)
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where .β = 1
CCC1+CCC2+C2C1

, .ω1/2 =
/

EJ1/2β(C2/1+CC)

ϕ0
and 

.g = −1

2
βCC

√
ω1ω2

√
(CC + C1) (CC + C2). (2.116) 

The product expansion of V involves four terms. Performing a Rotating Wave 
Approximation (RWA) allows us to neglect the two non-resonant terms, and obtain 

.V = h̄g
(
σ+

1 σ−
2 + σ−

1 σ+
2

)
. (2.117) 

2.3.3.2 iSWAP Gate 
This interaction allows us to perform a two qubit gate when the detuning . δ = ω1 −
ω2 between the two qubits is smaller than g .(δ << g). In order to better understand 
this point, we calculate the time-evolution matrix of the system 

.U(t) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 cos [get] − i δ

ge
sin [get] i

2g
ge

sin [get] 0

0 i
2g
ge

sin [get] cos [get] + i δ
ge

sin [get] 0

0 0 0 1

⎞
⎟⎟⎟⎠ (2.118) 

where .ge = √
4g2 + δ2 is the effective swapping frequency. We can see that in the 

case where .δ >> g, the off-diagonal matrix elements goes to 0, and no energy 
transfer can be made between the two qubits. However, in the case where .δ = 0, 
the qubits can exchange their excitations. For example, after time .t = π

4g
we can 

perform the so-called iSWAP gate defined by 

. iSWAP =
⎛ 1 0 0 0

0 0 i 0
0 i 0 0
0 0 0 1

⎞

In practice, it is difficult and undesirable to fabricate qubits at the same resonance 
frequency. Indeed, if all qubits were at the same frequency, it would be impossible 
to control them separately. In Fig. 2.18d, we present a slightly different realization 
of a two-qubit gate dealing with this challenge. The frequency of one qubit is tuned 
to match the resonance frequency of the other by adding a SQUID which acts as 
a tunable-inductor (see Sect. 2.2.2.2). The inductance of a SQUID .LJ (Ф) depends 
on the magnetic flux . Ф threading its loop. Therefore, applying DC pulses on the 
SQUID enables one to tune . δ such that .δ << g turning the gate ‘on’ and ‘off’ 
on demand. On one hand, this realization surely shows advantages in controlled 
gate operations. On the other hand, adding the SQUID to the qubit introduces some 
decoherence.
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2.3.3.3 Controlled-Z Gate 
The transmon weak anharmonicity allows implementing a so-called controlled-Z 
gate. Contrary to the iSWAP gate, this gate is not based on tuning the qubit transition 
frequencies into resonance with each other but rather exploits the third energy level 
of the transmon (see Sect. 2.2.2.3). 

The idea of this gate consists of tuning the qubits to a point where the .|1, 1〉 and 
.|0, 2〉 are degenerate in the absence of coupling [12]. In presence of the coupling, 
the two states can exchange energy and it is thus possible by letting them evolve 
freely during an appropriate delay time to transfer state .|1, 1〉 to .− |1, 1〉 and thus 
have 

.CZ =
⎛ 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 −1

⎞
(2.119) 

2.3.3.4 Tunable Coupling Mediated by a Resonator or a Qubit 
Two-qubit gates can also be mediated by an intermediate resonator [26, 27] or by  
a coupling qubit [12]. In Fig. 2.19, we present a possible implementation of such a 
scheme. Two transmon qubits are coupled by capacitors .Cc1 and .Cc2 to a common 
coupler whose frequency is controllable by a flux . Ф threading a SQUID loop. In 
addition, the two transmons are coupled directly by capacitor . C12. 

As we will see in the following, the advantage of this implementation is the 
ability to control directly the coupling between the two qubits without having to 
detune them out of their optimal working point. In addition, one can also cancel 
completely the direct coupling due to .C12 by adjusting the frequency of the coupler 
and it is thus possible to operate properly each qubit independently with good 
fidelity. 

In the following, we will derive the Hamiltonian of two qubits while considering 
the coupler as an intermediate resonator. Assuming Rotating Wave Approximation, 
we have 

. H = h̄ω1

2
σz

1 + h̄ω2

2
σz

2 + h̄ωra
†a + h̄g1

⎛
σ+

1 a + σ−
1 a†

⎞
+ h̄g2

⎛
σ+

2 a + σ−
2 a†

⎞
(2.120) 

Fig. 2.19 Mediated Coupling between two transmon qubits. The two qubits are coupled to a 
coupler element by capacitors .Cc1 and . Cc2. The frequency of the coupler is controllable by a 
flux threading the SQUID loop
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In the case where the detunings are much larger than the coupling constants, it is 
possible to trace out the degree of freedom of the intermediate coupler by using a 
Schrieffer Wolff transformation (see Sect. 2.5.2.3) 

. S = g1

ω1 − ωr

(
σ+

1 a − σ−
1 a+) + g2

ω2 − ωr

(
σ+

2 a − σ−
2 a+)

and get an effective Hamiltonian 

. Heff = h̄ω1

2
σz

1 + h̄ω2

2
σz

2 + h̄
(
ωr + χ1σ

z
1 + χ2σ

z
2

)
a†a + h̄geff

(
σ+

1 σ−
2 + σ−

1 σ+
2

)
(2.121) 

where .χi = g2
i

δi
, and an effective interaction 

. ge = g1g2 (δ1 + δ2)

2δ1δ2
(2.122) 

By tuning properly the frequency of the coupler at . ωr = ω1+ω2
2 +

g1g2
2g12

⎡
1 ±

/
1 +

⎛
g12(ω1−ω2)

g1g2

⎞2
⏋

, it is possible to cancel the small direct coupling 

term .V12 = h̄g12
(
σ+

1 σ−
2 + σ−

1 σ+
2

)
between the qubits. This choice enables to 

operate single qubit gates with maximum fidelity. When the coupling between two 
qubits is needed, the coupler frequency is changed quickly by applying DC current 
on a flux line in the vicinity of the SQUID shown in Fig. 2.19. 

2.3.3.5 Microwave Dynamic Coupling 
A different approach is to apply a resonant microwave-drive on a qubit in order to 
dress this qubit in effective resonance with another. The advantage of this coupling 
scheme is that one can turn on and off the coupling by the application of a microwave 
tone. In this section, we will try to explain briefly this strategy in a simple case. We 
consider two qubits which are coupled directly by coupling constant g. One applies 
a time-dependent resonant Rabi drive on qubit 1. The driven Hamiltonian writes 

.H = h̄
ω1

2
σz

1 + h̄ω2

2
σz

2 + h̄gσ x
1 σx

2 + h̄Ωσx
1 cos (ω1t) (2.123) 

Under unitary transformation .U1 = exp
(
i ω1

2 (σ z
1 + σz

2 )t
)
, the Hamiltonian becomes 

(see Appendix 2.5.2.1) after rotating wave approximation 

.~H1 = h̄
δ

2
σz

2 + h̄
Ω

2
σx

1 + h̄g
(
σ+

1 σ−
2 + σ−

1 σ+
2

)
(2.124)



104 M. Stern

The eigenstates associated to eigenvalues .±Ω/2 of .h̄Ω/2σx
1 are 

. |+〉 = |0〉 + |1〉√
2

|−〉 = |0〉 − |1〉√
2

The splitting of these two levels is at the origin of Rabi oscillations. The operators 
can be rewritten in the basis of .|∓〉 as 

. σ+
1 = |1〉〈0| = (|+〉 − |−〉) (〈+| + 〈−|) /2

σ−
1 = |0〉〈1| = (|+〉 + |−〉) (〈+| − 〈−|) /2

Under this basis change, the above operators can be replaced by 

. σ±
1 → (

σz
1 ∓ iσ

y

1

)
/2

σx
1 → σz

1

In this basis . ~H can be written as 

. ~H1 = H0 + V

H0 = h̄Ω
σz

1

2
+ h̄δ

σ z
2

2
(2.125) 

V = h̄g

⎛
σz 

1 − iσ y 
1 

2 
σ− 

2 + 
σz 

1 + iσ y 
1 

2 
σ+ 

2

⎞

The expression of operators . σ−
1 , . σ+

1 , . σ−
2 , .σ+

2 under unitary transformation . U2 =
exp

(
i(Ω

2 σ 1
z + δ

2σ 2
z )t

)
can be easily estimated using Baker Campbell Hausdorff 

formula (see Sect. 2.5.2.2) 

.σ+
1 → σ+

1 e+iΩt

σ−
1 → σ−

1 e−iΩt

σ+
2 → σ+

2 e+iδt

σ−
2 → σ−

2 e−iδt
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Therefore under this transformation, the Hamiltonian becomes 

. ~H2 = U2V U+
2 = h̄g

⎛
σz

1 + σ−
1 e−iΩt − σ+

1 e+iΩt

2
σ−

2 e−iδt

+σz
1 + σ+

1 e+iΩt − σ−
1 e−iΩt

2
σ+

2 e+iδt

⎞
(2.126) 

If .Ω ≈ δ, only two terms of this Hamiltonian will be time independent giving 
rise to an effective Hamiltonian 

. HΩ=δ = − h̄g

2

(
σ+

1 σ−
2 + σ−

1 σ+
2

)

One of the main advantage of the dynamical coupling techniques is that they can 
be directly generalized to large registers with minimal extra hardware and control 
lines. Along these lines, several protocols have been proposed and realized in recent 
years. For instance, one can apply a resonant Rabi frequency drive on both qubits 
at the same time as suggested in Ref. [28, 29] or one can even drive one qubit at the 
resonant frequency of the other qubit [30], inducing dynamics in the latter across 
the connecting resonator. These techniques (FLICFORQ, Cross Resonance,. . . ) are  
frequently used in recent experiments. 

2.4 Relaxation and Decoherence 

One of the main limitations of quantum computers is related to the uncontrolled 
influence of the environment. An efficient quantum processor should have a scalable 
register of qubits that is easy to initialize, readout and manipulate but that is at 
the same time well-protected from variations of the parameters of its environment. 
These variations of parameters can cause uncontrolled changes in the qubits state, 
reducing our ability to perform well-defined operations. This process is called 
decoherence and is characterized by two distinct rates. The depolarization rate . 𝚪1
corresponds to an energy exchange with the environment. The pure dephasing rate 
. 𝚪ϕ is associated to low-frequency noise, which affects the Larmor frequency of the 
qubit without energy exchange. The two processes of relaxation and pure dephasing 
combine to the so-called decoherence rate3 

. 𝚪2 = 1

2
𝚪1 + 𝚪ϕ

3 Note that the definition of . 𝚪2 as a sum of rates is only strictly valid when the noise spectra are 
Lorentzians centers around zero frequency and decay functions are exponential. 
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2.4.1 Relaxation 

2.4.1.1 Fermi Golden Rule 
The relaxation rate . 𝚪1 corresponds to energy exchange between the qubit and its 
environment. In principle, this rate is the sum of excitation and relaxation rates of 
the qubit with its environment 

.𝚪1 = 𝚪rel
1→0 + 𝚪exc

0→1 (2.127) 

Within the assumption that the qubit is weakly coupled to its environment, . 𝚪rel
1→0

and .𝚪exc
0→1 can be estimated using Fermi Golden Rule 

.𝚪rel
1→0 = 2π

h̄2

⎲
n,m

ρnn |〈1,m |Vint | 0, n〉|2 δ (ωm − ωn − ω01) (2.128) 

.𝚪exc
0→1 = 2π

h̄2

⎲
n,m

ρnn |〈0,m |Vint | 1, n〉|2 δ (ωm − ωn + ω01) (2.129) 

where .ρnn are the diagonal elements of the density operator of the surrounding bath. 
There are no quantum correlations in the bath and thus all non-diagonal elements of 
the density operator are equal to zero. 

2.4.1.2 Link Between the Fermi Golden Rule and the Power Spectrum of 
a Bath Operator  

In the following we assume that the coupling of the qubit to the environment can be 
written as .Vint = λσxF where F is an arbitrary operator acting on the environment 
degrees of freedom. The correlations of operator .F(t) are given by 

. 〈F (t) F (0)〉 = Tr (ρF (t) F (0)) =
⎲
n

ρnn 〈n |F(t)F (0)| n〉

=
⎲
n,m

ρnn 〈n |F(t)|m〉 〈m |F(0)| n〉

=
⎲
n,m

ρnn

/
n

|||eiHt/h̄F (0)e−iHt/h̄
||| m

\
〈m |F(0)| n〉

=
⎲
n,m

ρnne
i(ωn−ωm)t |〈m |F | n〉|2

According to Wiener-Khintchine theorem, the power spectrum .SF (ω) is related to 
the correlations by 

.SF (ω) = 1

2π

⎰
t∈R

〈F (t) F (0)〉 eiωt

=
⎲
n,m

ρnn |〈m |F | n〉|2 δ (ωm − ωn − ω)



2 Introduction to Superconducting Quantum Circuits 107

It is thus possible to express the relaxations rates as a function of the power 
spectrum of operator F 

. 𝚪rel
1→0 = 2π

h̄2
|λ|2 SF (ω01) (2.130) 

. 𝚪exc
0→1 = 2π

h̄2
|λ|2 SF (−ω01) (2.131) 

In superconducting qubits, the temperature of the bath is usually much smaller 
than the qubit frequency and thus .𝚪exc

0→1 is exponentially suppressed by a Boltzmann 
factor .exp [−h̄ω01/kBT ]. 

2.4.1.3 Wigner Weisskopf Theory of Relaxation 
In the following, we will consider a qubit coupled to a bath of harmonic oscillators 
within the Wigner-Weisskopf theory of relaxation. The system is described by the 
following Hamiltonian 

.H = h̄
ω01

2
σz +

⎲
ℏωka

+
k ak + h̄σx

⎲
gk(a

+
k + ak) (2.132) 

We write the Heisenberg equations for . ak and . σz operators as 

. ̇ak = i

h̄

⎡
H, ak

⏋ = −iωkak − igkσx

ȧ+
k = i

h̄

⎡
H, a+

k

⏋ = iωka
+
k + igkσx

σ̇z = i

h̄

⎡
H, σz

⏋ = 2σy

⎲
gk(a

+
k + ak)

We assume that at time .t = 0, the spin is in its excited state and thus 
.〈σz(t = 0)〉 = 1 and the bath is empty .∀k 〈ak(t = 0)〉 = 0. At time .t = +∞, 
the spin is de-excited and .∀k

〈
a+
k (t = +∞)

〉 = 0. Using these boundary conditions, 
we can easily integrate the first two equations 

.ak(t) = −igk

⎰ t

0
e−iωk(t−t ')σx(t

') dt '

a+
k (t) = −igk

⎰ +∞

t

eiωk(t−t ')σx(t
') dt '
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By replacing these expression we get 

. σ̇z(t) = −2i
⎲

g2
k

⎡
σy(t)

⎛⎰ +∞

t

eiωk(t−t ')σx(t
') dt '

⎞

+σy(t)

⎛⎰ t

0
e−iωk(t−t ')σx(t

') dt '
⎞⏋

(2.133) 

We can simplify this expression assuming .gk = g ∀k (Markovian approximation) 
and using 

. Δω
⎲

e±iωkt ≃
⎰ +∞

0
e±iωt dω = [πδ(t) ± iP

1

t
]

where P denotes the Cauchy principal value and .Δω the constant spacing between 
different values of . ωk . Moreover, 

.

⎰ t

0
σx(t

')δ(t − t ') dt ' =
⎰ +∞

t

σx(t
')δ(t − t ') dt ' = σx(t)/2 (2.134) 

Thus, we get 

.σ̇z(t) = −2πg2 1

Δω
σz(t) = −𝚪1σz(t) (2.135) 

This last expression enables us to extract an expression of the relaxation rate . 𝚪1
of the qubit 

. 𝚪1 = 2πg2

Δω

2.4.1.4 Relaxation of a Qubit Coupled to a Single Mode Resonator: 
Purcell Effect 

In the following, we will consider a qubit embedded into a single mode resonator. 
For simplicity, we consider a system described by the so-called Jaynes-Cummings 
Hamiltonian 

.H = h̄
ω01

2
σz + ℏωra

+a + h̄g(σ+a + σ−a+) (2.136) 

We assume the resonator is coupled to the external environment with a Lindblad 
jump operator .L = √

κa. The presence of a dissipation channel for the resonator 
opens an effective dissipation for the qubit due to the presence of the coupling g. 
This effect is called Purcell effect and should be carefully taken into account when 
designing a circuit-QED experiment.
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When the qubit and the resonator are sufficiently detuned .g ⪡ |ω01 − ωr |, the  
Hamiltonian can be replaced by an effective Hamiltonian using a Schrieffer-Wolff 
transformation .U = eS where .S = g

ω01−ωr

(
σ+a − σ−a+)

(see Chap. 2.5.2.4). 
This transformation enables us to estimate the Purcell effect. Indeed, the equations 
of motion of the density operator in this new frame . ~ρ should include Lindblad jump 
operators expressed in the same frame 

.~L = eSLe−S (2.137) 

Using Baker Campbell Hausdorff formula (see Sect. 2.5.2.2), we get 

.~L ∼ L + [S,L] = √
κa + g

ω01 − ωr

√
κσ− (2.138) 

We can now write the equation of motion of operator . σz using Sect. 2.5.1.6 

.σ̇z(t) = − g2κ

(ω01 − ωr)2 (σz + 1) (2.139) 

and thus we can extract the Purcell relaxation rate . 𝚪P
1

. 𝚪P
1 = g2κ

(ω01 − ωr)2 (2.140) 

2.4.1.5 Purcell Rate in a Transmission Line Resonator 
In the following, we will consider as an illustration the Hamiltonian of a flux qubit 
coupled inductively to a transmission line resonator 

.H = h̄ω01
σz

2
+ MIpÎ (x) σx (2.141) 

We denote as .𝚪P
1 the Purcell relaxation rate of the qubit due to its coupling with the 

resonator. Using Eqs. (2.130) and 2.131, we have  

. 𝚪P
1 = 2π

h̄2 M2I 2
p [SI (ω01) + SI (−ω01)]

We recall that according to Eq. (2.50), .I (x, ω) can be expressed as a function of 
the propagation wave amplitudes .A→

L (ω) and .A←
R (ω) in the incoming lines as 

.I (x, ω) = 1√
Z0

(
f→ (x, ω) A→

L (ω) + f← (x, ω) A←
R (ω)

)
(2.142) 

Due to the independence of signals .A→
L (ω) and .A←

R (ω), we have  

.SI (ω) = 1

Z0

⎛
|f→ (ω, x)|2 SA→

L
(ω) + |f← (ω, x)|2 SA←

R
(ω)

⎞
(2.143)
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Using .A→
k =

/
c

2Λ
h̄ωka

→
k (see Sect. 2.1.4.4) we calculate 

. SA→
L

(ω) ≡ 1

2π

⎰
t∈R

〈
A→

L (t) A→
L (0)

〉
eiωt

= 1

2π

⎲
n≥0

⎛ c

2Λ
h̄ωn

⎞ ⎰
t∈R

⎛/(
a→
L,n

)†
a→
L,n

\
e+iωnt

+
/
a→
L,n

(
a→
L,n

)†
\
e−iωnt

⎞
eiωt

=
⎲
n≥0

⎛ c

2Λ
h̄ωn

⎞ ⎛/(
a→
L,n

) †a→
L,n

\
δ (ωn+ω)+

/
a→
L,n

(
a→
L,n

) †
\
δ (ωn−ω)

⎞

By replacing the discrete sum .
∑

n≥0 by its equivalent integral .
⎰
dω∈R+ η (ω), we get 

. SA→
L

(ω) =
⎰

dω'∈R+

h̄ω'

4π

⎛/
a†a

\
δ

(
ω' + ω

) +
/
aa†

\
δ

(−ω' + ω
)⎞

=
⎧

h̄ω
4π

〈
aa†

〉
ω > 0

h̄ω
4π

〈
a†a

〉
ω < 0

(2.144) 

By considering that the photon bath is thermalized at a given temperature T , 

.SA→
L

(ω) =
⎧

h̄ω
4π

1
1−e−βh̄ω ω > 0

h̄ω
4π

e−βh̄ω

1−e−βh̄ω ω < 0
(2.145) 

where .β = 1
kBT

. Finally, the Purcell decay rate writes 

.𝚪P
1 =

⎛
MIp

h̄

⎞2 h̄ω01 coth
⎛

h̄ω01
2kBT

⎞ (|f→ (ω01, x)|2 + |f← (ω01, x)|2)
2Z0

(2.146) 

which we separate into two parts 

.𝚪P
1 = 𝚪→

1 + 𝚪←
1 (2.147) 

where 

.𝚪
→/←
1 =

⎛
MIp

h̄

⎞2
h̄ω01

2Z0

||f→/← (ω01, x)
||2 coth

⎛
βh̄ω01

2

⎞
(2.148)
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2.4.1.6 Calculating the Purcell Rate from Rabi Frequency 
Considering Eqs. 2.148, (2.113), and (2.114), we establish a relationship valid at 
zero temperature 

. 𝚪
→/←
1 (0 K) = h̄ω01

(
Ω→/←)2

4 〈P 〉 (2.149) 

We thus get 

.𝚪P
1 (0 K) = h̄ω01

⎡
(Ω→)2 + (Ω←)2⏋

4 〈P 〉 (2.150) 

The advantage of this formula is that it gives directly the Purcell rate via the 
measurement of the Rabi frequency for a given average power .〈P 〉 with a precision 
limited by the uncertainty on .〈P 〉, which is typically .±1 dB. 

2.4.1.7 Dielectric Losses 
The typical relaxation times of superconducting qubits have been largely improved 
by the introduction of three dimensional cavity, which reduce the impact of 
dielectric losses in the circuit [9, 17, 25]. Various works have tried to reduce these 
losses in order to increase the fidelity of the qubit [10, 11, 18] while keeping a 2D 
scalable architecture. This can be done by reducing the interface defects between 
the metal and the substrate [11]. 

Dielectric losses take place in the capacitors and can be modeled by a small 
resistor of resistance R in series with each capacitor. The value of R is determined 
by the loss tangent of the dielectric material separating each island and is given by 

.RCω01 = tan δ (2.151) 

As a result, the noise voltage generated by the (lossy) capacitor is given by 

.SδV (ω01) + SδV (−ω01) = Rh̄ω01

π
coth

⎛
βh̄ω01

2

⎞
≈ h̄ω01R

π
(2.152) 

To calculate the relaxation rate of a qubit, one must determine the transverse term 
.σx/y in the Hamiltonian introduced by a small perturbation . δV. For instance, one can 
calculate the relaxation of a transmon due to dielectric losses in the substrate. The 
variation of the charge across the capacitor C due to . δV is given by .δQ = −CδV. At 
first order in . δV, this modifies the kinetic term of the Hamiltonian by .dK = δQ V̂ . 
Using Eq. (2.130), we get 

.𝚪diel
1 = 2π

h̄2
C2

|||
/
1

|||V̂
||| 0

\|||2
SδV (ω01) (2.153)
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Fig. 2.20 Dielectric losses of a flux qubit. An external bias .δVij (cyan) is applied. Here we show 

the example of .(i, j) = (4, 2), where we write . Q42 = C42

⎛
V4 −

⎛
V2 + Ṽ42

⎞⎞

which gives 

. 𝚪diel
1 = 16

h̄
EC

||〈1 ||n̂|| 0
〉||2 tan δ (2.154) 

where .EC = e2

2C
, .n̂ = CV̂

2e
. For a typical transmon on sapphire substrate 

.
(
tan δ ∼ 10−6

)
with .EJ /h̄ = 20 GHz and .EC/h̄ = 200 MHz, the value of the 

transition matrix element is .
||〈1 ||n̂|| 0

〉||2 ∼ 1.7 and thus . 𝚪diel
1 ∼ 5 kHz.

In the following, we will calculate the dielectric losses for a flux qubit with four 
junctions. As we can see in Fig. 2.20, the variation of charge across the capacitor 
.C42 due to .δV42 is given by 

.δQ42 = −C42δV42 (2.155) 

At first order in .δVij , this modifies the kinetic term by 

.dK42 = δQ42 (V2 − V4)

= −C42δV42VT

⎛
⎜⎜⎝

0
1
0

−1

⎞
⎟⎟⎠
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Let us recall that . P from (2.89) is the .4 × 3 transfer matrix from the junction 

coordinates to the island phases such that .V = PФ̇ = P
(
PT CP

)−1
Q (up to a 

constant). Injecting and generalizing to all other indices ij , we can write the total 
perturbation of the Hamiltonian to all perturbations .δVij . 

. dH =
⎲
i /=j

(−dKij

)

=
⎲
i /=j

Cij δVijQ
T

⎛
PT CP

⎞−1
PT

(
ej − ei

)

where . ei is the sparse column vector with 1 only at position i. 
Let us define the .3×3 real symmetrical matrix comprised of the quantum overlaps 

of the charge operators 

.Q2 = (〈1|Qi |0〉〈0|Qj |1〉,∀i, j ∈ {1, 2, 3}) (2.156) 

Seeing that dH is linear in the . Q operators we can write dH under the form 

. dH = δVij ·
⎛
QT Lij

⎞

Lij = Cij

⎛
PT CP

⎞−1
PT

(
ei − ej

)

Subsequently, the loss rate due to .δVij writes 

. 𝚪ij = 2π

⎡
SδVij (ω01) + SδVij (−ω01)

⏋
Lij

T Q2Lij

h̄2

= (2ω01R/h̄) Tr
⎛
LijLij

T Q2
⎞

= (
2 tan δij /h̄Cij

)
Tr

⎛
LijLij

T Q2
⎞

where we replace the expression of R in the last equality according to (2.151). We  
get 

. 𝚪ij = 2

h̄
Tr

⎛⎛
PT CP

⎞−1 ⎡
PT

(
ei − ej

)
Cij tan δij

(
ei − ej

)T P
⏋ ⎛

PT CP
⎞−1

Q2
⎞

(2.157) 

After summation over all island pairs .i, j in . [·], we get 

. 𝚪diel
1 = 2

h̄
Tr

⎛⎛
PT CP

⎞−1 ⎛
PT P

⎞ ⎛
PT CP

⎞−1
Q2

⎞
(2.158)
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where .= ∑
ij

(
ei − ej

)
Cij tan δij

(
ei − ej

)T is the capacitance matrix weighted 
by the .tan δ of individual capacitive elements (we recover, for the unweighted 
expression, the usual capacitance matrix .C = ∑

ij

(
ei − ej

)
Cij

(
ei − ej

)T ). In the 
case where .tan δ is homogeneous over all the different capacitances , we get 

. 𝚪diel
1 = 2

h̄
Tr

⎛⎛
PT CP

⎞−1
Q2

⎞
tan δ (2.159) 

2.4.2 Pure Dephasing 

2.4.2.1 General Framework for the Pure Dephasing of a Qubit 
In an ideal system, the decoherence rate . 𝚪2 is limited by the energy relaxation rate 
of the qubit and is given by .𝚪2 = 𝚪1/2. In practice, the decoherence rate of a 
qubit may be much larger than this theoretical limit due to pure dephasing. The pure 
dephasing rate . 𝚪ϕ is associated to low-frequency noise, which affects the Larmor 
frequency of the qubit without energy exchange. 

In order to estimate this effect more precisely, we write the Heisenberg equations 
of a qubit in free precession in the frame rotating at the average Larmor frequency 
of the qubit . 〈ω01〉

. 
dσ+

dt
= iδ(t)σ+

dσ−

dt
= −iδ(t)σ−

dσz

dt
= 0

where .δ(t) = ω01(t) − 〈ω01〉 . These differential equations are decoupled and can 
be solved straightforwardly 

. σ+(t) = ei
⎰ t

0 δ(t) dtσ+(0)

σ−(t) = e−i
⎰ t

0 δ(t) dtσ−(0)

The phase .ϕ(t) = ⎰ t

0 δ(t) dt depends on small fluctuations .λ(t) which slightly 

modify the qubit Hamiltonian. At first order, .δ(t) is given by .δ(t) = ∂ω01
∂λ

λ(t). The  
pure dephasing rate of the system corresponds to the decay of the expectation value 
.
〈
σ±(t)

〉
and is given by 

.
〈
σ±(t)

〉 =
/
e±iϕ(t)

\
σ+(0) (2.160)
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If the fluctuations .δλ(t) are small enough, they can be considered as a random 
variable with Gaussian distribution [31]. Thus, using Isserlis theorem, we get 

.fR(t) =
/
e±iϕ(t)

\
≃ e−1/2

〈
ϕ2(t)

〉
(2.161) 

The expectation value of .
〈
σ±(t)

〉
will therefore decay according to 

.fR(t) = e
−1/2

⎛
∂ω01
∂λ

⎞2
/⎛⎰ t

0 λ(t ')dt '
⎞2

\
(2.162) 

We can write 

.

/⎛⎰ t

0 λ(t ')dt '
⎞2

\
= ⎰

t∈R
⎰
u∈R dt ' du

〈
λ(t ' − u)λ(0)

〉
H(t ')H(u') (2.163) 

Where .H(u) is the boxcar function such that .H(u) = 1 if .0 ≤ u ≤ t and 
zero elsewhere. Using Wiener Khinchine theorem to express the correlations as a 
function of the power spectrum . Sλ (ω)

. 〈λ (t) λ (0)〉 =
⎰

dωe−iωtSλ (ω) (2.164) 

Noting that 

.

⎰
u∈R

du H(u)e±iωu = tsinc(
ωt

2
) (2.165) 

we get 

. fR(t) = exp

⎛
⎝− t2

2

⎛
∂ω01

∂λ

⎞2 ∞⎰

−∞
dω Sλ(ω) sinc2(

ωt

2
)

⎞
⎠ (2.166) 

2.4.2.2 Dynamical Decoupling 
Experimentally, the pure dephasing rate of a qubit can be estimated by the so-called 
Ramsey sequence, where two identical .π/2 pulses are played consecutively after a 
time delay t . It is possible to dynamically decouple the noise responsible for this 
dephasing by playing a more complex set of pulses. The most popular technique 
to achieve this is called Hahn Echo technique and consists of playing a .π -pulse in 
between the two .π/2 pulses. This . π pulse inverses the time evolution and therefore 
cancels the contribution to dephasing of low frequency noise. 

In a Hahn echo sequence, the first .π/2-pulse puts the state of the qubit in a 
coherent superposition state. During the time . t1, the qubit performs a free evolution 
and accumulates phase .ϕ1(t1) = ⎰ t1

0 δ1(t
')dt '. The . π—pulse flips the time evolution
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of the qubit such that during the time . t2 it acquires an opposite phase . ϕ2(t2) =
− ⎰ t1+t2

t1
δ2(t

')dt '. Assuming that the environment is static during the free evolution, 
the phase accumulated is completely canceled if .t1 = t2 = t/2. 

In practice the noise is not static and the decoherence rate of the qubit— 
corresponding to the decay .fE(t) = 〈

σ±(t)
〉
—is given by 

.fE(t) =
/
e±i(δ1−δ2)

\
≈ exp

⎛
−1/2

/
δ2

1 + δ2
2 − δ1δ2 − δ2δ1

\⎞
(2.167) 

After a calculation similar to the one performed in previous section [31], one can 
show that the expectation value of .

〈
σ±(t)

〉
will decay according to 

. fE(t) = exp

⎛
⎝− t2

2

⎛
∂ω01

∂λ

⎞2 ∞⎰

−∞
dω Sλ(ω) sin2(

ωt

4
) sinc2(

ωt

4
)

⎞
⎠ (2.168) 

White Spectrum 
If the power spectrum is white .(Sλ(ω) = Sλ(ω = 0)) , it is possible to calculate 
analytically the pure dephasing rate. Indeed, 

.

∞⎰

−∞
dω sinc2(

ωt

2
) =

∞⎰

−∞
dω sin2(

ωt

4
) sinc2(

ωt

4
) = 2π

t
(2.169) 

The dynamical decoupling is therefore not effective for white noise. The Ramsey 
and Echo sequence give the same exponential decay, namely 

.𝚪ϕR = 𝚪ϕE = π

⎛
∂ω01

∂λ

⎞2

Sλ(ω = 0) (2.170) 

This result can be generalized if the power spectrum is regular at .ω = 0 on a 
frequency scale .|ω| ≤ 1/t . Indeed, 

.

∞⎰

−∞
dω Sλ(ω) sinc2(

ωt

2
) ≃ Sλ(0)

∞⎰

−∞
dω sinc2(

ωt

2
) (2.171) 

1/f Spectrum 
Here we assume that the power spectrum follows a 1/f law in a wide range of 
frequencies limited by an infrared cutoff .ωIR and an ultraviolet cutoff . ωc

.Sλ(ω) = A

|ω| , ωIR ≤ |ω| ≤ ωc (2.172)
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The infrared cutoff is usually determined by the total length of the measurement 
protocol (typically 1Hz) and the ultraviolet cutoff is typically in the range of a few 
MHz. Using 

.

∞⎰

ωIR

dω

|ω| sinc2(
ωt

2
) ≃ 2ln

⎛
1

ωIRt

⎞
(2.173) 

.

∞⎰

−∞

dω

|ω| sin2(
ωt

4
) sinc2(

ωt

4
) = 2ln(2) (2.174) 

we get a Gaussian decay for both Ramsey and Echo pure dephasing with 

.𝚪ϕR = √
A

⎛
∂ω01

∂λ

⎞ /
ln

⎛
1

ωIRt

⎞
. (2.175)

𝚪ϕE =
√

A

⎛
∂ω01 

∂λ

⎞ √
ln(2) (2.176) 

In particular, .

/
ln

⎛
1

ωIRt

⎞
∼ 3.7 and .𝚪ϕR/𝚪ϕE ∼ 4.5 for typical cutoff 

frequencies. This limited echo efficiency is due to the high frequency tail of 1/f 
noise. 

2.4.2.3 Charge Noise in a Transmon Qubit 
An important source of pure dephasing for qubits is noise on the charge of each 
island of the qubit. This noise is due to microscopic charged fluctuators that can be 
either trapped electrons or ions in defects of the material that move between two 
or several metastable positions. These charge fluctuators are partly located in the 
substrate and partly on the oxide layers covering the electrodes of the device. 

The charge noise power spectrum follows approximately a 1/f behavior up to 
frequencies of approximately 1 MHz 

.SQ(ω) = AQ

|ω| (2.177) 

The typical amplitude .AQ depends on the parameters of the experiment (tem-
perature, size of the island, screening by other electrodes). A typical value is 
.
√

AQ ∼ 10−3e where .e = 1.6 × 10−19 C is the electron charge. 
Several qubit design have been used to reduce the influence of this noise. In 

particular, a transmon with a large ratio .EJ /EC will have a small charge dispersion 
(see Fig. 2.11b), which will reduce the dephasing due to charge noise.
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Taking a charge qubit with .ω01/2π = 5 GHz and .EJ /EC = 10, we see in  
Fig. 2.11b that . ∂ω01

∂ng
∼ 107 rad/s. Thus, using Eq. (2.176), we get . 𝚪charge

ϕE ∼ 10 kHz.
If we increase further .EJ /EC to the transmon regime, it is possible to cancel almost 
completely the charge dispersion, reducing therefore the contribution of charge 
noise to decoherence. 

2.4.2.4 Dephasing of a Flux Qubit Away from its Optimal Point 
Flux noise is also an important source of dephasing for qubits which posses a 
superconducting loop, such as flux qubits. The origin of this noise is most likely 
due to microscopic spins in the vicinity of the qubit which generate a magnetic 
noise threading the loop of the qubit. The flux noise power spectrum follows 
approximately a 1/f behavior up to high frequencies [16] 

.SФ(ω) = AФ

|ω| (2.178) 

The typical value of the flux noise amplitude is .
√

AФ ∼ 10−6Ф0 where . Ф0 =
2 × 10−15 Wb is the magnetic flux quantum. 

To illustrate our discussion, we will consider in the following a flux qubit away 
from its optimal point. As already mentioned in Sect. 2.2.3.5, the high magnetic 
moment of the flux qubit make its frequency very sensitive to flux 

.
∂ω01

∂Ф
= ∂ε

∂Ф
.
∂ω01

∂ε
=

⎛
2Ip

ℏ

⎞2
(Ф − Ф0/2)

ω01
(2.179) 

Taking a flux qubit with .ω01/2π = 5 GHz, .Ip = 300 nA, .Ф − Ф0/2 = 50 μФ0, 
and using Eq. (2.176), we get . 𝚪flux

ϕE ∼ 170 kHz.

2.4.2.5 Calculating the Dephasing Rate Due to Photon Noise 
Stochastic fluctuations in the number of photons in a resonator coupled to a qubit 
create random dispersive shifts which translates into dephasing. Using Eq. (2.104) , 
the frequency of the qubit is given by 

.ω01(t) = 〈ω01〉 + 2χδn(t) (2.180) 

where .χ = g2/(ω01 − ωr) and .δn(t) = n(t) − n̄. 
Using Eq. (2.162), one can thus determine the decoherence rate due to photon 

noise 

.fR(t) = e
−1/2(2χ)2

/⎛⎰ t
0 δn(t ')dt '

⎞2
\

(2.181) 

In the following, we compute the correlations .〈δn(τ)δn(0)〉 using quantum 
regression theorem (see Sect. 2.5.1.8) for thermal and coherent states. More complex 
photon states in the resonator such as squeezed states can be handled with the same 
formalism [32].
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Thermal Photons 
In order to estimate the photon correlations in thermal state of a resonator, we write 

a set of equations of motion for .O = (
n(t), 1

)T
in presence of Lindblad operators 

.L1 = √
κ (n̄ + 1)a and .L2 = √

κn̄a+. We obtain coupled differential equations 
that can be written in the form of 

.
d

dt

−→
O (t) = G

−→
O (t) (2.182) 

where 

.G =
⎛−κ κn̄

0 0

⎞
(2.183) 

The steady-state expectation values are obtained by the null eigenstate of G, 
defined by .G〈O〉 = 0, leading to .〈n(t)〉∞ = n̄. Similarly, we calculate the steady-
state expectation value .〈n2(t)〉∞ using the kernel of the equation of motion for . ̂n2

and find 

.〈n2(t)〉∞ = n̄(2n̄ + 1) (2.184) 

To obtain the two-time correlation .〈n(t + τ)n(t)〉∞, we use the quantum regression 
theorem (see Sect. 2.5.1.8), namely 

.
d

dτ

/
n(t + τ)n(t)

1 n(t)

\
=

⎛−κ κn̄

0 0

⎞ /
n(t + τ)n(t)

1 n(t)

\
(2.185) 

Using the initial conditions .〈n(t + 0)n(t)〉∞ = n̄(2n̄ + 1), we solve the linear 
differential equation and find 

.〈n(τ)n(0)〉∞ = n̄2 +
⎛
n̄2 + n̄

⎞
e−κ|τ | (2.186) 

Using Wiener Khinchine theorem, we obtain the power spectrum 

.Sn (ω) = 1

2π

⎰
t∈R

〈n(t)n(0)〉 eiωt = κ

π

⎛
n̄2 + n̄

⎞ 1

κ2 + ω2 (2.187) 

Typically, the decay rate . κ of the resonator is much higher than the decoherence 
rate of the qubit. The power spectrum .Sn(ω) is almost constant in the range of 
interest and thus we obtain 

. 𝚪thermal
ϕ = π

⎛
∂ω01

∂n

⎞2

Sn(ω = 0) = 4χ2
(
n̄2 + n̄

)
κ

(2.188)
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Coherent States 
When the resonator is driven by a classical drive, the resonator is in a coherent state. 
In the following, we consider the Hamiltonian of an harmonic oscillator in presence 
of a well-chosen Lindblad operator 

.H = h̄ωra
+a. (2.189) 

L = √
κ

⎛
a − αeiωr t

⎞
(2.190) 

The steady state of this system corresponds to a pure state .ρ(t) = |ψ(t)〉〈ψ(t)|, 
where the coherent state .|ψ(t)〉 = |αeiω̃r t 〉 satisfies .L|ψ(t)〉 = 0. Applying the 
transformation .U = eiωr ta

+a on the Hamiltonian and the Lindblad operator above 
we obtain 

.~H = 0. (2.191)

~L = √
κ (a − α) eiωr t . (2.192) 

In this new frame, we can write the coupled equations of motion for . O, where 

.O = (
n(t), a(t), a†(t), 1

)T
, in the form of . d

dt

−→
O (t) = G

−→
O (t) with 

.G =

⎛
⎜⎜⎝

−κ 1
2α∗κ 1

2ακ 0
0 − 1

2κ 0 1
2ακ

0 0 − 1
2κ 1

2α∗κ
0 0 0 0

⎞
⎟⎟⎠ (2.193) 

The steady state solutions result in 

.〈O〉∞ =
⎛
|α|2 , α, α∗, 1

⎞T

(2.194) 

In order to find .〈n(τ)n(0)〉 we diagonalize the system and plug in the initial 
conditions in the steady-state solution for .τ = 0 . Thus, we obtain 

.〈n(τ)n(0)〉∞ = |α|4 + |α|2 e− 1
2 κ|τ | (2.195) 

Using Wiener Khinchine theorem, we obtain the power spectrum 

.Sn (ω) = 1

2π

⎰
t∈R

〈n(t)n(0)〉 eiωt = κ

2π
n̄2 1

(κ/2)2 + ω2
(2.196) 

We obtain therefore the dephasing rate due to photon noise in a coherent-state 

. 𝚪coherent
ϕ = π

⎛
∂ω01

∂n

⎞2

Sn(ω = 0) = 8χ2n̄

κ
(2.197)
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2.4.3 Decoherence Under Driven Evolution 

The decoherence rate of a driven qubit involves the noise spectral density at its Rabi 
frequency. To demonstrate this, we will consider in the following a qubit under 
driven evolution with a drive tuned at the average frequency of the qubit . 〈ω01〉
assuming that some external fluctuators may modify its instantaneous frequency 
.ω01(t). The Hamiltonian of the system can be written as 

.H = h̄
ω01(t)

2
σz + h̄Ωσx cos (〈ω01〉 t) (2.198) 

We introduce a Lindblad jump operator .L1 = √
𝚪1σ

− to describe the relaxation 
processes. In the following, we assume that . 𝚪1is a constant and does not depend on 
the frequency of the qubit. 

We first transform this Hamiltonian with a unitary transformation . U1(t) =
ei

〈ω01〉
2 σzt such that the Hamiltonian becomes after rotating wave approximation 

.~H = h̄
δ(t)

2
σz + 1

2
ℏΩσx (2.199) 

The eigenstates associated to eigenvalues .±Ω/2 of .h̄Ω/2σx are 

. |+〉 = |0〉 + |1〉√
2

|−〉 = |0〉 − |1〉√
2

The Hamiltonian can be rewritten in the basis of . |∓〉. Under this basis change, the 
above operators can be replaced by 

. σz → σx

σx → σz

In this basis, the Hamiltonian becomes 

.~H = 1

2
ℏΩσz + h̄

δ(t)

2
σx (2.200) 

Using Fermi-Golden rule (see Eq. (2.130)), we get 

. 𝚪ϕ = 𝚪+− = π

2

⎛
∂ω01

∂λ

⎞2

(Sλ (+Ω)) (2.201)
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The equations of motion of the density operator in this new frame . ~ρ should 
also include Lindblad jump operators expressed in the same frame. Under this 
transformation, the Lindblad jump operator becomes .~L1 = √

𝚪1
(
σz + iσy

)
/2. 

Introducing this transformed operator into the equations of motion for . σ+operator 
(Eq. (2.218)), we get 

. 𝚪2 = 3

4
𝚪1 + 𝚪ϕ (2.202) 

This rate corresponds to the decay rate of the so-called Rabi oscillations. 

2.5 Appendix 

2.5.1 Master Equation Formalism 

The quantum state of a qubit register is fragile and evolve in a non-unitary way, 
making it impossible to model its evolution using Schrodinger equation alone. The 
Master Equation formalism allows to treat the qubit register as an open system 
which interacts with its environment [33, 34]. 

2.5.1.1 Density Matrix Representation 
The density matrix . ρ for a system is a positive semi-definite Hermitian operator 
of trace one acting on the Hilbert space of the system. It is a generalization of 
the more usual state vectors or wavefunctions: while those can only represent pure 
states, density matrices can also represent mixed states, i.e. states where the physical 
system under study is entangled with its environment. 

The general description of a density operator is 

.ρ =
⎲
j

pj

||ψj

〉 〈
ψj

|| (2.203) 

where .
||ψj

〉
is a pure state of the system and . pj its probability. A density operator 

represents a pure state .(ρ = |ψ〉 〈ψ |) if and only if .tr(ρ2) = 1. 
Interestingly, the expectation value of an operator O is given by 

. 〈O(t)〉 = Tr [Oρ(t)] (2.204) 

2.5.1.2 Density Matrix of a Qubit 
For a single qubit, the density operator is a .2 × 2 matrix and can be written as 

.ρ = 1

2

⎛
1 + −→

P .−→σ
⎞

(2.205)
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where .−→σ = (σx, σy, σz) represents a vector of Pauli matrices, and . 
−→
P represents a 

vector of the so-called Bloch sphere. 
It is important to emphasize the difference between a probabilistic mixture of 

quantum states and their superposition. For instance, if the qubit is prepared as 
a statistical mixture of eigenstates .|0〉 and .|1〉 with equal probability, it can be 
described by the density matrix operator 

.ρ = 1

2

⎛
1 0
0 1

⎞
(2.206) 

On the other hand, a quantum superposition of these two states with equal 
probability amplitudes results in the pure state .|ψ〉 = 1√

2
(|0〉 + |1〉) and is 

associated with density matrix operator 

.ρ = 1

2

⎛
1 1
1 1

⎞
(2.207) 

In a general manner, the state of a qubit is a pure state if .

|||−→P
||| = 1 and is entangled 

with the environment if .
|||−→P

||| < 1. 

2.5.1.3 Liouville-von Neumann Equation 
The time evolution of the density operator is directly obtained from Schrodinger 
equation 

. ρ̇ =
⎲
j

pj

(||∂tψj

〉 〈
ψj

|| + ||ψj

〉 〈
∂tψj

||) = 1

ih̄

⎲
j

pj

(
H

||ψj

〉 〈
ψj

|| − ||ψj

〉 〈
ψj

||H)

= 1

ih̄

⎡
H, ρ

⏋

The evolution of the density operator according to Louville-von Neumann 
equation is unitary. However, a quantum system interacts with its environment and 
thus some unavoidable non-unitary evolution will happen. 

2.5.1.4 Krauss Theorem 
In general, any evolution of a quantum system can be described by a quantum 
map [33, 34] . Such quantum map is a linear super-operator that transforms the 
density operator . ρ into a new operator .L(ρ). To be valid, the quantum map must 
fulfill several conditions:

. Linearity—The super-operator must be linear . L(αρ + βρ') = αL(ρ) + βL(ρ')
with .α + β = 1.

. Preservation of the trace—The super-operator must conserve the trace of the 
density matrix .tr(L (ρ)) = 1
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. Complete positivity—.L(ρ) must be positive semi-definite for any composite 
quantum system including the system and parts of its environment. 

Under these conditions, the Krauss theorem states that any quantum map can be 
expressed as a sum of operators 

.L (ρ) =
K−1⎲
μ=0

MμρM+
μ (2.208) 

where one can choose .K − 1 < d2, d being the dimension of the Hilbert space 
of the system and K is the Krauss number. In order to conserve the trace, it is 
straightforward to show that the Krauss operators .Mμ must satisfy the normalization 
condition 

.

K−1⎲
μ=0

M+
μ Mμ = 1 (2.209) 

2.5.1.5 Lindblad Equation 
Assuming the system is Markovian (no memory), we define the derivative of the 
density operator as 

.ρ̇ = Lτ (ρ) − ρ

τ
(2.210) 

In order to be defined for infinitesimal . τ , one of the Krauss operators .M0 should 
satisfy the condition .limτ→0 M0 = 1. At first order in . τ , we can thus write it as 

.M0 = 1 − iL0τ (2.211) 

We write the operator .L0 as a sum of hermitian and antihermitian operators 
.L0 = 1

2

(
L0 + L+

0

) + 1
2

(
L0 − L+

0

)
and introduce .H = h̄

2

(
L0 + L+

0

)
and . J =

i
2

(
L0 − L+

0

)
. Up to first order in . τ , we have  

.M0ρM+
0 = ρ − iτ/h̄ [H, ρ] − τ (Jρ + ρJ ) (2.212) 

All other Krauss operators .(μ /= 0) will contribute at first order only and thus 
can be written as 

.Mμ = √
τLμ (2.213) 

Using the normalization condition, we get 

.

K−1⎲
μ=0

M+
μ Mμ = 1 − 2Jτ + τ

⎲
μ/=0

L+
μLμ = 1 (2.214)
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we can thus express J as a function of .Lμ as 

.J = 1

2

⎲
μ/=0

L+
μLμ (2.215) 

Reorganizing the terms of the equation, we get the Lindblad equation 

.
d

dt
ρ = − i

h̄
[H, ρ] +

⎲
μ/=0

LμρL†
μ − 1

2

⎛
L†

μLμρ + ρL†
μLμ

⎞
(2.216) 

2.5.1.6 Equations of Motion 
For a system described by the Lindblad master-equation, the time evolution of an 
arbitrary operator .O(t) is given by 

.
d

dt
〈O(t)〉 = d

dt
Tr [Oρ(t)] = Tr

⎡
O

d

dt
ρ(t)

⏋
(2.217) 

Using Eq. (2.216), and noting that 

. Tr [O [H, ρ]] = Tr [[O,H ] ρ] = 〈[O(t),H ]〉
Tr

⎡
OLμρL†

μ

⏋
= Tr

⎡
L†

μOLμρ
⏋

=
/
L†

μO(t)Lμ

\

Tr
⎡
OρL†

μLμ

⏋
= Tr

⎡
L†

μLμOρ
⏋

=
/
L†

μLμO(t)
\

Tr
⎡
OL†

μLμρ
⏋

=
/
O(t)L†

μLμ

\

We get 

. 
d

dt
〈O(t)〉 = i

h̄
〈[H,O(t)]〉 +

⎲
μ/=0

⎛/
L†

μO(t)Lμ

\
− 1

2

/
L†

μLμO(t)
\
− 1

2

/
O(t)L†

μLμ

\⎞

(2.218) 

2.5.1.7 Some Simple Examples 
As a matter of illustration, we will consider in the following two simple examples.

. Cavity with damping 

In this first example, we consider the equation of motion of an harmonic oscillator 
driven by a classical field assuming an Hamiltonian .H = ℏωra

+a + ℏε(a + a+)
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in presence of a Lindblad jump operator .L = √
κa, where . ωr is the resonance 

frequency of the resonator and . ε the strength of the field. Using Eq. (2.218), we get 

.
da

dt
= −iωra − iε − κ

2
a (2.219) 

from which we obtain that 

.a[ω] = −iε[ω]
i(ωr − ω) + κ/2

(2.220)

. Qubit evolution under classical drive 

In this second example, we consider the equations of motion of a qubit driven by 
a classical field assuming an Hamiltonian .H = 1

2ℏδσz + 1
2ℏΩσx in presence of 

Lindblad jump operators .L1 = √
𝚪1σ

− and .Lϕ =
/

𝚪ϕ

2 σz where .δ = ω01 − ωP is 
the detuning between the pump and the resonance frequency of the qubit and . Ω is 
the Rabi frequency. Using Eq. (2.218), we get 

. 
dσx

dt
= −δσy −

⎛
𝚪1

2
+ 𝚪ϕ

⎞
σx

dσy

dt
= δσx − Ωσz −

⎛
𝚪1

2
+ 𝚪ϕ

⎞
σy

dσz

dt
= Ωσy − 𝚪1 (σz + 1)

d1

dt
= 0

This system of equations can be written in a matrix for with . 
−→
O =(

σx(t), σy(t), σz(t) 1
)T

as . d
dt

−→
O (t) = G

−→
O (t) with 

.G =

⎛
⎜⎜⎜⎜⎝

−
⎛

𝚪1
2 + 𝚪ϕ

⎞
−δ 0 0

δ −
⎛

𝚪1
2 + 𝚪ϕ

⎞
−Ω 0

0 Ω −𝚪1 −𝚪1

0 0 0 0

⎞
⎟⎟⎟⎟⎠ (2.221) 

The steady-state expectation values are obtained by the null eigenstate of G, 
defined by .G〈O〉 = 0, leading to 

. 〈σx〉∞ = δΩT 2
2

1 + δ2T 2
2 + Ω2T1T2

w0. (2.222)
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〈
σy

〉
∞ =

ΩT2 

1 + δ2T 2 
2 + Ω2T1T2 

w0. (2.223)

〈σz〉∞ =
1 + δ2T 2 

2 

1 + δ2T 2 
2 + Ω2T1T2 

w0 (2.224) 

where . 1
T2

= 𝚪1
2 + 𝚪ϕ and . w0 is the expectation value of . σz when the system is not 

driven . (Ω = 0).

2.5.1.8 Quantum Regression Theorem 
As shown in the example herein above, it is often possible to write an equation of 
motion for an operator .A(t) as a linear combination of a set of system’s operators 
. Bj , namely 

.
d

dt
〈A(t)〉 =

⎲
j

Gj 〈Bj (t)〉 (2.225) 

Using Lindblad master-equation . dρ
dt

= L ρ, we can thus write 

.Tr [AL ρ] = Tr

⎡
⎣⎲

j

GjBjρ

⎤
⎦ (2.226) 

This equation being satisfied for any .ρ(t), we obtain that 

.AL =
⎲
j

GjBj (2.227) 

This result allows us to compute the time derivative 

.
d

dτ
〈A(t + τ)O(t)〉 = d

dτ
Tr

⎡
AeLτOρ(t)

⏋
. (2.228) 

= Tr
⎡
ALeLτ Oρ(t)

⏋
. (2.229) 

Using Eq. (2.227) we obtain 

.
d

dτ
〈A(t + τ)O(t)〉 = Tr

⎡
⎣⎲

j

GjBje
LτOρ(t)

⎤
⎦ . (2.230)
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=
⎲
j 

Gj Tr
⎡
Bje

Lτ Oρ(t)
⏋
. (2.231) 

=
⎲
j 

Gj 〈Bj (t + τ)O(t)〉 (2.232) 

Equation (2.232) is the quantum regression theorem [32]. 

2.5.2 Schrieffer Wolff Transformation 

2.5.2.1 Unitary Transformation 
Let’s consider a unitary transformation .U(t) acting on the Hilbert space .EH and 
characterized by the relation .U+U = 1. Under this transformation, the state of the 
system .|Ψ〉 becomes .

||~Ψ〉 = U(t) |Ψ〉. Writing the Schrodinger equation for . 
||~Ψ〉

gives 

. iℏ∂t

||~Ψ〉 = iℏ∂t (U(t) |Ψ〉) = iℏ∂tU(t) |Ψ〉 + iℏU(t)∂t |Ψ〉
= iℏ∂tU(t)U+(t)

||~Ψ〉 + U(t)H |Ψ〉
= (

iℏ∂tU(t)U+(t) + U(t)HU+(t)
) ||~Ψ〉

Thus, under this unitary transformation the Hamiltonian becomes 

. ~H = U(t)HU+(t) + iℏU̇ (t)U+(t) (2.233) 

In particular, if the unitary transformation does not depend on time, . ~H =
UHU+. If the transformation is time dependent, a new term will be added in the 
Hamiltonian. This term is the quantum equivalent of fictitious forces that appear in 
a non-inertial frame of reference in classical physics. 

2.5.2.2 Baker Campbell Hausdorff Formula 
For two operators A and B, we consider the expression .~B(λ) = eλABe−λA where 
.λ ∈ C. The Baker Campbell Hausdorff formula states that it is possible to express 
.~B(λ) as a formal series of operators A and B and iterated commutators thereof, 
namely 

. ~B(λ) = eλABe−λA = B + λ [A,B] + λ2

2
[A, [A,B]]

+ . . . + λn

n! [A, [A, . . . [A,B]]]]]]n (2.234)
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The demonstration of this formula is extremely simple. For .λ = 0, the formula 
is true. Moreover, it is straightforward to show that the two sides of the equality are 
solutions of the same linear first order differential equation 

.
∂ ~B(λ)

∂λ
= ⎡

A, ~B(λ)
⏋

(2.235) 

Thus, according to the Cauchy Lipschitz theorem, the two sides of the equation 
must be identical. 

2.5.2.3 Schrieffer Wolff Transformation 
In quantum mechanics, the Schrieffer–Wolff transformation is a unitary transforma-
tion used to simplify the Hamiltonian of a system .H = H0 + V to second order 
in the interaction V . Under a unitary transformation, the Hamiltonian of the system 
becomes 

. ~H = eSHe−S (2.236) 

where S is an anti-hermitian operator. Using Baker Campbell Hausdorff formula 

. ~H = H0 + V + [S,H0 + V ] + 1

2
[S, [S,H0 + V ]]

+ . . . + 1

n! [S, [S, . . . [S,H0 + V ]]]]]]n (2.237) 

If one chooses properly S such that 

. [S,H0] = −V (2.238) 

. ~H = H0 + V − V + [S, V ] − 1

2
[S, V ] + 1

2
[S, [S, V ]] + . . .

Thus, the transformed Hamiltonian can be written up to second order in V as 

. ~H = H0 + 1

2
[S, V ] + O(V 3) (2.239) 

2.5.2.4 A Simple Application of Schrieffer Wolff Transformation 
As an illustration, we consider we consider the Hamiltonian of a spin coupled non-
resonantly to a resonator (assuming for simplicity rotating wave approximation). 
The Hamiltonian of the system can be written as 

.H = ℏωra
+a + 1

2
ℏω01σz + ℏg

(
σ+a + σ−a+)

(2.240)
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We consider the coupling term .V = ℏg
(
σ+a + σ−a+)

as a small perturbation 
and introduce the operator .S = g

ω01−ωr

(
σ+a − σ−a+)

. It is easy to check that S is 

anti-hermitian .
(
S = −S+)

and that 

. 
g

ω01 − ωr

⎡(
σ+a − σ−a+)

, ωra
+a + 1

2
ω01σz

⏋
= −g

(
σ+a + σ−a+) = −V

(2.241) 

The commutator .[S, V ] can be calculated straightforwardly 

. [S, V ] = ℏg2

ω01 − ωr

⎡
σ+a − σ−a+, σ+a + σ−a+⏋ = 2ℏg2

ω01 − ωr

⎡
σ+a, σ−a+⏋

(2.242) 

Thus, the transformed Hamiltonian can be written as 

. ~H ≃ ℏωra
+a + 1

2
ℏω01σz + ℏg2

(ω01 − ωr)
σz

⎛
a+a + 1

2

⎞
(2.243) 

This Hamiltonian exhibits the so-called dispersive shift of the resonator. The 
resonance frequency of the resonator is slightly shifted from its bare resonance due 
to the presence of the spin. The sign of this shift depends on the state of the spin and 
thus is used frequently in circuit QED for reading out a qubit state. Inversely, the 
number of photons in the resonator will give rise to a shift in the transition frequency 
of the spin (Lamb shift). This reverse effect is in general detrimental for the spin 
coherence. Shot noise of photons in the resonator (photon noise) will give rise to 
noise in the resonance frequency of the spin which will lead to loss of coherence. 
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3Subgap States in 
Semiconductor-Superconductor Devices 
for Quantum Technologies: Andreev Qubits 
and Minimal Majorana Chains 

Rubén Seoane Souto and Ramón Aguado 

Abstract 

In recent years, experimental advances have made it possible to achieve an 
unprecedented degree of control over the properties of subgap bound states in 
hybrid nanoscale superconducting structures. This research has been driven by 
the promise of engineering subgap states for quantum applications, including 
Majorana zero modes predicted to appear at the interface of superconductor and 
other materials, like topological insulators or semiconductors. In this chapter, 
we revise the status of the field towards the engineering of quantum devices 
in controllable semiconductor-superconductor heterostructures. We begin the 
chapter with a brief introduction about subgap states, focusing on their math-
ematical formulation. After introducing topological superconductivity using the 
Kitaev model, we discuss the advances in the search for Majorana states over 
the last few years, highlighting the difficulties of unambiguously distinguish 
these states from nontopological subgap states. In recent years, the precise 
engineering of bound states by a bottom-up approach using quantum dots has led 
to unprecedented experimental advances, including experimental demonstrations 
of Andreev qubits based on a quantum dot Josephson junctions and a minimal 
Kitaev chains based on two quantum dots coherently coupled by the bound states 
of an intermediate superconducting segment. These experimental advances have 
revitalized the field and helped to understand that, far from being a disadvantage, 
the presence of subgap bound states can be exploited for new qubit designs and 
quantum coherence experiments, including Majorana-based qubits. 
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