
Protected states and metastable
dynamics in superconducting circuits

Paul Brookes

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Physics

University College London

June 17, 2021



2

I, Paul Brookes, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.



Abstract

The twin fields of superconducting circuits and circuit quantum electrodynamics

now form the basis for a major part of the effort towards building a quantum com-

puter. Yet many fundamental problems remain. These may range from very practi-

cal considerations, such as how to construct a qubit with a sufficiently long coher-

ence time, to questions of how best to understand and model the complex nonlinear

dynamics arising in superconducting circuits. In this thesis we take a broad look at

these fields and explore many questions within them. We begin by studying criti-

cal slowing down in a dissipative phase transition of a coupled qubit-cavity system,

before examining the underlying dynamics of switching between metastable states

which causes this slowdown. We then examine an unexplained phenomenon of res-

onance narrowing in another qubit-cavity system and suggest it may also be related

to metastable states. Finally, we examine a circuit which harnesses long range in-

teractions, and present it as a promising candidate for building a qubit with a long

coherence time.
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Impact Statement

The work described in this thesis is directly relevant to the development of quantum

computation, which we hope will become an extremely useful toolset in the near

future for a wide variety of tasks including the simulation of quantum systems, drug

discovery and machine learning. This field is rapidly in the process of expanding

out of academia so it is hoped that successful application of the knowledge derived

in this thesis will also lead to commercial opportunities.

In particular, the first half of the thesis focuses on nonlinear dynamics in cou-

pled qubit-cavity systems. Understanding such dynamics has previously been cru-

cial in the development of various readout and control techniques which are crucial

to the operation of a future quantum computer. We hope our contributions will find

application in a similar way in the future.

The second half of this thesis focuses on a design which we consider to be

a good candidate for a long-lived qubit. One of the key obstacles to the develop-

ment of a quantum computer is the preservation of quantum coherence and there is

enormous demand for solutions to this problem.



Contents

1 Introduction 10

1.1 Superconducting qubits . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Hamiltonian and Lagrangian circuits . . . . . . . . . . . . . . . . . 12

1.3 The Cooper Pair Box and the Transmon . . . . . . . . . . . . . . . 19

1.4 Flux qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Circuit quantum electrodynamics . . . . . . . . . . . . . . . . . . . 25

2 Critical slowing down and dissipative phase transitions in circuit quan-

tum electrodynamics 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Cavity response in the bistable regime . . . . . . . . . . . . 34

2.2.2 Critical slowing down . . . . . . . . . . . . . . . . . . . . 37

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . 42

Appendices 45

2.A Performing the Duffing approximation . . . . . . . . . . . . . . . . 45

2.B Obtaining the occupation probabilities of the bright and dim states . 48

3 Switching rates and occupation probabilities in the bistable regime 50

3.1 Keldysh approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Liouvillian approach . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Quantum jump approach . . . . . . . . . . . . . . . . . . . . . . . 64



Contents 7

3.4 Switching rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Appendices 71

3.A Deriving equations of motion in Hamiltonian form . . . . . . . . . 71

4 Driving-induced resonance narrowing in a strongly coupled cavity-

qubit system 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 The dispersive region . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Qubit driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Cavity driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Long range couplings in a spin chain and the protection of quantum

information 91

5.1 Symmetries and a toy model . . . . . . . . . . . . . . . . . . . . . 91

5.2 Circuit design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Coherence properties . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.1 Dephasing . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.2 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.3 Coherence results . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Operating the qubit . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.1 Engineering a coupling . . . . . . . . . . . . . . . . . . . . 114

5.5.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5.3 Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography 125



List of Figures

1.1 The most simple flux qubit design consists of a superconducting

ring intersected by three junctions, two of which are identical with

Josephson energy EJ while the third has energy αEJ . In the design

above we have also included gates A and B which are capacitively

coupled to nodes 1 and 2 of the circuit. An externally applied flux

Φext is linked through the loop. . . . . . . . . . . . . . . . . . . . 23

2.1 Introducing a phase transition in a system with 2 degrees of freedom. 32

2.2 Averaged transient response of the cavity outside and inside the

bistable regime during the 1st cooldown. . . . . . . . . . . . . . . . 35

2.3 Measuring and modelling the critical slowing down time. . . . . . . 38

2.4 Relating the steady state Wigner to the switching rates. . . . . . . . 44

3.1.1 Fixed points of the classical equations of motion. . . . . . . . . . . 53

3.1.2 Wigner function and classical paths. . . . . . . . . . . . . . . . . . 54

3.1.3 Switching trajectory going from the bright state to the dim state. . . 56

3.1.4 Comparing actions calculated using end value and boundary values

methods at ε/κ = 4 and χ/kappa =−0.1 as a function of δ . . . . . 59

3.1.5 Action of the escape trajectories at ε/κ = 4 as a function of δ . . . . 60

3.2.1 Extracting the metastable states from the steady and asymptotically

decaying states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Using quantum trajectories to extract probabilities. . . . . . . . . . 65

3.3.2 Occupation probabilities of the bright and dim states. . . . . . . . . 66

3.4.1 Calculating the switching rates from the occupation probabilities. . . 68



List of Figures 9

3.4.2 Comparing Keldysh and Liouvillian switching rates. . . . . . . . . 69

4.1.1 Electron micrograph of the flux qubit. . . . . . . . . . . . . . . . . 74

4.4.1 The effect of qubit driving. . . . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Dependence on qubit driving amplitude. . . . . . . . . . . . . . . . 82

4.4.3 Simulation of the cavity spectrum in the nonlinear regime. . . . . . 85

4.4.4 Quantum state trajectory. . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.1 Nonlinear response to cavity driving. . . . . . . . . . . . . . . . . . 87

4.5.2 The bistable regime. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.1 Decoherence properties of a periodic chain containing six spins

with long range couplings. . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Realizing the protected states in a superconducting circuit. . . . . . 98

5.3.1 Decoherence properties of the qubit. . . . . . . . . . . . . . . . . . 107

5.5.1 Operating the qubit. . . . . . . . . . . . . . . . . . . . . . . . . . . 114



Chapter 1

Introduction

1.1 Superconducting qubits

Superconducting qubits are currently one of the leading platforms for the design and

construction of quantum computers. These qubits can take many different forms,

but typically they share some common features: they consist of lithographically

fabricated superconducting circuits patterned onto a substrate and contain at least

one nonlinear circuit element. This last point is crucial. In the absence of non-

linearity the degrees of freedom of the circuit would form a set of noninteracting

harmonic oscillators and it would be impossible to selectively address the transition

between a specific pair of eigenmodes of the circuit. Hence we would be unable to

perform operations on any information encoded in its state. Josephson junctions are

chosen for this purpose and offer the distinct advantage of being dissipation free,

which helps us to preserve the quantum state of the circuit for sufficient time that

computations can be carried out.

The resulting circuits are multi level quantum devices whose parameters can

be engineered during the design process and this gives the experimentalist a high

degree of control over properties such as their transition frequencies and couplings

to other components and to electromagnetic field modes. For this reason they are

often termed artificial atoms and have come to replace natural atoms in many exper-

iments in cavity quantum electrodynamics, thus fueling the rise of circuit quantum

electrodynamics [1].
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The ability to tailor superconducting circuits has been an enormous advantage

during their development and they now form the core of many of the leading efforts

to build a quantum processor including [2]. Currently the most popular supercon-

ducting qubit for these efforts is the transmon [3], whose properties we will detail

below. However even the most advanced quantum processors are still limited by the

short coherence times of the current generation of qubits. One proposal to tackle

this problem is the implementation of quantum error correction algorithms [4, 5, 6]

which combine many individual short-lived physical qubits into a single collective

logical qubit whose lifetime can be extended by detecting and correcting errors in

the underlying qubits.

Unfortunately this approach faces many obstacles. In particular it is very chal-

lenging to carry out the necessary error detection and correction operators on a

large ensemble of qubits, and even if this problem is solved the number of physical

qubits required per logical qubit will be prohibitively large given the state of coher-

ence times. If many thousands of physical qubits are required then it will difficult to

even fit them onto a chip. For this reason some research focus has shifted towards

the study of what useful computations on noisy intermediate-scale quantum (NISQ)

devices [7].

However, whether one is interested in using quantum error correction to build

a fault-tolerant quantum computer or performing calculations on a imperfect com-

puter it will continue to be of fundamental importance that improvements are made

in the underlying hardware. Therefore it is interesting to consider what improve-

ments can be made to develop a new generation of superconducting qubits. Many

efforts are currently being explored in this direction throughout the world but be-

fore we can discuss such them we intend to first introduce the reader to the various

currently available classes of qubit [8, 9]. We will not be able to provide exhaus-

tive coverage, but we hope to provide some foundation in their operating principals,

beginning with the Hamiltonian and Lagrangian mechanics of circuits and an intro-

duction to the Josephson junction.
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1.2 Hamiltonian and Lagrangian circuits
In Lagrangian mechanics [10] we first construct the kinetic T and potential V ener-

gies in terms of some generalised coordinates q j before constructing the Lagrangian

according to L = T −V . We can then obtain the equations of motion via the Euler-

Lagrange equations:

d
dt

(
∂L
∂ ẋ j

)
=

∂L
∂x j

. (1.1)

Alternatively we can move to a Hamiltonian formulation by defining canonical con-

jugate momenta p j and performing a Legendre transformation:

p j =
∂L
∂ ẋ j

, H = ∑
j

p jẋ j−L (1.2)

which produces equations of motion given by:

ẋ j =
∂H
∂ p j

, ṗ j =−
∂H
∂x j

. (1.3)

Time derivatives can also be calculated using the Poisson bracket {·, ·}. This oper-

ation is defined by:

{ f ,g}= ∑
j

(
∂ f
∂x j

∂g
∂ p j
− ∂ f

∂ p j

∂g
∂x j

)
(1.4)

for two functions f (x, p) and g(x, p) which are defined on the phase space coordi-

nates. Using this tool the time derivative of function f can be calculated by taking

its Poisson bracket with the Hamiltonian:

d f
dt

= { f ,H}. (1.5)

For the cases f = x j and f = p j this reduces directly to the equations of motion

displayed in eq. 1.3. Throughout our work we will be interested in the quantum me-

chanics describing the low lying excitations of superconducting circuits. To move

beyond the classical formalism described above we will use the technique of canon-
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ical quantization [11, 12]. This requires us to replace the system coordinates with

quantum mechanical operators and replace Poisson brackets with commutators:

x j→ x̂ j, p j→ p̂ j, { f ,g}→ 1
i}
[ f̂ , ĝ]. (1.6)

for which we define [Â, B̂] = ÂB̂− B̂Â. Now the time derivative of a function of the

system coordinates will be given by a Heisenberg equation of motion:

d f̂
dt

=
1
i}
[ f̂ , Ĥ]. (1.7)

Meanwhile the Poisson brackets of the system coordinates:

{xi,x j}= 0, (1.8)

{pi, p j}= 0, (1.9)

{xi, p j}= δi, j (1.10)

are replaced by the canonical commutation relations:

[x̂i, x̂ j] = 0, (1.11)

[p̂i, p̂ j] = 0, (1.12)

[x̂i, p̂ j] = i}δi, j. (1.13)

In order to transfer these formulation to circuits we must find some quantities which

can fulfill the role of generalised coordinates. We outline this process as follows

[13, 14, 8]. First consider a circuit element which connects nodes labelled j and k.

The voltage across this element can be labelled by Vj,k = Vj−Vk while the current

flowing through it from node j to k is labelled I j,k. We are now in a position to

define fluxes Φ j,k and charges Q j,k for the elements of our circuit according to:

Φ j,k(t) =
∫ t

−∞

Vj,k(t ′)dt ′ and Q j,k(t) =
∫ t

−∞

I j,k(t ′)dt ′. (1.14)
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We can select our generalised coordinates from either of these sets but we must be

careful to take into account the constraints imposed by the conservation of charge

and the Maxwell-Faraday equation. We shall see that these variables do not form

an independent set of coordinates. Specifically, the conservation of charge tells us

that the currents entering a node should sum to zero and this can be used to relate

the charges of all elements connected to a given node k according to:

∑
j

I j,k = 0 (1.15)

=⇒ ∑
j

Q j,k = Q̃ j (1.16)

for some constant Q̃ j. Meanwhile the Maxwell-Faraday equation tells us that the

potential difference acquired around a loop in the circuit should be proportional to

the rate of change of the magnetic flux threading through that loop. These allows

us to relate the fluxes in a loop according to:

∑
j,k∈loop l

Vj,k =−
∂ Φ̃l

∂ t
(1.17)

=⇒ ∑
j,k∈loop l

Φ j,k =−Φ̃l(t) (1.18)

where Φ̃l(t) is the loop flux. In order to account for these constraints we find a

an acyclic connected graph which reaches all nodes of our circuit [14, 15]. Such a

graph is known as a tree and its edges are called branches. By including only those

charges or fluxes which refer to branches of our tree we ensure that our coordinates

are independent. The charges and fluxes of any circuit elements outside this tree

can be obtained via the constraints outlined above.

Next we consider how to write down the Lagrangian of the circuit. This re-

quires us to choose which set of variables to use as generalised coordinates and

then write down kinetic and potential energies of the circuit elements. Kinetic ener-

gies will depend on the rates of change of our coordinates, while potential energies

will depend on the coordinates themselves. We shall see below that the roles of ki-
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netic and potential energies can be played by either capacitive or inductive elements

of the circuit depending on whether we choose branch fluxes or branch charges as

our coordinates. To outline this, we first classify the elements of our circuit as ei-

ther inductive or capacitive. Inductive and capacitive elements can be described by

a constitutive relations of the form [14]:

I = g(Φ) and V = f (Q) (1.19)

respectively. For example, in the case of linear circuit elements these relations taken

the familiar forms:

I = Φ/L and V = Q/C (1.20)

with capacitance C and inductance L. Given that the power flowing into a circuit

element is P = IV , we can calculate the energy stored in a circuit element according

to E =
∫ t
−∞

I(t ′)V (t ′)dt ′. The resulting energies for our two element types are:

EI(Φ) =
∫

Φ

0
g(Φ′)dΦ

′ and EC(Q) =
∫ Q

0
f (Q′)dQ′. (1.21)

For linear circuit elements these energies are given by

EI(Φ) =
Φ2

2L
and EC(Q) =

Q2

2C
. (1.22)

If we choose the branch fluxes as our coordinates then we can use Vk,l = Φ̇k,l along

with the second relation in eq. 1.20 in order to write:

EC(Q(Φ̇)) =
CΦ̇2

2
(1.23)

We can write the kinetic and potential energies of our circuit as

T = ∑
k,l∈ capacitive elements

EC(Qk,l(Φ̇k,l)) and V =∑
k,l∈ inductive elements

EI(Φk,l). (1.24)
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However if we had chosen to use branch charges as our coordinates then we would

continue to represent the capacitive energy as in eq. 1.22 and we would use Ik,l =

Q̇k,l and the first relation in eq. 1.20 to write the inductive energy as:

EI(Φ(Q̇)) =
LQ̇2

2
. (1.25)

We could therefore exchange the roles of capacitive and inductive elements in the

representation of kinetic and potential energies. However we will now proceed

using branch fluxes as our coordinates.

At this point we could calculate the Lagrangian L = T −V and produce equa-

tions of motion according to the Euler-Lagrange equations in eq. 1.1. Or if we wish

to move to the Hamiltonian formalism we could find the canonical momenta, which

now take the form of charges, and perform a Legendre transformation:

qk,l =
∂L

∂ Φ̇k,l
, H = ∑

k,l∈ branches
Φ̇k,lqk,l−L. (1.26)

This results in a Hamiltonian H which produces equations of motion in the form:

Φ̇k,l =
∂H

∂qk,l
, q̇k,l =−

∂H
∂Φk,l

. (1.27)

For a simple circuit consisting of an inductor L and a capacitor C connected in

parallel there is only one branch in the spanning tree. We easily obtain Lagrangian:

L =
CΦ̇2

2
− Φ2

2L
(1.28)

from which we obtain the conjugate charge:

q =
∂L
∂ Φ̇

=CΦ̇ (1.29)

and the Hamiltonian:

H =
q2

2C
+

Φ2

2L
(1.30)
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which describes a simple harmonic oscillator with a natural frequency of ω0 =
1√
LC

.

If we apply the canonical quantization procedure described above then we replace

our coordinates by quantum operators which obey the commutation relation:

[Φ,q] = i}. (1.31)

For our convenience we will no longer denote quantum operators using hats Ô→O.

For this quantized simple harmonic oscillator we can define ladder operators a and

a† according to:

a =

√
Cω0

2}

(
Φ+

iq
Cω0

)
(1.32)

which obey:

[a,a†] = 1, (1.33)

[a,a†a] = a, (1.34)

[a†,a†a] =−a†. (1.35)

In terms of these ladder operators the Hamiltonian can be rewritten as:

H = }ω0

(
a†a+

1
2

)
. (1.36)

We write the eigenstates and eigenvalues of a†a as:

a†a |n〉= n |n〉 . (1.37)

The commutation relations above indicate to us that applying the operators a and a†

to |n〉will produce new eigenstates of a†a with eigenvalues which are either lowered



1.2. Hamiltonian and Lagrangian circuits 18

or raised by 1:

a†aa |n〉= (aa†a−a) |n〉

= (n−1)a |n〉 , (1.38)

a†aa† |n〉= (a†a†a+a†) |n〉

= (n+1)a† |n〉 . (1.39)

So we see that these operators can be used to add or remove quanta of energy }ω0

from the system. Furthermore the commutation relations can be used to show:

〈n|a†a |n〉= n (1.40)

=⇒ a |n〉=
√

n |n−1〉 , (1.41)

〈n|aa† |n〉= n+1, (1.42)

=⇒ a† |n〉=
√

n+1 |n+1〉 . (1.43)

Since we expect our system to have a well defined ground state it must be the case

that repeated application of the lowering operator will eventually cease to produce

lower energy states. This can only be the case if the index n is restricted to integer

values and the state |0〉 is the ground state. Rather than producing a lower energy

state, application of a annihilates this state entirely a |0〉= 0.

We now see that the action of these appropriately named ladder operators is to

move the system through a discrete ladder of states |n〉with energies En = }ω0(n+
1
2). Because of the linearity of this system, the states are all equally spaced. As

mentioned above, this presents a challenge if we wish to encode information in a

particular subspace of states since their transitions cannot be uniquely addressed.

For this reason we introduce nonlinearity via the Josephson junction as described

below.
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1.3 The Cooper Pair Box and the Transmon

Josephson junctions are the primary tool for introducing nonlinearity into supercon-

ducting circuits. A Josephson junction consists of two superconductors intersected

by a weak link, which could be either an insulator, a normal conductor or a region

of weakened superconductivity. Despite the presence this barrier, it is still possible

for a supercurrent to flow through the junction via the tunneling of Cooper pairs. In

this case the current and voltage across the junction are described by the Josesphson

equations [16, 17]:

I = Ic sin
(

Φ

ϕ0

)
, V =

dΦ

dt
(1.44)

in which Ic is known as the critical current of the junction, Φ is the flux as defined

above in eq. 1.14 and ϕ0 = }
2e is the reduced flux quantum. The first Josephson

equation displayed above indicates that the junction is an element of inductive type.

Using eq. 1.21 we can calculate the potential energy stored by the junction:

EI(Φ) =−Icϕ0

(
cos
(

Φ

ϕ0

)
−1

)
(1.45)

This energy has a term dependent on the flux Φ as well as a constant offset, which

we will neglect in future.

We can now create an anharmonic oscillator by replacing the linear conductor

in our harmonic oscillator circuit by a Josephson junction. Such as device is known

as a Cooper Pair Box and (CPB) [18, 19, 20] it can be constructed simply by con-

necting a small superconducting charge island to ground via Josephson junction.

The close proximity between the two interfaces of the junction provides the neces-

sary capacitive coupling C. Furthermore we can capacitively couple Cg the charge

island to a gate electrode at potential Vg in order to tune an offset charge qg =CgVg.

The Hamiltonian can be written as:

H =
(q−qg)

2

2C
− Icϕ0 cos

(
Φ

ϕ0

)
. (1.46)
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When dealing with Josephson junctions it is often convenient to use angular co-

ordinates and to measure charge in units of Cooper pair charge 2e. Therefore we

define the variables φ = Φ/ϕ0 and N = q/2e which obey the commutation relation

[φ ,N] = i. We also define the Josephson energy EJ = Icϕ0, the charging energy

EC = e2/2C and the reduced gate charge Ng = qg/2e. The Hamiltonian can be

written in a standard form in terms of these quantities:

H = 4EC(N−Ng)
2−EJ cos(φ). (1.47)

In the EJ/EC . 1 regime the eigenstates will not be well localised in the minimum

of the junction potential and will therefore be significantly affected by its anhar-

monicity. The energy levels no longer form an evenly spaced ladder and we can

address a specific transition such as between the ground and first excited states.

However, one of the drawbacks of this system is its sensitivity to charge noise.

Close to Ng = 1/2 we can write an effective Hamiltonian in terms of the N |0〉 = 0

and N |1〉= |1〉 charge states:

H ≈ 2EC
(
1−2Ng

)
σ

z− EJ

2
σ

x (1.48)

where σ z = |1〉〈1|− |0〉〈0| and σ x = |0〉〈1|+ |1〉〈0|. The energy gap between the

two qubit states is given by E =
√

E2
J +4E2

C(2Ng−1)2.

If noise sources are weakly coupled to the qubit and have short correlation

times relative to the qubit dynamics then we can apply the Born-Markov approxi-

mation and quantify decoherence in terms of two rates [21, 22]: the relaxation rate

Γ1 and the dephasing rate Γφ . These are combined to produce the decoherence time

Γ2 = Γφ +Γ1/2. In terms of these rates the evolution of the qubit density matrix is

given by [8]:

ρ(t) =

 |β |2e−Γ1t α∗βeiEt}−Γ2t

αβ ∗e−iEt}−Γ2t 1+(|α|2−1)e−Γ1t

 (1.49)

where the initial state is |ψ〉= α |0〉+β |1〉.
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We can see that the transition frequency is dependent on the gate charge so any

random fluctuations in this parameter will cause us the phase between the two qubit

states to evolve in an unpredictable way. Over time this causes us to lose track of the

phase coherence of our qubit at rate Γφ . Combined with energy relaxation this leads

to an overall decoherence rate Γ2. This problem can be alleviated to some extent

by tuning the gate charge to the optimum point Ng = 1/2 at which the transition

frequency is only sensitive to charge noise at second order. However this remains

a limiting source of noise and the requirement to maintain the gate charge at the

optimum point adds extra complexity to the system.

In order to solve this problem a new design was formulated: the transmon [3].

The transmon is almost identical to the CPB except for the addition of a large shunt-

ing capacitor in parallel with the junction. This reduces both the anharmonicity of

the charge qubit and its sensitivity to charge noise, however whereas the anhar-

monicity decays only as a power law with respect to EJ/EC, the charge sensitivity

decays exponentially. This allows the fabrication of a charge qubit which is essen-

tially immune to charge noise while still retaining the anharmonicity necessary for

operation as a qubit.

Using a tight binding model it has been shown that energy of the mth level of

the transmon Em is well approximated by [3]:

Em(Ng)≈ Em(Ng = 1/4)− εm

2
cos(2πNg) (1.50)

where:

εm = Em(Ng = 1/2)−Em(Ng = 0). (1.51)

Furthermore, the value of εm has been studied by examining the EJ/EC� 1 asymp-

totics of the exact solutions of the charge qubit Hamiltonian eq. 1.47, which are
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given by the Mathieu functions. The resulting approximation for εm is given by:

εm ≈ (−1)mEC
24m+5

m!

√
2
π

(
EJ

2EC

)m
2 +

3
4

exp
(
−
√

8EJ/EC

)
. (1.52)

The exponential suppression of εm for large values of EJ/EC is the key result under-

lying the protection of the transmon against charge noise. Meanwhile, after a fourth

order expansion of the junction potential the eigenenergies can be approximated by:

Em ≈−EJ +
√

8ECEJ

(
m+

1
2

)
− EC

12
(6m2 +6m+3). (1.53)

We denote the energy gap between states i and j by Ei, j = E j − Ei. From this

expression we see that the energy gap between the ground and first excited states

is E0,1 =
√

8ECEJ −EC while the anharmonicity is α = E1,2−E0,1 = −EC. The

relative anharmonicity is therefore αr = α/E0,1 ≈ −(8EJ/EC)
−1/2. Therefore we

can see that protecting the transmon against charge noise only leads to a modest

reduction in anharmonicity.

The development of this design has allowed the construction of qubits with

a coherence time in the 10s or even 100s of microseconds [9]. Yet despite their

favourable coherence times, ease of fabrication and ease of operation, the weak an-

harmonicity of the transmon qubit can pose an issue during gate operations. High

power control pulses are liable to scramble the transmon by populating higher en-

ergy states. In order to prevent this, weaker drives must be used, but this lengthens

the time of gate operations. In the next section we shall consider flux qubits, which

have much larger anharmonicities.

1.4 Flux qubits
In basic terms a flux qubit is a superconducting loop whose eigenstates are quantized

circulating currents which can be used to encode information [23, 24]. This loop

is typically intersected by a multiple Josephson junctions which are necessary for

two reasons. First, by providing weak links in the loop they allow the tunneling of

flux quanta in and out of the loop, which allows transitions between the persistent
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current states. Second, as mentioned previously, the nonlinearity of these junctions

is needed to produce an anharmonic ladder of states.

Figure 1.1: The most simple flux qubit design consists of a superconducting ring intersected
by three junctions, two of which are identical with Josephson energy EJ while the third has
energy αEJ . In the design above we have also included gates A and B which are capacitively
coupled to nodes 1 and 2 of the circuit. An externally applied flux Φext is linked through
the loop.

The most simple flux qubit design [24, 23] (Fig. 1.1) contains three junctions:

two of which have energy EJ while the third has energy αEJ . The potential energy

of these junctions is given by:

V =−EJ

(
cos
(

Φ1

ϕ0

)
+ cos

(
Φ2

ϕ0

)
+α cos

(
Φext +Φ1−Φ2

ϕ0

))
(1.54)

where Φext is the externally applied magnetic flux. For α > 1/2 and Φext close

to πϕ0 this will produce a double well potential whose minima correspond to two

states with oppositely circulating currents. Meanwhile the kinetic energy is given
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by:

T =
1
2

C j ∑
j

Φ̇
2
j −QgAΦ̇A−QgBΦ̇B (1.55)

where the sum is taken over the five capacitive elements of the circuit and the volt-

age across the gate capacitors is given by Φ̇gA =VA− Φ̇1 and Φ̇gB =VB− Φ̇2. The

induced gate charges are denoted by QgA and QgB. If we write these capacitances as

C1 =C2 =C, C3 = αC and CgA =CgB = γC and treat Φ1 and Φ2 as the coordinates

of our system then the conjugate charges take the form:

~q =
∂L

∂ ~̇Φ
(1.56)

=CCC~̇Φ−CCCggg~Vg (1.57)

for which we define

CCC =C

1+α + γ −α

−α 1+α + γ

 , CCCggg = γC

1 0

0 1

 (1.58)

and

~Vg =

VgA

VgB

 , ~q =

q1

q2

 . (1.59)

The resulting Hamiltonian is:

H =
1
2
(~q+CCCggg~Vg)

TCCC−1(~q+CCCggg~Vg)
T +V. (1.60)

After quantization an effective model can be produced in terms of the two circulat-

ing current states localized in the minima of the double well potential, denoted by

|�〉 and |	〉, whose persistent current is labelled Ip The Hamiltonian can then be
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written as:

H(Φext) =
∆

2
σ

x + Ip

(
Φext−

Φ0

2

)
σ

z (1.61)

where ∆ is the tunnel coupling through the potential barrier and σ x and σ z are Pauli

operators which acting according to:

σ
x = |	〉〈�|+ |�〉〈	| and σ

z = |	〉〈	|− |�〉〈�| . (1.62)

The gap between the eigenstates of this Hamiltonian is given by:

E0,1 =
√

∆2 + I2
p(2Φext−Φ0)2. (1.63)

Typically flux qubits are operated at the optimal point Φext = Φ0/2 at which this

energy gap is sensitive to external flux variations only at second order.

Further improvements can be made by moving to the Fluxonium qubit [25].

The Fluxonium design is reached by dramatically increasing the number of junc-

tions intersecting the loop. Suppose we include an array of n junctions then for

sufficiently large n the Hamiltonian can be approximated by:

H ≈ 4ECN2−EJ cos
(

Φext +Φ

ϕ0

)
+

ELΦ2

2ϕ2
0

(1.64)

where EL is the effective inductive energy of the junction array. Such qubits are

well protected against dephasing due to flux noise and as well as energy relaxation

due to charge defects and can achieve excellent coherence times [26, 27], extending

even into the range of milliseconds [28].

1.5 Circuit quantum electrodynamics
So far we have introduced the basic types of superconducting qubit but we have

not mentioned how to perform readout or control. These are essential operations

for quantum information processing and they can be performed using the toolset of

circuit quantum electrodynamics (cQED) [1]. In general quantum electrodynamics
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is the study of the interactions of light and matter. Circuit quantum electrodynam-

ics is the study of such interactions specifically in the context of superconducting

circuits e.g. photons in transmission line or lumped element resonators interacting

with systems such as atoms, quantum dots and superconducting qubits.

A simple example of a lumped element resonator is the harmonic oscillator cir-

cuit described above in eq. 1.30. It has a single resonance frequency at ω = 1/
√

LC.

On the other hand, a transmission line resonator [29], such as a coplanar waveguide,

is more complicated since it can have many interacting modes. A coplanar waveg-

uide consists of a strip of superconducting metal in close proximity to a ground

plane. If we denote the inductance and capacitance per unit length by l and c re-

spectively then the speed of light in the resonator is given by v = 1/
√

lc while its

characteristic impedance is given by Z0 =
√

l/c.

An infinitely long transmission line will support a continuum of modes, but if

boundary conditions are imposed then the modes will become quantized. A typical

setup is a resonator of length Λ terminated either at one of both ends by weak

capacitive couplings to other transmission lines which can be used to probe and

measure the resonator. The resonator will then support modes with wavevectors

k = mπ/Λ for m ∈ {1,2,3, ...}. The Hamiltonian describing the resonator is given

by:

H =
∞

∑
m=1

m}ω1a†
mam (1.65)

where ω1 is the frequency of the first harmonic and am is annihilation operator

acting on mode m. Furthermore the current operator at position x is given by [29]:

I(x) = Izpf,1

∞

∑
m=1

i
√

msin(πmx/Λ)(a†
m−am) (1.66)

where Izpf,1 = ω1

√
}

πZ0
is the zero point fluctuation of the current in the first mode.
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Similarly the voltage operator at position x is given by [29]:

V (x) =Vzpf,1

∞

∑
m=1

√
mcos(πmx/Λ)(am +a†

m) (1.67)

where Vzpf,1 = ω1

√
}Z0
π

is the zero point fluctuation of the voltage in the first mode.

These currents and voltages can be used to couple the resonator to other com-

ponents in a circuit such as various kinds of superconducting qubit. Typically a

charge qubit can be capacitively coupled to the voltage on the resonator [30] while

a flux qubit can be inductively coupled to its current. In either case it is possible to

engineer a coupling described by the Jaynes-Cummings Hamiltonian [31, 32]:

HJC = }ωc

(
a†a+

1
2

)
+

1
2

ωqσ
z +}g(a†

σ
−+aσ+) (1.68)

which models a two level system exchanging quanta of energy with a harmonic

oscillator. This model can be exactly digaonalized in terms of the states [33]:

|+,n〉= cos(θn) |↓,n〉+ sin(θn) |↑,n+1〉 , (1.69)

|−,n〉=−sin(θn) |↓,n〉+ cos(θn) |↑,n+1〉 (1.70)

and the ground state |↑,0〉 where σ z |↑〉 = −|↑〉, σ z |↓〉 = |↓〉, ∆ = ωq−ωc and

tan(2θn) = 2g
√

n+1/∆. The corresponding energies are:

E±,n = (n+1)}ωc±
}
2

√
4g2(n+1)+∆2, (1.71)

E↑,0 =−
}∆

2
. (1.72)

This model has proven to be extremely useful in many aspects of quantum

information processing and particularly and readout. If we label the detuning ∆ =

ωq−ωc then we can define the dispersive regime of the Jaynes-Cummings model
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by g/|∆| � 1. In this regime we can apply the transformation [1]:

U = exp
(

g
∆
(aσ

+−a†
σ
−)

)
(1.73)

to obtain the approximate Hamiltonian:

UHU† ≈ }
(

ωc +
g2

∆
σ

z
)

a†a+
}
2

(
ωq +

g2

∆

)
σ

z (1.74)

which shows the resonance frequency of the cavity being shifted by ±g2 Delta

depending on the state of the qubit. This is the basis for dispersive readout. If

g2/∆ > κ where κ is the linewidth of the cavity resonance then it will be possible

to infer the qubit state from a signal transmitted through the cavity [30, 34].



Chapter 2

Critical slowing down and dissipative

phase transitions in circuit quantum

electrodynamics

2.1 Introduction

The study of dissipative phase transitions has a long and interesting history not

only due to their technological applications, such as in the construction of the laser

[35, 36, 37], quantum limited amplifiers [38, 39] and optical switches [40, 41, 42],

but also due to their theoretical interest since these phase transitions cannot be de-

scribed by standard techniques such as mean-field theory [43]. A key characteristic

of first order dissipative phase transitions is bistability [44, 45, 46, 47]: close to the

transition the two phases are metastable [48] and the dynamics of the system are

highly sensitive to both its parameters and its initial state [49, 50, 51, 52].

This sensitivity has previously been harnessed in the construction of the

Josephson Bifurcation Amplifier (JBA) which has been used in a variety of con-

texts including qubit readout and magnetometry [39]. In the context of readout,

the qubit circuit is coupled to a separate readout circuit consisting of a nonlinear

resonator which is driven close to a bifurcation. A small change in the state of the

qubit is capable of producing a large change in the field on the nonlinear resonator

by altering which metastable state the nonlinear prefers to occupy. This technique
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has been applied to readout of transmon [53], flux [54] and quantronium [55] qubits,

even reaching single shot readout in the case of the transmon.

Furthermore, subsequent work has shown that it is possible to harness the non-

linearity inherent to a coupled qubit-resonator system to perform single shot qubit

readout [49, 56]. In the bistable regime we expect the system to make a sharp

transition from a dim state to a bright state as the drive power is increased and the

threshold at which this transition occurs was observed to depend sensitively on the

initial state of the qubit. In the strongly driven regime the constrast between these

bistable states allowed the experimentalists to perform single shot readout.

In the current work we will be examining a coupled-transmon resonator system

close to the onset of the bistable regime. Instead of studying qubit readout we will

examine the rate at which the system approaches steady state in this regime in order

to learn about the dynamics which govern the metastable states. The steady state

is reached via rare switching events during which the system transitions from one

phase to the other [57, 58]. This can be modelled using the theory of quantum

activation in the case of dispersive optical bistability [59]. Since the metastable

states may be very long lived, this leads to critical slowing down in the equilibration

time of the system. Critical slowing down has already been observed in a circuit-

QED lattice [60] and in an ensemble of NV centers coupled to a superconducting

cavity [61], and has been modelled in the context of the Bose-Hubbard lattice [62].

Here, we observe critical slowing down in a circuit-QED system with only two

degrees of freedom: a transmon qubit [3] coupled to a 3D microwave cavity [63].

The nonlinearity introduced by the qubit causes the cavity to display bistability

when a sufficiently strong microwave drive is applied. Within the bistable regime

the system divides its time between two metastable states which are known as the

bright and dim states according to number of photons occupying the cavity. While

the inherent nonlinearity of such a system has been exploited in [49] to achieve high

fidelity readout of the qubit state using high drive powers, here we are interested in

exploring and understanding the rich quantum dynamics happening at intermediate

powers, close to the onset of bistability. We show that, at such powers, the cavity
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exhibits critical slowing down, reaching its steady state in a time much longer than

the lifetimes of both the qubit and the cavity. We characterize the timescale of

this slowdown as a function of driving frequency and power. We discover a new

regime of quantum activation in which the slowdown displays a saturation, which

can only be explained by taking into account the full quantum description of the

transmon. We demonstrate that even a simple superconducting circuit, consisting

of only a qubit and a cavity, can be used to explore the rich physics of quantum

phase transitions.

The device consists of a transmon qubit embedded in a superconducting alu-

minium 3D microwave cavity. Measurements of the transmitted signal through the

cavity are performed using a standard cQED microwave setup described in Ma-

terials and Methods. This system can be described by the generalized Jaynes-

Cummings model (GJC) and its Hamiltonian can be written as

H =}∑
n

ωn |n〉〈n|+}ωca†a+}∑
m,n

gm,n |m〉〈n|(a+a†)

+}ε(a†e−iωdt +aeiωdt) : (2.1)

a cavity mode of frequency ωc is coupled with strength gm,n to a transmon qubit

whose unperturbed eigenstates can be written in terms of Mathieu functions [3].

Here, we simply denote them by |n〉 and their eigenenergies by }ωn. The cavity

is represented using the annihilation(creation) operator a(a†) and is driven by a

monochromatic field of strength ε and frequency ωd . To model environmental noise

we use the Lindblad master equation [64]

∂tρ =−(i/})[H,ρ]+ (nc +1)κ D(a)ρ +ncκ D(a†)ρ

+ γφ D(b†b)ρ +(nt +1)γ D(b)ρ +ntγ D(b†)ρ, (2.2)

where b is the ladder operator acting on the transmon and is defined by b =

∑
∞
n=0
√

n+1 |n〉〈n+1|. The thermal occupations of the transmon and cavity baths
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Figure 2.1: Introducing a phase transition in a system with 2 degrees of freedom. A:
Transmission spectroscopy of the cavity for a range of drive powers and frequencies. At
low drive powers we observe a resonance at ωd/2π = 10.4960 GHz. The nonlinearity of
the system causes the resonance to shift to lower frequencies as the drive power is increased.
The boundaries of the bistable regime are modelled using the mean-field equations of mo-
tion of the Duffing oscillator and are displayed in red. Within the bistable regime the cavity
displays a sharp transition from a low transmission (dim) to a high transmission (bright)
state as the drive power is increased. B: Transmitted signal as a function of drive power at
ωd/2π = GHz, indicated by the vertical dashed line in panel A. The experimentally mea-
sured transmission is indicated by dashed black line and is compared with the results of a
Duffing model in green, for which we plot the cavity amplitude divided by the root of the
photon saturation number (|〈a〉|/√nsat). This model accurately models the transition. The
three insets, labelled I, II and III, show the Wigner function of the steady state of the cavity
according to the Duffing model at the marked powers. This confirms that the transition from
low to high transmission is associated with a transfer of probability between two distinct re-
gions in phase space: the bright and dim states of the cavity. The cavity transmission is also
modelled for a range of saturation photon numbers and show that the transition becomes
sharper as the nsat increases towards the thermodynamic limit. C: Asymptotic decay rate
as a function of driving power for different saturation photon numbers. The rate at which
system approaches the steady state drops orders of magnitude below its natural relaxation
time κ̃ , showing that the bistable regime is associated with critical slowing down. The inset
shows that this slowdown increases exponentially as we approach the thermodynamic limit.
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are denoted by nt and nc respectively, while γ and κ are the intrinsic transmon and

cavity relaxation rates, and γφ is the intrinsic transmon dephasing rate.

At sufficiently low drive powers the transmon is confined to its ground state.

The system can be treated as a single Duffing oscillator with a Kerr nonlinearity

[65] whose Hamiltonian and master equation can be written as (Appendix 2.A):

H̃ = }ω̃ca†a+
1
2
}Ka†a†aa+}ε̃(a†e−iωdt +aeiωdt), (2.3)

∂tρ =−(i/})[H̃,ρ]+ (ñc +1)κ̃ D(a)ρ + ñcκ̃ D(a†)ρ + κ̃φ D(a†a)ρ. (2.4)

In this simplified model, the dispersive coupling with the transmon shifts the cavity

frequency to ω̃c, and introduces a Kerr nonlinearity K. The thermal occupation of

the cavity bath is denoted by ñc and the cavity relaxation and dephasing rates are

represented by κ̃ and κ̃φ respectively.

A further simplification can be made with the mean-field approximation i.e.

we assume the cavity to be in a coherent state ρ = |α〉〈α| and substitute this into

∂tα = Tr(a∂tρ). We obtain the classical equation of motion in a frame rotating with

the drive:

∂tα =−(κ̃ + i(ω̃c−ωd)+ iK|α|2)α− iε̃, (2.5)

and find the steady state cavity amplitude

α =− iε̃
κ̃ + i(K|α|2 + ω̃c−ωd)

. (2.6)

At weak drive powers the occupation of the cavity is low, so the nonlinear term

K|α|2 in Eq. 2.6 vanishes and the standard Lorentzian response is obtained. How-

ever, when the number of photons in the cavity approaches the saturation number

nsat = |ωc−ωd|/K ∼ |α|2, the nonlinearity becomes significant and the equation of

motion may admit two stable steady state solutions. The system enters the bistable

regime.

In the mean-field approximation the lifetimes of these states are infinitely long,
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but if fluctuations are taken into account these states become metastable and the sys-

tem may undergo rare escape events, switching from one state to the other. Both

metastable states may coexist with each other over a range of drive amplitudes and

the time taken for the system to reach a steady state will be determined by their

lifetimes. These lifetimes can be much greater than the lifetime of the cavity and

this gives rise to the phenomenon of critical slowing down. If an appropriate ther-

modynamic limit is taken, this time diverges and the model produces a first order

dissipative phase transition in which the two phases may coexist only at a single

drive amplitude [47, 48, 66].

2.2 Results

2.2.1 Cavity response in the bistable regime

We now show evidence of such a first order phase transition in our system, con-

taining only two degrees of freedom. We measure the signal transmitted through

the cavity as a function of driving frequency (ωd) and power (Prf) as shown in

Fig. 2.1A. We find that at low power the cavity line is dispersively shifted to

ωr/2π = 10.4960 GHz and has the Lorentzian shape which is typical of linear

response. As the driving power increases, the lineshape shifts to lower frequencies

and nonlinear features appear. The effective Kerr nonlinearity of the cavity is found

to be K = −0.4221 MHz and its relaxation rate is κ̃/2π = 1.040 MHz. Above

Prf =−29 dBm a dip in the transmitted signal is observed. This indicates the pres-

ence of the bistable regime and is due to destructive interference between the two

metastable states of the cavity [45, 46]. The boundaries of this regime are modelled

using the mean-field equations of motion derived from the Duffing approximation

and are shown by the red lines. The bistable regime emerges just below the res-

onance frequency at a drive power of Prf = −35 dBm and opens up over a wider

range of frequencies as the drive power increases.

Fig. 2.1B shows the signal transmitted through the cavity (black crosses) as a

function of the drive power at ωd/2π = 10.4925 GHz. At this drive frequency we

calculate a saturation photon number of nsat = 8.4. We observe a sudden change in
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Figure 2.2: Averaged transient response of the cavity outside and inside the bistable
regime during the 1st cooldown. The inset in panel A shows transmission spectroscopy
of the cavity for a range of drive powers and frequencies. The mean-field Duffing limits
of the bistable regime are displayed in red and the locations at which the data in panels
A and B were taken are indicated by the white dots. (A): The cavity is driven at the low
power resonance ωd/2π = 10.4960 GHz and Prf = −40 dBm. The signal in blue (brown)
is the transient response measured with the qubit initialized in its ground (first excited)
state. The transient response is governed by the timescale 2Tκ = 0.29 µs if the transmon
is in the ground state, whereas it is governed by T1 = 2.89 µs if the transmon is in the first
excited state. (B): Transient responses for different initial qubit states in the bistable regime
at Prf =−21 dBm. The inset shows spectroscopy of the cavity at this drive power with the
drive frequency ωd/2π = 10.4898 GHz indicated by the dashed line. The transient response
is divided into two parts. There is an initial fast response with a time scale ranging from Tκ

to T1 depending on the initial transmon state, followed by a slow decay towards steady state
over a timescale Ts = 73.2 µs, obtained from an exponential fit, which is much longer than
both the transmon and cavity lifetimes. This critical slowing down allows us to distinguish
the transients for different transmon states for over 100 µs.
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transmission at Prf =−25 dBm in which the cavity switches from a low amplitude

(dim) state to a high amplitude (bright) state. This transition is accurately modelled

by the Duffing master equation (Eq. 3.2), the results of which are displayed by the

green line.

We can make a connection between this behaviour and the theory of phase tran-

sitions by defining the thermodynamic limit in which the saturation photon number

nsat goes to infinity. This is achieved by rescaling the drive and nonlinearity ac-

cording to ε →
√

λε and K→ K/λ , which in turn gives nsat→ λnsat [43, 67, 47].

The simulated cavity amplitude is displayed for a range of values of nsat and, as ex-

pected, we observe that the transition becomes sharper as the system moves towards

the thermodynamic limit, which is typical of first order phase transitions.

We are interested in exploring the system dynamics within this bistable regime,

where the steady state consists of a mixture of bright and dim states. We can form

an effective master equation by writing the state of the system as

ρ(t) = pb(t)ρb + pd(t)ρd (2.7)

where ρb and ρd are the bright and dim states, and pb and pd are their occupation

probabilities. We can then write a simple rate equation for evolution of the state∂t pb

∂t pd

=

−Γb→d Γd→b

Γb→d −Γd→b

pb

pd

 , (2.8)

in which occasional fluctuations allow the system to switch between states at the

rates Γb→d and Γd→b [46, 58]. The system reaches a steady state when the occu-

pation probabilities have reached equilibrium. The approach to this steady state is

governed by pb

pd

=
1

Γad

Γd→b

Γb→d

+Ae−Γadt

 1

−1

 , (2.9)

where the coefficient A is determined by the initial system conditions. Γad is referred
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to as the asymptotic decay rate and it is given by

Γad = Γd→b +Γb→d. (2.10)

Γad is calculated by extracting the gap in the Liouvillian superoperator [48, 60],

derived from the Duffing master equation (Eq. 3.2). Fig. 2.1C shows the asymptotic

decay rate as a function of drive powers for different photon saturation numbers.

We find that, within the bistable regime, the asymptotic decay rate drops far below

the cavity decay rate [68]. This effect is known as critical slowing down and is

characteristic of the phase transition. Furthermore, the asymptotic decay rate is

exponentially suppressed as nsat increases, indicating that ever larger fluctuations

are required to cause switching between the states.

2.2.2 Critical slowing down

Measurements of critical slowing down are performed by recording the transient

response of the cavity when a step function drive pulse is applied. Fig. 2.2 shows the

average cavity response outside (A) and inside (B) the bistable regime. Fig. 2.2A

shows the response at the cavity resonance at Prf = −40 dBm with the transmon

initialized in either the ground state (blue line) or the first excited state (brown line).

The timescale over which the cavity responds shows a clear dependence on the

transmon state. When the transmon starts in the ground state the cavity reaches

equilibrium over a timescale 2 Tκ = 2/κ = 0.29 µs, set by the cavity relaxation

rate κ , whereas when the transmon is initialized in the first excited state, the drive

is initially off resonant with the cavity and the transmon must relax over a time T1

before the system can reach equilibrium.

Fig. 2.2B shows that the dynamics changes significantly if the system is driven

at higher powers. The cavity is now driven at ωd/2π = 10.4898 GHz and Prf =

−21 dBm. The inset displays the spectrum at this drive power and the dashed

line indicates the drive frequency, which is chosen such that the system is in the

bistable regime as signalled by the dip in transmission. The cavity response is

now governed by multiple timescales. Initially, there is a fast rise in the cavity
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Figure 2.3: Measuring and modelling the critical slowing down time. (A): Critical slow-
ing down time Ts in the bistable regime as a function of driving frequency at Prf =−17 dBm
during the 2nd cooldown, during which the qubit frequency had shifted to 8.7965 GHz and
the low power resonance of the cavity had shifted to 10.4761 GHz. The red points represent
the experimental data, which we compare with the results of master equation calculations
applied to the Duffing oscillator (blue line) and the GJC model with transmon dephasing
(green line) and without (purple line). We also display the results of previous analytical
theory of switching rates for the Duffing oscillator (orange line) [59]. At this power both
the master equation and the analytical calculations qualitatively reproduce the experimental
values of Ts. The horizontal dashed line in the inset shows the location of our measure-
ments within the overall cavity spectrum. (B): Maximum value of Ts for different drive
amplitudes (red points). These data were collected along the diagonal dashed line in the
inset of panel A. As the drive power increases beyond −17 dBm, Ts reaches a saturation
at a value of 115 µs, that is consistent with the simulations based on the GJC model with
transmon dephasing (green line). Removing the dephasing by setting γφ = 0 (purple line)
does not change the power at which saturation occurs but it does raise the upper limit on
Ts. Meanwhile analytical (orange line) and master equation (blue line) calculations with the
Duffing approximation predict that Ts rises exponentially with drive amplitude, as can be
seen using the logarithmic scale of the inset.
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transmission over a time ranging from Tκ to T1 depending on the initial state of the

qubit. However, after this fast response we observe critical slowing down: a gradual

decay towards equilibrium over a time much longer than both the cavity and qubit

lifetimes. We denote the time constant over which the system reaches equilibrium

by Ts = 1/Γad. By initializing the transmon in a range of initial states, we show that

the cavity retains a memory of the initial transmon state for over 100 µs, indicating

our proximity to a phase transition.

Next, we characterize the dependence of the critical slowing down Ts on both

driving frequency and power within the bistable regime and we model our findings

using a range of approaches. We can either exploit the analytical theory of quantum

activation for a Duffing oscillator, as provided in [59] or we can use the master

equations for the Duffing and GJC models. In this latter approach we rewrite the

GJC master equation as ∂tρ = L ρ where L is the Liouvillian superoperator. The

eigenbasis of L can be used to express the state of the system as

ρ(t) = ∑
n

cne−(Γn+iωn)tρn (2.11)

where L ρn = −(Γn + iωn)ρn. At long times the state will be dominated by the

steady state ρss and the asymptotically decaying state ρad. In this limit we write the

state as:

ρ(t) = ρss + cade−Γadt
ρad. (2.12)

While for the Duffing model it is possible to extract Γad by diagonalizing the Li-

ouvillian, due to the larger Hilbert space size of the GJC model, Γad is extracted

by integrating the master equation (Eq. 2.2) for a sufficiently long time. We are

hence able to compare the experimentally attained values of critical slowing down

time with simulated values. Fig. 2.3A shows the measured valued of Ts (red circles)

as a function of the drive frequency ωd along the dashed line in the spectroscopy

inset, which is located at a drive power of Prf =−17 dBm. We find that Ts reaches

a maximum close to the dip in the cavity spectrum. This is expected, since the dip

is a key signature of the coexistence of the two phases in our transition.
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We compare our measurements with master equation simulations applied to

a Duffing oscillator model (blue line) and to the GJC model with (green line) and

without (purple line) transmon dephasing. We also compare our data to results

attained from the analytical theory of quantum activation for a Duffing oscillator

(orange line) [59]. At this drive power we find that all of our models give at least

qualitative agreement with the measured dependence of critical slowing down on

frequency, but only the GJC model is able to model this effect quantitatively.

However, if we plot how the maximum value of Ts varies with the amplitude

of the drive, as shown in Fig. 2.3B, we observe a significant divergence between

our data and the values attained using the Duffing model. Whereas the theory of the

Duffing oscillator predicts that Ts should increase exponentially with the drive, we

instead observe that, at sufficiently strong drive amplitudes, Ts saturates. To account

for this difference we require the full GJC model. We find that the master equation

predicts the same saturation in Ts as found in experiment when we explicitly include

the transmon in the simulation.

Furthermore, we see that the level at which this saturation occurs is highly

sensitive to the pure dephasing rate of of the transmon. A peak of Ts = 158 µs is

obtained from the master equation when we don’t include pure dephasing of the

transmon, however this falls to Ts = 109 µs when we take a pure dephasing rate

of γφ = 1 kHz. We might naively consider such a small rate to be insignificant

compared to the coherence time of the transmon, which was measured to be T2 =

2.37 µs, however the large change in Ts suggests that the switching rates of the

metastable states are strongly influenced by the decoherence channels to which the

transmon is coupled.

2.3 Discussion

Clearly, the coupled transmon-resonator system is governed by essentially different

activation dynamics from the Duffing oscillator. In order to shed light on the dis-

similarity between the Duffing model and the GJC model we examine the switching

rates Γb→d and Γd→b more closely. In order to obtain these rates it is necessary to
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first find the steady state and extract the occupation probabilities pb(t → ∞) and

pd(t→ ∞). We can then calculate the switching rates Γd→b and Γb→d according to:

Γd(b)→b(d) = pd(b)(t→ ∞)Γad. (2.13)

The occupation probabilities can be extracted using the asymptotically decaying

and steady states (Appendix 2.B). The resulting rates are displayed in Fig. 2.4B,

which shows Γd→b and Γb→d as a function of frequency at a driving power of Prf =

−14 dBm for both the Duffing and the GJC model. Whereas Γd→b is in close

agreement between the two models, Γb→d is significantly greater in the GJC model.

This limits the critical slowing down time according to Eq. (2.10) and leads to

the saturation seen in Fig. 2.3B. It also indicates that the bright state has a shorter

lifetime in the GJC model.

The Wigner function for three cavity steady states using the GJC model is

shown in Fig. 2.4A. We observe that, at low drive frequencies, the dim state is

the main contributor to the overall state of the system; this is consistent with Γb→d

dominating over Γd→b. At higher drive frequencies the reverse is true, while at

some intermediate drive frequency the two bistable states are equally occupied and

the switching rates are balanced.

Prior work suggests that the instability of the bright state increases with the

nonlinearity of the ladder of states in the vicinity of the wave-packet [51]. The in-

stability of the bright state in the GJC model may be due to extra nonlinearity which

is present when the transmon becomes excited. It may also be due to backaction of

the resonator on the transmon which occurs when the occupation of the resonator

increases. This can take the form of measurement dephasing [69, 70], whereby

fluctuations in the resonator occupation can cause loss of phase coherence of the

transmon via the AC Stark effect; or via dressed-dephasing [71], in which pure de-

phasing of the transmon exposes it to additional relaxation and heating from the

resonator. These phenomena have previously been explored in the nonlinear regime

[72] and future work could use this framework to explore how these additional de-

phasing mechanisms relate to the observed saturation.
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In summary, we have explored the rich quantum activation dynamics happen-

ing at an intermediate driving regime in cQED. We have observed a phase transition

in our system, which contains only two degrees of freedom: a transmon qubit cou-

pled to a microwave cavity. A key signature of this transition is critical slowing

down, in which the time taken for the system to reach a steady state can extend far

beyond the natural lifetime of the qubit or cavity. We have measured the slowdown

time for a wide range of powers and frequencies, and we have compared our results

with simulations. We found that the transition and its associated critical slowing

down is well modelled by the Duffing approximation at low drive powers. How-

ever, at higher drive powers, we observed a saturation in the critical slowing down

time, which can only be captured by the full GJC model.

It is known that in this regime the transmon becomes highly excited and starts

to participate in the dynamics [73] so it is no longer valid to apply the Duffing ap-

proximation. An accurate model must include the quantum fluctuations of the qubit

and the resulting destabilisation of the bright state which this causes. Currently,

there exists no analytical theory for the switching rates in the bistable regime of a

cavity coupled to spins or multilevel systems and this suggests that one avenue of

future work could focus on extending the existing theory for the Duffing oscilla-

tor to these models. Moreover, we link the critical slowing down to the switching

rates between the two metastable states and show how these differ for the GJC and

Duffing models. This experiment is a powerful demonstration of the versatility of

superconducting circuits, showing that even with few degrees of freedom it is pos-

sible to explore rich nonlinear physics and phenomena such as dissipative phase

transitions.

2.4 Materials and Methods

A two-port Al microwave cavity holds a lithographically patterned Al transmon

qubit, that is fabricated on a sapphire substrate. The transmon qubit consists of two

Al pads of dimensions 350 µm by 450 µm connected by an Al/AlOx/Al Josephson

junction, that is patterned using standard e-beam lithography and double-shadow
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evaporation techniques. The cavity is thermally anchored to the 10 mK plate of a

dilution refrigerator. Input signals are heavily cryogenically attenuated to reduce

thermal noise, and measurements of the signal transmitted through the cavity are

made via cryogenic circulators and a low noise HEMT amplifier, with the signal

finally being recorded as a voltage with an analog-to-digital converter (ADC).

Measurements were collected during two successive cooldowns. During the

1st cooldown (C1), spectroscopy of the transmon reveals its lowest transition to

be ω01/2π = 9.1932 GHz with anharmonicity α/2π = −203.6 MHz. The bare

resonance frequency of the cavity is ωc/2π = 10.4263 GHz and its quality factor is

found to be Q = 7900. The relaxation and dephasing times of the transmon are T1 =

2.89 µs and T2 = 2.37 µs respectively. During the 2nd cooldown (C2) the system

is described by a GJC model with the following parameters: ωc/2π = 10.423 GHz,

g0/2π = 295 MHz, κ = 1.432 MHz, γ = 33 kHz, γφ = 1 kHz, nc = 0.01 and nt =

0.02. The eigenstates of the transmon were produced using a Josephson energy

of EJ/2π = 46.7 GHz and a charging energy of EC/2π = 221 MHz [3]. Applying

the Duffing approximation to this system we find ω̃c/2π = 10.4761 GHz, K/2π =

−0.152 MHz, κ̃/2π = 1.387 MHz, κ̃φ/2π = 1.02 Hz and ñc = 0.0100.
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Figure 2.4: Relating the steady state Wigner to the switching rates. (A): Steady state
cavity Wigner functions produced using the GJC model at Prf = −14 dBm. At ωd/2π =
10.4709 GHz the steady state consists mainly of the dim state, which corresponds to the
peak near the origin. However, as we increase the drive frequency the occupation of the
bright state increases as well. At ωd/2π = 10.4720 GHz the occupations of the bistable
states are approximately equal and at ωd/2π = 10.4723 GHz the bright state is dominant.
(B): Switching rates between metastable state as a function of driving frequency. Whereas
Γd→b is similar in both the Duffing and the GJC models, Γb→d is significantly different. In
the GJC model Γb→d is much greater compared to the Duffing model. This explains the
saturation we observe in Ts.



Appendix

2.A Performing the Duffing approximation

In the main text we approximate our system as a Duffing oscillator in order to obtain

a benchmark showing the dynamics of a single non-linear oscillator in the bistable

regime. This model is used to calculate how the critical slowing down time varies

with drive amplitude, as displayed in Fig. 2, and how the switching rates between

the bistable states vary drive frequency, shown in Fig. 3. To map our system to

a Duffing oscillator we project the GJC Hamiltonian onto a low-energy subspace

and identify a Kerr nonlinearity in the resulting spectrum. This subspace consists

of the eigenstates of the GJC Hamiltonian for which the transmon is close to the

ground state. The first step is to identify these states. We start by writing the the

Hamiltonian in the form:

H = H0 +Hint (2.14)

where H0 describes the bare cavity and transmon, and Hint describes the interaction

between them. These components are given by [3]:

H0 = }ωca†a+}
∞

∑
n=0

ωn |n〉〈n| (2.15)

Hint = }
∞

∑
n=0

gn
(
a |n+1〉〈n|+a† |n〉〈n+1|

)
. (2.16)

If the interaction is turned off by setting gn = 0 then the eigenstates of H are simply

products of the eigenstates of the bare cavity and transmon with eigenstates and
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eigenenergies given by:

H0 |m〉 |n〉= Emn |m〉 |n〉 (2.17)

Emn = }(mωc +ωn) (2.18)

where m denotes the number of photons in the cavity and n denotes the number of

excitations in the transmon. For finite strength interactions we enter the dispersive

regime, which is defined by |gn/∆n| � 1 where the detuning is given by

∆n = ωn+1−ωn−ωc. (2.19)

Provided that the interaction strength is sufficiently weak we can continue to label

the eigenstates by the number of cavity and transmon excitations they carry and if

the system is weakly driven close to the cavity resonance then the only state which

will take part in the dynamics are those for which the transmon is in the dressed

ground state. These states form a ladder of dressed cavity states which define the

low-energy subspace upon which we can project our model. We define the projector

by:

Π =
(
|ψ0,0〉〈ψ0,0| , |ψ1,0〉〈ψ1,0| , |ψ2,0〉〈ψ2,0| , ...

)
(2.20)

where |ψmn〉 represents the eigenstate of H which can be smoothly transformed to

|m〉 |n〉 by turning off Hint. Using this projector we obtain the low-energy model:

H̃ = Π
†HΠ (2.21)

= }ω̃ca†
0a0 +

1
2
}Ka†

0a†
0a0a0 +O

(
(gm/∆m)

6). (2.22)

where the ladder operator in the projected subspace is defined by

a0 =
∞

∑
n=1

√
n |ψn−1,0〉〈ψn,0| . (2.23)

This Hamiltonian describes a Duffing oscillator with a frequency ω̃c and a Kerr

nonlinearity K [52]. If we use the GJC model parameters given in Table 1 of the
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main text then the Duffing model parameters we obtain are shown in Table S1 below.

This table also includes the rescaled drive amplitude ε̃ which arises when we add a

driving term to H0 of the form:

Hd(t) = }ε(a†e−iωdt +aeiωdt). (2.24)

We find that this transforms to a similar driving term in the Duffing Hamiltonian

given by

H̃d(t) = }ε̃(a†
0e−iωdt +a0eiωdt). (2.25)

The drive amplitude in the projected space ε̃ is given by raε where ra is calculated

according to:

Π
† aΠ = ra a0 +O

(
(gm/∆m)

4) (2.26)

Next we must consider the Lindblad operators which describe the effects of envi-

ronmental interactions. We have already considered a, but the remaining operators

can be projected into the low-energy subspace as follows:

Π
† bΠ = rb a0 +O

(
(gm/∆m)

2) (2.27)

Π
† b†bΠ = rnba†

0a0 +O
(
(gm/∆m)

2). (2.28)

From Eqs. (2.26) and (2.27) we see that both a and b contribute to the annihilation

operator in the low-energy subspace a0. The implication is that in the basis of

dressed cavity states both κ and γ contribute to relaxation, as expected from prior

work on the dressed state formalism in the Jaynes-Cummings model [33]. The

coefficients of the Lindblad operators in the low-energy subspace are then given by

a0 :
√

(1+ ñc)κ̃ =
√

r2
a(1+nc)κ + r2

b(1+nt)γ (2.29)

a†
0 :
√

ñcκ̃ =
√

r2
ancκ + r2

bntγ (2.30)

a†
0a0 :

√
κ̃φ =

√
r2

nbγφ (2.31)
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We use these equations to calculate two sets of Duffing model parameters to de-

scribe our system during the two cooldowns of the experiment. For the first

cooldown we found ω̃c/2π = 10.4961 GHz, K/2π = −0.422 MHz, ε̃ = 0.971ε ,

κ̃/2π = 1.040 MHz, κ̃φ/2π = 56.4 Hz and ñc = 0.0293. For the second cooldown

we found ω̃c/2π = 10.4761 GHz, K/2π = −0.152 MHz, ε̃ = 0.984ε , κ̃/2π =

1.387 MHz, κ̃φ/2π = 31.9 Hz and ñc = 0.0100.

2.B Obtaining the occupation probabilities of the

bright and dim states

By integrating the Duffing or GJC master equation for a time t we obtain the state

ρ(t). If t is much longer than both the caivty and transmon lifetimes then this state

can be written as

ρ(t) = ρss + cade−Γadt
ρad (2.32)

where the steady state is an unknown mixture of bright and dim states which we

write as

ρss = pρb +(1− p)ρd (2.33)

and the asymptotically decaying state is given by

ρad = ρb−ρd. (2.34)

This allows us to write ρ(t) as another unknown mixture of bright and dim states

ρ(t) = qρb +(1−q)ρb. (2.35)
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Using the steady state and master equation solvers in the QuTiP package [74] we

can obtain both ρ(t) and ρss. A mixture of these states is written as

τ(A) = ρss−Aρ(t) (2.36)

= (p−Aq)ρb +(1+Aq− p−A)ρd. (2.37)

Both ρd and ρb are positive semidefinite and we assume that they are orthogo-

nal, which is a good approximation provided that the cavity is sufficiently strongly

driven so that they are well separated. Hence the mixture is positive semidefinite

if and only if both p−Aq ≥ 0 and 1+Aq− p−A ≥ 0. The limits on this range

are Ad = p/q and Ab = (1− p)/(1−q), at which points τ consists of solely of the

dim state or the bright state respectively. Outside this range the coefficient of at

least one of the bistable states will be negative. Hence we can obtain Ad and Ab by

checking the spectrum of τ for negative eigenvalues at different values of A. Finally

we obtain

p =
Ad(Ab−1)

Ab−Ad
. (2.38)

This method provides a fast and accurate means of extracting the occupation

probabilities of the bright and dim states in the steady state. When the occupation

of the cavity is sufficiently small it can also be benchmarked against quantum tra-

jectory methods in which the pure state |ψ(t)〉 is integrated over a time much longer

than Γad and K-means clustering is applied to the cavity amplitude 〈ψ(t)|a |ψ(t)〉.

We shall expand on these methods in chapter 3.



Chapter 3

Switching rates and occupation

probabilities in the bistable regime

In this chapter we will describe how to calculate the rate of switching between

metastable states in the bistable regime of the Duffing oscillator using Keldysh field

theory. We then compare these rates with numerical results produced by studying

the spectrum of the Liouvillian.

3.1 Keldysh approach
In a frame rotating with the drive the Duffing oscillator Hamiltonian is given by

H = δa†a+χa†a†aa+ iε(a†−a) (3.1)

where δ is the detuning between the oscillator and the drive frequency, χ is the

nonlinearity of the oscillator, ε is the drive amplitude and we have taken }= 1. The

rotating wave approximation has been applied in order to neglect counter rotating

terms. If the oscillator is weakly coupled to a Markovian bath, then its density

matrix will evolve according to the Lindblad master equation

∂tρ =−i[H,ρ]+2κD[a]ρ (3.2)

where D[L]ρ = LρL†− 1
2(L

†Lρ + ρL†L) and κ is the relaxation rate. If we map

the dynamics of the master equation to that of Keldysh nonequilibrium functional
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integral [75, 76, 77], we get the corresponding action in the forward/backward-time-

field basis S =
∫

L dt where

L = a∗+i∂ta+−a∗−i∂ta−−δ (a∗+a+−a∗−a−)−χ(a∗2+ a2
+−a∗2− a2

−)

− iκ
(
2a+a∗−−a∗+a+−a∗−a−

)
+ iε(a++a∗−−a∗+−a−). (3.3)

Here ± denotes the fields in the forward and backward time branches. It is con-

venient to introduce the classical and quantum field variables which are given by

ac = (a++a−)/
√

2, aq = (a+−a−)/
√

2. In this basis the Lagrangian is given by

L = Llin +Lnl, (3.4)

Llin = a∗c(i∂t−δ − iκ)aq +a∗q(i∂t−δ + iκ)ac +2iκa∗qaq + i
√

2ε(aq−a∗q) (3.5)

Lnl =−χ
(
a∗cac +a∗qaq

)(
a∗caq +aca∗q

)
(3.6)

where Llin and Lnl denote the linear and nonlinear components of the Lagrangian

respectively. From this Lagrangian we can obtain the saddle point equations of

motion according to:

∂L
∂a∗q

= 0,
∂L
∂a∗c

= 0. (3.7)

The resulting equations of motion are given by

∂tac =
√

2ε− iδac−κ(ac +2aq)− iχ
(

ac|ac|2 +2ac|aq|2 +a∗ca2
q

)
, (3.8)

∂taq = κaq− iδaq− iχ
(

aq|aq|2 +2|ac|2aq +a2
ca∗q
)
. (3.9)

These equations describe the evolution of the system in a 4-dimensional space

spanned by two complex fields. To obtain the classical equations of motion we

can by setting aq = 0 and simplifying the equation for ∂tac to give

∂tac =
√

2ε− iδac−κac− iχac|ac|2. (3.10)
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This is equivalent to the mean-field equation of motion we have discussed previ-

ously in eq. 2.5. We have now constrained our system to the classical plane and in

the bistable regime there will be three fixed points within this plane. Two of these

points are stable and they correspond to the bright and dim states whereas a third

unstable point lies on the separatrix which divides the plane into the two basins of

attraction of the stables states.

Although the bright and dim states are stable within the classical plane, quan-

tum fluctuations out of the plane can allow rare escape escape events. The trajecto-

ries of these escape events are described by the full equations of motion (3.8). In the

following we find it convenient to decompose the variables into real and imaginary

components according to:

ac =
xc + ipc√

2
, aq =−

xq + ipq√
2

.

The dynamics can then be mapped to the following Hamiltonian1:

H =

(
δ +

χ

2
(
x2

c + p2
c− x2

q− p2
q
))

(pcxq− xc pq)−κ(xcxq + pc pq)

+κ(x2
q + p2

q)+2εxq. (3.11)

with the equations of motion given by:

żzzc = ∂zzzqH, żzzq =−∂zzzcH (3.12)

where zzzc = (xc, pc) and zzzq = (xq, pq). This process is explained in more detail in

Appendix 3.A. These two quantities can be grouped together into ZZZ = (zzzc,zzzq).

At first we are interested in the steady-state solution of the classical equations

of motion, because this will indicate whether or not we are in the bistable regime.

Let us denote a steady-state solution by the co-ordinates (xc,ss, pc,ss), in terms of

which the cavity amplitude is given by a0 ≡ (xc,ss + ipc,ss)/
√

2. By rewriting our

parameters in the form δ̃ = δ/κ , χ̃ = χ/κ and ε̃2 = 2χ̃ε2/κ2 and absorbing the

1Derived by Changwoo Lee.
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Figure 3.1.1: Fixed points of the classical equations of motion. Within the bistable
regime the classical equations of motion have three fixed points, of which two are stable and
one is unstable. In panel A we plot the boundaries of this regime as a function of the drive ε

and detuning δ for χ/κ =−0.5. We find that the bistable regime emerges above ε/κ = 0.5
and expands over a wider range of detunings as the drive is increased. In panels B and C we
plot the amplitude of the fixed points as a function first of ε at δ/κ = 3 and then as a function
of δ at ε/κ = 1.8 i.e. along the dashed black lines indicated in panel A. We can now see
the three fixed points which emerge in the bistable regime. The dim, bright and unstable
states are indicated by the lower (orange), upper (blue) and middle (red) lines respectively.
In panel B we see that the resonator responds linearly to low drives before making a sudden
transition to a high amplitude state at higher drives. We see further evidence of nonlinear
behaviour when we plot the response as a function of δ in panel C. Instead of displaying a
Lorentzian response function typical of linear oscillators, we see a highly asymmetric peak
which has shifted from the natural resonance frequency of the oscillator (δ = 0). Finally, in
panel D we plot the Wigner function obtained from the steady-state of the Lindblad master
equation at δ/κ = 3 and ε/κ = 1.8. There are two clear peaks, which correspond to the
bright and dim states, and we compare them with the classical fixed points, marked by
crosses. We see good agreement, indicating that the mean-field approximation is valid in
this regime.
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amplitude into y = δ̃ + χ̃|a0|2, an algebraic equation for y with ẋc = ṗc = 0 can be

obtained from eq. 3.10 in the form

y = (y− δ̃ )(y2 +1)− ε̃
2. (3.13)

This equation has only one solution if |ε̃2+ δ̃ (δ̃ 2+9)|> (δ̃ 2−3)3/2, two solutions

if |ε̃2 + δ̃ (δ̃ 2 +9)|= (δ̃ 2−3)3/2 and three otherwise. This last case is indicative of

bistability and it consists of two stable fixed points and one unstable fixed point.
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Figure 3.1.2: Wigner function and classical paths. Here we plot an example of the
Wigner function in the bistable regime at δ/κ = 6.0, ε/κ = 4.0 and χ/κ = −0.5. The
bright state can be seen in the upper right hand quadrant, whereas the dim state is located
close to the origin. The classical fixed points corresponding to these states are represented
by the yellow crosses and the solutions of the classical equations of motion are marked by
black lines and white arrows. Depending on the initial conditions these flow lines converge
on either the dim state or the bright state. The separatrix, marked by the green dashed line,
forms the boundary between the basins of attraction of these states. Finally the unstable
classical fixed point is marked by the pink dot. We have plotted the flow lines originating
from the unstable point in red.

To illustrate this we have plotted these fixed points as a function of detuning
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and drive amplitude for the case χ/κ = −0.5 in Fig. 3.1.1. The green lines in

panel A show the boundaries on the bistable regime. We see that at ε/κ = 0.5 the

bistable appears and as the drive is increased it opens up over an ever wider range

of detunings. In panel B we display the dependence of the amplitude of the fixed

points on the drive at δ/κ = 3 i.e. along the vertical dashed line in panel A. At low

detunings there is a single fixed point displayed in orange, which corresponds to the

dim state. Meanwhile at high detunings the single fixed point is displayed in blue

and corresponds to the bright state. However over the range 0.86 < ε/κ < 2.06

three fixed points coexist with each other. In this range the red line highlights the

unstable fixed points. This is the bistable regime. Panel C shows these same three

fixed points, but now as a function of the detuning at ε/κ = 1.8 i.e. along the

horizontal dashed line in panel A.

Note that the response of the cavity displayed in panels B and C is highly

nonlinear. Whereas we would expect the amplitude response of a linear oscillator to

increase in direct proportion to the drive, here we see the S-curve which is typical

of the bistable regime. Meanwhile the response as a function of detuning differs

significantly from the a Lorentzian and is both asymmetric and shifted to higher

detunings due to the nonlinearity χ . Finally, in panel B we compare the mean-field

fixed points at ε/κ = 1.8 and δ/κ = 3 with a Wigner function of the steady-state of

the master equation (Eq. 3.2). The Wigner function clearly shows two peaks which

correspond to the bright and dim states and whose amplitudes agree closely with

the mean-field results.

A closer look at the classical dynamics of the bistable regime is on display

in Fig. 3.1.2. The Wigner function of the steady-state at (δ/κ,ε/κ,χ/κ) =

(6.0,4.0,−0.5) is plotted and the stable fixed points of the classical equations of

motions are marked by yellow crosses. Black streamlines with white arrows are

overlain on the Wigner function to show the classical evolution of the system. It

can be seen that all of these streamlines eventually converge on one of the fixed

points. The plane is divided into two basins of attraction by the separatrix marked

by the green dashed line. Each basin corresponds to one of the fixed points. Fi-
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nally the unstable fixed point is marked by the pink dot and the classical trajectories

originating from the vicinty of this fixed point are marked in red.
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Figure 3.1.3: Switching trajectory going from the bright state to the dim state. The
optimal switching trajectory going from the bright to the dim state is a solution to the 4-
dimensional equations of motion in which the quantum co-ordinates xc and pc are non-zero,
but here we only display the coordinates xc, pc and pq. The Wigner function is plotted
in the pq = 0 plane and the stable classical fixed points are marked by yellow dots. The
switching trajectory originates from the bright state and takes a complicated path outside
the classical plane before reaching the unstable fixed point, marked by the pink dot. The
system may then follow the classical path to the dim state. This example was produced at
(δ/κ,χ/κ,ε/κ) = (6,−0.5,4).

Next we consider the full EOM, including non-zero values of xq and pq. These

equations of motion have three fixed points within the classical plane, two of which

are stable while the other is unstable. The dim and bright fixed points are denoted

by ZZZd and ZZZb respectively and the unstable point is denoted by ZZZu. The two stable

points each have their own basin of attraction and the unstable point lies on the

boundary which separates these two basins. In order to switch from one stable

point to another the system must leave the classical plane by utilizing the quantum

dimensions xq and pq. The path of least action takes the system to the unstable

point, from which it may move into the basin of attraction of the other stable point.

An example of a switching path leading from the bright state to the dim state is

displayed in Fig. 3.1.3.
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In order to classify the fixed points it is necessary to linearise the equations of

motion around them. At the stable points we find two eigenvalues given by e j,−,±=

−κ± iω with eigenvectors vvv j,−,± residing in the classical plane, where j ∈ {b,d}.

This indicates that these points are stable within the plane. On the other hand,

these points also have two eigenvectors vvv j,+,± with nonzero quantum components

and eigenvalues e j,+,± = κ ± iω , so they are not stable when we consider the full

four-dimensional space.

As for ZZZu, the eigenvectors vvvu,−,1 and vvvu,+,2 corresponding to eigenvalues

eu,c,− =−κ1 and eu,+,2 = κ2 (κ1 > κ2 > 0) reside in the classical plane, which indi-

cates that it is saddle point within the classical plane. Meanwhile, the eigenvectors

vvvu,+,1 and vvvu,−,2 corresponding to eigenvalues eu,+,1 = κ1 and eu,−,2 = −κ2 have

nonzero quantum components. The fact that the eigenvalues of fluctuation eigen-

vectors are nothing but negative of deterministic ones is characteristic of fluctuation-

induced escape mechanism [78].

The probability of a successful escape event is proportional to eS j→u where

S j→u is the action calculated along the path from stable fixed point j to the unstable

point. This quantity is given by:

S j→u =−
∫

ZZZ j→ZZZu

dzzzc · zzzq, (3.14)

This action can be computed from the numerical solution of the equations of motion.

There are two methods of obtaining a solution depending on whether we treat path

as an final value problem (FVP) or a boundary value problem (BVP), which we now

compare.

Due to the stiffness of the equations of motion it, is numerically intractable

to solve them in the vicinity of the stable fixed points. In the FVP method we

instead initialize the system close to ZZZu integrate backwards in time [79]. By the

previous linearisation analysis around ZZZu, we know there is a negative eigenvalue

eu,−,2 = −κ2 and the corresponding eigenvector having nonzero quantum values.

We use this eigenvector vvvu,−,2 to produce the initial conditions ZZZu ± ∆vvvu,−,2, in

which we set ∆ as small as our computing system allows, and integrate backwards
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in time until we approach the stable points. The switching action is then calculated

according to the formula above.

To check the validity of this method we can also use a BVP method. In this case

the initial and final conditions are chosen to be ZZZ j+∆ j,+,+vvv j,+,++∆ j,+,−vvv j,+,− and

ZZZu+∆u,−,1vvvu,−,1+∆u,−,2vvvu,−,2. These conditions are set to ensure the system starts

along a path leaving a stable state and ends along a path arriving at the unstable state.

The ∆ coefficients are used as fitting parameters when solving for the switching path

using the scipy.integrate.solve bvp function in SciPy [80].

We have numerically confirmed that two solutions evolve to the two stable

points respectively and calculated the escape actions according to the integral above.

The two methods are compared in Fig. 3.1.4 for a range of values of δ . The two

methods align with each other well, indicating that despite the difficulty of dealing

with these stiff equations of motion we have converged on the correct solution. A

further example of the FVP method is shown in Fig. 3.1.5.

Both methods require of the order 1 minute to compute the action at a given

set of parameters when the calculations are performed using an Intel Core i7-9700

Processor. However there is a marked difference between the numerical precision

required by the methods. In the FVP formulation we found it necessary to specify

the initial conditions with a precision greater than 1 part in 1020 in order to suc-

cessfully converge to the stable point. This goes beyond the realm of double length

floating point numbers and significantly complicates the procedure. FVP calcula-

tions were performed using Wolfram Mathematica2. This high sensitivity to initial

state conditions may be an example of chaotic dynamics which is common in non-

linear systems.

In the BVP approach the solver has information about both the initial state and

the final state and the task is to find the path in between. This appears to be a more

efficient approach in our system and only double length floating point precision is

required. Therefore the approach is compatible with standard tools in Python such

as SciPy.

2Mathematica notebooks for this task were prepared by Changwoo Lee.
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Figure 3.1.4: We calculate the actions of the switching trajectories from the stable points
to the unstable point via both the boundary value method (BVP) and the end value method
(FVP). Close agreement is found. The standard deviation of the difference between the
methods is σ = 0.1.

The switching rate from xxx j to the other stable point xxxk reads γ j→k = ω jeiS j

where the prefactor ω j is the attempt frequency [81, 82]. Assuming the dilute gas

limit of instantons [81] and an effective two-state model [82, 83], the dynamics of

probabilities of the system being at xxx j is governed by the following master equation

d
dt

 pb

pd

=

 −γb→d γd→b

γb→d −γd→b

 pb

pd

 . (3.15)

This master equation yields the stationary probabilities

ps
b(d) = γd(b)→b(d)/γtotal, γtotal ≡ γb→d + γd→b. (3.16)

3.2 Liouvillian approach
In order to provide a crosscheck of the Keldysh approach we have developed an

alternative method for calculating switching rates which relies on a the Lindblad

master equation (Eq. 3.2). Since the master equation is linear, we can rewrite the

evolution in terms of the Liouvillian superoperator L [48]:

∂tρ = L ρ. (3.17)
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Figure 3.1.5: Action of the escape trajectories at ε/κ = 4 as a function of δ . At each
value of δ we finding the switching trajectories and calculate their actions. These are plotted
in panel A, which a zoom in panel B. The action of the trajectory escaping from the dim
state iSd is plotted in blue whereas the action of the trajectory escaping from the bright
state iSb is plotted in orange. As we increase δ the values of iSb and iSd cross each other,
indicating a transition from a regime where the bright state is favoured to one where the
dim state replaces it. Whereas the variation in iSb is smooth and continuous, the variation
in iSd displays a gap at 7.0 < δ/κ < 7.3 before a sudden drastic fall. This is because
in this range the switching path leaving the dim state becomes intractable. We plot four
example switching paths in panel C at δ/κ = 6.9,7.0,7.3 and 7.4. The direction of motion
is indicated by the arrows marked on the paths. As we approach the missing region the
switching path rapidly becomes larger before making sudden transition between clockwise
and anticlockwise motion. No limit to the size of the switching path has been found, leading
us to conjecture that the path diverges to infinity at some point in the missing range. This
divides the value of iSd into two disconnected branches, which are marked separately by
solid and dashed lines.

We denote the matrix form of the Liouvillian by L , which acts on a vectorized

form for the densisty matrix ρ . The Liouvillian matrix is given by

L =−i
(
(H⊗1)− (1⊗HT )

)
+∑

m

(
Lm⊗L∗m−L†

mLm⊗1−1⊗LT
mL∗m

)
. (3.18)
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Soon we shall see that a detailed investigation of the eigenvectors and eigenvalues

of this Liouvillian matrix will allow us to extract both the occupation probabilities

of the metastable states and their switching rates.

The eigenvalue equation takes the form L ρm = −(γm + iωm)ρm, where the

real and imginary components of the complex eigenvalues are denoted by γm and

ωm respectively. The meaning of these components becomes clear when we write

down the evolution of a state in terms of the eigenvectors as

ρ(t) = ∑
n

cne−(γm+iωm)tρm. (3.19)

Now we see that γm represents the decay rate of the state ρm and ωm represents

its oscillation frequency. It is known that γm ≥ 0 for all eigenvectors [48] and this

ensures that ρ is well-behaved at long times. States for which γm > 0 will decay over

time until the only remaning components of ρ(t) consists of those eigenvectors for

which γm = 0. For our system we expect a single such eigenvector which forms

the steady-state, denoted by ρss. In the bistable regime this state will consist of

a mixture of the two metastable states, as we saw in Fig. 3.1.1. But we are also

interested in the asymptotically decaying state, i.e. the eigenvector with the smallest

finite value of γm, which will be denoted by ρad. At long times the state of the system

will consists of a mixture of the steady-state and this asymptotically decaying state,

all other states having already decayed to negligible levels.

We now have two alternative descriptions of the transients response of the sys-

tem: one from the Keldysh approach and one from the Liovuillian approach. The

Keldysh approach shows us that the system approaches steady-state via switching

events between the two metastable states which eventually cause the system to reach

a dynamic equilibrium whereby the rates in each direction are balanced. This equi-

libration occurs at a rate γtotal = γb→d + γd→b. But now we see that this process is

also described by the decay of an unknown asymptotically decaying state at rate

γad. These rates are in fact identical γad = γtotal and the asymptotically decaying

state represents imbalance of the occupation probabilities of these states from the
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eventual steady-state. It can be written as

ρad = N(ρd−ρb) (3.20)

where we set the normalization N by Tr(ρ†
adρad) = 1. Given that the steady and

asymptotically decaying states consist of independent mixtures of bright and dim

states, we might consider combining them in such as way as to isolate their com-

ponents. Having isolated the metastable states we may then calculate their occu-

pation probabilities and hence the switching rates. The procedure for achieving

this is illustrated in Fig. 3.2.1 and explained as follows. In panels A and B we

have plotted the Wigner functions of the steady and asymptotically decaying states

at (ε/κ,δ/κ,χ/κ) = (1.8,3.0,−0.5), within which the bright and dim states are

clearly visible. We can write down a mixture of these states as

τ( f ) = ρss + f ρad (3.21a)

= (pb− f N)ρb +(pd + f N)ρd. (3.21b)

In order that ρb and ρd are both physically realistic states they should be positive

semidefinite, i.e. they should have no negative eigenvalues. Let us define the func-

tion min(τ) which returns the smallest eigenvalue of τ . Our condition can now be

stated as min(ρb),min(ρd)> 0.

Next we assume that they are orthogonal, i.e. Tr(ρbρd) = 0, which is a good

approximation provided the drive amplitude is sufficiently strong for the bistable

states to be well separated. Given this assumption, the state τ( f ) will be positive

semidefinite if and only if the coefficients of the bistable states are both greater than

or equal to zero. Therefore we can identify the values fd = pb/N and fb =−pd/N

by plotting min[τ( f )] as a function of f and locating where this function falls below

zero. This function is plotted in panel C. Within the range fb < f < fd we find

min[τ( f )] = 0, which is to be expected since within a sufficiently large Hilbert

space some states will have vanishingly small probabilities. These calculations were

performed using a Hilbert space size of 20 states. The values fd and fb obtained
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Figure 3.2.1: Extracting the metastable states from the steady and asymptotically de-
caying states. In panels A and B we plot the Wigner functions of the steady and asymp-
totically decaying states at (ε/κ,δ/κ) = (1.8,3.0). We can see that the dim state makes a
negative contribution to the asymptotically decaying state. This will allow us to form mix-
tures of steady and asymptotically decaying states which eliminate either the bright state or
the dim state. In panel C we plot the minimum eigenvalue of τ( f ) = ρss+ f ρad as a function
of f . This eigenvalue falls below zero when either the coefficient of either the bright state
of the dim state in τ falls below zero. By identifying the values of f where this occurs we
extract the dim and bright states. In panels D and E we plot τ( fd) and τ( fb) respectively,
which are proportional to the dim and bright states.

from panel C are then used to produce the dim and bright states displayed in panels
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D and E. Finally the occupation probabilities are given by

pb =
fd

fd− fb
(3.22)

pd =
fb

fb− fd
. (3.23)

3.3 Quantum jump approach
As a final crosscheck, it is also possible to obtain the occupation probabilities from

quantum trajectory simulations. For example, we could consider a scenario in which

the environment of our oscillator is continuously monitored for any leakage of pho-

tons. In this scenario it is known [84] that the wavefunction of the oscillator con-

ditioned on these measurements can be broken up into two parts: periods of deter-

ministic evolution according to a non-Hermitian effective Hamiltonian separated by

occasional quantum jumps occurring when a photon escapes into the environment

and is detected. The effective Hamiltonian is given by:

Heff = H− iκa†a. (3.24)

During a timestep ∆t the non-Hermitian component causes the norm of the wave-

function to decline by:

∆p = 2∆tκ 〈ψ(t)|a†a |ψ(t)〉 (3.25)

which corresponds to the probability of a photon escape. If such an event occurs

the wavefunction immediately jumps to a new normalized state given by:

|ψ(t +∆t)〉= a |ψ(t)〉√
〈ψ(t)|a†a |ψ(t)〉

. (3.26)

In this manner we can evolve the wavefunction in time and build an ensemble of

trajectories which describe the typical behaviour of the oscillator during an exper-

iment. This task is performed using the solvers provided in the QuTiP packages

[74].
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Figure 3.3.1: Using quantum trajectories to extract probabilities. As a crosscheck we
can produce a quantum trajectory using an appropriate stochastic Schrödinger equation and
identify the fraction of time the system spends in each state. Here we display an example
trajectory produced at (ε/κ,δ/κ,χ/κ)= (1.8,3.0,−0.5). The real component of the cavity
amplitude is plotted in panel A while the imaginary component is plotted in panel B. Within
the trajectory we can see two metastable states, whose lifetimes are much longer than the
natural lifetime of the oscillator. The dim state is marked in grey and the bright state is
marked in orange. In panel C we use this trajectory to produce a histogram of the oscillator
amplitude, within which the clusters corresponding to the bright and dim states are clearly
visible. In order to identify the occupation probability of these two states we apply k-means
clustering. This technique produces the linear classification boundary marked by the white
dashed line, which forms the locus of points equidistant from the cluster centers marked in
grey and orange. For this particular case we find pb = 0.610 and pb = 0.390.

An example is displayed in panels A and B of Fig. 3.3.1, which display the real

and imaginary components of 〈ψ(t)|a |ψ(t)〉/〈ψ(t)|ψ(t)〉 during a single quantum

trajectory produced at (ε/κ,δ/κ,χ/κ) = (1.8,3.0,−0.5). We see clear evidence

of occasional sudden switching between metastable states whose lifetimes are much

greater than the typical lifetime of photons in the oscillator. Using k-means cluster-

ing [85], a standard technique for linear classification, we have classified the state

of the oscillator at every sampled point in time. In panel C we display a histogram

of the oscillator amplitude throughout evolution and we highlight the two cluster

centers along with the boundary which separates them. By sampling the state of
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the oscillator over a sufficiently long period of time we can find an estimate of the

occupation probabilities of the two metastable states and compare them with the

results of our previously described Liouvillian based method.
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Figure 3.3.2: Occupation probabilities of the bright and dim states. In panel A we
display the oscillator amplitude at (δ/κ,χ/κ) = (3,−0.5) as a function of the drive ε . Over
the range 1.25 < ε/κ < 2.25 there is a sharp sudden increase in the oscillator amplitude.
We zoom in on this range in panel B, where we examine the occupation probabilities of
the bright and dim states according to our methods based on the Liouvillian and quantum
trajectories. We see that the transition to a high amplitude state corresponds to a shift in
occupation probability from the dim state to the bright state. We also see close agreement
between our two methods, which gives us confidence that they are working effectively.

A comparison of occupation probabilities calculated using the trajectory and

Liouvillian methods is presented in in Fig. 3.3.2. In panel A we first set the context

by plotting the oscillator amplitude as a function of the drive ε at (δ/κ,χ/κ) =

(3.0,−0.5). This displays the expected linear response before a sudden transition

to a high amplitude state. We focus on the intermediate region 1.15 < ε/κ < 2.25

where the transition occurs. In panel B the occupation probabilities calculated using

the Liouvillian method are marked by solid lines. These show a clear crossover from

the dim state to the bright state as the transition occurs. The markers display the
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occupation probabilities obtained from k-means clustering on quantum trajectories

evolved over a time period of 200,000/κ .

Close agreement between our methods observed. The root mean square dif-

ference between the two methods is only 0.004, which gives us confidence in their

accuracy. However the Liouvillian method is much faster and can produce results

over a wider range of drive parameters. Each trajectory took approximately 40 min-

utes to produce on the Intel Core i7-9700 Processor mentioned previously whereas

the Liouvillian method produced matching results over 10 seconds. One reason for

this disparity is that the trajectory method requires us to evolve the system for a

long period of time in order to produce enough switching events between bistable

states that the occupation probabilities converge. Since switching events are inher-

ently rare, the required evolution time is much greater than the cavity lifetime 1/κ .

Switching events are most common when the two metastable states have equal occu-

pation probabilities. Away from this point switching events can become extremely

rare, which increases the length of the required evolution time.

3.4 Switching rates
Now that we have are confident in our calculations of the occupation probabilities

we can use them to calculate the switching rates. After that we will compare these

results with the switching rates calculated using the Keldysh method. First we rear-

range Eq. 3.16 to give:

γd(b)→b(d) = pb(d)γad. (3.27)

Using this method we calculate the switching rates corresponding to the probabili-

ties plotted in Fig. 3.3.2B. These are displayed in Fig. 3.4.1B. At the edges of the

bistable regime γad is dominated by the larger switching rate. In the middle of the

bistable regime, where they are balanced, both rates contribute and γad is minimized.

Finally we compare the Liouvillian and Keldysh methods in Fig. 3.4.2. In

panel A we plot the steady-state oscillator amplitude as a function of δ and ε at

χ/κ = −0.5. This helps to give some context to the parameter ranges over which
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Figure 3.4.1: Calculating the switching rates from the occupation probabilities. In
panel A we plot the occupation probabilities as a function of ε for (δ/κ,χ/κ) = (3,−0.5)
while in panel B we plot the asymptotic decay rate γad in green. At low drives the system
occupies the dim state and the asymptotic decay rate is equal to the oscillator decay rate κ .
However, at sufficiently large drives the system switches from the dim state to the bright
state. This transition occurs simultaneously with a dramatic reduction in the asymptotic
decay rate, which falls by an order of magnitude. This effect is known as critical slowing
down and it is characteristic of phase transitions. Using γd(b)→b(d) = pd(b)γad we are able to
produce switching rates displayed in panel B.

we will compare the methods in panels B and C. In panel A the mean-field bound-

aries of the bistable regime are marked in red. Within this regime we see expected

sudden transition between low and high amplitude states of the oscillator. The black

lines highlight the parameter ranges over which panels B and C were produced. Us-

ing the attempt frequencies ωb and ωd as fitting parameters we are able to obtain

excellent agreement between the switching rates produced by the Keldysh and Li-

ouvillian methods over several orders of magnitude. This indicates that variations

in the switching action are dominant in determining the dependence of the switch-

ing rates on the system parameters. Since the attempt frequencies are used as fitting

parameters we are unable to fully quantify the accuracy of the Keldysh approach.

Future work should examine how these attempt frequencies can be calculated in
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order to complete this work.
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Figure 3.4.2: Comparing Keldysh and Liouvillian switching rates. Here we plot
and compare the switching rates produced using the Keldysh and Liouvillian methods at
χ/κ = −0.5 and we place them in the context of the oscillator response. In panel A we
plot the oscillator amplitude as a function of δ and ε . The boundaries of the bistable regime
are calculated using the classical equations of motion and are marked in red. Within this
bistable regime we can see the sudden transition from low to high amplitude states which
occurs as the drive is increased. In panels B and C we will plot the switching rates and
oscillator amplitude along the black lines marked in panel A. Panel B was produced at
ε/κ = 4 while panel C was produced at δ/κ = 8. If the attempt rates vary sufficiently
slowly with δ and ε then we can assume they are constant and use them as fitting param-
eters. In this case we have used ωb→d/κ = 1.3×10−2, ωd→b,1st branch/κ = 1.4×10−1 and
ωd→b,2nd branch/κ = 9.9× 109. We justify using two separate attempt for the dim to bright
switching due to the discontinuity in the switching path. Using these fitting parameters
we see excellent agreement between the Keldysh and Liouvillian switching rates over sev-
eral orders of magnitude. This indicates that our assumption that the attempt rates vary
slowly with the drive parameters was remarkably accurate and the dominant variations in
the switching rates are well described by the action of the optimal switching path. Finally,
we overlay the cavity amplitude on these switching rate plots to show that the crossing of
the rates coincides with transition between high and low amplitude states of the oscillator.
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Contributions
This project was conceived by Eran Ginossar and Marzena Szymanska. Chang-

woo Lee placed the equations of motion in Hamiltonian form and found a way to

calculate switching paths by initializing the system close to the unstable point and

integrating backwards in time. Changwoo Lee also prepared Mathematica note-

books to implement this method, which Paul Brookes used in order to compare the

various methods studied in this chapter. Paul Brookes found an alternative method

of finding switching paths by using boundary value methods and contributed the

method of finding metastable state occupation probabilities by studying the eigen-

vectors of the Liouvillian matrix. The comparisons between these methods and with

the quantum trajectory approach were performed by Paul Brookes.



Appendix

3.A Deriving equations of motion in Hamiltonian

form

In order to place the equations of motion in Hamiltonian form we first take the

Lagrangian in eq. 3.4 and then decompose the field variables into real and imaginary

components according to:

ac = (xc + ipc)/
√

2, aq = (x̃q + ip̃q)/
√

2. (3.28)

In these terms the Lagrangian becomes:

L = ẋc p̃q− ṗcx̃q−
[
δ +

χ

2
(
x2

x + p2
c + x̃2

q + p̃2
q
)]

(xcx̃q + pc p̃q)

+κ(x1 p̃q− pcx̃q)+ iκ(x̃2
q + p̃2

q)+2ε p̃q (3.29)

up to total derivatives. Allowing the variables to run on imaginary axes (near x̃q ≈

0, p̃q ≈ 0), let:

x̃q→−ipq, p̃q→ ixq (instanton transformation), (3.30)

then the above expression changes to a Hamiltonian structure:

iL =−
[
ẋc pc + ṗc pq−H

(
xc, pc,xq, pq

)]
(3.31)
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with an auxiliary Hamiltonian given by eq. (3.11) which produces the equations of

motion in eq. (3.12). The action, consequently, becomes:

S = i
∫

L dt (3.32)

=−
∫

dzzzc · zzzq. (3.33)



Chapter 4

Driving-induced resonance

narrowing in a strongly coupled

cavity-qubit system

4.1 Introduction

The spectral response of a variety of both classical and quantum systems near an iso-

lated resonance is often well-described by the Breit-Wigner model [86]. In this de-

scription the lifetime of an isolated resonance can be determined from its linewidth.

A variety of intriguing effects may occur in regions where resonances overlap [87].

For example, both linewidth narrowing and broadening have been observed with

systems having overlapping resonances [88]. These effects are attributed to inter-

ference between different processes contributing to damping [89, 90]. Destructive

interference gives rise to linewidth narrowing, whereas the opposite effect of broad-

ening occurs due to constructive interference.

These effects have been demonstrated in a wide variety of both classical and

quantum systems. In the classical domain narrowing has been observed with res-

onators having two overlapping resonances for which the frequency separation is

smaller than the resonances’ bandwidth [92, 93, 94]. Closely related processes oc-

cur in the quantum domain with systems having overlapping resonances. In some

cases this overlap is obtained by static tuning of the system under study. One well-
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Figure 4.1.1: The device. (a) Electron micrograph of the flux qubit. (b) Zoom out electron
micrograph showing the qubit embedded in the CPW resonator and its local flux control
line. (c) Sketch of the experimental setup. The cavity transmission is measured using
a vector network analyzer (VNA). Monochromatic flux qubit (FQ) driving is applied us-
ing a signal generator (SG). (d) The measured cavity transmission (in dB units) 60 vs.
ωf/2π (magnetic field detuning from the symmetry point) and ωdf/2π (cavity driving fre-
quency). The power injected into the cavity is −112 dBm. For the device under study
ωc/2π = 6.6408GHz, ω∆/2π = 1.12GHz, g/2π = 0.274GHz and γc/ωc = 1.1×10−5. The
relaxation time T1 = 1.2 µs(1+0.45ns×|ωf|) is obtained from energy relaxation measure-
ments, and the rate T−1

2 = 4.5MHz(1+44 |ωf|/ωa) is obtained from Ramsey rate measure-
ments [91]. The empirical expressions for both T1 and T2 are obtained using approximate
interpolation.

known example is the Purcell effect [95], which is observed when atoms inter-

act with light confined inside a cavity. In such cavity quantum electrodynamics

(CQED) systems, both linewidth narrowing and broadening occur when the atomic

and cavity mode resonances overlap. Other examples of static tuning giving rise

to linewidth narrowing and broadening due to overlapping resonances have been

reported in [96, 97].
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Closely related processes occur in atomic systems exhibiting electromagneti-

cally induced transparency (EIT) [98, 99]. However, tuning into the region of EIT

is commonly based on external driving (rather than static tuning), which can be

used for manipulating the spectrum of the dressed states. Both linewidth narrow-

ing and broadening have been observed in such systems in the region where the

dressed spectrum contains overlapping resonances. Commonly, a broadened reso-

nance is referred to as a bright state, whereas the term dark state refers to a narrowed

resonance. The slow propagation speed associated with dark states [100] can be ex-

ploited for long term storage of quantum information [101].

In this chapter we analyse recently collected data [102] displaying linewidth

narrowing in a superconducting circuit composed of a microwave resonator cou-

ple to a Josephson flux qubit [103, 104] and we carry out a numerical study of the

dynamics governing this phenomenon. The qubit under study, which is strongly

coupled [105, 106, 107, 108] to a coplanar waveguide (CPW) microwave resonator

[106, 109, 110, 111, 112, 113, 114, 115], is shown in Fig. 4.1.1(a) and (b). The

strong coupling gives rise to a dispersive splitting of the cavity mode resonance

and the experimenters found that this frequency splitting could be controlled by

applying a monochromatic driving to the flux qubit [see Fig. 4.1.1(b)]. The ef-

fect of linewidth narrowing, which is discussed below in section 4.4, is observed

when the frequency and power of qubit driving are tuned into the region where the

frequency splitting vanishes. In this region the measured linewidth becomes signif-

icantly smaller than the linewidth of the decoupled cavity resonance by a factor of

up to 20.

While the linewidth narrowing effect is induced by qubit driving, a variety of

other nonlinear effects can be observed with strong cavity mode driving [116, 117,

118, 119, 120, 121, 71, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132]. In

section 4.5 we focus on the lineshape of the cavity transmission in the nonlinear

region. The experimental results are compared with predictions of a semiclassical

theory. We find that good agreement can be obtained with theoretical predictions

derived by numerical integration of the master equation for the coupled system.
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4.2 Experimental setup

The device under investigation [see Fig. 4.1.1(a) and (b)] contains a CPW cavity

resonator weakly coupled to two ports which are used for performing microwave

transmission measurements [see Fig. 4.1.1(c)]. A persistent current flux qubit [103],

consisting of a superconducting loop interrupted by four Josephson junctions, is in-

ductively coupled to the fundamental half-wavelength mode of the CPW resonator.

A CPW line terminated by a low inductance shunt is used for qubit driving [see

Fig. 4.1.1(b) and (c)]. The device was fabricated on a high resistivity silicon sub-

strate in a two-step process. In the first step, the resonator and the control lines

were defined using optical lithography, evaporation of a 190nm thick aluminum

layer and liftoff. In the second step, a bilayer resist was patterned by electron-beam

lithography. Subsequently, shadow evaporation of two aluminum layers, 40nm and

65nm thick respectively, followed by liftoff defined the qubit junctions.

The chip was enclosed inside a copper package, which was cooled using a di-

lution refrigerator to a temperature of T = 23 mK. Both passive and active shielding

methods were employed to suppress magnetic field noise. While passive shielding

was performed using a three-layer high permeability metal, an active magnetic field

compensation system placed outside the cryostat was used to actively reduce low-

frequency magnetic field noise. A set of superconducting coils was used to apply

DC magnetic flux. Qubit state control, which was employed in order to measure

the qubit longitudinal T1 and transverse T2 relaxation times, was performed using

shaped microwave pulses. Attenuators and filters were installed at different cooling

stages along the transmission lines for qubit control and readout. A detailed de-

scription of sample fabrication and experimental setup can be found in [111, 110].

4.3 The dispersive region

The Hamiltonan describing this system can be written as [133]

H = }ωca†a−}g(a+a†)σ z
0 +

1
2
}ωfσ

z
0 +

1
2
}ω∆σ

x
0 (4.1)
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where a is a cavity annihilation operator and σ x
0 and σ

z
0 are Pauli operators acting

on the Hilbert space of the qubit. These operators can be written in the form σ x
0 =

|	〉〈	|+ |�〉〈�| and σ
z
0 = |	〉〈	| − |�〉〈�| where |�〉 and |	〉 correspond to a

clockwise or anticlockwise circulating current of Ip.

The above Hamiltonian describes an inductive coupling of strength g between

the flux qubit and the transmission line resonator, which has a resonance frequency

of ωc. Meanwhile the transition frequency of the qubit is given by ωa =
√

ω2
f +ω2

∆
.

In the presence of an externally applied magnetic flux Φe, this frequency can be

tuned by controlling ωf = (2IccΦ0/})(Φe/Φ0−1/2) where Φ0 = h/2e is the flux

quantum.

At this point it is convenient to change our basis to the energy eigenstates |±〉

of the qubit, which are given by:|+〉
|−〉

=

 cos(θ/2) sin(θ/2)

−sin(θ/2) cos(θ/2)

|	〉
|�〉

 (4.2)

where tan(θ) = ω∆/ωf. We use these states to define a new set of Pauli operators:

σ z = |+〉〈+| − |−〉〈−|, σ+ = |+〉〈−| and σ− = |−〉〈+|, in terms of which the

Hamiltonian is given by:

H = }ωca†a+
1
2
}ωaσ

z−}g(a+a†)

(
cos(θ)σ z− sin(θ)(σ++σ

−)

)
(4.3)

≈ }ωca†a+
1
2

ωaσ
z +gsin(θ)(aσ

++a†
σ
−) (4.4)

where the last line is obtained by applying the rotating wave approximation. This

leaves us with a Jaynes-Cummings Hamiltonian, which describes the exchange of

quanta of energy between the qubit and resonator but conserves their total number.

This Hamiltonian can be diagonalized by the application of a unitary transformation

[134, 65, 135]:

U = exp
(
−Λ(a†

σ
−−aσ

+)

)
(4.5)
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for which we define:

Λ =
1

2
√

N
arctan

(
2λ
√

N
)

(4.6)

N = a†a+σ
+

σ
− (4.7)

λ =
g
∆

(4.8)

∆ = ωa−ωc. (4.9)

The application of this transformation gives:

U†HU = }ωca†a+
1
2
}ωaσ

z− 1
2
}∆

(
1−
√

1+4λ 2N
)

σ
z. (4.10)

The form above is exact but in the dispersive regime, defined by g/ |∆| � 1, it can

be approximated by [30, 1]:

U†HU ≈ }
(

ωc +
g2

∆
σ

z
)

a†a+
1
2
}
(

ωa +
g2

∆

)
σ

z +O(λ 3). (4.11)

In this form we can see a shift in the cavity resonance frequency of ±g2

∆
depending

on the state of the qubit. This effect can be seen in network analyzer measurements

of the cavity transmission, which are shown in Fig. 4.1.1(d). The middle region

where ωf <
√

ω2
c −ω2

∆
corresponds to ∆ > 0 and in this region two peaks are seen

in the cavity transmission. The upper one corresponds to the case where the qubit

occupies the ground state, whereas the lower one, which is weaker, corresponds to

the case where the qubit occupies the first excited state.

4.4 Qubit driving

We now move on to study the transmission of the resonator when a drive is applied

to the qubit. The experimenters tuned the frequency of the qubit to ωa/2π = 5GHz

by adjusting the external magnetic flux. Meanwhile a signal with angular frequency

ωp and amplitude Ωq was injected into the control line to drive the qubit. Network

analyzer measurements of the cavity transmission as a function of ωp for two fixed
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values of qubit driving amplitude Ωq are shown in Fig. 4.4.1(a) and (b). In panel

(a) we observe two resonances the cavity drive frequency is swept ωdf, however one

of these resonances is only visible when the qubit drive is tuned close to ωa/2π =

5 GHz. This is consistent with the expected dispersive shift of the cavity resonance

frequency, whose sign is dependent on the state of the qubit. When the qubit drive is

detuned only the ground state is occupied, therefore only one resonance is observed.

However, when it is brought into resonance, the occupation of the excited state

increases and the second resonance becomes visible.

The transmission data in panel (b) was collected after increasing the qubit drive

amplitude by a factor of 100 and is is more challenging to interpret. As in panel (a)

we see two dispersively shifted resonances, however now both are visible when the

qubit drive is detuned. Meanwhile at ωp/2π = 5 GHz both resonances have merged

into a single peak. This effect cannot be explained through the dispersive approx-

imation. In order to model it we first introduce the qubit drive to the Hamiltonian

according to:

Hdriven(t) = H +}Ωq cos(ωpt)σ x. (4.12)

We can remove the time dependence of the Hamiltonian by moving to a frame

rotating with the drive and applying the rotating wave approximation. In a rotating

frame the Hamiltonian is given by:

HR(t) =V †(t)HV (t)+ i
(
∂tV †(t)

)
V. (4.13)

In the current case we choose V (t) = exp
(
− iωpt(a†a+σ+σ−)

)
which produces:

HR(t) =}(ωc−ωp)a†a+
1
2
}(ωa−ωp)σ

z +}gsin(θ)(aσ
++a†

σ
−)

+}Ωq cos(ωpt)
(

σ
+eiωpt +σ

−e−iωpt
)
. (4.14)
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After the rotating wave approximation this gives:

HR ≈ }(ωc−ωp)a†a+
1
2
}(ωa−ωp)σ

z +}gsin(θ)(aσ
++a†

σ
−)+

1
2
}Ωqσ

x.

(4.15)

When a drive is applied to the cavity it probes the transitions between the eigenstates

of this Hamiltonian. Significant transmission only occurs when the cavity drive is

resonant with a transition and the lower energy level is occupied. By diagonalizing

the above Hamiltonian and studying the low lying transitions we produce the black

dashed lines in Fig. 4.4.1(b), which align closely with the observed resonances.

In Fig. 4.4.2 we study the dependence of cavity transmission on qubit driving

amplitude Ωq. In panel (a) we plot the cavity transmission which was experimen-

tally observed when the driving frequency was fixed at ωp/2π = 5.16GHz. At

low drive powers we see the expected pair of dispersively shifted resonances cor-

responding to the ground and excited states of the qubit. When the drive power

is increased to −6 dB these resonances merge before separating again at the even

higher powers. In panel (b) we plot cross sections of the transmission at −6 dB

and −45 dB. The asymmetry in the line shapes at low driving power indicates

nonlinearity in the cavity response, similar to the behaviour observed in [133]. In

the high power cross section the two resonances merge into a single peak of width

≈ 200 kHz, which is narrower than the low power resonances which are of width

≈ 1MHz.

This effect is even more pronounced in panels (c) and (d), in which the qubit

drive frequency is set to ωp/2π = 5.52GHz. This is sufficiently far detuned from

the transition frequency of the qubit that at low drive powers only one resonance is

visible. However, as the drive power is increased the second resonance is visible due

to the excitation of the qubit. When they merge at−1 dB they produce a sharp peak

of width ≈ 70kHz, an order of magnitude sharper than the low power resonance.

It is a challenge to provide an explanation for this linewidth narrowing. It

is also a challenge to provide an intuitive explanation for the line merging which

accompanies it, despite our diagonalization of the system Hamiltonian providing
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Figure 4.4.1: The effect of qubit driving. Cavity transmission in dB units as a function
of qubit driving frequency ωp/2π and cavity driving frequency ωdf/2π . The qubit driving
amplitude Ωq in (b) is 100 times larger compared with the values used in (a). For both
plots the qubit frequency is given by ωa/2π = 5GHz. The overlaid black dotted line in
(b) is obtained by numerically calculating the transition frequencies between the lowest-
lying eigenvalues of the Hamiltonian in eq. 4.15 using the following parameters Ωq/2π =
0.5GHz, ωc/2π = 6.6408GHz, ω∆/2π = 1.12GHz, ωf/2π = 4.9GHz, ωa/2π = 5.0GHz
and gsin(θ)/2π = 0.075GHz.

a quantitative model. One possibility is that the merging occurs due to motional

averaging [136, 137, 138, 139] in which a system whose resonant frequency varies

rapidly will respond at the average frequency. In this case the frequency of the

cavity is dispersively shifted according to the state of the qubit so we might expect

that apply a drive to the qubit will cause Rabi oscillations and induce the resonator

to respond at its average frequency. However this fails to explain why increasing the

drive power causes the lines to split again. We would not expect motional averaging

to disappear when we make the qubit oscillate faster.

Nevertheless, in the following we will propose that this effect may be the re-

sult of combination of multistability and motional narrowing occurring when both
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Figure 4.4.2: Dependence on qubit driving amplitude. The driving frequency is ωp/2π =
5.16GHz in (a) and (b) and ωp/2π = 5.52GHz in (c) and (d). Cavity transmission in
dB units as a function of cavity driving frequency ωdf/2π and amplitude (in logarithmic
scale) P1 = 20log10

(
Ωq/Ωq,0

)
are shown in (a) and (c). Cross sections taken at values of P1

indicated by colored horizontal dotted lines in (a) and (c) are shown using the correspond-
ing colors in (b) and (d). The overlaid black dotted line in (a) is obtained by numerically
calculating the transition frequencies between the eigenvalues of the Hamiltonian (??) us-
ing the following parameters ωp/2π = 5.16GHz, Ωq,0/2π = 2.4GHz, ω∆/2π = 1.12GHz,
ωf/2π = 4.873GHz, ωa/2π = 5.000GHz and gsin(θ)/2π = 0.075GHz.

the qubit and cavity are strongly driven. Our analysis is based on applying quan-

tum trajectory methods to the system Hamiltonian including both qubit and cavity

drives. However, our study is challenging for several reasons. First, multistability

is a nonlinear effect which only appears when the cavity drive is sufficiently strong.

This requires that we retain a large Hilbert space size in our calculations. In the

following we will include 60 cavity levels. Furthermore, in the presence of both

qubit and cavity driving it is not possible to find a frame in which the Hamiltonian

is time independent, which adds additional complexity to our calculations. Finally,

long integration times are required in order to produce accurate long time averages
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in this regime due to critical slowing down in the multistable regime. This prevents

us from carrying out simulations for the same parameters as used in the experiment.

Therefore we are unable to to make quantitative comparisons with the data collected

by the experimenters.

When we include the cavity drive the Hamiltonian is given by:

H ′R(t) = HR +Ωc
(
aexp(i∆dpt)+a† exp(−i∆dpt)

)
(4.16)

where ∆dp = ωdf−ωp. In order to describe dissipation due to loss of photons from

the cavity we use the Lindblad operator
√

γc a, while to describe dissipation in the

qubit we use
√

γ σ−. After combining these elements, the evolution of the state of

the system is described by the Linblad master equation:

∂tρ =− i
}
[H ′R(t),ρ]+ γcD[a]ρ + γ1D[σ−]ρ. (4.17)

The time-dependence of the cavity amplitude 〈A〉 = Tr(ρ(t)A) contains two main

frequencies ∆dp = ωdf−ωp and ∆cp = ωc−ωp due to the drive and cavity fre-

quency respectively. The experimental data presented in Fig. 4.4.2 were measured

by mixing the signal transmitted through the cavity with a reference at the cavity

drive frequency, as is standard in heterodyne detection. Therefore in order to model

the transmitted power TNA we must examine the cavity amplitude 〈A〉 in a frame

rotating with the drive. This is given by

α(∆dp, t) = Tr
(

ρ(t)A
)

exp
(
− i∆dpt

)
. (4.18)

According to input-output theory TNA will be proportional to the square of this

amplitude.

In order to observe narrowing we must drive the cavity in the nonlinear regime.

We take a cavity drive amplitude of Ωc/2π = 1.00 MHz. The remaining parameters

are set to Ωq/2π = 1.726 MHz, ωp/2π = 5.50 GHz, gsin(θ)/2π = 0.075 GHz,

ωa/2π = 5 GHz, γc/2π = 377 kHz and γ1/2π = 40.7 kHz. Using these parameters
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we produce the spectrum in Fig. 4.4.3 by evolving the state of our system over

9.6 ms for a range of cavity drive frequencies [74]. The long time average α(∆dp)

displays a full width at half maximum of 125 kHz, significantly less than the natural

linewidth of 377 kHz.

This narrowing can be explained when we realise that in the presence of a

strong cavity drive the system displays multistability and the line narrowing is due

to a bright cavity state (b) which is most stable over a narrow range of frequencies

close to the bare cavity resonance. Close to the cavity resonance the system occu-

pies the bright state and the transmitted power is high. However away from this

point the system may also occupy two other dim states (d↓ and d↑), which causes a

sharp drop in the transmitted power and a narrow linewidth.

In Fig. 4.4.4 we examine these metastable states more closely. We plot

the cavity amplitude and qubit polarization over 170 µs of evolution at ωd/2π =

6.6409 GHz. The two dim states, labelled d↑ and d↓, occur when the qubit is polar-

ized in the up and down directions respectively. Meanwhile the bright state occurs

when the qubit is depolarised and varies widely over the range−1 < 〈σ z〉< 1. This

behaviour is reminiscent of motional averaging. Since the state of the qubit rapidly

varies between the ground and excited states the cavity appears to respond at its

bare frequency and form a motionally averaged bright state.

4.5 Cavity driving

In this section we study the response of the cavity in the absence of qubit driving.

The nonlinear response of a microwave cavity coupled to a transmon superconduct-

ing qubit has recently been studied in Ref. [140] and in chapter 2. The experimental

results, together with theoretical analysis [132, 141], indicate that the response to

strong cavity driving is affected by the significant coherent driving of the qubit as

well as by the stochastic transitions between qubit states. The effect of cavity driv-

ing can be characterized by a dephasing rate and by a measurement rate. Both rates

have been numerically calculated and analytically estimated in Ref. [142].

Measurements of the cavity transmission TNA of the device under study as a
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Figure 4.4.3: Simulation of the cavity spectrum in the nonlinear regime. We use a cav-
ity drive amplitude of Ωc/2π = 1 MHz, a qubit drive frequency of ωp = 5.5 GHz and a
qubit drive amplitude of Ωq = 0.863 GHz. The system displays multistability and three
distinct metastable states can be identified, which are labelled by d↓, d↑ and b and assigned
the colours orange, green and red respectively. We plot the square cavity amplitude (a),
qubit polarization (b) and occupation probability (d) of each of these three states against the
cavity drive frequency ωdf/2π . In panel (a) we see that the cavity amplitude of state b is
significantly larger than the amplitudes of states d↓ and d↑. Hence we refer to b as bright
and d↓ and d↑ as dim. The black line is produced by averaging the cavity amplitude over
9.6 ms of evolution before taking the square of the absolute value. It displays a narrow
resonance at the bare cavity frequency. The full width at half maximum is only 125 kHz,
which is 33% of the natural linewidth of 377 kHz. In panel (b) we see that states d↓ and d↑
occur when the qubit is polarized up and down respectively whereas the qubit polarization
associated with state b varies with the drive frequency. Finally in panel (c) we see the occu-
pation probabilities of the three states. Away from the cavity resonance the stability of state
b falls. This causes the narrowing observed in panel (a).
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Figure 4.4.4: Here we examine a quantum state trajectory produced at ωdf/2π =
6.6409 GHz. In panel (a) we plot the real and imaginary parts of the cavity amplitude.
The cavity is observed to jump between three metastable states. Examples of states d↑, d↓
and b are highlighted between the vertical dashed lines in green, orange and red respec-
tively. By referring to panel (b) we see that state d↑ occurs when the qubit has positive
polarization, state d↓ occurs when it has negative polarization and state b occurs when the
qubit freely varies over the range −1 < 〈σ z〉 < 1. In panel (c) we plot a histogram of the
cavity amplitude throughout 9.6 ms of evolution. The three metastable states are clearly
identified as three clusters in the plane. Switching pathways leading between these clusters
can also be observed.

function of cavity driving frequency ωdf/2π and power Pda are shown in Fig. 4.5.1.

No qubit driving is applied during these measurements. We demonstrate nonlin-

earity of the softening type in Fig. 4.5.1(a-c), whereas hardening is demonstrated

in Fig. 4.5.1(d-f). We obtained the data shown in Fig. 4.5.1 by sweeping the cav-

ity driving frequency ωdf/2π upwards. Almost no hysteresis is observed when the

sweeping direction is flipped.

The measured cavity transmission TNA can be compared with theoretical pre-

dictions based on the semiclassical approximation. Such a comparison has previ-

ously been performed in Ref. [133] based on data that has been obtained from the

same device. Good quantitative agreement was found in the region of relatively

small cavity driving amplitudes [133].

However, when the cavity is strongly driven, the nonlinearity introduced to the

system by the qubit causes the onset of bistability and the semiclassical approxima-

tion alone is unable to reproduce the cavity transmission. This is because, despite

accurately modeling the fixed points, which henceforth are referred to as the bright
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Figure 4.5.1: Nonlinear response to cavity driving. The cavity transmission TNA is mea-
sured as a function of cavity driving frequency ωdf/2π for different values of the cavity
driving power Pda. These data are compared with a numerical calculation of the steady
state of the Lindblad master equation (dashed red line). In (a-c) the frequency ωf/2π is
flux-tuned to 5.5GHz, and in (d-f) to 7.8GHz. Different values of γc are used at each drive
power to account for the increase in the quality factor of the cavity with occupation. We use
γc = (a) 0.314, (b) 0.251, (c) 0.126, (d) 0.314, (e) 0.251 and (f) 0.126MHz.

and dim metastable states (see Fig. 4.5.2), the semiclassical equations of motion

give no information regarding the occupation probabilities of the two metastable

states in the overall state of the system, which can be written as:

ρ = pbρb + pdρd (4.19)

where ρb(ρd) and pb(pd) represent the bright (dim) state and its probability respec-

tively.

The experimental results shown in Fig. 4.5.1 exhibit a sharp dip in cavity

transmission TNA at drive powers above −109dBm. A very similar feature has

been experimentally observed before in [140] and theoretically discussed in Refs.

[132, 141], for which the full quantum theory of the single nonlinear oscillator
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has been developed in [143]. The origin of this dip is the destructive interference

between the two metastable states. Since the system is coupled to an external reser-

voir, fluctuations in the quantum state ensue and occasionally cause major switching

events between the bright and dim states. When the complex amplitude of the cavity

state is averaged over an ensemble of many such switching events, there is typically

a narrow region in the frequency-power space where the two complex amplitudes

partially cancel each other. By using the Lindblad master equation to model the sys-

tem, we are able to take account of these fluctuations which cause these switching

events and we produce the numerical fits seen in Fig. 4.5.1.

In order to calculate the response of our system to cavity driving (without qubit

driving) we use the following master equation:

∂tρ =− i
}
[H,ρ]+ γcD[A]ρ + γ1D[σ−]ρ, (4.20)

where the Hamiltonian a frame rotating with the cavity drive is given by:

H ≈ }(ωc−ωdf)a†a+
1
2
}(ωa−ωdf)σ

z +}gsin(θ)(aσ
++a†

σ
−)+

1
2
}Ωc(a+a†).

(4.21)

In the above the detuning between the cavity drive and the cavity resonance is

given by ∆dc = ωdf−ωc, while the detuning between the cavity drive and the qubit

frequency is given by ∆da = ωdf−ωa. Since the relaxation rate of the qubit de-

pends on the magnetic field detuning from the symmetry point we must take ac-

count of this in our calculations. For Figs. 4.5.1(a-c) we have ωf/2π = 5.5GHz

and γ1/2π = 6.29kHz, whereas for Figs. 4.5.1(d-f) we have ωf/2π = 7.8GHz and

γ1/2π = 4.02kHz.

The master equation above does not include a Lindblad operator to describe

pure dephasing of the flux qubit. Since we are operating the qubit far from its sym-

metry point, pure dephasing will be dominated by flux noise, and in [111] the power

spectral density (PSD) of this noise was found to have a 1/ f 0.9 form. Unfortunately

we cannot account for this noise in the master equation, because the Markovian
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approximation requires that the PSD is well-behaved at zero frequency. However,

even without the inclusion of pure dephasing, the master equation is still able to

explain the major features of the spectra measured in Fig. 4.5.1.

Comparison between the predictions derived from the numerical integration of

the master equation and the ones analytically derived from the semiclassical equa-

tions of motion is shown in Fig. 4.5.2.

4.6 Summary
Our main finding is the linewidth narrowing that is obtained by applying intense

qubit driving. The experimenters showed that this effect is robust, however, its

theoretical modeling is quite challenging. We have made a qualitative comparison

with the results of a simulation which display linewidth narrowing due to a bright

metastable state with a narrow range of stability. We also speculated that this bright

state could be an example of motional averaging. Further work should explore this

possibility more deeply and aim to understand if the motionally averaged bright

state is stable over only a narrow range of qubit drive powers.

We also find that bistability, which is predicted by the semiclassical model

for monochromatic cavity driving, is experimentally inaccessible. This effect and

related observations can be satisfactorily explained using numerical integration of

the master equation for the coupled system.

Contributions
This chapter is based on published work [102]. The experimental data presented

in this chapter were collected by Eyal Buks in collaboration with Chunqing Deng,

Jean-Luc Orgiazzi and Martin Otto in the group of Adrian Lupascu at the Institute

for Quantum Computing, University of Waterloo. Paul Brookes and Eyal Buks

interpreted the data. Paul Brookes performed the numerical calculations presented

in this chapter under the supervision of Eran Ginossar.
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Figure 4.5.2: The bistable regime. The cavity drive power is given by Pda =
20log10 (Ωc/ω2,0) where ω2,0/2π = 340GHz. In (a) we plot the Wigner function of
the cavity state in the bistable regime, which is obtained by solving for the steady state
of the master equation at a drive power of Pda = −109dBm and a drive frequency of
ωda/2π = 6.6445GHz. These parameters are marked by the red crosses in panel (b) and
in Fig. 4.5.1(b). Two metastable states can be seen: a bright state at Cb = 4.64−3.73i and a
dim state at Cd = −1.88−0.39i. These two states correspond to the fixed points produced
using the semiclassical equations of motion, marked by blue crosses. Next in (b) we exam-
ine the boundaries of the bistable regime. By examining the cavity Wigner function over
a range of drive powers and frequencies we map the region in which we find two peaks
corresponding to the bright and dim states. When two peaks can be identified we calculate
the metric B = 1− |pb− pd | as a measure of bistability. This is plotted in the colormap
above. Meanwhile the dashed black lines mark the boundaries of the region in which the
semiclassical equations of motion have two fixed points. These methods produce signifi-
cant overlap and both predict the onset of bistability around Pda = −117dB. We also see
that the region of maximum bistability predicted by the master equation (yellow strip) lies
either close to or within the semiclassical bistable region at all powers. However there are
significant differences in the limits of the bistable region, particularly at the upper freuqency
limit. The master equation predicts this limit should increase with drive power, whereas the
semiclassical equations predict the opposite.



Chapter 5

Long range couplings in a spin chain

and the protection of quantum

information

In this chapter we shall change theme. Whereas the previous chapters dealt with

nonlinear effects in coupled resonator-qubit systems, in this chapter we shall present

a new qubit design based on a spin chain model obeying certain common symme-

tries, such as invariance under translation or inversion, and demonstrate that these

symmetries can produce eigenstates which have some degree of protection against

decoherence. These states can be found among the excited states of many well

studied models, but we will demonstrate that using long range interactions these

states can be brought down to the low lying part of the spectrum where they can be

used to encode information. Models containing long range interactions generally

receive less attention because they are assumed to be less physically realistic, but

we will highlight such a model which not only produces some interesting coherence

properties but can also be engineered in a laboratory.

5.1 Symmetries and a toy model
Let us begin by discussing the relevant symmetries. We consider a periodic chain

containing an even number of spins M and we introduce the operators σm,N , T and

I . The operator σm is a local Pauli operator acting on site m while the hermitian
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operator N is corresponds to the total number of excitations in the chain N =

∑
M
m=1(σ

+
m σ−m − 1

2). The operators T and I are unitary and they act to either displace

the chain by a single site T σmT −1 = σm+1 or to invert the chain around the central

bond IσmI = σM+1−m. Using these transformations it is straightforward to show

that σm can be written as

σm = T 2m−M−1 IσmI︸ ︷︷ ︸
σM+1−m

T −(2m−M−1). (5.1)

Essentially we have inverted the site on which the Pauli operator acts before trans-

lating it back to its original location. Now let’s imagine that we can find two states

of the chain, denoted by |↑〉 and |↓〉, which are simultaneously eigenstates of the

translation, inversion and number operators with the following eigenvalues

N |↑〉= N |↑〉 , N |↓〉= N |↓〉 (5.2a)

T |↑〉= |↑〉 , T |↓〉= |↓〉 (5.2b)

I |↑〉= |↑〉 , I |↓〉=−|↓〉 (5.2c)

Using these properties we will now demonstrate that at first order our chosen states

are immune to relaxation and dephasing due to noise channels acting on single sites.

We start by looking at relaxation, which should be proportional to matrix elements

of the form 〈↑|σm |↓〉. But using the eigenvalues above in combination with eq. 5.1

we can show that these matrix elements vanish:

〈↑|σm |↓〉= 〈↑|T 2m−M−1I︸ ︷︷ ︸
〈↑|

σmIT −(2m−M−1) |↓〉︸ ︷︷ ︸
−|↓〉

=−〈↑|σm |↓〉= 0. (5.3)

In other words the symmetry properties of our states have allowed us to prove that

the transition matrix element of a Pauli operator 〈↑|σm |↓〉 is equal to minus itself,

and is therefore zero.

Next we consider dephasing, which should occur at a rate proportional to

| 〈↑|σm |↑〉− 〈↓|σm |↓〉 | i.e. the first order shift in the energy splitting of our states
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induced by noise acting on a Pauli operator σm. We first consider σ z
m Pauli opera-

tors. Using the translation operator we show that the expectation value ofN for the

|↑〉 state is given by:

〈↑|N |↑〉=
M−1

∑
m=0
〈↑|T m

σ
z
1T
−m |↑〉= M 〈↑|σ z

m |↑〉 (5.4)

and in the same way we can also demonstrate 〈↓|N |↓〉 = M 〈↓|σ z
m |↓〉. But since

the eigenvalues in eq. 5.2a tell us 〈↑|N |↑〉 = 〈↓|N |↓〉 = N we find 〈↑|σ z
m |↑〉 =

〈↓|σ z
m |↓〉 = N/M. Therefore the states are immune to σ z

m noise to first order. In

addition, since [N ,σ±m ] = ±σ±m we know that the action of the σ±m operator is to

map the states to orthogonal eigenstates of N with eigenvalues N± 1. Therefore

〈↑|σ±m |↑〉= 〈↓|σ±m |↓〉= 0. This means that our states are also immune to dephasing

acting on σ±m or any superposition thereof, such as σ x
m or σ

y
m.

Unfortunately it is not easy to find a model which produces such states in

usable form. There are many examples of models which obey the necessary sym-

metries and produce the desired eigenstates, but in order to use these states conve-

niently as a basis for a qubit they must be well separated from the rest of the spec-

trum. For example, we might expect to find such states in the XX model, wherein

the spins of the chain are coupled only by nearest neighbour flip-flop interactions.

This model conservesN and is symmetric under both translation and inversion. In-

deed, the spectrum of the XX model contains a degenerate manifold, within which

lie two states satisfying the required symmetries. But, since they are both inter-

mediate in the spectrum and degenerate with multiple other states, they cannot be

used.

For our purposes we will investigate a modified XX model consisting of a

periodic chain of 6 spins which are coupled by three different kinds of interactions.

Flip-flop interactions exchange excitations between neighbouring sites in the ring at

a rate t and between diametrically opposite sites in the ring at a rate λ . In addition

there is an all-to-all σ z⊗σ z coupling with strength ζ . This model is described by
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the following Hamiltonian:

H =
N−1

∑
m=0

(
t
2
(σ+

m σ
−
m+1 +σ

−
m σ

+
m+1)−

λ

2
(σ+

m σ
−
m+3 +σ

−
m σ

+
m+3)

)
+

ζ

4

N−1

∑
m,n=0

σ
z
mσ

z
n (5.5)

which is illustrated in Fig. 5.1.1(a). Using this model we show in Fig. 5.1.1(b) and

(c) that it is possible to produce a qubit manifold which satisfies the above symme-

tries and is therefore protected against relaxation and dephasing. We quantify the

sensitivity to relaxation by

R2 = ∑
w∈{x,y,z}

| 〈↑|σw
m |↓〉 |2 (5.6)

and the sensitivity to dephasing by

D2 = ∑
w∈{x,y,z}

| 〈↑|σw
m |↑〉−〈↓|σw

m |↓〉 |2. (5.7)

By plotting these quantities as a function of ζ and λ we observe regions in which

the sensitivities to relaxation and dephasing are suppressed. The hatched regions

which are overlain indicate the areas of parameter space in which the symmetries

listed in eqs. 5.2 are obeyed by the lowest two eigenstates of the Hamiltonian. As

expected, these co-indicate with the protected regions.

Here we note that the suppression of D can also be connected to time reversal

symmetry. The time reversal operator is given by:

U = iσ yK (5.8)

where K is the antiunitary complex conjugation operator. The action of U on a Pauli

operator is given by:

U†
σ

wU =−σ
w. (5.9)
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Figure 5.1.1: Decoherence properties of a periodic chain containing six spins with long
range couplings. (b) Schematic representation of the Hamiltonian of the chain. Each spin
(represented in red) is coupled by flip-flop interactions to both its nearest neighbours (t,
blue arrows) and to its diametrically opposite counterpart (λ , green lines). In addition there
are σ z⊗σ z interactions between all spins in the chain (ζ , purple lines). Sensitivity to re-
laxation R (b) and dephasing D (c) of a superposition of the two lowest energy states vs
the strengths of the long range interactions ζ and λ . The black coloured regions indicate
parameters where the ground and first excited state of the chain are protected against lo-
cal perturbations. Three regions are highlighted to indicate different kinds of symmetries
obeyed by the ground and first excited states. The red hatched region indicates that both
states are invariant under the action of the translation operator T̂ while the orange hatched
region indicates that the ground (resp. first excited) state is an eigenvector of the inversion
operator Î with eigenvalue +1 (resp. -1). Finally the white hatched region indicates that the
ground and first excited states are eigenvectors of the total number of excitations N̂tot with
eigenvalue 3.

Since our model in eq. 5.5 only contains pairs Pauli operators, we can see that the

time-reversal operator will leave the Hamiltonian unchanged. Therefore, assuming

our states are not degenerate with any others, the action of the time reversal operator

will be to map them back to themselves, possible acquiring a phase:

U |s〉= exp(iφs) |s〉 (5.10)

where s ∈ {↑,↓}. We can combine this information to demonstrate vanishing ex-

pectation values as follows. From the above we see that the expectation value of

operator σw in state U |s〉 is given by:

〈s|U†
σ

wU |s〉= 〈s|σw |s〉 . (5.11)
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Simultaneously from eq. 5.9 we see:

〈s|U†
σ

wU |s〉=−〈s|σw |s〉 . (5.12)

Therefore 〈s|σw |s〉=−〈s|σw |s〉= 0.

If the system contains an odd number of sites then the total spin will be a half

integer and according to Kramers theorem all eigenstates of the Hamiltonian will

form degenerate multiplets and the action of the time reversal operator will be non-

trivial. Therefore for the above argument to hold the chain must contain an even

number of sites.

5.2 Circuit design
This development is promising, however it is a challenging task to find a physical

system where long range interactions are not only of similar strength to the nearest

neighbour interactions but also of opposite sign. Fortunately for us, the toolset of su-

perconducting electronics offers methods to engineer such interactions via directly

connecting distant sites in a chain. In the following we propose an implementation

of our Hamiltonian using an array of Josephson junctions. In our design the spins

are formed by the radial Josephson junctions shown in blue in Fig. 5.2.1(a), which

have Josephson energy EJr and charging energy ECr. Each junction, whose gate

charge is tuned to Ng = 0.5, forms a Cooper pair box superconducting qubit.

These qubits are coupled to their nearest neighbours via Josephson junctions

with Josephson energy EJa and to their diametrically opposite counterparts via

Josephson junctions of Josephson energy EJl . These two types of junctions will

henceforth be referred to as azimuthal and diametric junctions. Tunneling across

these junctions can be used to recreate the flip-flop coupling above. Meanwhile the

charging energies of the azimuthal junctions ECa are chosen such that ECa/ECr� 1.

In this case a long range charge coupling of strength∼ECr arises between the qubits

which recreates the all-to-all σ z⊗σ z coupling.

The relative sign of the flip-flop interactions is controlled by the choice of the

flux threading through the circuit. At the optimal point the flux threading through
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each internal sector is tuned to half a flux quantum Φ0/2, while the flux threading

the outer loops is 3Φ0/2. This can be easily arranged by applying a homogeneous

external magnetic field and choosing the appropriate circuit dimensions. For ease

of fabrication we choose all three junction types to have the same plasma frequency
√

8EJEC/h = 10 GHz. In Fig. 5.2.1(b) we plot the transition frequency between

the ground (|0〉) and first excited (|1〉) states of the circuit ω01/2π as a function

of ECr/EJa and EJl/EJa assuming EJa/h = 6 GHz. These axes are analogous to

those used in Fig. 5.1.1(b) since the strengths of the nearest neighbour flip-flop,

range 3 flip-flop and all-to-all σ z⊗σ z couplings are proportional to EJa, EJl and

ECr respectively.

We shall now outline the process of quantizing this circuit and obtaining the

Hamiltonian, which is explained in more detail in [14, 15, 144]. The circuit is

treated as a graph consisting of a grounded node in the centre connected to 6 outer

nodes via radial Josephson junctions. The voltage of node n at time t is written

as vn(t), from which we define the node fluxes by φn(t) =
∫ t ′
−∞

vn(t ′)dt ′. The La-

grangian is then divided into a kinetic part T which consists of the capacitive charg-

ing energies, and a potential part V which is the sum of the inductive energies of the

Josephson junctions. If we denote the capacitances of the radial, azimuthal (nearest-

neighbour) and diametric (next-next-nearest-neighbour) junctions by Cr, Ca and Cl

respectively then we can write the kinetic term as

T =
1
2

6

∑
m=1

(
Ca(φ̇m+1− φ̇m)

2 +Crφ̇
2
m
)
+

1
2

3

∑
m=1

Cl(φ̇2m− φ̇2m+3)
2 (5.13)

=
1
2

6

∑
m,n=1

Cmnφ̇mφ̇n (5.14)
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Figure 5.2.1: Realizing the protected states in a superconducting circuit. (a) Circuit
diagram of the qubit showing a superconducting loop intersected by six identical azimuthal
Josephson junctions of Josephson energy EJa (green). Each of the islands - whose phases
are labelled φ1 to φ6 - is connected both radially to ground via a Josephson junction of
charging energy ECr (blue) and to its diametrically opposite counterpart by a junction with
Josephson energy EJl (orange). (b) Transition frequency to the first excited state of the qubit
ω01/2π as a function of ECr/EJa and EJl/EJa assuming all the junctions of the circuit have
the same plasma frequency

√
8EJEC/h = 10 GHz. The hatched region corresponds to pa-

rameters where the ground and first excited states do not exhibit the required symmetries
for protection of the qubit against decoherence. The red lines indicate contours of constant
anharmonicity α = ω12/ω01. The white cross corresponds to the qubit parameters we chose
for the remainder of the article. (c) Potential landscape in the (x,y) plane. In this plane two
valleys of global minima can be seen. The wavefunctions of the ground and first excited
state are localised in the potential minima. (d) Potential energy along the horizontal direc-
tion shown in (c) as a dashed black line. Two global potential minima are observed for
x =±2π/3 and correspond to states with clockwise or anti-clockwise current flowing in the
circuit. The ground (resp. first excited) state wavefunction consists of a symmetric (resp.
anti-symmetric) superposition of these states.
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where in the second line we have introduced the capacitance matrix:

C =



Cr+2Ca+Cl −Ca 0 −Cl 0 −Ca

−Ca Cr+2Ca+Cl −Ca 0 −Cl 0

0 −Ca Cr+2Ca+Cl −Ca 0 −Cl

−Cl 0 −Ca Cr+2Ca+Cl −Ca 0

0 −Cl 0 −Ca Cr+2Ca+Cl −Ca

−Ca 0 −Cl 0 −Ca Cr+2Ca+Cl


.

(5.15)

In order to write down the potential term we must be careful to take account of

any fluxes which may be threading through the loops of the circuit. We first define

a spanning tree which reaches all nodes of the circuit without forming any loops.

In our case this spanning tree consists of all the radial Josephson junctions. Each

Josephson junction in the circuit makes a contribution to the inductive energy of the

form −EJ cos(φ/ϕ0) where φ is the difference in node fluxes across that junction.

For junctions lying within the spanning tree, i.e. the radial junctions, this phase

difference is simply given by the node fluxes φn(t). However if the junction lies

outside the spanning tree then the flux difference must account for the external flux

threaded through the loop it forms. According to Maxwell’s equations the change

in potential energy when traversing a loop is proportional to the rate of change of

magnetic flux through that loop:

∮
E ·dx =−∂tΦext. (5.16)

If we integrate this relation over time then we find that the sum of flux differences

across circuit elements within a loop will be equal to the external flux threading the

loop. This allows us to write the flux differences across the mth azimuthal ∆φa,m
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and diametric ∆φl,m junctions as

∆φa,m = φm+1−φm−Φa,m (5.17)

∆φl,m = φ2m+3−φ2m−Φl,m (5.18)

where Φa,m and Φl,m are the external fluxes threading through the loops formed by

these junctions. Finally, these flux differences can be used to write the potential part

of the Lagrangian as

V =−EJr

6

∑
m=1

cos
(

φm

ϕ0

)
−EJa

6

∑
m=1

cos
(

φm+1−φm−Φam

ϕ0

)
−EJl

3

∑
m=1

cos
(

φ2m+3−φ2m−Φlm

ϕ0

)
. (5.19)

where ϕ0 is the reduced flux quantum. To convert this Lagrangian to the form of a

Hamiltonian we must first obtain the node charges. These are given by

qm =
∂L

∂ φ̇m
(5.20a)

=
6

∑
n=1

Cmnφ̇n (5.20b)

After performing a Legendre transformation the Hamiltonian is given by

H =
6

∑
m=1

φ̇mqm−L (5.21a)

= T +V (5.21b)

where we now express the kinetic term as

T =
1
2

6

∑
m,n=1

C−1
mnqmqn (5.22)

This Hamiltonian can be quantized by replacing qn → 2e(N̂n − Ng,n) and

2πφn/Φ0 → θ̂n where Ng,n is the gate charge on site n and the commutation re-
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lation [θ̂n, N̂n] = i holds. This gives the complete Hamiltonian in the form

H =2e2
6

∑
m,n=1

C−1
mn(N̂m−Ng,m)(N̂n−Ng,n)−EJr

6

∑
m=1

cos
(

θ̂m

)

−EJa

6

∑
m=1

cos
(

θ̂m+1− θ̂m−
Φam

ϕ0

)
−EJl

3

∑
m=1

cos
(

θ̂2m+3− θ̂2m−
Φlm

ϕ0

)
. (5.23)

If denoted the fluxes through the six inner and three outer loops of the circuit by

ΦI,m and ΦO,m then we can rewrite the external fluxes as:

Φam = ΦI,m, Φlm = ΦI,m +ΦI,m+1 +ΦI,m+2 +ΦO,m. (5.24)

We can now demonstrate the relationship between this Hamiltonian and our original

spin model more clearly. We start with the potential term which recreates the flip-

flop couplings of the spin-1/2 model. We can see this by rewriting the potential in

terms of the tunneling operators

Σ
+ = ∑

n
|n+1〉〈n| , (5.25a)

Σ
− = ∑

n
|n〉〈n+1| (5.25b)

which cause Cooper pairs to tunnel back and forth across the radial junctions, and

are written in terms of the Cooper pair number states N̂ |n〉= n |n〉. These operators

are useful for representing the cosine and sine functions as

cos(θ̂m) =
1
2

(
Σ
−
m +Σ

+
m

)
, (5.26a)

sin(θ̂m) =
i
2

(
Σ
−
m−Σ

+
m

)
. (5.26b)

Using compound angle formulae the nearest neighbour coupling is then rewritten
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as

cos
(

θ̂m+1− θ̂m−
Φam

ϕ0

)
=

1
2

(
Σ
+
mΣ
−
m+1eiΦam/ϕ0 +Σ

−
mΣ

+
m+1e−iΦam/ϕ0

)
. (5.27)

Similarly the diametric coupling is rewritten as

cos
(

θ̂m+3− θ̂m−
Φlm

ϕ0

)
=

1
2

(
Σ
+
mΣ
−
m+3eiΦlm/ϕ0 +Σ

−
mΣ

+
m+3e−iΦlm/ϕ0

)
. (5.28)

In order to arrange the current signs for these couplings we simply choose

Φam/ϕ0 = π and Φlm/ϕ0 = 4π .

Next we look at the charge coupling. In the limit Cr/Ca→ 0 the inverse of the

capacitance matrix gives an all to all charge coupling according to

C−1
mn →

1
6Cr

, T → 2
3

ECr

6

∑
m,n=1

(N̂m−Ng,m)(N̂n−Ng,n). (5.29)

If the gate charges are tuned to a half integer then we can make the identification

N̂−Ng ∼ 1
2σ z and this coupling will be of the same form as the all-to-all σ z

mσ z
n we

examined earlier. In this manner we can use our circuit to engineer a Hamiltonian

which is analogous to the simple spin-1/2 model with Cooper pairs now taking the

role of the excitations which can now tunnel between sites via Josephson junctions.

Our circuit respects the key translation and inversion symmetries we identified ear-

lier however whereas this previous model consisted of two level sites, each site in

our circuit has many levels. But there is another set of terms in our circuit Hamilto-

nian which we have not yet mentioned: the radial Josephson junctions allow Cooper

pairs to tunnel back and forth between the nodes of our circuit and ground. This

breaks the conservation of excitations which was a key component of our symmetry

arguments. Fortunately in the next section we shall see that this does not pose a

significant problem.

Our next task is to find some realistic circuit parameters which produce ground

and first excited states with the desired symmetries and which have usable energies

i.e. they have a gap which can be driven by microwave pulses and they can be
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separated from higher states in the spectrum. We start by assuming that all of the

junctions in our circuit have a plasma frequency of
√

8EJEC/h = 10 GHz. In prac-

tise this means that all of the junctions have the same thickness. During fabrication

this allows them to all be created simultaneously in a single oxidation step, which

will make the task considerably easier. Next we choose EJa = 6 GHz and make a

sweep of ECr and EJl .

Again we search for a region of parameter space in which the symmetries listed

in eqs. 5.2 are met. Since ECr controls the strength of the charge coupling in

the small Cr limit and EJl controls the strength of the diametric flip-flop coupling,

sweeping these parameters is comparable to sweeping ξ and λ in Fig. 5.1.1. We

diagonalize the Hamiltonian in eq. 5.23 using the PRIMME eigensolver available

in Python [145]. We include 8 charge states on each site in the chain, which is found

to be sufficient for calculations to converge. We find a regime in which the desired

inversion and translation eigenvalues are obtained. The gap in energy between the

ground and first excited states within this regime is portrayed using a colourplot in

Fig. 5.2.1(b). The gap is not displayed in the hatched area outside this regime, since

the corresponding states are of no interest to us.

We identify a particular set of parameters (EJr/h = 1.7 GHz, EJa/h = 6.0 GHz

and EJl/h = 30.0 GHz), marked by the white cross, which will be used in the fol-

lowing to demonstrate our design. At this location the transition frequency of the

qubit is ω01/2π = 704 MHz and the anharmonicity of transitions to the next ex-

cited state is ω12/ω01 = 4, where ω12 is the transition frequency between the first

and second excited states of the circuit. Given this large anharmonicity we will be

able to address our qubit states without the participation of higher levels.

Lastly we mention the total number operator N . We remarked earlier that our

Hamiltonian does not conserve excitations, but it is crucial part of our symmetry

arguments. Despite this problem we find that our qubit states are approximately

eigenstates of N . We find

〈0|N |0〉√
〈0|N 2 |0〉

,
〈1|N |1〉√
〈1|N 2 |1〉

> 1−10−4 (5.30)
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which indicates that our symmetry arguments should still hold to some level of

approximation.

5.3 Wavefunctions

So far we have very limited information about what these states look like. We

only know that they obey a few symmetries, i.e. translation and inversion, but have

no other clues as to their form. We will understand them better by examining their

wavefunctions in the basis of phase eigenstates θ̂m |θm〉= θm |θm〉. For our purposes

it will also be useful to define the transformed phase states |~θ ,~Ng〉 = ei~Ng·~θ |~θ〉,

which will allow us to remove background oscillations due to the gate charges. We

write the wavefunctions as

Ψ0(~θ ,~Ng) = 〈~θ ,~Ng|0〉, (5.31a)

Ψ1(~θ ,~Ng) = 〈~θ ,~Ng|1〉. (5.31b)

where ~θ = (θ1,θ2,θ3,θ4,θ5,θ6) and ~Ng = (Ng,1,Ng,2,Ng,3,Ng,4,Ng,5,Ng,6). To see

exactly why it is necessary to use the transformed phase states we must understand

that the charge states present in the wavefunctions are centered around the gate

charges. This can be proven by recognising that the Hamiltonian is invariant under

the exchange of all charge states above the gate charge with the charge states below

the gate charge i.e. |bNgc−m〉 ↔ |bNgc+m〉. This action can be implemented via

the unitary operator

F̂(Ng) =
∞

∑
m=−∞

|bNgc−m〉〈bNgc+m| (5.32)

which acts on the number and tunneling operators according to

F̂(Ng)N̂F̂(Ng) = 2bNgc+1− N̂ (5.33a)

F̂(Ng)Σ
±F̂(Ng) = Σ

∓. (5.33b)
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Provided that the gate charges are tuned to half integers, this transformation will

leave the charge couplings terms of the Hamiltonian unchanged. In addition, if

the fluxes controlling the signs of the tunnel couplings are tuned to half or full

integers of flux quanta, these terms will also be left unchanged. Hence the overall

Hamiltonian and its eigenstates must respect this symmetry.

Next we examine a charge state expressed in the phase basis as

|n〉= 1√
2π

∫
dθe−inθ |θ〉 . (5.34)

This charge state takes the form of a plane wave oscillating with angular frequency

n. Since the charge states contributing to our qubit states are centered on the

gate charges, we should expect the the frequencies contributing to the wavefunc-

tions to also be centered on the gate charges. This background frequency is re-

moved in the |~θ ,~Ng〉 basis, which produces the potential and wavefunctions plot-

ted in Fig. 5.2.1(c). We represent the potential along a two-dimensional (x− y)

cut of the six-dimensional Hilbert space, within which the node phases are given

by θn = nx + y. To sets of global minima are observed forming two valleys

along the lines y = x± 2π

3 . In Fig. 5.2.1(b) we plot the potential along y = 0

along with the wavefunctions of the qubit states. We observe that the wavefunc-

tions are localised in the potential minima. The co-ordinates of the left minimum

~φ = (−2π/3,−4π/3,−6π/3,−8π/3,−10π/3,−12π/3) correspond to a clock-

wise current flowing in each azimuthal junction of Ip = Ica sin(π/3) where Ica is

the critical current of these junctions, while the current in the junctions of the

outer loops are all zero. Similarly, the co-ordinates of the right minimum φ =

(2π/3,4π/3,6π/3,8π/3,10π/3,12π/3) correspond to an anti-clockwise current

of Ip = Ica sin(π/3). We denote the states localised in these minima by |�〉 and |	〉

so that the qubit states are given by |0〉= 1√
2
(|�〉+ |	〉) and |1〉= 1√

2
(|�〉− |	〉).

By looking at the potential and our states in the phase basis it is also possible

to see why our states are approximately eigenstates of the the total excitation oper-

ator, despite the Hamiltonian not conserving total excitations. To see why, we must
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express the Cooper pair number operators in the phase basis as follows:

〈θ ,Ng| N̂ =
∫

dθ
′ 〈θ ,Ng|θ ′〉〈θ ′| N̂

= e−iNgθ 〈θ | N̂

=−ie−iNgθ
∂θ 〈θ |

= Ng− i∂θ 〈θ ,Ng| . (5.35)

We can then obtain express the total Cooper pair number operatorN = ∑
6
m=1 N̂m as

〈~θ ,~Ng|N =
6

∑
m=1

(Ng,m− i∂θm 〈~θ ,~Ng|)

=
6

∑
m=1

Ng,m− i∂y 〈~θ(x,y),~Ng| . (5.36)

In other words the total Cooper pair number operator acts like a derivative with re-

spect the y coordinate, with an added offset from the gate charges. Within the valleys

formed by the global minima we see that neither the potential nor the wavefunctions

vary with respect to y. Hence, within these minima Cooper pairs are approximately

conserved, despite the fact that in general the radial junctions allow Cooper pairs to

tunnel back and forth from the ground node.

5.4 Coherence properties

We now turn our attention to the coherence properties of our proposed qubit, both

at the optimal point and away from it. Sources of decoherence can be divided into

two basic types: relaxation due to exchange of energy between the qubit and its

environment, and dephasing whereby the energy gap of the qubit may vary stochas-

tically in time causing the experimentalist to lose track of the accumulated phase.

In our design we will consider dephasing due to charge and flux noise, and we will

consider relaxation via quasiparticle tunneling and dielectric losses.
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Figure 5.3.1: Decoherence properties of the qubit. Upper: Spectroscopy of the qubit
showing the first four transition frequencies vs. the total charge ∆Qtot and flux ∆Φtot offsets
from the optimal point. Middle: Relaxation rate of the qubit due to quasiparticle tunneling.
Lower: Pure dephasing rate away from the optimal point due to charge noise (Γc

φ
) or flux

noise (Γ f
φ

). The spectral density of the both charge and flux noise is assumed to behave
as 1/ f with an IR cutoff of 1 Hz and a UV cutoff of 1 MHz. The amplitudes of the power
spectra at 1 Hz are assumed to be

√
Ac = 2×10−4 e for charge noise and

√
A f = 2×10−6 Φ0

for flux noise. This charge and flux noise is divided evenly among the nodes and loops of
the circuit.
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5.4.1 Dephasing

We begin with dephasing. In any realistic design we expect our circuit to undergo

both charge noise and flux noise. The microscopic sources of charge noise may

include fluctuating charges in the substrate of the circuit or in the oxide layers

formed within both the Josephson junctions and on top of the lines of the circuit

[146, 147, 148, 149, 150]. Meanwhile flux noise is thought to originate from spin

defects [151, 152]. Only spins near the edges of the loops of circuit would con-

tribute to flux noise since the net flux of a dipole far from the edge would tend

to zero. Temperature-activated motion of these charge fluctuators and spins is ex-

pected to produce noise in the gate charges and external fluxes with a 1/ f power

spectral density (PSD).

We will now introduce the theory which allows us to calculate the dephasing

time of the qubit in the presence of such noise [153, 154]. We consider a Hamil-

tonian H which depends on some time varying set of noisy parameters ~x(t) whose

long-time average is zero ~x = 0. If the PSD of the noise is limited to frequencies

below the gaps between the eigenstates of the Hamiltonian then it will be unable to

cause transitions. Therefore we can treat the noise adiabatically and consider the

occupation probabilities of all eigenstates to be constant. Our qubit is formed by

the lowest two eigenstates of H
(
~x(t)

)
, whose splitting frequency is written as

ω01(~x(t)) = ω01(0)+δω01(~x(t)) (5.37)

where δω01(~x(t)) denotes any fluctuations in the splitting frequency due to the

noise. The state of our qubit consists of a superposition of these states and is written

as

|ψ(t)〉= α(t) |0〉+β (t) |1〉 . (5.38)

In order to study the coherence of the qubit during its evolution we must calculate
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the ensemble average state over many experiments. This will be given by

ρ(t) = E[|ψ(t)〉〈ψ(t)|] (5.39)

=

 p0 C(t)

C∗(t) p1

 (5.40)

where p0 and p1 represent the occupation probabilities of states |0〉 and |1〉 and C(t)

represents the coherence of their superposition. The evolution of this coherence can

be written as

C(t) = E[α(t)β ∗(t)],

=
√

p0 p1 exp(−iω01t) fφ (t). (5.41)

where fφ (t) = E[exp(−iφ(t))] and φ(t) =
∫ t

0 δω01(~x(τ))dτ . This evolution consists

of two principal parts: an oscillation at the average frequency of the qubit multi-

plied by a term which accounts for the variations in the accumulated phase in each

experimental run. The latter term decays over time due to destructive interference

between these variations, causing the qubit to decohere. Our task is to calculate

fφ (t) numerically by taking many samples of the noise from an appropriate PSD,

calculating φ(t) for each sample, and finally taking the ensemble average of the

phase. We define the PSD of a component of the noise as

Sx(ω) =
∫ +∞

−∞

Rx(τ)exp(−iωτ)dτ, (5.42a)

Rx(τ) = E[x(τ)x(t + τ)]. (5.42b)

We find it useful to write S(ω) is terms of a normalized PSD as

Sx(ω) = AxS0(ω). (5.43)

A sample from the normalized PSD is denoted by x̃(t) and the corresponding sam-

ple from the unnormalized PSD is x(t) =
√

Ax̃(t). If we have noise on a single
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parameter then we can write the frequency variation of the qubit using a Taylor

expansion as

δω01(t) = x(t)∂xω01 +
1
2

x2(t)∂ 2
x ω01 +O(x3(t))

= x̃(t)
√

A∂xω01 +
1
2

x̃2(t)A∂
2
x ω01 +O(x̃3(t))

= D̃xx̃(t)+
1
2

D̃x,xx̃2(t)+O(x̃3(t)) (5.44)

in which we use

D̃x =
√

A∂xω01 and D̃x,x = A∂
2
x ω01. (5.45)

If we expand to multi-parameter noise then the frequency variation is given by

δω01(t) = ∑
m

x̃m(t)D̃xm +
1
2 ∑

m,n
D̃xm,xn x̃m(t)x̃n(t)+O(x̃3(t)) (5.46)

for which we define

D̃xm =
√

A∂xmω01 and D̃xm,xn = A∂xm∂xnω01. (5.47)

These derivatives can be calculated by numerically by diagonalizing H(~x) for many

samples of ~x and fitting a Taylor expansion to the resulting values of ω01(~x). We

will present the results of these dephasing calculations in section 5.4.3 alongside

calculations of the relaxation time.

5.4.2 Relaxation

There are two principal sources of relaxation to examine: dielectric losses due to

currents flowing in the oxide layer of the Josephson junctions, and the tunneling

of quasiparticles across these junctions. We start by demonstrating that dielectric

losses should be negligible, before moving on to quasiparticle tunneling.

The theory describing dielectric losses is based on the quantum fluctuation-

dissipation relation and Fermi’s golden rule [155]. We expect the voltage across

each junction in the circuit to fluctuate with a PSD proportional to EC tan(δ ) where

EC is the charging energy of that junction and tan(δ ) is the loss tangent of the dielec-
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tric within the junction. Using Fermi’s golden rule we can calculate the transition

rate due to these fluctuations [27]. We obtain an order of magnitude estimate for the

relaxation rate due to dielectric losses in junction i according to

Γ1,i ∼ EC,i tan(δi)max
j,k

(N j,k) (5.48)

where N j,k = 〈1| N̂ j |0〉〈0| N̂k |1〉. However, due to our symmetry arguments we

expect such transition matrix elements to vanish. For our design parameters we

calculate | 〈0| N̂ j |1〉 | < 10−11. Given a typical loss tangent of tan(δ ) ∼ 10−5 [27,

156] we therefore expect Γ1,i. 10−17 Hz so dielectric losses will not be a significant

source of relaxation.

We can now move on to quasiparticle tunneling [157, 158, 159, 155]. Quasi-

particles within the circuit act as a bath with which the superconducting states may

exchange energy. The energy required for a quasiparticle to tunnel across a junction

may be provided by a relaxation of the state of the qubit. The contribution to the

relaxation rate of quasiparticle tunneling over a single junction is given by

Γ1,qp ≈
4EJxqp

π

√
2∆

}ω01

∣∣∣∣〈1|sin
(

δθ̂

2

)
|0〉
∣∣∣∣2 (5.49)

where EJ is the Josephson energy of the junction, ∆ is the superconducting gap, δθ̂

is the phase difference over the junction and xqp is the quasiparticle density. The full

relaxation rate is obtained by summing the relaxation rates for all of the junctions

in the circuit.

5.4.3 Coherence results

Now that we have the tools to calculate both the dephasing and relaxation rates of

our qubit we can plot how these quantities change as the fluxes and gate charges

of the circuit are varied. In Fig. 5.3.1 we display how the energies of the four

lowest excited states of the Hamiltonian change as we vary the total gate charge and

flux offsets: ∆Qtot = 2e∑
6
m=1 Ng,n and ∆Φtot = ∑

6
m=1 ΦI,m +∑

3
m=1 ΦO,m. Varying

the gate charges does not have a significant effect on the transition frequency of
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our qubit, but varying the flux away from the optimal point generates a magnetic

dipole where one current state (|	〉 or |�〉) becomes more favourable and therefore

increases the transition frequency by ∼ Ip∆Φtot. This behaviour is similar to what

is usually observed with flux qubits but the sensitivity of the transition frequency to

changes in the flux is significantly reduced since the persistent current flowing in

our circuit Ip = 10 nA is two orders of magnitude smaller than the typical current

flowing in a flux qubit. Eventually the transition frequency will increase until the

first and second excited states cross at ω01/2π ≈ 4 GHz.

The rate of relaxation due to quasiparticle tunneling is plotted in the middle

panel of Fig. 5.3.1. These result were calculated using a quasiparticle density of

xqp = 5×10−9 and a superconducting gap of ∆ = 200 µeV for aluminium [160]. At

the optimal point we find a relaxation rate of Γ1 = 0.2 kHz which corresponds to a

relaxation time of T1 = 5 ms. The relaxation rate is insensitive to charge detuning,

but it decreases when the flux is detuned from the optimal point.

Finally we examine dephasing. Flux and charge noise are generated with a 1/ f

spectrum i.e. with a PSD of the form

S0(ω) =
1
|ω|

. (5.50)

For the charge noise we choose an overall power of Ac = (2× 10−4e)2 which we

divide among the six gate charges so that each gate charge has a PSD of

S2eNg,m(ω) =
Ac

6
S0(ω). (5.51)

For this spectrum we choose an infrared cutoff of ωIR/2π = 1 Hz and an ultraviolet

cutoff of ωUV/2π = 1 MHz. Similarly for flux noise we choose an overall power of√
A f = 2×10−6Φ0 which is divided among the 9 loops of the circuit such that we

have

SΦI/O,m(ω) =
A f

9
S0(ω). (5.52)
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We use these power spectra to produce the dephasing rates plotted in the lower

panel of Fig. 5.3.1. We plot the rate of dephasing up to second order in both charge

and flux noise. At the optimal point these values give pure dephasing times of

T c
φ
= 2.9 ms and T f

φ
= 5.2 ms. When the flux is detuned from the optimal point the

qubit becomes vulnerable to flux noise, while when the gate charges are detuned

from the optimal point the qubit becomes vulnerable to charge noise.

5.5 Operating the qubit

These coherence times are promising, but conversely they also make it challenging

to communicate with the qubit. Typically, the better protected a qubit is from its

environment, the harder it is to control, initialize and read its state. We would like

to perform these tasks using a circuit-QED architecture and thus coupling our qubit

to a microwave resonator is key a requirement. In the next section we will outline a

design to implement this coupling by galvanically connecting a resonator to one of

the loops of the circuit, which allow some ability to control and read the state of the

qubit.

But we must also consider initialization. Initialization is particularly chal-

lenging given the small transition frequency of the qubit, which is only ω01/2π =

704 MHz. At the base temperature of a dilution refrigerator, i.e. around 20 mK,

we expect the thermal state of the qubit to be highly mixed. In order to create a

pure ground state we intend to use the flux line to detune the qubit from its optimal

point and increase the transition frequency. However, as we can see from Fig. 5.3.1

this will also lead to a suppression of the relaxation rate to such a low level as to be

impractical for experimental purposes.

But there is a solution. We could use the resonator to enhance the speed of

intialization via the Purcell effect [161]. If we tune the qubit to the frequency of the

resonator then the two systems hybridize and the excited state of the qubit decays via

the resonator at a highly accelerated rate. Once this operation has been completed

we can adiabatically tune the flux back to the optimal point for operation. The

details of this procedure and the resonator coupling will be explained below.
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Figure 5.5.1: Operating the qubit. (a) Circuit diagram showing a mode of operation of the
qubit. A resonator of frequency ωr/2π = 3 GHz and quality factor Q = ωr/κ = 10000 is
galvanically connected to the qubit via a small inductance l = 40 pH. The resulting strength
of the coupling between the resonator and the qubit is g ≈ 11MHz. In addition the qubit
can be biased by a DC flux line, which is used to detune the flux threading the qubit from
the optimal point for the purposes of initialization and readout. (b) Control sequence used
to initialize the qubit. Due to its relatively small transition frequency the excited state of
the qubit in thermal equilibrium (25 mK) is significantly occupied. In this sequence we use
the flux line to adiabatically increase the qubit transition frequency over a period of 10 µs
and bring it into resonance with the microwave resonator. At this point the qubit hybridizes
with the resonator and relaxes by Purcell decay to the new thermal state at a rate κ/2.
This thermal state is much closer to a pure ground state due to the larger frequency of the
resonator. The flux can then be adiabatically tuned back to the optimal point. (c) Simulation
of Rabi oscillations with a period of 100 ns which can be produced at the optimal point by
driving the resonator at the qubit transition frequency with a power of Pin =−80 dBm.

5.5.1 Engineering a coupling

In order to obtain a ground state with sufficient purity we need to engineer a res-

onator with a frequency far above the base fridge temperature. We aim for a fre-

quency of 3 GHz. In the lumped element approximation this frequency is given

by ω = 1/
√

LC, where L and C are the inductance and capacitance of the resonator

respectively. We take a typical characteristic impedance of Z =
√

L/C≈ 30 Ω from
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which the capacitance and inductance are then given by:

C =
1

ωZ
= 1.8 pF (5.53a)

L =
Z
ω

= 1.6 nH. (5.53b)

We couple to the qubit by a galvanic connection. A length of wire leading between

azimuthal Josephson jundctions is shared by both the resonator and the qubit as

illustrated in Fig. 5.5.1(a). We can boost the strength of the coupling by increasing

the inductance of this wire. This can be achieved either by lengthening it or by

constricting its width, which increases its kinetic inductance. The kinetic inductance

of the wire is given by

l =
}R
π∆

(5.54)

where R is its resistance and ∆ is the superconducting gap, which is measured to be

around 200 µeV in aluminium [160]. The resistance can be calculated according to

R =
ρl
S

=
ρl
aw

(5.55)

where ρ is the normal resistivity, l is it’s length, S is it’s cross-sectional area, w

is it’s width and a is it’s thickness. We choose the radius of our qubit to be 2 µm

and the shared wire to also be of length 2 µm. The width of the wire is 50 nm and

it’s thickness is 24 nm. The resistivity of aluminium is 240 nΩm, which gives a

resistance of 40 Ω and we therefore find our constricted wire should have a kinetic

inductance of l = 40 pH.

The potential energy of the circuit is altered by the addition of this constriction.

We now have a new node in the circuit, whose phase we denote by θ̂l . The phase

difference over the constriction can then be written as δ̂ = θ̂l − θ̂1. This phase

difference will alter the potential energy of the 1st Josephson junction. Combined

with the potential energy of this constriction the new terms in the Hamiltonian take
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the form

Vl−1 =
ϕ2

0 δ̂ 2

2l
−EJa cos

(
θ̂2− θ̂1− δ̂ − Φa1

ϕ0

)
. (5.56)

By expanding the cosine we find

Vl−1 =
ϕ2

0 δ̂ 2

2l
−EJa cos

(
θ̂2− θ̂1−

Φa1

ϕ0

)
cos
(
δ̂
)

+EJa sin
(

θ̂2− θ̂1−
Φa1

ϕ0

)
sin
(
δ̂
)

=
ϕ2

0 δ̂ 2

2l
−EJa cos

(
θ̂2− θ̂1−

Φa1

ϕ0

)
cos
(
δ̂
)
+ϕ0Îa sin

(
δ̂
)

(5.57)

in which Îa is the current flowing in the junction, given by

Îa =
EJa

ϕ0
sin
(

θ̂2− θ̂1−
Φa1

ϕ0

)
. (5.58)

Next we can relate δ̂ to the current flowing in the constriction according to

ϕ0δ̂ = lÎl (5.59)

where the constriction current Îl = Îa+ Îr is equal to the sum of the junction current

and the the current in the resonator. Provided l is sufficiently small we may say that

δ̂ is also small. Then we can make the approximation sin(δ̂ ) = δ̂ and rewrite the

constriction current to give

Vl−1 =
ϕ2

0 δ̂ 2

2l
−EJa cos

(
θ̂2− θ̂1−

Φa1

ϕ0

)
cos
(
δ̂
)
+ lÎa(Îa + Îr). (5.60)

Thus we see that there is a coupling between our qubit and the resonator of the form

Hcoupling = lÎaÎr. (5.61)
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The current in the resonator can be expressed as

Îr = IZPF(a+a†) (5.62)

where the zero point fluctuation is given by IZPF = ω0

√
}

2Z0
. For a resonator of

frequency ω0/2π = 3 GHz and impedance Z0 = 30 Ω we find IZPF = 25 nA. We

write the junction current operator in a truncated basis consisting of our qubit states

as

Îa =
1
2
(〈0| Îa |0〉−〈1| Îa |1〉)σz + 〈0| Îa |1〉σx + ... (5.63)

where we have chosen the phases of our states such that 〈0| Îa |1〉 is real. If it is

valid to apply the rotating wave approximation then we will at last arrive a Jaynes-

Cummings coupling of the form

Hcoupling = lIZPF 〈0| Îa |1〉(σ+a+σ
−a†) (5.64)

with a coupling strength of g = lIZPF 〈0| Îa |1〉. At the optimal point we find

〈0| Îa |1〉 ≈ 7.5 nA. This gives us a coupling of g/2π = 11 MHz.

5.5.2 Initialization

Now that we have established how to couple our qubit to a microwave resonator we

can consider initialization. As stated above, this procedure can be carried out via

the Purcell effect, i.e. tuning our qubit to the frequency of the microwave resonator

and using the cavity decay to accelerate the process of thermalization, before tuning

the qubit back to the optimal point.

The variations in the flux must be carried out adiabatically in both directions.

During the initial sweep we must avoid transitions to higher states which will not

relax via the resonator, whereas on the return sweep we must preserve as occupation

probability in the ground state as possible. However, if the flux sweeps are carried

out too slowly then we will lose the advantage of using the Purcell effect to acceler-

ate initialization. We must balance these two conflicting considerations in order to
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obtain the optimum initialization protocol.

In order to demonstrate the feasibility of this initialization procedure we wish

to carry out simulations using the framework of the Lindblad master equation. How-

ever this is challenging because of the large size of the Hilbert space used to describe

the circuit. If each node in the circuit is represented by Hilbert space consisting of

10 charge states then the overall Hilbert space of the circuit will contain 1010 states.

The task of evolving such a large state over the entire initialization procedure is

beyond our means. Fortunately there is an alternative. Only the lowest eigenstates

of the Hamiltonian should contribute to this state and we can greatly accelerate our

simulation by truncating the basis. But this introduces a new complication: these

eigenstates will vary with the flux. How can we perform a simulation in a time-

dependent basis? We will now describe the formalism for such a situation.

Consider a Hamiltonian H(x) which depends on a time dependent parameter

x(t). Each eigenstate ψn(x) corresponds to an eigenvalue ωn(x), both of which are

also dependent on x. The eigenvalue equation is written as

H(x)ψn(x) = ωn(x)ψn(x). (5.65)

Now consider a state Ψ(t) which evolves in time according to the Schrödinger equa-

tion

i∂tΨ(t) = H
(
x(t)
)
Ψ(t). (5.66)

We define the unitary operator which will transform our frame to the x-dependent

eigenbasis of the Hamiltonian:

U(x) =
(

ψ0(x),ψ1(x), ...
)
. (5.67)
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In this basis the state vector is described by

χ(t) =U†(x(t))Ψ(t) (5.68)

=


ψ

†
0
(
x(t)
)
Ψ(t)

ψ
†
1
(
x(t)
)
Ψ(t)

...

 (5.69)

The time evolution of χ(t) is described in turn by

i∂t χ(t) = Hmov(x,∂tx)χ(t) (5.70a)

where Hmov(x,∂tx) is an appropriate Hamiltonian. This Hamiltonian is not simply

the original Hamiltonian H transformed to a new static frame, but also accounts for

the change in the state vector χ due to the continually changing eigenbasis. This is

why Hmov depends on ∂tx as well as x. The new Hamiltonian is given by

Hmov(x,∂tx) =U†(x)H(x)U(x)+ i∂tx ∂xU†(x)U(x). (5.71)

The first term is simply a matrix of instantaneous eigenfrequencies

U†(x)H(x)U(x) =


ω0(x) 0 . . .

0 ω1(x) . . .
...

... . . .

 (5.72)

and the second term describes changes due to the time-dependent basis. This second

term can be calculated using first order perturbation theory. Consider a small change

in the Hamiltonian due to a change in the parameter δx

H(x+δx) = H(x)+δxH ′. (5.73)

In non-degenerate first order perturbation theory the changes in the eigenstates are
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given by

ψm(x+δx) = ψm(x)+δx ∑
k 6=m

ψ
†
k (x)H

′ψm(x)
ωm(x)−ωk(x)

ψk(x)+O(δx2). (5.74)

From the above we see that the first derivatives of the states are given by

∂xψm(x) = ∑
k 6=m

ψ
†
k (x)H

′ψm(x)
ωm(x)−ωk(x)

ψk(x). (5.75)

By writing the above we have implicitly fixed our gauge according to ∂xψ
†
m ψm = 0.

Now we can rewrite the second term using

(
∂xU†(x)U(x)

)
mn = ∂xψ

†
m(x)ψn(x)

= ∂xψ
†
m(x)ψn(x)

=
ψ†

m(x)H
′ψn(x)

ωm(x)−ωn(x)
(1−δmn). (5.76)

We now have most of the components necessary to write down the Hamiltonian

describing the evolution of our state in the time-dependent basis, but there is a final

problem. What are the eigenfrequencies ωm(x) and matrix elements ψ†
m(x)H

′ψn(x)?

We certainly don’t want to recalculate these quantities at every new value of x

throughout evolution, since this would require the very time consuming process of

calculating eigenvalues and eigenvectors of the ∼ 1010× 1010 Hamiltonian which

describes the circuit. The alternative is to sample these quantities over a range of

values of x and interpolate between them during evolution.

We can now write down the Hamiltonian which describes the evolution of the

state during the initialization protocol:

HJC,mov(∆Φtot) =U†(∆Φtot)H(∆Φtot)U(∆Φtot)+ωra†a

+ i∂t∆Φtot ∂∆ΦtotU
†(∆Φtot)U(∆Φtot)

+g(∆Φtot)(a |1〉〈0|+a† |0〉〈1|). (5.77)



5.5. Operating the qubit 121

In the above H(∆Φtot) is equivalent to the original circuit Hamiltonian (eq. 5.23)

with ∆Φtot describing the detuning of the flux from the optimal point. The loop

fluxes are given by

ΦO/I,m = πϕ0 +
∆Φtot

9
. (5.78)

The transformation U(∆Φtot) acts solely to diagonalize the circuit Hamiltonian and

leaves the resonator unaffected. As described above the second line represents the

change in the state vector of the circuit due to changes in the basis and the last line is

the Jaynes-Cummings coupling between the qubit states of the circuit (|↓〉 and |↑〉)

and the resonator. The strength of the coupling g(∆Φtot) is also dependent on the

flux since it is proportional to the matrix element of an azimuthal Josephson current

between two flux dependent eigenstates i.e.

g(∆Φtot) = lIZPF 〈0,∆Φtot| Îa |1,∆Φtot〉 . (5.79)

Finally we can write down the master equation which includes the relaxation

of the cavity, making a simulation of Purcell initialization possible. This is given by

∂tρ =−i[HJC,mov(∆Φtot),ρ]+κ(1+n)D[a]ρ +κnD[a†]ρ (5.80)

where dissipation is described by D[O]ρ = OρO†− 1
2(O

†Oρ +ρO†O). The Lind-

blad operators a and a† cause thermal relaxation and excitation of the cavity at a

rate κ , leading to a cavity steady state containing n photons.

By increasing the flux offset to ∆Φtot/ϕ0 = 0.606 over 10 µs we can tune

the qubit to the resonator frequency at ωr/2π = 3 GHz. Given a quality factor of

Q = 10,000 we have a cavity relaxation rate of κ/2π = 0.3 MHz. Once the qubit

and resonator have hybridized this allows the system to decay towards a thermal

state with a time constant τ = 2/κ = 1.1 µs. At temperature of 25 mK we use the

Bose distribution to calculate a thermal occupation of n = 0.003 photons. After a

resting time of 10 µs the system has essentially reached its steady state, after which
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the flux can be returned to the optimal point over another 10 µs to give a final

initialization fidelity of 99.7%.

5.5.3 Readout

We note that this process of adiabatically varying the flux through the circuit can

also be useful during readout. One of the most widely used techniques for measur-

ing the state of a superconducting qubit is known as dispersive readout, in which

the state of the qubit is inferred from shifts in the resonator frequency [1, 162].

This technique requires the qubit to be coupled to the resonator via a Jaynes-

Cummings type interaction in the dispersive regime, defined by g/|ω01−ωr| � 1.

Such an interaction causes the resonator frequency to increase or decrease by

χ = g2/|ω01−ωr| depending on the state of the qubit according to the dispersive

Hamiltonian

H =

(
ωr +

g2

ω01−ωr
σ

z
)

a†a+
(

1
2

ω01 +
g2

ω01−ωr

)
σ

z. (5.81)

If these shifts are larger than the linewidth of the cavity (i.e. χ & κ) then they can

be used as a signature to detect the state of the qubit.

For our design at the optimal point we calculate χ(∆Φtot = 0)/2π = 8.9 kHz,

which is clearly far smaller than the linewidth of κ/2π = 0.3 MHz. The solution to

this problem is to perform readout away from the optimal point. Instead we can tune

the qubit close to the resonator, but still with sufficient detuning that we are in the

dispersive regime. When the qubit is close to the resonator frequency we calculate

a coupling strength of g/2π ≈ 2 MHz. If we choose the resonator shift to be equal

to the linewidth χ = κ then we calculate a detuning of |ω01−ωr|/2π = 13.3 MHz.

From this we calculate g/|ω01−ωr|= 0.15, which demonstrates that we are in the

dispersive regime and the above Hamiltonian is a good approximation.

5.5.4 Control

Finally we can mention control of the qubit. At the optimal point we expect to be

able to carry out single qubit gates by driving Rabi oscillations. It is well known

that in the Jaynes-Cummings model this can be achieved by applying a drive to the
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resonator at the frequency of the qubit. Here we will simply demonstrate that the

power required to drive such oscillations is realistic. These oscillations must occur

on a timescale short enough that many gates can be performed within the coherence

time of the qubit.

The Rabi frequency typically increases in proportion to the drive power applied

to the resonator, but this in turn is limited by the ability of the dilution refrigerator

to remove heat dissipated by the attenuators which protect the qubit against thermal

noise from higher temperature stages both within and outside the fridge. Therefore

there is a tradeoff between the maximum attainable Rabi frequency and the thermal

noise n.

We simulate Rabi oscillations using the following Hamiltonian

H = ∑
n

ωn |n〉〈n|+ωra†a+ lÎIZPF(a+a†)+ ε cos(ωdt)(a+a†) (5.82)

in which the eigenfrequencies and eigenstates of the qubit Hamiltonian are repre-

sented by ωn and |n〉. This Hamiltonian also includes the resonator and the coupling

described above, as well as the resonator drive at amplitude ε and frequency ωd . Our

simulation also includes the Lindblad operators:

a
√

κ(1+n), a†√
κn and

√
γ |0〉〈1| . (5.83)

The input power applied to the resonator is given by Pin(t) = }ωdε2(t)/κ [29]. With

a drive power of −80 dBm we are able to drive Rabi oscillations with a time period

of 100 ns.

5.6 Conclusion
In this chapter we have introduced a new qubit design based on a superconducting

circuit consisting of a ring of Cooper Pair Boxes arranged in a ring which couple

to each other via both nearest neighbour and 3rd nearest neighbour couplings. The

symmetries inherent to this design produce promising coherence times in when we

consider both dephasing due to charge and flux noise and relaxation via quasipar-
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ticle tunneling and dielectric losses. Furthermore we have shown that this circuit

can be coupled to a microwave resonator in a cQED architecture. This opens up the

possibility of the control and readout using the standard techniques of this field.

Thus far, all of this work has been purely theoretical. Future work should of

course focus on the fabrication of this design and the demonstration of its proper-

ties. Yet there is still room for further theory work. So far we have not considered

multi qubit gates, which are essential to the operating of any quantum computer. In

many cQED based techniques for this procedure have been developed and it will

become increasingly important to assess which is most promising for our design.

Furthermore we have only considered uncorrelated noise in this chapter. In reality

this cannot be assumed [163] and we must consider what effects any correlations

will have on our predictions of the coherence time. Finally we may wish to consider

modifications to our design such as exploring longer chain lengths to see if they lead

to improved performance.
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This project was carried out by Paul Brookes under the supervision of Michael

Stern, Eran Ginossar, Marzena Szymanska and Eytan Grosfeld.
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