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Abstract

The twin fields of superconducting circuits and circuit quantum electrodynamics
now form the basis for a major part of the effort towards building a quantum com-
puter. Yet many fundamental problems remain. These may range from very practi-
cal considerations, such as how to construct a qubit with a sufficiently long coher-
ence time, to questions of how best to understand and model the complex nonlinear
dynamics arising in superconducting circuits. In this thesis we take a broad look at
these fields and explore many questions within them. We begin by studying criti-
cal slowing down in a dissipative phase transition of a coupled qubit-cavity system,
before examining the underlying dynamics of switching between metastable states
which causes this slowdown. We then examine an unexplained phenomenon of res-
onance narrowing in another qubit-cavity system and suggest it may also be related
to metastable states. Finally, we examine a circuit which harnesses long range in-
teractions, and present it as a promising candidate for building a qubit with a long

coherence time.
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Impact Statement

The work described in this thesis is directly relevant to the development of quantum
computation, which we hope will become an extremely useful toolset in the near
future for a wide variety of tasks including the simulation of quantum systems, drug
discovery and machine learning. This field is rapidly in the process of expanding
out of academia so it is hoped that successful application of the knowledge derived
in this thesis will also lead to commercial opportunities.

In particular, the first half of the thesis focuses on nonlinear dynamics in cou-
pled qubit-cavity systems. Understanding such dynamics has previously been cru-
cial in the development of various readout and control techniques which are crucial
to the operation of a future quantum computer. We hope our contributions will find
application in a similar way in the future.

The second half of this thesis focuses on a design which we consider to be
a good candidate for a long-lived qubit. One of the key obstacles to the develop-
ment of a quantum computer is the preservation of quantum coherence and there is

enormous demand for solutions to this problem.
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Chapter 1

Introduction

1.1 Superconducting qubits

Superconducting qubits are currently one of the leading platforms for the design and
construction of quantum computers. These qubits can take many different forms,
but typically they share some common features: they consist of lithographically
fabricated superconducting circuits patterned onto a substrate and contain at least
one nonlinear circuit element. This last point is crucial. In the absence of non-
linearity the degrees of freedom of the circuit would form a set of noninteracting
harmonic oscillators and it would be impossible to selectively address the transition
between a specific pair of eigenmodes of the circuit. Hence we would be unable to
perform operations on any information encoded in its state. Josephson junctions are
chosen for this purpose and offer the distinct advantage of being dissipation free,
which helps us to preserve the quantum state of the circuit for sufficient time that

computations can be carried out.

The resulting circuits are multi level quantum devices whose parameters can
be engineered during the design process and this gives the experimentalist a high
degree of control over properties such as their transition frequencies and couplings
to other components and to electromagnetic field modes. For this reason they are
often termed artificial atoms and have come to replace natural atoms in many exper-
iments in cavity quantum electrodynamics, thus fueling the rise of circuit quantum

electrodynamics [1].
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The ability to tailor superconducting circuits has been an enormous advantage
during their development and they now form the core of many of the leading efforts
to build a quantum processor including [2]. Currently the most popular supercon-
ducting qubit for these efforts is the transmon [3], whose properties we will detail
below. However even the most advanced quantum processors are still limited by the
short coherence times of the current generation of qubits. One proposal to tackle
this problem is the implementation of quantum error correction algorithms [4, 5, 6]
which combine many individual short-lived physical qubits into a single collective
logical qubit whose lifetime can be extended by detecting and correcting errors in

the underlying qubits.

Unfortunately this approach faces many obstacles. In particular it is very chal-
lenging to carry out the necessary error detection and correction operators on a
large ensemble of qubits, and even if this problem is solved the number of physical
qubits required per logical qubit will be prohibitively large given the state of coher-
ence times. If many thousands of physical qubits are required then it will difficult to
even fit them onto a chip. For this reason some research focus has shifted towards
the study of what useful computations on noisy intermediate-scale quantum (NISQ)

devices [7].

However, whether one is interested in using quantum error correction to build
a fault-tolerant quantum computer or performing calculations on a imperfect com-
puter it will continue to be of fundamental importance that improvements are made
in the underlying hardware. Therefore it is interesting to consider what improve-
ments can be made to develop a new generation of superconducting qubits. Many
efforts are currently being explored in this direction throughout the world but be-
fore we can discuss such them we intend to first introduce the reader to the various
currently available classes of qubit [8, 9]. We will not be able to provide exhaus-
tive coverage, but we hope to provide some foundation in their operating principals,
beginning with the Hamiltonian and Lagrangian mechanics of circuits and an intro-

duction to the Josephson junction.
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1.2 Hamiltonian and Lagrangian circuits

In Lagrangian mechanics [10] we first construct the kinetic 7 and potential V ener-
gies in terms of some generalised coordinates g ; before constructing the Lagrangian
according to L = T — V. We can then obtain the equations of motion via the Euler-

Lagrange equations:

d (JdL JdL

Alternatively we can move to a Hamiltonian formulation by defining canonical con-

jugate momenta p; and performing a Legendre transformation:

oL '

which produces equations of motion given by:

Xj=o—, DPj=—3_- (1.3)

Time derivatives can also be calculated using the Poisson bracket {-,-}. This oper-

ation is defined by:
af o af d
{f,g}zz(—f.—g——f_—gf) (1.4)
J

for two functions f(x, p) and g(x, p) which are defined on the phase space coordi-
nates. Using this tool the time derivative of function f can be calculated by taking

its Poisson bracket with the Hamiltonian:

df
E—{f,H}' (1.5)

For the cases f = x; and f = p; this reduces directly to the equations of motion
displayed in eq. 1.3. Throughout our work we will be interested in the quantum me-
chanics describing the low lying excitations of superconducting circuits. To move

beyond the classical formalism described above we will use the technique of canon-



1.2. Hamiltonian and Lagrangian circuits 13

ical quantization [11, 12]. This requires us to replace the system coordinates with

quantum mechanical operators and replace Poisson brackets with commutators:
A A 1 A A
xj= %, pj—pj. {f.8} = =178 (1.6)

for which we define [A, B] = AB — BA. Now the time derivative of a function of the

system coordinates will be given by a Heisenberg equation of motion:

df 1., »

Meanwhile the Poisson brackets of the system coordinates:

{xi,x;} =0, (1.8)
{xi,pj} =0 (1.10)

are replaced by the canonical commutation relations:

[%,%]] =0, (1.11)
[pi,pj] =0, (1.12)
%, p;] = ind; ). (1.13)

In order to transfer these formulation to circuits we must find some quantities which
can fulfill the role of generalised coordinates. We outline this process as follows
[13, 14, 8]. First consider a circuit element which connects nodes labelled j and %.
The voltage across this element can be labelled by V; , = V; — V} while the current
flowing through it from node j to k is labelled /; ;. We are now in a position to

define fluxes ®; ; and charges Q; , for the elements of our circuit according to:

t

t
ult) = [ Vist)d' and Q)= [ Iutar. (114

—o0



1.2. Hamiltonian and Lagrangian circuits 14

We can select our generalised coordinates from either of these sets but we must be
careful to take into account the constraints imposed by the conservation of charge
and the Maxwell-Faraday equation. We shall see that these variables do not form
an independent set of coordinates. Specifically, the conservation of charge tells us
that the currents entering a node should sum to zero and this can be used to relate

the charges of all elements connected to a given node k according to:

ZIM =0 (1.15)
J

— Y 0,x=0; (1.16)
j

for some constant Q, Meanwhile the Maxwell-Faraday equation tells us that the
potential difference acquired around a loop in the circuit should be proportional to
the rate of change of the magnetic flux threading through that loop. These allows

us to relate the fluxes in a loop according to:

0d,
Y Vik= = (1.17)
Jj,k€loop [ t
= ) Pji=-d0) (1.18)
Jj,k€loop [

where ®;(¢) is the loop flux. In order to account for these constraints we find a
an acyclic connected graph which reaches all nodes of our circuit [14, 15]. Such a
graph is known as a tree and its edges are called branches. By including only those
charges or fluxes which refer to branches of our tree we ensure that our coordinates
are independent. The charges and fluxes of any circuit elements outside this tree

can be obtained via the constraints outlined above.

Next we consider how to write down the Lagrangian of the circuit. This re-
quires us to choose which set of variables to use as generalised coordinates and
then write down kinetic and potential energies of the circuit elements. Kinetic ener-
gies will depend on the rates of change of our coordinates, while potential energies

will depend on the coordinates themselves. We shall see below that the roles of ki-
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netic and potential energies can be played by either capacitive or inductive elements
of the circuit depending on whether we choose branch fluxes or branch charges as
our coordinates. To outline this, we first classify the elements of our circuit as ei-
ther inductive or capacitive. Inductive and capacitive elements can be described by

a constitutive relations of the form [14]:

I=g(®) and V=f£(Q) (1.19)

respectively. For example, in the case of linear circuit elements these relations taken

the familiar forms:
I=®/L and V=0Q/C (1.20)

with capacitance C and inductance L. Given that the power flowing into a circuit
element is P = IV, we can calculate the energy stored in a circuit element according

to E = [*_I(t)V(¢')dt'. The resulting energies for our two element types are:

o 0
E/(®) = /0 2(@)d®  and Ec(Q) = /0 £(0)d0. (1.21)
For linear circuit elements these energies are given by
CI)2 QZ
Ejf(®P) = — d E =—_. 1.22
(@) =5 and Ec(Q) =% (1.22)

If we choose the branch fluxes as our coordinates then we can use Vj; = Cbk,l along

with the second relation in eq. 1.20 in order to write:

Ec(Q(®)) = — (1.23)

We can write the kinetic and potential energies of our circuit as

T=Y Ec(Qu(P) and V=) E/(P). (1.24)

k,l€ capacitive elements k,l€ inductive elements
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However if we had chosen to use branch charges as our coordinates then we would
continue to represent the capacitive energy as in eq. 1.22 and we would use [; ; =

Qk,l and the first relation in eq. 1.20 to write the inductive energy as:

E(®(Q)) = ——. (1.25)

We could therefore exchange the roles of capacitive and inductive elements in the
representation of kinetic and potential energies. However we will now proceed
using branch fluxes as our coordinates.

At this point we could calculate the Lagrangian L = T —V and produce equa-
tions of motion according to the Euler-Lagrange equations in eq. 1.1. Or if we wish
to move to the Hamiltonian formalism we could find the canonical momenta, which

now take the form of charges, and perform a Legendre transformation:

dL
o'?ci)k’,’

H=Y &g —L. (1.26)

k,l€ branches

gk, =

This results in a Hamiltonian H which produces equations of motion in the form:

&, _ OH . OH
k1= 3qk,l’ qk,i = 8(1)“-

(1.27)
For a simple circuit consisting of an inductor L and a capacitor C connected in
parallel there is only one branch in the spanning tree. We easily obtain Lagrangian:

cPH? P2

from which we obtain the conjugate charge:

JL .
=—=CP 1.29
1= 3% (1.29)
and the Hamiltonian:
2 CI)2
H=2L = (1.30)



1.2. Hamiltonian and Lagrangian circuits

17

which describes a simple harmonic oscillator with a natural frequency of wy = ﬁ

If we apply the canonical quantization procedure described above then we replace

our coordinates by quantum operators which obey the commutation relation:

[®,q] = ih.

(1.31)

For our convenience we will no longer denote quantum operators using hats O — O.

For this quantized simple harmonic oscillator we can define ladder operators a and

a’ according to:

2h C
which obey:
la,a’] =1,
la,a’d] = a,
la",a'a) = —d

In terms of these ladder operators the Hamiltonian can be rewritten as:

1
H= ﬁa)g(aTaﬁ—E).
We write the eigenstates and eigenvalues of a’a as:

a'aln) =n|n).

(1.32)

(1.33)
(1.34)
(1.35)

(1.36)

(1.37)

The commutation relations above indicate to us that applying the operators a and a'

to |n) will produce new eigenstates of a'a with eigenvalues which are either lowered
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or raised by 1:

d'aa|n) = (aa'a—a)|n)

= (

=(n—1)aln), (1.38)

d'aa’ |n) = (a'a’a+a")|n)
=

n+1)a’ |n). (1.39)

So we see that these operators can be used to add or remove quanta of energy hwy

from the system. Furthermore the commutation relations can be used to show:

(n|a'a|n) =n (1.40)
— aln)=+/njn—1), (1.41)
(n|aa’ |n) =n+1, (1.42)
— a'|n)=vn+1|n+1). (1.43)

Since we expect our system to have a well defined ground state it must be the case
that repeated application of the lowering operator will eventually cease to produce
lower energy states. This can only be the case if the index n is restricted to integer
values and the state |0) is the ground state. Rather than producing a lower energy

state, application of a annihilates this state entirely a|0) = 0.

We now see that the action of these appropriately named ladder operators is to
move the system through a discrete ladder of states |n)with energies E,, = hay(n +
%) Because of the linearity of this system, the states are all equally spaced. As
mentioned above, this presents a challenge if we wish to encode information in a
particular subspace of states since their transitions cannot be uniquely addressed.
For this reason we introduce nonlinearity via the Josephson junction as described

below.
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1.3 The Cooper Pair Box and the Transmon

Josephson junctions are the primary tool for introducing nonlinearity into supercon-
ducting circuits. A Josephson junction consists of two superconductors intersected
by a weak link, which could be either an insulator, a normal conductor or a region
of weakened superconductivity. Despite the presence this barrier, it is still possible
for a supercurrent to flow through the junction via the tunneling of Cooper pairs. In
this case the current and voltage across the junction are described by the Josesphson

equations [16, 17]:

d dd
[ =1I.sin (—) V="—— (1.44)
%o dt

in which I, is known as the critical current of the junction, ® is the flux as defined
above in eq. 1.14 and @y = % is the reduced flux quantum. The first Josephson
equation displayed above indicates that the junction is an element of inductive type.

Using eq. 1.21 we can calculate the potential energy stored by the junction:

Ej(®) = —1.¢ (cos (%) - 1> (1.45)

This energy has a term dependent on the flux ® as well as a constant offset, which

we will neglect in future.

We can now create an anharmonic oscillator by replacing the linear conductor
in our harmonic oscillator circuit by a Josephson junction. Such as device is known
as a Cooper Pair Box and (CPB) [18, 19, 20] it can be constructed simply by con-
necting a small superconducting charge island to ground via Josephson junction.
The close proximity between the two interfaces of the junction provides the neces-
sary capacitive coupling C. Furthermore we can capacitively couple C, the charge
island to a gate electrode at potential V, in order to tune an offset charge g, = C, V.

The Hamiltonian can be written as:

- (q_Qg)z P
H= Te I.@pcos o) (1.46)
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When dealing with Josephson junctions it is often convenient to use angular co-
ordinates and to measure charge in units of Cooper pair charge 2e. Therefore we
define the variables ¢ = ® /@y and N = ¢/2e which obey the commutation relation
[¢,N] =i. We also define the Josephson energy E; = I.¢p, the charging energy
Ec = €?/2C and the reduced gate charge N; = go/2e. The Hamiltonian can be

written in a standard form in terms of these quantities:
H =4Ec(N — Ny)* —Ejcos(9). (1.47)

In the E;/Ec < 1 regime the eigenstates will not be well localised in the minimum
of the junction potential and will therefore be significantly affected by its anhar-
monicity. The energy levels no longer form an evenly spaced ladder and we can
address a specific transition such as between the ground and first excited states.
However, one of the drawbacks of this system is its sensitivity to charge noise.
Close to N, = 1/2 we can write an effective Hamiltonian in terms of the N [0) =0

and N |1) = |1) charge states:

E
H ~2Ec(1-2N;) 6% — S0 (1.48)

where ¢ = |1) (1| —0) (0| and o* = |0) (1| 4 |1) (0|. The energy gap between the

two qubit states is given by E = \/EJ2 +4E2(2N, — 1)2.

If noise sources are weakly coupled to the qubit and have short correlation
times relative to the qubit dynamics then we can apply the Born-Markov approxi-
mation and quantify decoherence in terms of two rates [21, 22]: the relaxation rate
I'y and the dephasing rate I'y. These are combined to produce the decoherence time
I’ =Ty +T'1/2. In terms of these rates the evolution of the qubit density matrix is

given by [8]:

‘B ‘26—1"11 a*ﬁeiEtﬁ—th
p(t) = . (1.49)
aB*e—zEtﬁ—th 1+(|OC‘2— 1)6—F1t

where the initial state is |y) = o |0) + B |1).
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We can see that the transition frequency is dependent on the gate charge so any
random fluctuations in this parameter will cause us the phase between the two qubit
states to evolve in an unpredictable way. Over time this causes us to lose track of the
phase coherence of our qubit at rate I'y. Combined with energy relaxation this leads
to an overall decoherence rate I',. This problem can be alleviated to some extent
by tuning the gate charge to the optimum point N, = 1/2 at which the transition
frequency is only sensitive to charge noise at second order. However this remains
a limiting source of noise and the requirement to maintain the gate charge at the

optimum point adds extra complexity to the system.

In order to solve this problem a new design was formulated: the transmon [3].
The transmon is almost identical to the CPB except for the addition of a large shunt-
ing capacitor in parallel with the junction. This reduces both the anharmonicity of
the charge qubit and its sensitivity to charge noise, however whereas the anhar-
monicity decays only as a power law with respect to E;/Ec, the charge sensitivity
decays exponentially. This allows the fabrication of a charge qubit which is essen-
tially immune to charge noise while still retaining the anharmonicity necessary for

operation as a qubit.

Using a tight binding model it has been shown that energy of the mth level of

the transmon E,, is well approximated by [3]:
En(N) ~ En(Ng = 1/4) — %’" cos(27N,) (1.50)
where:
&n =En(Ny=1/2) —E,(Ng =0). (1.51)

Furthermore, the value of g, has been studied by examining the Ej/E¢ > 1 asymp-

totics of the exact solutions of the charge qubit Hamiltonian eq. 1.47, which are
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given by the Mathieu functions. The resulting approximation for &, is given by:

dm+5  [> /| %—I—%
&n~ (—1)"Ec \/j< J) eXp(—\/SEJ/EC>. (1.52)
w\2Ec

m!

The exponential suppression of &, for large values of E;/E¢ is the key result under-
lying the protection of the transmon against charge noise. Meanwhile, after a fourth

order expansion of the junction potential the eigenenergies can be approximated by:

1\ E
En~ —E;+/8ECE, (m+ 5) - 1—§(6m2+6m+3). (1.53)

We denote the energy gap between states i and j by E; ; = E; — E;. From this
expression we see that the energy gap between the ground and first excited states
is Eg.1 = \/8EcE; — Ec while the anharmonicity is @ = E|» — Ey; = —E¢. The
relative anharmonicity is therefore o, = a//Eq | ~ —(8E;/Ec)~'/?. Therefore we
can see that protecting the transmon against charge noise only leads to a modest
reduction in anharmonicity.

The development of this design has allowed the construction of qubits with
a coherence time in the 10s or even 100s of microseconds [9]. Yet despite their
favourable coherence times, ease of fabrication and ease of operation, the weak an-
harmonicity of the transmon qubit can pose an issue during gate operations. High
power control pulses are liable to scramble the transmon by populating higher en-
ergy states. In order to prevent this, weaker drives must be used, but this lengthens
the time of gate operations. In the next section we shall consider flux qubits, which

have much larger anharmonicities.

1.4 Flux qubits

In basic terms a flux qubit is a superconducting loop whose eigenstates are quantized
circulating currents which can be used to encode information [23, 24]. This loop
is typically intersected by a multiple Josephson junctions which are necessary for
two reasons. First, by providing weak links in the loop they allow the tunneling of

flux quanta in and out of the loop, which allows transitions between the persistent



1.4. Flux qubits 23

current states. Second, as mentioned previously, the nonlinearity of these junctions

is needed to produce an anharmonic ladder of states.

——
—

Figure 1.1: The most simple flux qubit design consists of a superconducting ring intersected
by three junctions, two of which are identical with Josephson energy E; while the third has
energy aE;. In the design above we have also included gates A and B which are capacitively
coupled to nodes 1 and 2 of the circuit. An externally applied flux Py, is linked through
the loop.

The most simple flux qubit design [24, 23] (Fig. 1.1) contains three junctions:
two of which have energy E; while the third has energy ocE;. The potential energy

of these junctions is given by:

o L)) Doy + P — P
V:—E]<COS <—1) —+cos (—2)+acos( e 2)) (1.54)
0 Po ®o

where @y is the externally applied magnetic flux. For o > 1/2 and ®ey close

to w@y this will produce a double well potential whose minima correspond to two

states with oppositely circulating currents. Meanwhile the kinetic energy is given
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1 . . .
T =2C; Y 9]~ 0eabs — Qunds (1.55)
J

where the sum is taken over the five capacitive elements of the circuit and the volt-
age across the gate capacitors is given by CIDgA =V, —®; and CIDgB = Vg — ®,. The
induced gate charges are denoted by Qg4 and Qgp. If we write these capacitances as
Ci=C=C,C3=aCand Cyy = Cyp = yC and treat ®; and P, as the coordinates

of our system then the conjugate charges take the form:

dL

4d=— (1.56)
P
=CP—C,V, (1.57)
for which we define
I+o+y - 10
C=C , Cg=7C (1.58)
—o l+oa+y 01
and
. V,
V=), ="} (1.59)
VgB q2
The resulting Hamiltonian is:
l = —
H=—(G+CgV,)"C ' (G+CgV,)" +V. (1.60)

2

After quantization an effective model can be produced in terms of the two circulat-
ing current states localized in the minima of the double well potential, denoted by

|©) and |©9), whose persistent current is labelled 7, The Hamiltonian can then be



1.5. Circuit quantum electrodynamics 25

written as:

A P
H(Cbext) = EGX—'_IP <q)ext_70> o’ (161)

where A is the tunnel coupling through the potential barrier and 6* and o¢ are Pauli

operators which acting according to:
o’ =|0) (O] +|0) (0] and o°=]|0) (O] =]O)(O]. (1.62)

The gap between the eigenstates of this Hamiltonian is given by:

Ep) = \/A2 + 13 (2Pext — Do) (1.63)

Typically flux qubits are operated at the optimal point @y = Dy /2 at which this
energy gap is sensitive to external flux variations only at second order.

Further improvements can be made by moving to the Fluxonium qubit [25].
The Fluxonium design is reached by dramatically increasing the number of junc-
tions intersecting the loop. Suppose we include an array of n junctions then for

sufficiently large n the Hamiltonian can be approximated by:

E; >

(1.64)
203

D o
Hz4ECN2—E]cos( ex(;):_ >+

where Ej is the effective inductive energy of the junction array. Such qubits are
well protected against dephasing due to flux noise and as well as energy relaxation
due to charge defects and can achieve excellent coherence times [26, 27], extending

even into the range of milliseconds [28].

1.5 Circuit quantum electrodynamics

So far we have introduced the basic types of superconducting qubit but we have
not mentioned how to perform readout or control. These are essential operations
for quantum information processing and they can be performed using the toolset of

circuit quantum electrodynamics (cQED) [1]. In general quantum electrodynamics
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is the study of the interactions of light and matter. Circuit quantum electrodynam-
ics is the study of such interactions specifically in the context of superconducting
circuits e.g. photons in transmission line or lumped element resonators interacting

with systems such as atoms, quantum dots and superconducting qubits.

A simple example of a lumped element resonator is the harmonic oscillator cir-
cuit described above in eq. 1.30. It has a single resonance frequency at @ = 1/+/LC.
On the other hand, a transmission line resonator [29], such as a coplanar waveguide,
is more complicated since it can have many interacting modes. A coplanar waveg-
uide consists of a strip of superconducting metal in close proximity to a ground
plane. If we denote the inductance and capacitance per unit length by / and c re-
spectively then the speed of light in the resonator is given by v =1/ Vlc while its

characteristic impedance is given by Zy = /1 /c.

An infinitely long transmission line will support a continuum of modes, but if
boundary conditions are imposed then the modes will become quantized. A typical
setup is a resonator of length A terminated either at one of both ends by weak
capacitive couplings to other transmission lines which can be used to probe and
measure the resonator. The resonator will then support modes with wavevectors
k=mmn/A form € {1,2,3,...}. The Hamiltonian describing the resonator is given

by:
H=Y mhoa),a (1.65)
m=1

where ®; is the frequency of the first harmonic and a,, is annihilation operator

acting on mode m. Furthermore the current operator at position x is given by [29]:
I(x) = Lt Z iv/msin(mmx/A)(a), — ap) (1.66)
m=1

where I,pf, | = @14/ nizo is the zero point fluctuation of the current in the first mode.
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Similarly the voltage operator at position x is given by [29]:

V(x) = Vipt i Vvmeos(mmx/A)(an +a,) (1.67)

m=1

where Vpf 1 = 014/ % is the zero point fluctuation of the voltage in the first mode.

These currents and voltages can be used to couple the resonator to other com-
ponents in a circuit such as various kinds of superconducting qubit. Typically a
charge qubit can be capacitively coupled to the voltage on the resonator [30] while
a flux qubit can be inductively coupled to its current. In either case it is possible to

engineer a coupling described by the Jaynes-Cummings Hamiltonian [31, 32]:

1 1
Hyc = ho, (ClTa—FE) —I—Ea)qdz—l—ﬁg(cﬁd*+a6+) (1.68)

which models a two level system exchanging quanta of energy with a harmonic

oscillator. This model can be exactly digaonalized in terms of the states [33]:

|4+,n) = cos(6,) |{,n) +sin(6,) [T, n+1), (1.69)
|—,n) = —sin(6,) ||,n) +cos(6,)|T,n+ 1) (1.70)

and the ground state |1,0) where o*|1) = —|1), o°|]) = ||), A = 0, — @, and
tan(26,) = 2gv/n+ 1/A. The corresponding energies are:

Eim:(n+1)ﬁmci§\/4g2(n+1)+A2, (1.71)
hA
Ero= -5 (1.72)

This model has proven to be extremely useful in many aspects of quantum
information processing and particularly and readout. If we label the detuning A =

@, — @ then we can define the dispersive regime of the Jaynes-Cummings model
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by g/|A| < 1. In this regime we can apply the transformation [1]:
U =exp (%( c*—a*o)) (1.73)
to obtain the approximate Hamiltonian:

. g2 : A g2
UHU %ﬁ(wc—l—XGZ)a a+§<a)q+X)Gz (1.74)
which shows the resonance frequency of the cavity being shifted by +g> Delta
depending on the state of the qubit. This is the basis for dispersive readout. If
g%/A > k where K is the linewidth of the cavity resonance then it will be possible

to infer the qubit state from a signal transmitted through the cavity [30, 34].



Chapter 2

Critical slowing down and dissipative
phase transitions in circuit quantum

electrodynamics

2.1 Introduction

The study of dissipative phase transitions has a long and interesting history not
only due to their technological applications, such as in the construction of the laser
[35, 36, 37], quantum limited amplifiers [38, 39] and optical switches [40, 41, 42],
but also due to their theoretical interest since these phase transitions cannot be de-
scribed by standard techniques such as mean-field theory [43]. A key characteristic
of first order dissipative phase transitions is bistability [44, 45, 46, 47]: close to the
transition the two phases are metastable [48] and the dynamics of the system are

highly sensitive to both its parameters and its initial state [49, 50, 51, 52].

This sensitivity has previously been harnessed in the construction of the
Josephson Bifurcation Amplifier (JBA) which has been used in a variety of con-
texts including qubit readout and magnetometry [39]. In the context of readout,
the qubit circuit is coupled to a separate readout circuit consisting of a nonlinear
resonator which is driven close to a bifurcation. A small change in the state of the
qubit is capable of producing a large change in the field on the nonlinear resonator

by altering which metastable state the nonlinear prefers to occupy. This technique
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has been applied to readout of transmon [53], flux [54] and quantronium [55] qubits,

even reaching single shot readout in the case of the transmon.

Furthermore, subsequent work has shown that it is possible to harness the non-
linearity inherent to a coupled qubit-resonator system to perform single shot qubit
readout [49, 56]. In the bistable regime we expect the system to make a sharp
transition from a dim state to a bright state as the drive power is increased and the
threshold at which this transition occurs was observed to depend sensitively on the
initial state of the qubit. In the strongly driven regime the constrast between these

bistable states allowed the experimentalists to perform single shot readout.

In the current work we will be examining a coupled-transmon resonator system
close to the onset of the bistable regime. Instead of studying qubit readout we will
examine the rate at which the system approaches steady state in this regime in order
to learn about the dynamics which govern the metastable states. The steady state
is reached via rare switching events during which the system transitions from one
phase to the other [57, 58]. This can be modelled using the theory of quantum
activation in the case of dispersive optical bistability [59]. Since the metastable
states may be very long lived, this leads to critical slowing down in the equilibration
time of the system. Critical slowing down has already been observed in a circuit-
QED lattice [60] and in an ensemble of NV centers coupled to a superconducting

cavity [61], and has been modelled in the context of the Bose-Hubbard lattice [62].

Here, we observe critical slowing down in a circuit-QED system with only two
degrees of freedom: a transmon qubit [3] coupled to a 3D microwave cavity [63].
The nonlinearity introduced by the qubit causes the cavity to display bistability
when a sufficiently strong microwave drive is applied. Within the bistable regime
the system divides its time between two metastable states which are known as the
bright and dim states according to number of photons occupying the cavity. While
the inherent nonlinearity of such a system has been exploited in [49] to achieve high
fidelity readout of the qubit state using high drive powers, here we are interested in
exploring and understanding the rich quantum dynamics happening at intermediate

powers, close to the onset of bistability. We show that, at such powers, the cavity
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exhibits critical slowing down, reaching its steady state in a time much longer than
the lifetimes of both the qubit and the cavity. We characterize the timescale of
this slowdown as a function of driving frequency and power. We discover a new
regime of quantum activation in which the slowdown displays a saturation, which
can only be explained by taking into account the full quantum description of the
transmon. We demonstrate that even a simple superconducting circuit, consisting
of only a qubit and a cavity, can be used to explore the rich physics of quantum

phase transitions.

The device consists of a transmon qubit embedded in a superconducting alu-
minium 3D microwave cavity. Measurements of the transmitted signal through the
cavity are performed using a standard cQED microwave setup described in Ma-
terials and Methods. This system can be described by the generalized Jaynes-

Cummings model (GJC) and its Hamiltonian can be written as

H :ﬁz @, |n) (n| + hoqa'a+ ﬁngﬂ lm)(n| (a+a")

m,n

+ he(a’e™ 1% 4 gel®at) 2.1)

a cavity mode of frequency @, is coupled with strength g;, , to a transmon qubit
whose unperturbed eigenstates can be written in terms of Mathieu functions [3].
Here, we simply denote them by |n) and their eigenenergies by /@,. The cavity
is represented using the annihilation(creation) operator a(a’) and is driven by a
monochromatic field of strength € and frequency @;. To model environmental noise

we use the Lindblad master equation [64]

op = —(i/M)[H,p]+ (nc+ 1)k D(a)p +nck D(a’)p
+%D(b'b)p + (1, +1)yD(b)p +nyD(b")p, (2.2)

where b is the ladder operator acting on the transmon and is defined by b =

Yo oVn+1|n)(n+1|. The thermal occupations of the transmon and cavity baths
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Figure 2.1: Introducing a phase transition in a system with 2 degrees of freedom. A:
Transmission spectroscopy of the cavity for a range of drive powers and frequencies. At
low drive powers we observe a resonance at ®q/27 = 10.4960 GHz. The nonlinearity of
the system causes the resonance to shift to lower frequencies as the drive power is increased.
The boundaries of the bistable regime are modelled using the mean-field equations of mo-
tion of the Duffing oscillator and are displayed in red. Within the bistable regime the cavity
displays a sharp transition from a low transmission (dim) to a high transmission (bright)
state as the drive power is increased. B: Transmitted signal as a function of drive power at
wq/27 = GHz, indicated by the vertical dashed line in panel A. The experimentally mea-
sured transmission is indicated by dashed black line and is compared with the results of a
Duffing model in green, for which we plot the cavity amplitude divided by the root of the
photon saturation number (|(a)|//nsa). This model accurately models the transition. The
three insets, labelled I, II and III, show the Wigner function of the steady state of the cavity
according to the Duffing model at the marked powers. This confirms that the transition from
low to high transmission is associated with a transfer of probability between two distinct re-
gions in phase space: the bright and dim states of the cavity. The cavity transmission is also
modelled for a range of saturation photon numbers and show that the transition becomes
sharper as the ng, increases towards the thermodynamic limit. C: Asymptotic decay rate
as a function of driving power for different saturation photon numbers. The rate at which
system approaches the steady state drops orders of magnitude below its natural relaxation
time K, showing that the bistable regime is associated with critical slowing down. The inset
shows that this slowdown increases exponentially as we approach the thermodynamic limit.
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are denoted by n; and n. respectively, while ¥ and k are the intrinsic transmon and

cavity relaxation rates, and 7, is the intrinsic transmon dephasing rate.

At sufficiently low drive powers the transmon is confined to its ground state.
The system can be treated as a single Duffing oscillator with a Kerr nonlinearity

[65] whose Hamiltonian and master equation can be written as (Appendix 2.A):

= ~ 1 + ~ . .
H=haa'a+ EﬁKa'aTaa + he(afe @ 1 gel®at), (2.3)

ap = —(i/R)[H,p] + (fic+ 1)k D(a)p + ik D(a’)p + KyD(a'a)p. 2.4

In this simplified model, the dispersive coupling with the transmon shifts the cavity
frequency to @, and introduces a Kerr nonlinearity K. The thermal occupation of
the cavity bath is denoted by 7. and the cavity relaxation and dephasing rates are

represented by K and K, respectively.

A further simplification can be made with the mean-field approximation i.e.
we assume the cavity to be in a coherent state p = |ot) (| and substitute this into
d;a0 = Tr(ad;p). We obtain the classical equation of motion in a frame rotating with

the drive:
o= —(K+i(@, — )+ iK|at|?) o — i€, (2.5)

and find the steady state cavity amplitude

i€
o =—= — . 2.6
K+i(K|a]?+ o. — ay) 26)

At weak drive powers the occupation of the cavity is low, so the nonlinear term
K|a|? in Eq. 2.6 vanishes and the standard Lorentzian response is obtained. How-
ever, when the number of photons in the cavity approaches the saturation number

Nsat = | @ — @y| /K ~ |a|?, the nonlinearity becomes significant and the equation of

motion may admit two stable steady state solutions. The system enters the bistable

regime.

In the mean-field approximation the lifetimes of these states are infinitely long,
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but if fluctuations are taken into account these states become metastable and the sys-
tem may undergo rare escape events, switching from one state to the other. Both
metastable states may coexist with each other over a range of drive amplitudes and
the time taken for the system to reach a steady state will be determined by their
lifetimes. These lifetimes can be much greater than the lifetime of the cavity and
this gives rise to the phenomenon of critical slowing down. If an appropriate ther-
modynamic limit is taken, this time diverges and the model produces a first order
dissipative phase transition in which the two phases may coexist only at a single

drive amplitude [47, 48, 66].

2.2 Results

2.2.1 Cavity response in the bistable regime

We now show evidence of such a first order phase transition in our system, con-
taining only two degrees of freedom. We measure the signal transmitted through
the cavity as a function of driving frequency (@;) and power (Py) as shown in
Fig. 2.1A. We find that at low power the cavity line is dispersively shifted to
@;/21n = 10.4960 GHz and has the Lorentzian shape which is typical of linear
response. As the driving power increases, the lineshape shifts to lower frequencies
and nonlinear features appear. The effective Kerr nonlinearity of the cavity is found
to be K = —0.4221 MHz and its relaxation rate is k/27 = 1.040 MHz. Above
Pt = —29 dBm a dip in the transmitted signal is observed. This indicates the pres-
ence of the bistable regime and is due to destructive interference between the two
metastable states of the cavity [45, 46]. The boundaries of this regime are modelled
using the mean-field equations of motion derived from the Duffing approximation
and are shown by the red lines. The bistable regime emerges just below the res-
onance frequency at a drive power of Py = —35 dBm and opens up over a wider
range of frequencies as the drive power increases.

Fig. 2.1B shows the signal transmitted through the cavity (black crosses) as a
function of the drive power at @, /27w = 10.4925 GHz. At this drive frequency we

calculate a saturation photon number of ng,; = 8.4. We observe a sudden change in
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Figure 2.2: Averaged transient response of the cavity outside and inside the bistable
regime during the 1st cooldown. The inset in panel A shows transmission spectroscopy
of the cavity for a range of drive powers and frequencies. The mean-field Duffing limits
of the bistable regime are displayed in red and the locations at which the data in panels
A and B were taken are indicated by the white dots. (A): The cavity is driven at the low
power resonance @, /27 = 10.4960 GHz and P,y = —40 dBm. The signal in blue (brown)
is the transient response measured with the qubit initialized in its ground (first excited)
state. The transient response is governed by the timescale 27 = 0.29 us if the transmon
is in the ground state, whereas it is governed by 77 = 2.89 us if the transmon is in the first
excited state. (B): Transient responses for different initial qubit states in the bistable regime
at Ps = —21 dBm. The inset shows spectroscopy of the cavity at this drive power with the
drive frequency @;/2m = 10.4898 GHz indicated by the dashed line. The transient response
is divided into two parts. There is an initial fast response with a time scale ranging from 7
to 71 depending on the initial transmon state, followed by a slow decay towards steady state
over a timescale 7y = 73.2 us, obtained from an exponential fit, which is much longer than
both the transmon and cavity lifetimes. This critical slowing down allows us to distinguish
the transients for different transmon states for over 100 us.
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transmission at P,y = —25 dBm in which the cavity switches from a low amplitude
(dim) state to a high amplitude (bright) state. This transition is accurately modelled
by the Duffing master equation (Eq. 3.2), the results of which are displayed by the

green line.

We can make a connection between this behaviour and the theory of phase tran-
sitions by defining the thermodynamic limit in which the saturation photon number
ngae goes to infinity. This is achieved by rescaling the drive and nonlinearity ac-
cording to € — Ve and K — K /A, which in turn gives ng — Angy [43, 67, 47].
The simulated cavity amplitude is displayed for a range of values of ng, and, as ex-
pected, we observe that the transition becomes sharper as the system moves towards

the thermodynamic limit, which is typical of first order phase transitions.

We are interested in exploring the system dynamics within this bistable regime,
where the steady state consists of a mixture of bright and dim states. We can form

an effective master equation by writing the state of the system as

p(t) = po(t)po+ pa(t)pa 2.7

where py, and pq are the bright and dim states, and py and pq4 are their occupation

probabilities. We can then write a simple rate equation for evolution of the state

o, I r
tPb _ b—d d—b Pb 7 2.8)

Pd Ibsa —Tasb/ \pd
in which occasional fluctuations allow the system to switch between states at the
rates ['y_,q and I'y_y, [46, 58]. The system reaches a steady state when the occu-
pation probabilities have reached equilibrium. The approach to this steady state is

governed by
1 (T 1
Po _ o 470 ) L peTut : (2.9)
Pd ad \I'pq —1

where the coefficient A is determined by the initial system conditions. I',q is referred
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to as the asymptotic decay rate and it is given by

[ag =Tasp +Tooa- (2.10)

I",q is calculated by extracting the gap in the Liouvillian superoperator [48, 60],
derived from the Duffing master equation (Eq. 3.2). Fig. 2.1C shows the asymptotic
decay rate as a function of drive powers for different photon saturation numbers.
We find that, within the bistable regime, the asymptotic decay rate drops far below
the cavity decay rate [68]. This effect is known as critical slowing down and is
characteristic of the phase transition. Furthermore, the asymptotic decay rate is
exponentially suppressed as ng, increases, indicating that ever larger fluctuations

are required to cause switching between the states.

2.2.2 Critical slowing down

Measurements of critical slowing down are performed by recording the transient
response of the cavity when a step function drive pulse is applied. Fig. 2.2 shows the
average cavity response outside (A) and inside (B) the bistable regime. Fig. 2.2A
shows the response at the cavity resonance at Py = —40 dBm with the transmon
initialized in either the ground state (blue line) or the first excited state (brown line).
The timescale over which the cavity responds shows a clear dependence on the
transmon state. When the transmon starts in the ground state the cavity reaches
equilibrium over a timescale 2 T = 2/k = 0.29 us, set by the cavity relaxation
rate x, whereas when the transmon is initialized in the first excited state, the drive
is initially off resonant with the cavity and the transmon must relax over a time 7;

before the system can reach equilibrium.

Fig. 2.2B shows that the dynamics changes significantly if the system is driven
at higher powers. The cavity is now driven at @,;/27w = 10.4898 GHz and Py =
—21 dBm. The inset displays the spectrum at this drive power and the dashed
line indicates the drive frequency, which is chosen such that the system is in the
bistable regime as signalled by the dip in transmission. The cavity response is

now governed by multiple timescales. Initially, there is a fast rise in the cavity
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Figure 2.3: Measuring and modelling the critical slowing down time. (A): Critical slow-
ing down time 7 in the bistable regime as a function of driving frequency at P, = —17 dBm
during the 2nd cooldown, during which the qubit frequency had shifted to 8.7965 GHz and
the low power resonance of the cavity had shifted to 10.4761 GHz. The red points represent
the experimental data, which we compare with the results of master equation calculations
applied to the Duffing oscillator (blue line) and the GJC model with transmon dephasing
(green line) and without (purple line). We also display the results of previous analytical
theory of switching rates for the Duffing oscillator (orange line) [59]. At this power both
the master equation and the analytical calculations qualitatively reproduce the experimental
values of T;. The horizontal dashed line in the inset shows the location of our measure-
ments within the overall cavity spectrum. (B): Maximum value of 7; for different drive
amplitudes (red points). These data were collected along the diagonal dashed line in the
inset of panel A. As the drive power increases beyond —17 dBm, 7; reaches a saturation
at a value of 115 us, that is consistent with the simulations based on the GJC model with
transmon dephasing (green line). Removing the dephasing by setting ¥y = O (purple line)
does not change the power at which saturation occurs but it does raise the upper limit on
T;. Meanwhile analytical (orange line) and master equation (blue line) calculations with the
Duffing approximation predict that 7 rises exponentially with drive amplitude, as can be
seen using the logarithmic scale of the inset.
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transmission over a time ranging from 7 to 77 depending on the initial state of the
qubit. However, after this fast response we observe critical slowing down: a gradual
decay towards equilibrium over a time much longer than both the cavity and qubit
lifetimes. We denote the time constant over which the system reaches equilibrium
by Ty = 1/T5q. By initializing the transmon in a range of initial states, we show that
the cavity retains a memory of the initial transmon state for over 100 us, indicating

our proximity to a phase transition.

Next, we characterize the dependence of the critical slowing down 75 on both
driving frequency and power within the bistable regime and we model our findings
using a range of approaches. We can either exploit the analytical theory of quantum
activation for a Duffing oscillator, as provided in [59] or we can use the master
equations for the Duffing and GJC models. In this latter approach we rewrite the
GJC master equation as d;p = .£p where . is the Liouvillian superoperator. The

eigenbasis of .’ can be used to express the state of the system as

p(t) =Y coe”Trtiontp, .11)

where Zp, = —(I'y +iw,)p,. At long times the state will be dominated by the
steady state pss and the asymptotically decaying state p,q. In this limit we write the

state as:

P(t) = Pys + Cage ' pyg. (2.12)

While for the Duffing model it is possible to extract I',q by diagonalizing the Li-
ouvillian, due to the larger Hilbert space size of the GJC model, I',4 is extracted
by integrating the master equation (Eq. 2.2) for a sufficiently long time. We are
hence able to compare the experimentally attained values of critical slowing down
time with simulated values. Fig. 2.3A shows the measured valued of T; (red circles)
as a function of the drive frequency @, along the dashed line in the spectroscopy
inset, which is located at a drive power of Py = —17 dBm. We find that 7§ reaches
a maximum close to the dip in the cavity spectrum. This is expected, since the dip

is a key signature of the coexistence of the two phases in our transition.
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We compare our measurements with master equation simulations applied to
a Duffing oscillator model (blue line) and to the GJC model with (green line) and
without (purple line) transmon dephasing. We also compare our data to results
attained from the analytical theory of quantum activation for a Duffing oscillator
(orange line) [59]. At this drive power we find that all of our models give at least
qualitative agreement with the measured dependence of critical slowing down on

frequency, but only the GJC model is able to model this effect quantitatively.

However, if we plot how the maximum value of 7 varies with the amplitude
of the drive, as shown in Fig. 2.3B, we observe a significant divergence between
our data and the values attained using the Duffing model. Whereas the theory of the
Duffing oscillator predicts that 7; should increase exponentially with the drive, we
instead observe that, at sufficiently strong drive amplitudes, 7 saturates. To account
for this difference we require the full GJC model. We find that the master equation
predicts the same saturation in 75 as found in experiment when we explicitly include

the transmon in the simulation.

Furthermore, we see that the level at which this saturation occurs is highly
sensitive to the pure dephasing rate of of the transmon. A peak of 7Ty = 158 us is
obtained from the master equation when we don’t include pure dephasing of the
transmon, however this falls to 7; = 109 us when we take a pure dephasing rate
of % = 1 kHz. We might naively consider such a small rate to be insignificant
compared to the coherence time of the transmon, which was measured to be 7, =
2.37 us, however the large change in 7; suggests that the switching rates of the
metastable states are strongly influenced by the decoherence channels to which the

transmon is coupled.

2.3 Discussion

Clearly, the coupled transmon-resonator system is governed by essentially different
activation dynamics from the Duffing oscillator. In order to shed light on the dis-
similarity between the Duffing model and the GJC model we examine the switching

rates ['y,_.q and I'q_,;, more closely. In order to obtain these rates it is necessary to
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first find the steady state and extract the occupation probabilities py(r — o) and

pa(t — o0). We can then calculate the switching rates I'y_,, and I'y_,4 according to:

La(b)—b(d) = Pd(b) (t = )T ag- (2.13)

The occupation probabilities can be extracted using the asymptotically decaying
and steady states (Appendix 2.B). The resulting rates are displayed in Fig. 2.4B,
which shows I'q_,, and I',_,4 as a function of frequency at a driving power of P =
—14 dBm for both the Duffing and the GJC model. Whereas I'y_.}, is in close
agreement between the two models, I'y,_.q is significantly greater in the GJC model.
This limits the critical slowing down time according to Eq. (2.10) and leads to
the saturation seen in Fig. 2.3B. It also indicates that the bright state has a shorter
lifetime in the GJC model.

The Wigner function for three cavity steady states using the GJC model is
shown in Fig. 2.4A. We observe that, at low drive frequencies, the dim state is
the main contributor to the overall state of the system; this is consistent with I, 4
dominating over I'y_,,. At higher drive frequencies the reverse is true, while at
some intermediate drive frequency the two bistable states are equally occupied and
the switching rates are balanced.

Prior work suggests that the instability of the bright state increases with the
nonlinearity of the ladder of states in the vicinity of the wave-packet [51]. The in-
stability of the bright state in the GJC model may be due to extra nonlinearity which
is present when the transmon becomes excited. It may also be due to backaction of
the resonator on the transmon which occurs when the occupation of the resonator
increases. This can take the form of measurement dephasing [69, 70], whereby
fluctuations in the resonator occupation can cause loss of phase coherence of the
transmon via the AC Stark effect; or via dressed-dephasing [71], in which pure de-
phasing of the transmon exposes it to additional relaxation and heating from the
resonator. These phenomena have previously been explored in the nonlinear regime
[72] and future work could use this framework to explore how these additional de-

phasing mechanisms relate to the observed saturation.
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In summary, we have explored the rich quantum activation dynamics happen-
ing at an intermediate driving regime in cCQED. We have observed a phase transition
in our system, which contains only two degrees of freedom: a transmon qubit cou-
pled to a microwave cavity. A key signature of this transition is critical slowing
down, in which the time taken for the system to reach a steady state can extend far
beyond the natural lifetime of the qubit or cavity. We have measured the slowdown
time for a wide range of powers and frequencies, and we have compared our results
with simulations. We found that the transition and its associated critical slowing
down is well modelled by the Duffing approximation at low drive powers. How-
ever, at higher drive powers, we observed a saturation in the critical slowing down

time, which can only be captured by the full GJC model.

It is known that in this regime the transmon becomes highly excited and starts
to participate in the dynamics [73] so it is no longer valid to apply the Duffing ap-
proximation. An accurate model must include the quantum fluctuations of the qubit
and the resulting destabilisation of the bright state which this causes. Currently,
there exists no analytical theory for the switching rates in the bistable regime of a
cavity coupled to spins or multilevel systems and this suggests that one avenue of
future work could focus on extending the existing theory for the Duffing oscilla-
tor to these models. Moreover, we link the critical slowing down to the switching
rates between the two metastable states and show how these differ for the GJC and
Duffing models. This experiment is a powerful demonstration of the versatility of
superconducting circuits, showing that even with few degrees of freedom it is pos-
sible to explore rich nonlinear physics and phenomena such as dissipative phase

transitions.

2.4 Materials and Methods

A two-port Al microwave cavity holds a lithographically patterned Al transmon
qubit, that is fabricated on a sapphire substrate. The transmon qubit consists of two
Al pads of dimensions 350 um by 450 um connected by an AI/AlOx/Al Josephson

junction, that is patterned using standard e-beam lithography and double-shadow
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evaporation techniques. The cavity is thermally anchored to the 10 mK plate of a
dilution refrigerator. Input signals are heavily cryogenically attenuated to reduce
thermal noise, and measurements of the signal transmitted through the cavity are
made via cryogenic circulators and a low noise HEMT amplifier, with the signal
finally being recorded as a voltage with an analog-to-digital converter (ADC).

Measurements were collected during two successive cooldowns. During the
Ist cooldown (C1), spectroscopy of the transmon reveals its lowest transition to
be wy; /27w = 9.1932 GHz with anharmonicity o /27 = —203.6 MHz. The bare
resonance frequency of the cavity is @, /27w = 10.4263 GHz and its quality factor is
found to be Q = 7900. The relaxation and dephasing times of the transmon are 77 =
2.89 us and T, = 2.37 us respectively. During the 2nd cooldown (C2) the system
is described by a GJC model with the following parameters: @. /27 = 10.423 GHz,
go/2m =295 MHz, k = 1.432 MHz, ¥y = 33 kHz, 7 = 1 kHz, n. = 0.01 and n; =
0.02. The eigenstates of the transmon were produced using a Josephson energy
of E;/2m = 46.7 GHz and a charging energy of Ec/2m = 221 MHz [3]. Applying
the Duffing approximation to this system we find @, /27 = 10.4761 GHz, K /27 =
—0.152 MHz, /27 = 1.387 MHz, Ky /27 = 1.02 Hz and 7, = 0.0100.

Contributions

Giovanna Tancredi performed the experiments in the group of Peter Leek at the
Clarendon Laboratory, University of Oxford. Paul Brookes carried out the numer-
ical and theoretical studies and assisted during data collection. Joseph Rahamim
fabricated the sample. Andrew Patterson optimized the FPGA measurement setup.
Martina Esposito provided support for analyzing the results. Themistoklis Mavro-
gordatos contributed to understanding the theory. Eran Ginossar, Peter Leek and

Marzena Szymanska supervised the project.
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Figure 2.4: Relating the steady state Wigner to the switching rates. (A): Steady state
cavity Wigner functions produced using the GJC model at P,y = —14 dBm. At ®,;/27 =
10.4709 GHz the steady state consists mainly of the dim state, which corresponds to the
peak near the origin. However, as we increase the drive frequency the occupation of the
bright state increases as well. At @,/27w = 10.4720 GHz the occupations of the bistable
states are approximately equal and at @, /27 = 10.4723 GHz the bright state is dominant.
(B): Switching rates between metastable state as a function of driving frequency. Whereas
I'4—p is similar in both the Duffing and the GJC models, I'y_,q4 is significantly different. In

the GJC model I'y,_,4 is much greater compared to the Duffing model. This explains the
saturation we observe in Tg.



Appendix

2.A Performing the Duffing approximation

In the main text we approximate our system as a Duffing oscillator in order to obtain
a benchmark showing the dynamics of a single non-linear oscillator in the bistable
regime. This model is used to calculate how the critical slowing down time varies
with drive amplitude, as displayed in Fig. 2, and how the switching rates between
the bistable states vary drive frequency, shown in Fig. 3. To map our system to
a Duffing oscillator we project the GJC Hamiltonian onto a low-energy subspace
and identify a Kerr nonlinearity in the resulting spectrum. This subspace consists
of the eigenstates of the GJC Hamiltonian for which the transmon is close to the
ground state. The first step is to identify these states. We start by writing the the
Hamiltonian in the form:

H = Hy+ Hjy (2.14)

where H describes the bare cavity and transmon, and Hj,; describes the interaction

between them. These components are given by [3]:

Ho=hoa'a+hY o, |n)(n] (2.15)
n=0
Hi =Y ga(aln+1){n[+a" |n)(n+1]). (2.16)
n=0

If the interaction is turned off by setting g, = 0 then the eigenstates of H are simply

products of the eigenstates of the bare cavity and transmon with eigenstates and
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eigenenergies given by:

Hy|m) |n) = Ejpy |m) |n) (2.17)

Eppn = h(ma, + @,) (2.18)

where m denotes the number of photons in the cavity and n denotes the number of
excitations in the transmon. For finite strength interactions we enter the dispersive

regime, which is defined by |g,/A,| < 1 where the detuning is given by
Ay = Wy — 0y — O (2.19)

Provided that the interaction strength is sufficiently weak we can continue to label
the eigenstates by the number of cavity and transmon excitations they carry and if
the system is weakly driven close to the cavity resonance then the only state which
will take part in the dynamics are those for which the transmon is in the dressed
ground state. These states form a ladder of dressed cavity states which define the
low-energy subspace upon which we can project our model. We define the projector
by:

= (|vo,0) (Yool lvi0) (Wiol. | v20) (W20 ,--.) (2.20)

where |y,,,) represents the eigenstate of H which can be smoothly transformed to

|m) |n) by turning off Hi,.. Using this projector we obtain the low-energy model:

H=TI"HTI (2.21)

- 1
= hdahao+ 5hlazga;g(,zoao + 0 ((gm/Am)®). (2.22)
where the ladder operator in the projected subspace is defined by
a0 =Y. Vr|Wu_1.0) (ol (2.23)
n=1

This Hamiltonian describes a Duffing oscillator with a frequency @. and a Kerr

nonlinearity K [52]. If we use the GJC model parameters given in Table 1 of the



2.A. Performing the Duffing approximation 47

main text then the Duffing model parameters we obtain are shown in Table S1 below.
This table also includes the rescaled drive amplitude € which arises when we add a

driving term to Hy of the form:
Hy(t) = he(a' e %" 4 gl (2.24)

We find that this transforms to a similar driving term in the Duffing Hamiltonian
given by
Hy(t) = he(aje " + age'®). (2.25)

The drive amplitude in the projected space € is given by r,& where r, is calculated

according to:
' all = rya0 + O ((gm/Am)*) (2.26)

Next we must consider the Lindblad operators which describe the effects of envi-
ronmental interactions. We have already considered a, but the remaining operators

can be projected into the low-energy subspace as follows:

7 bT1 = ryag + O ((gm/An)?) (2.27)
T 6B I1 = rpagao + O ((gm/Am)?)- (2.28)

From Egs. (2.26) and (2.27) we see that both a and b contribute to the annihilation
operator in the low-energy subspace ag. The implication is that in the basis of
dressed cavity states both k and 7y contribute to relaxation, as expected from prior
work on the dressed state formalism in the Jaynes-Cummings model [33]. The

coefficients of the Lindblad operators in the low-energy subspace are then given by

ap - \/
rin.k -+ rbn,}/ (2.30)

e
ajao: \/7 m (2.31)

(14+72)& = \/r2 (1 ne) 21+ m)y (2.29)
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We use these equations to calculate two sets of Duffing model parameters to de-
scribe our system during the two cooldowns of the experiment. For the first
cooldown we found @./27 = 10.4961 GHz, K/2x = —0.422 MHz, € = 0.971¢,
K/2m = 1.040 MHz, K4 /27 = 56.4 Hz and 71 = 0.0293. For the second cooldown
we found @./27 = 10.4761 GHz, K/2n = —0.152 MHz, € = 0.984¢, k/271 =
1.387 MHz, Ky /27 = 31.9 Hz and 7. = 0.0100.

2.B Obtaining the occupation probabilities of the
bright and dim states

By integrating the Duffing or GJC master equation for a time ¢ we obtain the state
p(t). If ¢ is much longer than both the caivty and transmon lifetimes then this state

can be written as

P(t) = Pss + cage ' pyg (2.32)

where the steady state is an unknown mixture of bright and dim states which we

write as
Pss = ppo+(1—p)pa (2.33)
and the asymptotically decaying state is given by
Pad = Pb — Pd- (2.34)
This allows us to write p(z) as another unknown mixture of bright and dim states

p(t) =gpp+ (1 —q)Po. (2.35)
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Using the steady state and master equation solvers in the QuTiP package [74] we

can obtain both p(¢) and pss. A mixture of these states is written as

T(A) = pss —Ap (t) (2.36)

=(p—Aq)pp+ (1 +Aq—p—A)pq. (2.37)

Both p4 and py are positive semidefinite and we assume that they are orthogo-
nal, which is a good approximation provided that the cavity is sufficiently strongly
driven so that they are well separated. Hence the mixture is positive semidefinite
if and only if both p —Ag >0 and 1 +Ag — p—A > 0. The limits on this range
are Ag = p/q and Ap = (1 — p) /(1 — g), at which points T consists of solely of the
dim state or the bright state respectively. Outside this range the coefficient of at
least one of the bistable states will be negative. Hence we can obtain A4 and Ay, by
checking the spectrum of 7 for negative eigenvalues at different values of A. Finally

we obtain

_ AdAp—1)

2.38
A Ag (2.38)

This method provides a fast and accurate means of extracting the occupation
probabilities of the bright and dim states in the steady state. When the occupation
of the cavity is sufficiently small it can also be benchmarked against quantum tra-
jectory methods in which the pure state |y/(7)) is integrated over a time much longer
than ')y and K-means clustering is applied to the cavity amplitude (y(z)|a|y/(t)).

We shall expand on these methods in chapter 3.



Chapter 3

Switching rates and occupation

probabilities in the bistable regime

In this chapter we will describe how to calculate the rate of switching between
metastable states in the bistable regime of the Duffing oscillator using Keldysh field
theory. We then compare these rates with numerical results produced by studying

the spectrum of the Liouvillian.

3.1 Keldysh approach

In a frame rotating with the drive the Duffing oscillator Hamiltonian is given by
H=38a"a+ ya'a’aa+ig(a’ —a) 3.1

where 0 is the detuning between the oscillator and the drive frequency, y is the
nonlinearity of the oscillator, € is the drive amplitude and we have taken 7 = 1. The
rotating wave approximation has been applied in order to neglect counter rotating
terms. If the oscillator is weakly coupled to a Markovian bath, then its density

matrix will evolve according to the Lindblad master equation
ap = —ilH,p] +2xDlalp (32)

where D[L]p = LpL" — 1(L'Lp + pL'L) and K is the relaxation rate. If we map

the dynamics of the master equation to that of Keldysh nonequilibrium functional
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integral [75, 76, 77], we get the corresponding action in the forward/backward-time-
field basis S = [L dt where
¥2 2 a*2 aZ)

L=dalida, —a’ida_—8(alay—a*a_)—y(a a7

—ik (2ara* —ala, —a‘a_)+iglay +a* —al —a_). (3.3)

Here 4 denotes the fields in the forward and backward time branches. It is con-
venient to introduce the classical and quantum field variables which are given by

ac = (ay +a-)/V2, a; = (ar —a_)/\/2. In this basis the Lagrangian is given by

L = Ljjn + Ly, (3.4)

Liin = a;(i0, — 6 — ik)ay + ay(id — 6 +iK)a. + 2ikaa, + i\/is(aq —a,) (3.5)

Lay=—Yx (aiac + a;;aq) (aiaq + acafl) (3.6)

where Lj;, and L, denote the linear and nonlinear components of the Lagrangian
respectively. From this Lagrangian we can obtain the saddle point equations of

motion according to:

JL JL
5 =0 5-=0. (3.7)

q C

The resulting equations of motion are given by

da. = \V2¢e —ida. — K(ac+2a,) —ix (ac|ac|2 + 2ac|aq|2 + aﬁaé) , (3.8)

diay = Kag —idag — iy <aq|aq|2 + 2|aC]2aq + a?aé) ) (3.9)

These equations describe the evolution of the system in a 4-dimensional space
spanned by two complex fields. To obtain the classical equations of motion we

can by setting a, = 0 and simplifying the equation for d;a, to give

dae =V2e—ida, — Kac—iXac|ac|2. (3.10)
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This is equivalent to the mean-field equation of motion we have discussed previ-
ously in eq. 2.5. We have now constrained our system to the classical plane and in
the bistable regime there will be three fixed points within this plane. Two of these
points are stable and they correspond to the bright and dim states whereas a third
unstable point lies on the separatrix which divides the plane into the two basins of
attraction of the stables states.

Although the bright and dim states are stable within the classical plane, quan-
tum fluctuations out of the plane can allow rare escape escape events. The trajecto-
ries of these escape events are described by the full equations of motion (3.8). In the
following we find it convenient to decompose the variables into real and imaginary

components according to:

_ Xe+ipe _ Xgtipg

a , ag =
2 ! V2

The dynamics can then be mapped to the following Hamiltonian':

4
H= (5 + B (xg +P3 _X?I - Pé) ) (PeXq —XePq) — K(XcXg + Pepy)

+ k(x5 + pp) + 2€x,. (3.11)
with the equations of motion given by:
ZC - aqu, Zq = _ach (312)

where z. = (xc, pc) and z, = (x4, py). This process is explained in more detail in
Appendix 3.A. These two quantities can be grouped together into Z = (2.,2).

At first we are interested in the steady-state solution of the classical equations
of motion, because this will indicate whether or not we are in the bistable regime.
Let us denote a steady-state solution by the co-ordinates (xc s, pc,ss), in terms of
which the cavity amplitude is given by ag = (Xcss + ipess)/ V2. By rewriting our

parameters in the form § = §/k, ¥ = x/k and &2 = 2je%/x? and absorbing the

'Derived by Changwoo Lee.
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Figure 3.1.1: Fixed points of the classical equations of motion. Within the bistable
regime the classical equations of motion have three fixed points, of which two are stable and
one is unstable. In panel A we plot the boundaries of this regime as a function of the drive €
and detuning 6 for y/x = —0.5. We find that the bistable regime emerges above £/k = 0.5
and expands over a wider range of detunings as the drive is increased. In panels B and C we
plot the amplitude of the fixed points as a function first of € at § / k = 3 and then as a function
of 6 at ¢/x = 1.8 i.e. along the dashed black lines indicated in panel A. We can now see
the three fixed points which emerge in the bistable regime. The dim, bright and unstable
states are indicated by the lower (orange), upper (blue) and middle (red) lines respectively.
In panel B we see that the resonator responds linearly to low drives before making a sudden
transition to a high amplitude state at higher drives. We see further evidence of nonlinear
behaviour when we plot the response as a function of § in panel C. Instead of displaying a
Lorentzian response function typical of linear oscillators, we see a highly asymmetric peak
which has shifted from the natural resonance frequency of the oscillator (§ = 0). Finally, in
panel D we plot the Wigner function obtained from the steady-state of the Lindblad master
equation at 0/x = 3 and €/x = 1.8. There are two clear peaks, which correspond to the
bright and dim states, and we compare them with the classical fixed points, marked by
crosses. We see good agreement, indicating that the mean-field approximation is valid in
this regime.
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amplitude into y = & + ¥|ao|?, an algebraic equation for y with x. = p. = 0 can be
obtained from eq. 3.10 in the form

y=(-8)0*+1)-&. (3.13)

This equation has only one solution if |82+ §(6% +9)| > (6% —3)3/2, two solutions
if |82+ 8(82+9)| = (6% —3)3/2 and three otherwise. This last case is indicative of

bistability and it consists of two stable fixed points and one unstable fixed point.

1071
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Figure 3.1.2: Wigner function and classical paths. Here we plot an example of the
Wigner function in the bistable regime at § /k = 6.0, €/x = 4.0 and y/k = —0.5. The
bright state can be seen in the upper right hand quadrant, whereas the dim state is located
close to the origin. The classical fixed points corresponding to these states are represented
by the yellow crosses and the solutions of the classical equations of motion are marked by
black lines and white arrows. Depending on the initial conditions these flow lines converge
on either the dim state or the bright state. The separatrix, marked by the green dashed line,
forms the boundary between the basins of attraction of these states. Finally the unstable
classical fixed point is marked by the pink dot. We have plotted the flow lines originating
from the unstable point in red.

To illustrate this we have plotted these fixed points as a function of detuning
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and drive amplitude for the case ) /x = —0.5 in Fig. 3.1.1. The green lines in
panel A show the boundaries on the bistable regime. We see that at £/x = 0.5 the
bistable appears and as the drive is increased it opens up over an ever wider range
of detunings. In panel B we display the dependence of the amplitude of the fixed
points on the drive at § /k = 3 i.e. along the vertical dashed line in panel A. At low
detunings there is a single fixed point displayed in orange, which corresponds to the
dim state. Meanwhile at high detunings the single fixed point is displayed in blue
and corresponds to the bright state. However over the range 0.86 < €/k < 2.06
three fixed points coexist with each other. In this range the red line highlights the
unstable fixed points. This is the bistable regime. Panel C shows these same three
fixed points, but now as a function of the detuning at €/k = 1.8 i.e. along the

horizontal dashed line in panel A.

Note that the response of the cavity displayed in panels B and C is highly
nonlinear. Whereas we would expect the amplitude response of a linear oscillator to
increase in direct proportion to the drive, here we see the S-curve which is typical
of the bistable regime. Meanwhile the response as a function of detuning differs
significantly from the a Lorentzian and is both asymmetric and shifted to higher
detunings due to the nonlinearity ). Finally, in panel B we compare the mean-field
fixed points at €/x = 1.8 and § /k = 3 with a Wigner function of the steady-state of
the master equation (Eq. 3.2). The Wigner function clearly shows two peaks which
correspond to the bright and dim states and whose amplitudes agree closely with

the mean-field results.

A closer look at the classical dynamics of the bistable regime is on display
in Fig. 3.1.2. The Wigner function of the steady-state at (8/k,e/Kk,x/x) =
(6.0,4.0,—0.5) is plotted and the stable fixed points of the classical equations of
motions are marked by yellow crosses. Black streamlines with white arrows are
overlain on the Wigner function to show the classical evolution of the system. It
can be seen that all of these streamlines eventually converge on one of the fixed
points. The plane is divided into two basins of attraction by the separatrix marked

by the green dashed line. Each basin corresponds to one of the fixed points. Fi-



3.1. Keldysh approach 56

nally the unstable fixed point is marked by the pink dot and the classical trajectories

originating from the vicinty of this fixed point are marked in red.

Figure 3.1.3: Switching trajectory going from the bright state to the dim state. The
optimal switching trajectory going from the bright to the dim state is a solution to the 4-
dimensional equations of motion in which the quantum co-ordinates x. and p. are non-zero,
but here we only display the coordinates x¢, p. and pq. The Wigner function is plotted
in the py = 0 plane and the stable classical fixed points are marked by yellow dots. The
switching trajectory originates from the bright state and takes a complicated path outside
the classical plane before reaching the unstable fixed point, marked by the pink dot. The
system may then follow the classical path to the dim state. This example was produced at
(0/x,x/x,e/x) = (6,—0.5,4).

Next we consider the full EOM, including non-zero values of x, and p,. These
equations of motion have three fixed points within the classical plane, two of which
are stable while the other is unstable. The dim and bright fixed points are denoted
by Z; and Z,;, respectively and the unstable point is denoted by Z,,. The two stable
points each have their own basin of attraction and the unstable point lies on the
boundary which separates these two basins. In order to switch from one stable
point to another the system must leave the classical plane by utilizing the quantum
dimensions x, and p,. The path of least action takes the system to the unstable
point, from which it may move into the basin of attraction of the other stable point.
An example of a switching path leading from the bright state to the dim state is

displayed in Fig. 3.1.3.
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In order to classify the fixed points it is necessary to linearise the equations of
motion around them. At the stable points we find two eigenvalues givenby e;  + =
—Kk *iw with eigenvectors v; _ . residing in the classical plane, where j € {b,d}.
This indicates that these points are stable within the plane. On the other hand,
these points also have two eigenvectors v; | 1 with nonzero quantum components
and eigenvalues e; ; + = K i@, so they are not stable when we consider the full
four-dimensional space.

As for Z,, the eigenvectors v, _ 1 and v, 4 5 corresponding to eigenvalues
euc,— = —Kjand e, ; » = Ky (K] > k» > 0) reside in the classical plane, which indi-
cates that it is saddle point within the classical plane. Meanwhile, the eigenvectors
Vu+1 and v, _ > corresponding to eigenvalues e, . | = k] and ¢, _ » = —k» have
nonzero quantum components. The fact that the eigenvalues of fluctuation eigen-
vectors are nothing but negative of deterministic ones is characteristic of fluctuation-
induced escape mechanism [78].

The probability of a successful escape event is proportional to eSi~« where
S j—u 1s the action calculated along the path from stable fixed point j to the unstable

point. This quantity is given by:

Sipu=— /Z dzc -2, (3.14)

J-—>Zu

This action can be computed from the numerical solution of the equations of motion.
There are two methods of obtaining a solution depending on whether we treat path
as an final value problem (FVP) or a boundary value problem (BVP), which we now
compare.

Due to the stiffness of the equations of motion it, is numerically intractable
to solve them in the vicinity of the stable fixed points. In the FVP method we
instead initialize the system close to Z,, integrate backwards in time [79]. By the
previous linearisation analysis around Z,, we know there is a negative eigenvalue
ey,— 2 = —Kp and the corresponding eigenvector having nonzero quantum values.
We use this eigenvector v, _ > to produce the initial conditions Z, Ay, _ >, in

which we set A as small as our computing system allows, and integrate backwards
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in time until we approach the stable points. The switching action is then calculated

according to the formula above.

To check the validity of this method we can also use a BVP method. In this case
the initial and final conditions are chosentobe Z;+A; y (v; . ++A; v;, and
Z,+Ay_1vy_1+A,_2v,_ . These conditions are set to ensure the system starts
along a path leaving a stable state and ends along a path arriving at the unstable state.
The A coefficients are used as fitting parameters when solving for the switching path

using the scipy.integrate.solve_bvp function in SciPy [80].

We have numerically confirmed that two solutions evolve to the two stable
points respectively and calculated the escape actions according to the integral above.
The two methods are compared in Fig. 3.1.4 for a range of values of §. The two
methods align with each other well, indicating that despite the difficulty of dealing
with these stiff equations of motion we have converged on the correct solution. A

further example of the FVP method is shown in Fig. 3.1.5.

Both methods require of the order 1 minute to compute the action at a given
set of parameters when the calculations are performed using an Intel Core 17-9700
Processor. However there is a marked difference between the numerical precision
required by the methods. In the FVP formulation we found it necessary to specify
the initial conditions with a precision greater than 1 part in 10%° in order to suc-
cessfully converge to the stable point. This goes beyond the realm of double length
floating point numbers and significantly complicates the procedure. FVP calcula-
tions were performed using Wolfram Mathematica®. This high sensitivity to initial
state conditions may be an example of chaotic dynamics which is common in non-

linear systems.

In the BVP approach the solver has information about both the initial state and
the final state and the task is to find the path in between. This appears to be a more
efficient approach in our system and only double length floating point precision is
required. Therefore the approach is compatible with standard tools in Python such

as SciPy.

ZMathematica notebooks for this task were prepared by Changwoo Lee.
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Figure 3.1.4: We calculate the actions of the switching trajectories from the stable points
to the unstable point via both the boundary value method (BVP) and the end value method
(FVP). Close agreement is found. The standard deviation of the difference between the
methods is 0 = 0.1.

The switching rate from x; to the other stable point x; reads ¥, = a)jeisf
where the prefactor @; is the attempt frequency [81, 82]. Assuming the dilute gas
limit of instantons [81] and an effective two-state model [82, 83], the dynamics of

probabilities of the system being at x; is governed by the following master equation

d —
o Po | _ Yosd  Ya—b Db ' (3.15)
"1 pa Yo—d  —Yd—b Pd
This master equation yields the stationary probabilities
Ph(a) = Ya(b)—b(d)/ Yotals  Yiotal = Yosd + Ya—sb- (3.16)

3.2 Liouvillian approach

In order to provide a crosscheck of the Keldysh approach we have developed an
alternative method for calculating switching rates which relies on a the Lindblad
master equation (Eq. 3.2). Since the master equation is linear, we can rewrite the

evolution in terms of the Liouvillian superoperator .’ [48]:

op=52p. (3.17)
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Figure 3.1.5: Action of the escape trajectories at £/x = 4 as a function of 6. At each
value of 0 we finding the switching trajectories and calculate their actions. These are plotted
in panel A, which a zoom in panel B. The action of the trajectory escaping from the dim
state iSq is plotted in blue whereas the action of the trajectory escaping from the bright
state iSy, is plotted in orange. As we increase O the values of iS, and iSq cross each other,
indicating a transition from a regime where the bright state is favoured to one where the
dim state replaces it. Whereas the variation in iSy is smooth and continuous, the variation
in iSq displays a gap at 7.0 < §/x < 7.3 before a sudden drastic fall. This is because
in this range the switching path leaving the dim state becomes intractable. We plot four
example switching paths in panel C at 6 /x = 6.9,7.0,7.3 and 7.4. The direction of motion
is indicated by the arrows marked on the paths. As we approach the missing region the
switching path rapidly becomes larger before making sudden transition between clockwise
and anticlockwise motion. No limit to the size of the switching path has been found, leading
us to conjecture that the path diverges to infinity at some point in the missing range. This
divides the value of iSq into two disconnected branches, which are marked separately by
solid and dashed lines.

We denote the matrix form of the Liouvillian by %, which acts on a vectorized

form for the densisty matrix p. The Liouvillian matrix is given by

Z=—i((Ho1)~10H) + Y (Ln® Ly — Ll Ly 1 - 10LLL). (3.18)
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Soon we shall see that a detailed investigation of the eigenvectors and eigenvalues
of this Liouvillian matrix will allow us to extract both the occupation probabilities

of the metastable states and their switching rates.

The eigenvalue equation takes the form ?ﬁm = —(Yn +io0n)p,,, Where the
real and imginary components of the complex eigenvalues are denoted by 7, and
@y, respectively. The meaning of these components becomes clear when we write

down the evolution of a state in terms of the eigenvectors as

p(1) =Y cpe tntionlip (3.19)

n

Now we see that ¥, represents the decay rate of the state p,, and ®,, represents
its oscillation frequency. It is known that ¥, > O for all eigenvectors [48] and this
ensures that p is well-behaved at long times. States for which ¥, > 0 will decay over
time until the only remaning components of p(z) consists of those eigenvectors for
which ¥, = 0. For our system we expect a single such eigenvector which forms
the steady-state, denoted by p. In the bistable regime this state will consist of
a mixture of the two metastable states, as we saw in Fig. 3.1.1. But we are also
interested in the asymptotically decaying state, i.e. the eigenvector with the smallest
finite value of 7;,, which will be denoted by p,4. Atlong times the state of the system
will consists of a mixture of the steady-state and this asymptotically decaying state,

all other states having already decayed to negligible levels.

We now have two alternative descriptions of the transients response of the sys-
tem: one from the Keldysh approach and one from the Liovuillian approach. The
Keldysh approach shows us that the system approaches steady-state via switching
events between the two metastable states which eventually cause the system to reach
a dynamic equilibrium whereby the rates in each direction are balanced. This equi-
libration occurs at a rate Yol = %—d + Yi—b- But now we see that this process is
also described by the decay of an unknown asymptotically decaying state at rate
Yad- These rates are in fact identical Y,q = %ota1 and the asymptotically decaying

state represents imbalance of the occupation probabilities of these states from the
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eventual steady-state. It can be written as

Pad = N(Pd — pb) (3.20)

where we set the normalization N by Tr(pgdpad) = 1. Given that the steady and
asymptotically decaying states consist of independent mixtures of bright and dim
states, we might consider combining them in such as way as to isolate their com-
ponents. Having isolated the metastable states we may then calculate their occu-
pation probabilities and hence the switching rates. The procedure for achieving
this is illustrated in Fig. 3.2.1 and explained as follows. In panels A and B we
have plotted the Wigner functions of the steady and asymptotically decaying states
at (¢/x,6/x,x/x) = (1.8,3.0,—0.5), within which the bright and dim states are

clearly visible. We can write down a mixture of these states as

T(f) = Pss + fPad (3.21a)

= (po— fN)po+ (pa+ fN)pa. (3.21b)

In order that p, and pgq are both physically realistic states they should be positive
semidefinite, i.e. they should have no negative eigenvalues. Let us define the func-
tion min(7) which returns the smallest eigenvalue of 7. Our condition can now be

stated as min(py, ), min(pq) > 0.

Next we assume that they are orthogonal, i.e. Tr(pppq) = 0, which is a good
approximation provided the drive amplitude is sufficiently strong for the bistable
states to be well separated. Given this assumption, the state 7(f) will be positive
semidefinite if and only if the coefficients of the bistable states are both greater than
or equal to zero. Therefore we can identify the values f3 = py/N and f, = —pg/N
by plotting min|[7(f)] as a function of f and locating where this function falls below
zero. This function is plotted in panel C. Within the range f;, < f < fq we find
min|[7(f)] = 0, which is to be expected since within a sufficiently large Hilbert
space some states will have vanishingly small probabilities. These calculations were

performed using a Hilbert space size of 20 states. The values f4 and f,, obtained
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Figure 3.2.1: Extracting the metastable states from the steady and asymptotically de-
caying states. In panels A and B we plot the Wigner functions of the steady and asymp-
totically decaying states at (¢/x,6/k) = (1.8,3.0). We can see that the dim state makes a
negative contribution to the asymptotically decaying state. This will allow us to form mix-
tures of steady and asymptotically decaying states which eliminate either the bright state or
the dim state. In panel C we plot the minimum eigenvalue of 7(f) = pss + fPag as a function
of f. This eigenvalue falls below zero when either the coefficient of either the bright state
of the dim state in 7 falls below zero. By identifying the values of f where this occurs we
extract the dim and bright states. In panels D and E we plot 7(fy) and 7(f;) respectively,
which are proportional to the dim and bright states.

from panel C are then used to produce the dim and bright states displayed in panels
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D and E. Finally the occupation probabilities are given by

__Ja
fa—Jo
Jo

= . 3.23
Pd 1 (3.23)

P (3.22)

3.3 Quantum jump approach

As a final crosscheck, it is also possible to obtain the occupation probabilities from
quantum trajectory simulations. For example, we could consider a scenario in which
the environment of our oscillator is continuously monitored for any leakage of pho-
tons. In this scenario it is known [84] that the wavefunction of the oscillator con-
ditioned on these measurements can be broken up into two parts: periods of deter-
ministic evolution according to a non-Hermitian effective Hamiltonian separated by
occasional quantum jumps occurring when a photon escapes into the environment

and is detected. The effective Hamiltonian is given by:
H.s=H —ixd'a. (3.24)

During a timestep Ar the non-Hermitian component causes the norm of the wave-

function to decline by:
Ap =20tk (y(t) | a’aly(r)) (3.25)

which corresponds to the probability of a photon escape. If such an event occurs

the wavefunction immediately jumps to a new normalized state given by:

ay(®) 3.26
SOy (320

W+ ) =

In this manner we can evolve the wavefunction in time and build an ensemble of
trajectories which describe the typical behaviour of the oscillator during an exper-
iment. This task is performed using the solvers provided in the QuTiP packages

[74].
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Figure 3.3.1: Using quantum trajectories to extract probabilities. As a crosscheck we
can produce a quantum trajectory using an appropriate stochastic Schrodinger equation and
identify the fraction of time the system spends in each state. Here we display an example
trajectory produced at (¢/x,0/x, x/k) = (1.8,3.0,—0.5). The real component of the cavity
amplitude is plotted in panel A while the imaginary component is plotted in panel B. Within
the trajectory we can see two metastable states, whose lifetimes are much longer than the
natural lifetime of the oscillator. The dim state is marked in grey and the bright state is
marked in orange. In panel C we use this trajectory to produce a histogram of the oscillator
amplitude, within which the clusters corresponding to the bright and dim states are clearly
visible. In order to identify the occupation probability of these two states we apply k-means
clustering. This technique produces the linear classification boundary marked by the white
dashed line, which forms the locus of points equidistant from the cluster centers marked in
grey and orange. For this particular case we find p, = 0.610 and p, = 0.390.

An example is displayed in panels A and B of Fig. 3.3.1, which display the real
and imaginary components of (y(t)|a|y(z)) / {(w(t)| w(¢)) during a single quantum
trajectory produced at (¢/x,8/K,x/x) = (1.8,3.0,—0.5). We see clear evidence
of occasional sudden switching between metastable states whose lifetimes are much
greater than the typical lifetime of photons in the oscillator. Using k-means cluster-
ing [85], a standard technique for linear classification, we have classified the state
of the oscillator at every sampled point in time. In panel C we display a histogram
of the oscillator amplitude throughout evolution and we highlight the two cluster

centers along with the boundary which separates them. By sampling the state of
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the oscillator over a sufficiently long period of time we can find an estimate of the
occupation probabilities of the two metastable states and compare them with the

results of our previously described Liouvillian based method.
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Figure 3.3.2: Occupation probabilities of the bright and dim states. In panel A we
display the oscillator amplitude at (8 /x, x/x) = (3,—0.5) as a function of the drive €. Over
the range 1.25 < £/Kk < 2.25 there is a sharp sudden increase in the oscillator amplitude.
We zoom in on this range in panel B, where we examine the occupation probabilities of
the bright and dim states according to our methods based on the Liouvillian and quantum
trajectories. We see that the transition to a high amplitude state corresponds to a shift in
occupation probability from the dim state to the bright state. We also see close agreement
between our two methods, which gives us confidence that they are working effectively.

A comparison of occupation probabilities calculated using the trajectory and
Liouvillian methods is presented in in Fig. 3.3.2. In panel A we first set the context
by plotting the oscillator amplitude as a function of the drive € at (§/k,x/x) =
(3.0,—0.5). This displays the expected linear response before a sudden transition
to a high amplitude state. We focus on the intermediate region 1.15 < £/x < 2.25
where the transition occurs. In panel B the occupation probabilities calculated using
the Liouvillian method are marked by solid lines. These show a clear crossover from

the dim state to the bright state as the transition occurs. The markers display the
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occupation probabilities obtained from k-means clustering on quantum trajectories
evolved over a time period of 200,000/ k.

Close agreement between our methods observed. The root mean square dif-
ference between the two methods is only 0.004, which gives us confidence in their
accuracy. However the Liouvillian method is much faster and can produce results
over a wider range of drive parameters. Each trajectory took approximately 40 min-
utes to produce on the Intel Core 17-9700 Processor mentioned previously whereas
the Liouvillian method produced matching results over 10 seconds. One reason for
this disparity is that the trajectory method requires us to evolve the system for a
long period of time in order to produce enough switching events between bistable
states that the occupation probabilities converge. Since switching events are inher-
ently rare, the required evolution time is much greater than the cavity lifetime 1/x.
Switching events are most common when the two metastable states have equal occu-
pation probabilities. Away from this point switching events can become extremely

rare, which increases the length of the required evolution time.

3.4 Switching rates

Now that we have are confident in our calculations of the occupation probabilities
we can use them to calculate the switching rates. After that we will compare these
results with the switching rates calculated using the Keldysh method. First we rear-

range Eq. 3.16 to give:

Yd(b)—b(d) = Pb(d)Yad- (3.27)

Using this method we calculate the switching rates corresponding to the probabili-
ties plotted in Fig. 3.3.2B. These are displayed in Fig. 3.4.1B. At the edges of the
bistable regime 7,4 is dominated by the larger switching rate. In the middle of the
bistable regime, where they are balanced, both rates contribute and 7,4 is minimized.

Finally we compare the Liouvillian and Keldysh methods in Fig. 3.4.2. In
panel A we plot the steady-state oscillator amplitude as a function of § and € at

x/x = —0.5. This helps to give some context to the parameter ranges over which
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Figure 3.4.1: Calculating the switching rates from the occupation probabilities. In
panel A we plot the occupation probabilities as a function of € for (8/k,x/x) = (3,—0.5)
while in panel B we plot the asymptotic decay rate ¥,q in green. At low drives the system
occupies the dim state and the asymptotic decay rate is equal to the oscillator decay rate k.
However, at sufficiently large drives the system switches from the dim state to the bright
state. This transition occurs simultaneously with a dramatic reduction in the asymptotic
decay rate, which falls by an order of magnitude. This effect is known as critical slowing
down and it is characteristic of phase transitions. Using Yyv)b(d) = Pa(b) Yad We are able to
produce switching rates displayed in panel B.

we will compare the methods in panels B and C. In panel A the mean-field bound-
aries of the bistable regime are marked in red. Within this regime we see expected
sudden transition between low and high amplitude states of the oscillator. The black
lines highlight the parameter ranges over which panels B and C were produced. Us-
ing the attempt frequencies @, and @, as fitting parameters we are able to obtain
excellent agreement between the switching rates produced by the Keldysh and Li-
ouvillian methods over several orders of magnitude. This indicates that variations
in the switching action are dominant in determining the dependence of the switch-
ing rates on the system parameters. Since the attempt frequencies are used as fitting
parameters we are unable to fully quantify the accuracy of the Keldysh approach.

Future work should examine how these attempt frequencies can be calculated in
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order to complete this work.
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Figure 3.4.2: Comparing Keldysh and Liouvillian switching rates. Here we plot
and compare the switching rates produced using the Keldysh and Liouvillian methods at
x/x = —0.5 and we place them in the context of the oscillator response. In panel A we
plot the oscillator amplitude as a function of 6 and €. The boundaries of the bistable regime
are calculated using the classical equations of motion and are marked in red. Within this
bistable regime we can see the sudden transition from low to high amplitude states which
occurs as the drive is increased. In panels B and C we will plot the switching rates and
oscillator amplitude along the black lines marked in panel A. Panel B was produced at
€/x = 4 while panel C was produced at 6/kx = 8. If the attempt rates vary sufficiently
slowly with 0 and € then we can assume they are constant and use them as fitting param-
eters. In this case we have used @y _q/K = 1.3 X 1072, 04,15t branch/K = 1.4 x 10! and
Od—b,2nd branch/ K = 9.9 X 10°. We justify using two separate attempt for the dim to bright
switching due to the discontinuity in the switching path. Using these fitting parameters
we see excellent agreement between the Keldysh and Liouvillian switching rates over sev-
eral orders of magnitude. This indicates that our assumption that the attempt rates vary
slowly with the drive parameters was remarkably accurate and the dominant variations in
the switching rates are well described by the action of the optimal switching path. Finally,
we overlay the cavity amplitude on these switching rate plots to show that the crossing of
the rates coincides with transition between high and low amplitude states of the oscillator.
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Contributions

This project was conceived by Eran Ginossar and Marzena Szymanska. Chang-
woo Lee placed the equations of motion in Hamiltonian form and found a way to
calculate switching paths by initializing the system close to the unstable point and
integrating backwards in time. Changwoo Lee also prepared Mathematica note-
books to implement this method, which Paul Brookes used in order to compare the
various methods studied in this chapter. Paul Brookes found an alternative method
of finding switching paths by using boundary value methods and contributed the
method of finding metastable state occupation probabilities by studying the eigen-
vectors of the Liouvillian matrix. The comparisons between these methods and with

the quantum trajectory approach were performed by Paul Brookes.



Appendix

3.A Deriving equations of motion in Hamiltonian

form

In order to place the equations of motion in Hamiltonian form we first take the
Lagrangian in eq. 3.4 and then decompose the field variables into real and imaginary

components according to:
ae = (X +ipe) V2, ag= (% +ipg)/V2. (3.28)
In these terms the Lagrangian becomes:

. . X - ~ - -
L=Xpg— PeXy— [5 + 5 (x%%—p?%—xﬁ—l—p%{)} (XeXq + PePg)

+ k(X1 Pg — Peiq) +iK(Xs + Pa) +2€ Py (3.29)

up to total derivatives. Allowing the variables to run on imaginary axes (near £, ~

0, pg =~ 0), let:
Xq — —ipg, Pq — x4 (instanton transformation), (3.30)

then the above expression changes to a Hamiltonian structure:

iL=— [chc—f-Pch —H (xcapc,xqapq)} (3.31)



3.A. Deriving equations of motion in Hamiltonian form 72

with an auxiliary Hamiltonian given by eq. (3.11) which produces the equations of

motion in eq. (3.12). The action, consequently, becomes:

S=i[|Ldt (3.32)

—— [dzz, (333)



Chapter 4

Driving-induced resonance
narrowing in a strongly coupled

cavity-qubit system

4.1 Introduction

The spectral response of a variety of both classical and quantum systems near an iso-
lated resonance is often well-described by the Breit-Wigner model [86]. In this de-
scription the lifetime of an isolated resonance can be determined from its linewidth.
A variety of intriguing effects may occur in regions where resonances overlap [87].
For example, both linewidth narrowing and broadening have been observed with
systems having overlapping resonances [88]. These effects are attributed to inter-
ference between different processes contributing to damping [89, 90]. Destructive
interference gives rise to linewidth narrowing, whereas the opposite effect of broad-

ening occurs due to constructive interference.

These effects have been demonstrated in a wide variety of both classical and
quantum systems. In the classical domain narrowing has been observed with res-
onators having two overlapping resonances for which the frequency separation is
smaller than the resonances’ bandwidth [92, 93, 94]. Closely related processes oc-
cur in the quantum domain with systems having overlapping resonances. In some

cases this overlap is obtained by static tuning of the system under study. One well-
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Figure 4.1.1: The device. (a) Electron micrograph of the flux qubit. (b) Zoom out electron
micrograph showing the qubit embedded in the CPW resonator and its local flux control
line. (c) Sketch of the experimental setup. The cavity transmission is measured using
a vector network analyzer (VNA). Monochromatic flux qubit (FQ) driving is applied us-
ing a signal generator (SG). (d) The measured cavity transmission (in dB units) 60 vs.
¢ /27 (magnetic field detuning from the symmetry point) and @gr/27 (cavity driving fre-
quency). The power injected into the cavity is —112 dBm. For the device under study
®. /27 = 6.6408 GHz, A /2w = 1.12GHz, g/27 =0.274GHz and ¥%./®. = 1.1 x 107> The
relaxation time 77 = 1.2 us (1 4 0.45ns x |@|) is obtained from energy relaxation measure-
ments, and the rate 7, ' =4.5MHz (1 +44 |ax| / @,) is obtained from Ramsey rate measure-
ments [91]. The empirical expressions for both 77 and 7, are obtained using approximate
interpolation.

known example is the Purcell effect [95], which is observed when atoms inter-
act with light confined inside a cavity. In such cavity quantum electrodynamics
(CQED) systems, both linewidth narrowing and broadening occur when the atomic
and cavity mode resonances overlap. Other examples of static tuning giving rise
to linewidth narrowing and broadening due to overlapping resonances have been

reported in [96, 97].
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Closely related processes occur in atomic systems exhibiting electromagneti-
cally induced transparency (EIT) [98, 99]. However, tuning into the region of EIT
is commonly based on external driving (rather than static tuning), which can be
used for manipulating the spectrum of the dressed states. Both linewidth narrow-
ing and broadening have been observed in such systems in the region where the
dressed spectrum contains overlapping resonances. Commonly, a broadened reso-
nance is referred to as a bright state, whereas the term dark state refers to a narrowed
resonance. The slow propagation speed associated with dark states [100] can be ex-

ploited for long term storage of quantum information [101].

In this chapter we analyse recently collected data [102] displaying linewidth
narrowing in a superconducting circuit composed of a microwave resonator cou-
ple to a Josephson flux qubit [103, 104] and we carry out a numerical study of the
dynamics governing this phenomenon. The qubit under study, which is strongly
coupled [105, 106, 107, 108] to a coplanar waveguide (CPW) microwave resonator
[106, 109, 110, 111, 112, 113, 114, 115], is shown in Fig. 4.1.1(a) and (b). The
strong coupling gives rise to a dispersive splitting of the cavity mode resonance
and the experimenters found that this frequency splitting could be controlled by
applying a monochromatic driving to the flux qubit [see Fig. 4.1.1(b)]. The ef-
fect of linewidth narrowing, which is discussed below in section 4.4, is observed
when the frequency and power of qubit driving are tuned into the region where the
frequency splitting vanishes. In this region the measured linewidth becomes signif-
icantly smaller than the linewidth of the decoupled cavity resonance by a factor of

up to 20.

While the linewidth narrowing effect is induced by qubit driving, a variety of
other nonlinear effects can be observed with strong cavity mode driving [116, 117,
118, 119, 120, 121, 71, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132]. In
section 4.5 we focus on the lineshape of the cavity transmission in the nonlinear
region. The experimental results are compared with predictions of a semiclassical
theory. We find that good agreement can be obtained with theoretical predictions

derived by numerical integration of the master equation for the coupled system.
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4.2 Experimental setup

The device under investigation [see Fig. 4.1.1(a) and (b)] contains a CPW cavity
resonator weakly coupled to two ports which are used for performing microwave
transmission measurements [see Fig. 4.1.1(c)]. A persistent current flux qubit [103],
consisting of a superconducting loop interrupted by four Josephson junctions, is in-
ductively coupled to the fundamental half-wavelength mode of the CPW resonator.
A CPW line terminated by a low inductance shunt is used for qubit driving [see
Fig. 4.1.1(b) and (c)]. The device was fabricated on a high resistivity silicon sub-
strate in a two-step process. In the first step, the resonator and the control lines
were defined using optical lithography, evaporation of a 190nm thick aluminum
layer and liftoff. In the second step, a bilayer resist was patterned by electron-beam
lithography. Subsequently, shadow evaporation of two aluminum layers, 40 nm and

65 nm thick respectively, followed by liftoff defined the qubit junctions.

The chip was enclosed inside a copper package, which was cooled using a di-
lution refrigerator to a temperature of 7 = 23 mK. Both passive and active shielding
methods were employed to suppress magnetic field noise. While passive shielding
was performed using a three-layer high permeability metal, an active magnetic field
compensation system placed outside the cryostat was used to actively reduce low-
frequency magnetic field noise. A set of superconducting coils was used to apply
DC magnetic flux. Qubit state control, which was employed in order to measure
the qubit longitudinal 77 and transverse 7> relaxation times, was performed using
shaped microwave pulses. Attenuators and filters were installed at different cooling
stages along the transmission lines for qubit control and readout. A detailed de-

scription of sample fabrication and experimental setup can be found in [111, 110].

4.3 The dispersive region

The Hamiltonan describing this system can be written as [133]

& 1 1
H:ha)ca'a—ﬁg(a—l—aT)Gé—FEﬁ(DfGé%—Eﬁ(DAG())C (4.1)
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where a is a cavity annihilation operator and o and o5 are Pauli operators acting
on the Hilbert space of the qubit. These operators can be written in the form oy =
|O) (O] +0) (O] and 6 = |O) (O] — |O) (O] where |©) and |) correspond to a

clockwise or anticlockwise circulating current of 7,

The above Hamiltonian describes an inductive coupling of strength g between
the flux qubit and the transmission line resonator, which has a resonance frequency
of @.. Meanwhile the transition frequency of the qubit is given by @, = 4/ a)f2 + (oi.
In the presence of an externally applied magnetic flux @, this frequency can be
tuned by controlling @y = (21, Py /h) (Pe /Py — 1/2) where ®y = h/2e is the flux

quantum.

At this point it is convenient to change our basis to the energy eigenstates |+)
of the qubit, which are given by:

+)) _ ( cos(6/2) sin(6/2) (o) 4.2)

|—) —sin(6/2) cos(6/2)) \|O)
where tan(0) = m, /. We use these states to define a new set of Pauli operators:
o= |+){(+|—|-)(~|, 67 = |+)(—| and 6~ = |—) (+], in terms of which the

Hamiltonian is given by:

1
H = how'a+ Ehwagz —hgla+a") (cos(@)cZ —sin(0) (o™ + G_)) (4.3)

1
~ howa'a+ Ea)acZ +gsin(0)(ac™ + aTG_) (4.4)
where the last line is obtained by applying the rotating wave approximation. This
leaves us with a Jaynes-Cummings Hamiltonian, which describes the exchange of
quanta of energy between the qubit and resonator but conserves their total number.

This Hamiltonian can be diagonalized by the application of a unitary transformation

[134, 65, 135]:

U = exp (—A(a*o - ao*)) (4.5)
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for which we define:

1
Wi arctan (2% \/ZV) (4.6)

N=da+oto™ 4.7)
g
- 4.
A= (4.8)
A= 0, — . (4.9)

The application of this transformation gives:
1 1
UTHU = ho.a'a+ S 110,07 — ~hA (1 —V1+ 4/12N) o*. (4.10)

The form above is exact but in the dispersive regime, defined by g/ |A| < 1, it can

be approximated by [30, 1]:

2 1 2
UTHUzh(wc+chZ)aTa+§ﬁ<wa+%)02+ﬁ(z3). (4.11)

In this form we can see a shift in the cavity resonance frequency of i% depending
on the state of the qubit. This effect can be seen in network analyzer measurements
of the cavity transmission, which are shown in Fig. 4.1.1(d). The middle region
where @ < /@02 — a)i corresponds to A > 0 and in this region two peaks are seen
in the cavity transmission. The upper one corresponds to the case where the qubit
occupies the ground state, whereas the lower one, which is weaker, corresponds to

the case where the qubit occupies the first excited state.

4.4 Qubit driving

We now move on to study the transmission of the resonator when a drive is applied
to the qubit. The experimenters tuned the frequency of the qubit to m, /2w = 5GHz
by adjusting the external magnetic flux. Meanwhile a signal with angular frequency
@p and amplitude Q4 was injected into the control line to drive the qubit. Network

analyzer measurements of the cavity transmission as a function of @, for two fixed
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values of qubit driving amplitude €2, are shown in Fig. 4.4.1(a) and (b). In panel
(a) we observe two resonances the cavity drive frequency is swept @qf, however one
of these resonances is only visible when the qubit drive is tuned close to @, /27w =
5 GHz. This is consistent with the expected dispersive shift of the cavity resonance
frequency, whose sign is dependent on the state of the qubit. When the qubit drive is
detuned only the ground state is occupied, therefore only one resonance is observed.
However, when it is brought into resonance, the occupation of the excited state

increases and the second resonance becomes visible.

The transmission data in panel (b) was collected after increasing the qubit drive
amplitude by a factor of 100 and is is more challenging to interpret. As in panel (a)
we see two dispersively shifted resonances, however now both are visible when the
qubit drive is detuned. Meanwhile at @, /27 = 5 GHz both resonances have merged
into a single peak. This effect cannot be explained through the dispersive approx-
imation. In order to model it we first introduce the qubit drive to the Hamiltonian

according to:
Hariven (1) = H + hQq cos(mpt) o™~ (4.12)

We can remove the time dependence of the Hamiltonian by moving to a frame
rotating with the drive and applying the rotating wave approximation. In a rotating

frame the Hamiltonian is given by:
Hr(t) =VI)HV (1) +i(9V'(1))V. (4.13)

In the current case we choose V (1) = exp ( —iopt(ata+ G*O")) which produces:

Hy (1) =h(e — op)aTa+ %ﬁ(a)a — @) 0%+ higsin(0)(ac™ +a'o")

+ hQq cos(pt) (o*ei“’vt + oei‘*’vf> . (4.14)
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After the rotating wave approximation this gives:

; 1 1
Hg = h(@. — wp)a’a+ Eﬁ(a)a — @,)0° + hgsin(0)(act +a'cT) + EﬁQqu.
(4.15)

When a drive is applied to the cavity it probes the transitions between the eigenstates
of this Hamiltonian. Significant transmission only occurs when the cavity drive is
resonant with a transition and the lower energy level is occupied. By diagonalizing
the above Hamiltonian and studying the low lying transitions we produce the black

dashed lines in Fig. 4.4.1(b), which align closely with the observed resonances.

In Fig. 4.4.2 we study the dependence of cavity transmission on qubit driving
amplitude Q4. In panel (a) we plot the cavity transmission which was experimen-
tally observed when the driving frequency was fixed at w,/27 = 5.16GHz. At
low drive powers we see the expected pair of dispersively shifted resonances cor-
responding to the ground and excited states of the qubit. When the drive power
is increased to —6 dB these resonances merge before separating again at the even
higher powers. In panel (b) we plot cross sections of the transmission at —6 dB
and —45 dB. The asymmetry in the line shapes at low driving power indicates
nonlinearity in the cavity response, similar to the behaviour observed in [133]. In
the high power cross section the two resonances merge into a single peak of width
~ 200 kHz, which is narrower than the low power resonances which are of width

~ IMHz.

This effect is even more pronounced in panels (¢) and (d), in which the qubit
drive frequency is set to ®,/27w = 5.52GHz. This is sufficiently far detuned from
the transition frequency of the qubit that at low drive powers only one resonance is
visible. However, as the drive power is increased the second resonance is visible due
to the excitation of the qubit. When they merge at —1 dB they produce a sharp peak
of width ~ 70kHz, an order of magnitude sharper than the low power resonance.

It is a challenge to provide an explanation for this linewidth narrowing. It
is also a challenge to provide an intuitive explanation for the line merging which

accompanies it, despite our diagonalization of the system Hamiltonian providing
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Figure 4.4.1: The effect of qubit driving. Cavity transmission in dB units as a function
of qubit driving frequency @, /27 and cavity driving frequency wq/27. The qubit driving
amplitude €4 in (b) is 100 times larger compared with the values used in (a). For both
plots the qubit frequency is given by @,/2m = SGHz. The overlaid black dotted line in
(b) is obtained by numerically calculating the transition frequencies between the lowest-
lying eigenvalues of the Hamiltonian in eq. 4.15 using the following parameters /27 =
0.5GHz, ./27 = 6.6408 GHz, wp/2m = 1.12GHz, @;/27 = 4.9GHz, 0,/27n = 5.0GHz
and gsin(6)/2n = 0.075 GHz.

a quantitative model. One possibility is that the merging occurs due to motional
averaging [136, 137, 138, 139] in which a system whose resonant frequency varies
rapidly will respond at the average frequency. In this case the frequency of the
cavity is dispersively shifted according to the state of the qubit so we might expect
that apply a drive to the qubit will cause Rabi oscillations and induce the resonator
to respond at its average frequency. However this fails to explain why increasing the
drive power causes the lines to split again. We would not expect motional averaging

to disappear when we make the qubit oscillate faster.

Nevertheless, in the following we will propose that this effect may be the re-

sult of combination of multistability and motional narrowing occurring when both
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Figure 4.4.2: Dependence on qubit driving amplitude. The driving frequency is @, /27 =
5.16GHz in (a) and (b) and @,/27 = 5.52GHz in (c) and (d). Cavity transmission in
dB units as a function of cavity driving frequency @g/27m and amplitude (in logarithmic
scale) Py = 20log, (Qq / quo) are shown in (a) and (c). Cross sections taken at values of P,
indicated by colored horizontal dotted lines in (a) and (c) are shown using the correspond-
ing colors in (b) and (d). The overlaid black dotted line in (a) is obtained by numerically
calculating the transition frequencies between the eigenvalues of the Hamiltonian (??) us-
ing the following parameters @, /27 = 5.16GHz, Qq0/2m = 2.4GHz, s /27 = 1.12GHz,
wr/2n = 4.873GHz, ®,/27 = 5.000GHz and gsin(0)/2m = 0.075 GHz.

the qubit and cavity are strongly driven. Our analysis is based on applying quan-
tum trajectory methods to the system Hamiltonian including both qubit and cavity
drives. However, our study is challenging for several reasons. First, multistability
is a nonlinear effect which only appears when the cavity drive is sufficiently strong.
This requires that we retain a large Hilbert space size in our calculations. In the
following we will include 60 cavity levels. Furthermore, in the presence of both
qubit and cavity driving it is not possible to find a frame in which the Hamiltonian
is time independent, which adds additional complexity to our calculations. Finally,

long integration times are required in order to produce accurate long time averages
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in this regime due to critical slowing down in the multistable regime. This prevents
us from carrying out simulations for the same parameters as used in the experiment.
Therefore we are unable to to make quantitative comparisons with the data collected

by the experimenters.

When we include the cavity drive the Hamiltonian is given by:
H{(t) = Hg + Q¢ (aexp(iAgpt) +a’ exp(—iAgpt)) (4.16)

where Agp, = @gr — @p. In order to describe dissipation due to loss of photons from
the cavity we use the Lindblad operator /Y. a, while to describe dissipation in the
qubit we use /Yo~ . After combining these elements, the evolution of the state of

the system is described by the Linblad master equation:

0p = — 1 [Hi (1), p] + %:Dlalp + 1D |p. (.17)

The time-dependence of the cavity amplitude (A) = Tr(p(7)A) contains two main
frequencies Agp = @yr — @ and Acp = @ — @, due to the drive and cavity fre-
quency respectively. The experimental data presented in Fig. 4.4.2 were measured
by mixing the signal transmitted through the cavity with a reference at the cavity
drive frequency, as is standard in heterodyne detection. Therefore in order to model
the transmitted power Tya we must examine the cavity amplitude (A) in a frame

rotating with the drive. This is given by

(Agp,t) = Tr (p (t)A) exp (— iAgyt ). (4.18)

According to input-output theory 7ya will be proportional to the square of this

amplitude.

In order to observe narrowing we must drive the cavity in the nonlinear regime.
We take a cavity drive amplitude of Q. /27w = 1.00 MHz. The remaining parameters
are set to Qq/2mw = 1.726 MHz, w,/27 = 5.50 GHz, gsin(0)/2n = 0.075 GHz,
,/2w =5 GHz, ¥, /2n = 377 kHz and 7, /2n = 40.7 kHz. Using these parameters
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we produce the spectrum in Fig. 4.4.3 by evolving the state of our system over
9.6 ms for a range of cavity drive frequencies [74]. The long time average ¢(Aqp)
displays a full width at half maximum of 125 kHz, significantly less than the natural
linewidth of 377 kHz.

This narrowing can be explained when we realise that in the presence of a
strong cavity drive the system displays multistability and the line narrowing is due
to a bright cavity state () which is most stable over a narrow range of frequencies
close to the bare cavity resonance. Close to the cavity resonance the system occu-
pies the bright state and the transmitted power is high. However away from this
point the system may also occupy two other dim states (| and d;), which causes a

sharp drop in the transmitted power and a narrow linewidth.

In Fig. 4.4.4 we examine these metastable states more closely. We plot
the cavity amplitude and qubit polarization over 170 us of evolution at @, /27w =
6.6409 GHz. The two dim states, labelled d; and d|, occur when the qubit is polar-
ized in the up and down directions respectively. Meanwhile the bright state occurs
when the qubit is depolarised and varies widely over the range —1 < (6%) < 1. This
behaviour is reminiscent of motional averaging. Since the state of the qubit rapidly
varies between the ground and excited states the cavity appears to respond at its

bare frequency and form a motionally averaged bright state.

4.5 Cavity driving

In this section we study the response of the cavity in the absence of qubit driving.
The nonlinear response of a microwave cavity coupled to a transmon superconduct-
ing qubit has recently been studied in Ref. [140] and in chapter 2. The experimental
results, together with theoretical analysis [132, 141], indicate that the response to
strong cavity driving is affected by the significant coherent driving of the qubit as
well as by the stochastic transitions between qubit states. The effect of cavity driv-
ing can be characterized by a dephasing rate and by a measurement rate. Both rates

have been numerically calculated and analytically estimated in Ref. [142].

Measurements of the cavity transmission Tya of the device under study as a
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Figure 4.4.3: Simulation of the cavity spectrum in the nonlinear regime. We use a cav-
ity drive amplitude of Q./27 = 1 MHz, a qubit drive frequency of w, = 5.5 GHz and a
qubit drive amplitude of Q4 = 0.863 GHz. The system displays multistability and three
distinct metastable states can be identified, which are labelled by d|, d; and b and assigned
the colours orange, green and red respectively. We plot the square cavity amplitude (a),
qubit polarization (b) and occupation probability (d) of each of these three states against the
cavity drive frequency wye/27. In panel (a) we see that the cavity amplitude of state b is
significantly larger than the amplitudes of states d| and dy. Hence we refer to b as bright
and d| and d; as dim. The black line is produced by averaging the cavity amplitude over
9.6 ms of evolution before taking the square of the absolute value. It displays a narrow
resonance at the bare cavity frequency. The full width at half maximum is only 125 kHz,
which is 33% of the natural linewidth of 377 kHz. In panel (b) we see that states d| and d;
occur when the qubit is polarized up and down respectively whereas the qubit polarization
associated with state b varies with the drive frequency. Finally in panel (c) we see the occu-
pation probabilities of the three states. Away from the cavity resonance the stability of state
b falls. This causes the narrowing observed in panel (a).
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Figure 4.4.4: Here we examine a quantum state trajectory produced at wgs/27mw =
6.6409 GHz. In panel (a) we plot the real and imaginary parts of the cavity amplitude.
The cavity is observed to jump between three metastable states. Examples of states dy, d|
and b are highlighted between the vertical dashed lines in green, orange and red respec-
tively. By referring to panel (b) we see that state dy occurs when the qubit has positive
polarization, state d| occurs when it has negative polarization and state b occurs when the
qubit freely varies over the range —1 < (6%) < 1. In panel (c) we plot a histogram of the
cavity amplitude throughout 9.6 ms of evolution. The three metastable states are clearly
identified as three clusters in the plane. Switching pathways leading between these clusters
can also be observed.

function of cavity driving frequency ®q¢/27 and power Py, are shown in Fig. 4.5.1.
No qubit driving is applied during these measurements. We demonstrate nonlin-
earity of the softening type in Fig. 4.5.1(a-c), whereas hardening is demonstrated
in Fig. 4.5.1(d-f). We obtained the data shown in Fig. 4.5.1 by sweeping the cav-
ity driving frequency @gs/27m upwards. Almost no hysteresis is observed when the

sweeping direction is flipped.

The measured cavity transmission 7y can be compared with theoretical pre-
dictions based on the semiclassical approximation. Such a comparison has previ-
ously been performed in Ref. [133] based on data that has been obtained from the
same device. Good quantitative agreement was found in the region of relatively

small cavity driving amplitudes [133].

However, when the cavity is strongly driven, the nonlinearity introduced to the
system by the qubit causes the onset of bistability and the semiclassical approxima-
tion alone is unable to reproduce the cavity transmission. This is because, despite

accurately modeling the fixed points, which henceforth are referred to as the bright
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Figure 4.5.1: Nonlinear response to cavity driving. The cavity transmission Tna is mea-
sured as a function of cavity driving frequency @qs/27 for different values of the cavity
driving power Py,. These data are compared with a numerical calculation of the steady
state of the Lindblad master equation (dashed red line). In (a-c) the frequency /27 is
flux-tuned to 5.5GHz, and in (d-f) to 7.8 GHz. Different values of 7, are used at each drive

power to account for the increase in the quality factor of the cavity with occupation. We use
Y% = (a) 0.314, (b) 0.251, (c) 0.126, (d) 0.314, (e) 0.251 and (f) 0.126 MHz.

and dim metastable states (see Fig. 4.5.2), the semiclassical equations of motion
give no information regarding the occupation probabilities of the two metastable

states in the overall state of the system, which can be written as:

P = pvPob + PdPd (4.19)

where py(pq) and py(pq) represent the bright (dim) state and its probability respec-
tively.

The experimental results shown in Fig. 4.5.1 exhibit a sharp dip in cavity
transmission Tnya at drive powers above —109dBm. A very similar feature has
been experimentally observed before in [140] and theoretically discussed in Refs.

[132, 141], for which the full quantum theory of the single nonlinear oscillator
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has been developed in [143]. The origin of this dip is the destructive interference
between the two metastable states. Since the system is coupled to an external reser-
voir, fluctuations in the quantum state ensue and occasionally cause major switching
events between the bright and dim states. When the complex amplitude of the cavity
state is averaged over an ensemble of many such switching events, there is typically
a narrow region in the frequency-power space where the two complex amplitudes
partially cancel each other. By using the Lindblad master equation to model the sys-
tem, we are able to take account of these fluctuations which cause these switching

events and we produce the numerical fits seen in Fig. 4.5.1.

In order to calculate the response of our system to cavity driving (without qubit

driving) we use the following master equation:
i
dp =~ - [H,p]+DlAlp +nDlo-]p, (4.20)
where the Hamiltonian a frame rotating with the cavity drive is given by:

1 1 L
H ~ h(o. — og)a’a+ Eﬁ(wa — g5)0° + hgsin(0)(act +da'c7) + EHQC(cH—a' ).
4.21)

In the above the detuning between the cavity drive and the cavity resonance is
given by Ag. = wgr — @, while the detuning between the cavity drive and the qubit
frequency is given by Ag, = @gf — ;. Since the relaxation rate of the qubit de-
pends on the magnetic field detuning from the symmetry point we must take ac-
count of this in our calculations. For Figs. 4.5.1(a-c) we have w¢/2m = 5.5GHz
and 7, /2m = 6.29kHz, whereas for Figs. 4.5.1(d-f) we have w;/2m = 7.8GHz and
71 /27 = 4.02kHz.

The master equation above does not include a Lindblad operator to describe
pure dephasing of the flux qubit. Since we are operating the qubit far from its sym-
metry point, pure dephasing will be dominated by flux noise, and in [111] the power
spectral density (PSD) of this noise was found to have a 1/ % form. Unfortunately

we cannot account for this noise in the master equation, because the Markovian
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approximation requires that the PSD is well-behaved at zero frequency. However,
even without the inclusion of pure dephasing, the master equation is still able to
explain the major features of the spectra measured in Fig. 4.5.1.

Comparison between the predictions derived from the numerical integration of
the master equation and the ones analytically derived from the semiclassical equa-

tions of motion is shown in Fig. 4.5.2.

4.6 Summary

Our main finding is the linewidth narrowing that is obtained by applying intense
qubit driving. The experimenters showed that this effect is robust, however, its
theoretical modeling is quite challenging. We have made a qualitative comparison
with the results of a simulation which display linewidth narrowing due to a bright
metastable state with a narrow range of stability. We also speculated that this bright
state could be an example of motional averaging. Further work should explore this
possibility more deeply and aim to understand if the motionally averaged bright
state is stable over only a narrow range of qubit drive powers.

We also find that bistability, which is predicted by the semiclassical model
for monochromatic cavity driving, is experimentally inaccessible. This effect and
related observations can be satisfactorily explained using numerical integration of

the master equation for the coupled system.

Contributions

This chapter is based on published work [102]. The experimental data presented
in this chapter were collected by Eyal Buks in collaboration with Chunqging Deng,
Jean-Luc Orgiazzi and Martin Otto in the group of Adrian Lupascu at the Institute
for Quantum Computing, University of Waterloo. Paul Brookes and Eyal Buks
interpreted the data. Paul Brookes performed the numerical calculations presented

in this chapter under the supervision of Eran Ginossar.
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Figure 4.5.2: The bistable regime. The cavity drive power is given by Py, =
20log;( (Qc/ o) where @ /2w = 340GHz. In (a) we plot the Wigner function of
the cavity state in the bistable regime, which is obtained by solving for the steady state
of the master equation at a drive power of Py, = —109dBm and a drive frequency of
W42 /27 = 6.6445GHz. These parameters are marked by the red crosses in panel (b) and
in Fig. 4.5.1(b). Two metastable states can be seen: a bright state at C, = 4.64 —3.73i and a
dim state at Cy = —1.88 — 0.39i. These two states correspond to the fixed points produced
using the semiclassical equations of motion, marked by blue crosses. Next in (b) we exam-
ine the boundaries of the bistable regime. By examining the cavity Wigner function over
a range of drive powers and frequencies we map the region in which we find two peaks
corresponding to the bright and dim states. When two peaks can be identified we calculate
the metric B = 1 — |p, — p4| as a measure of bistability. This is plotted in the colormap
above. Meanwhile the dashed black lines mark the boundaries of the region in which the
semiclassical equations of motion have two fixed points. These methods produce signifi-
cant overlap and both predict the onset of bistability around Py, = —117dB. We also see
that the region of maximum bistability predicted by the master equation (yellow strip) lies
either close to or within the semiclassical bistable region at all powers. However there are
significant differences in the limits of the bistable region, particularly at the upper freugency
limit. The master equation predicts this limit should increase with drive power, whereas the
semiclassical equations predict the opposite.



Chapter 5

Long range couplings in a spin chain
and the protection of quantum

information

In this chapter we shall change theme. Whereas the previous chapters dealt with
nonlinear effects in coupled resonator-qubit systems, in this chapter we shall present
a new qubit design based on a spin chain model obeying certain common symme-
tries, such as invariance under translation or inversion, and demonstrate that these
symmetries can produce eigenstates which have some degree of protection against
decoherence. These states can be found among the excited states of many well
studied models, but we will demonstrate that using long range interactions these
states can be brought down to the low lying part of the spectrum where they can be
used to encode information. Models containing long range interactions generally
receive less attention because they are assumed to be less physically realistic, but
we will highlight such a model which not only produces some interesting coherence

properties but can also be engineered in a laboratory.

5.1 Symmetries and a toy model

Let us begin by discussing the relevant symmetries. We consider a periodic chain
containing an even number of spins M and we introduce the operators o;,, N/, T and

Z. The operator G, is a local Pauli operator acting on site m while the hermitian
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operator \ is corresponds to the total number of excitations in the chain N =

M
m=1

(0,0, — %) The operators 7 and Z are unitary and they act to either displace
the chain by a single site 7 6;,7 ~! = 6,41 or to invert the chain around the central
bond Z06,,Z = Op1+1_m. Using these transformations it is straightforward to show

that o, can be written as

Op = T2 M- 7,1 T @m=—M-1), (5.1)
~——

OM+1-m

Essentially we have inverted the site on which the Pauli operator acts before trans-
lating it back to its original location. Now let’s imagine that we can find two states
of the chain, denoted by |1) and |{), which are simultaneously eigenstates of the

translation, inversion and number operators with the following eigenvalues

NI =N, NI)=NI) (5.2a)
Th=m, TIH=N (5.2b)
IM=m, ZI=-1 (5.2¢)

Using these properties we will now demonstrate that at first order our chosen states
are immune to relaxation and dephasing due to noise channels acting on single sites.
We start by looking at relaxation, which should be proportional to matrix elements
of the form (1| 6;, |{). But using the eigenvalues above in combination with eq. 5.1

we can show that these matrix elements vanish:

(towl) = H T M Lo, ZT P M V) = —(Hloulh) =0.  (53)
(1l —)

In other words the symmetry properties of our states have allowed us to prove that
the transition matrix element of a Pauli operator (1| o, |]) is equal to minus itself,

and is therefore zero.

Next we consider dephasing, which should occur at a rate proportional to

| (1| om |T) — (}| om [4) | i-e. the first order shift in the energy splitting of our states
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induced by noise acting on a Pauli operator 0,,. We first consider ¢, Pauli opera-
tors. Using the translation operator we show that the expectation value of A for the

1) state is given by:

M—-1

AN =Y HIT"efT " 11) =M (165 1) (5.4)

m=0

and in the same way we can also demonstrate (| N |}) = M (]| 0% |}). But since
the eigenvalues in eq. 5.2a tell us (?|N|1) = (JJN |}) =N we find (]| 65 |1) =
({|o%|4) = N/M. Therefore the states are immune to G, noise to first order. In
addition, since [N, 6;-] = 0, we know that the action of the o operator is to
map the states to orthogonal eigenstates of N with eigenvalues N 4= 1. Therefore
(Ml o5 1) = (}| o5 |}) = 0. This means that our states are also immune to dephasing

acting on o, or any superposition thereof, such as ¢ or oj,.

Unfortunately it is not easy to find a model which produces such states in
usable form. There are many examples of models which obey the necessary sym-
metries and produce the desired eigenstates, but in order to use these states conve-
niently as a basis for a qubit they must be well separated from the rest of the spec-
trum. For example, we might expect to find such states in the XX model, wherein
the spins of the chain are coupled only by nearest neighbour flip-flop interactions.
This model conserves N and is symmetric under both translation and inversion. In-
deed, the spectrum of the XX model contains a degenerate manifold, within which
lie two states satisfying the required symmetries. But, since they are both inter-
mediate in the spectrum and degenerate with multiple other states, they cannot be

used.

For our purposes we will investigate a modified XX model consisting of a
periodic chain of 6 spins which are coupled by three different kinds of interactions.
Flip-flop interactions exchange excitations between neighbouring sites in the ring at
arate ¢t and between diametrically opposite sites in the ring at a rate A. In addition

there is an all-to-all 6 ® ¢* coupling with strength {. This model is described by
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the following Hamiltonian:

N—1
t _ _ A _ _
H= ZO (E(G"—:Gm-kl + 0y o-r—r';—i-l) - E(Grjl_cm+3 + 0y, G}Lﬁ))
m=

N—1
+3 L %0 (5.5)
m,n=0
which is illustrated in Fig. 5.1.1(a). Using this model we show in Fig. 5.1.1(b) and
(c) that it is possible to produce a qubit manifold which satisfies the above symme-
tries and is therefore protected against relaxation and dephasing. We quantify the

sensitivity to relaxation by

R= Y [l (5.6)

we{x,y,z}

and the sensitivity to dephasing by

D’= ) [{Honlt) —{Honlh) (5.7)

wedxyz}
By plotting these quantities as a function of { and A we observe regions in which
the sensitivities to relaxation and dephasing are suppressed. The hatched regions
which are overlain indicate the areas of parameter space in which the symmetries
listed in eqs. 5.2 are obeyed by the lowest two eigenstates of the Hamiltonian. As

expected, these co-indicate with the protected regions.

Here we note that the suppression of D can also be connected to time reversal

symmetry. The time reversal operator is given by:
U=io’K (5.8)

where K is the antiunitary complex conjugation operator. The action of U on a Pauli

operator is given by:

U'c"U =—-0c". (5.9
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Figure 5.1.1: Decoherence properties of a periodic chain containing six spins with long
range couplings. (b) Schematic representation of the Hamiltonian of the chain. Each spin
(represented in red) is coupled by flip-flop interactions to both its nearest neighbours (¢,
blue arrows) and to its diametrically opposite counterpart (A, green lines). In addition there
are 0° ® o¢ interactions between all spins in the chain ({, purple lines). Sensitivity to re-
laxation R (b) and dephasing D (c) of a superposition of the two lowest energy states vs
the strengths of the long range interactions § and A. The black coloured regions indicate
parameters where the ground and first excited state of the chain are protected against lo-
cal perturbations. Three regions are highlighted to indicate different kinds of symmetries
obeyed by the ground and first excited states. The red hatched region indicates that both
states are invariant under the action of the translation operator T while the orange hatched
region indicates that the ground (resp. first excited) state is an eigenvector of the inversion
operator 7 with eigenvalue +1 (resp. -1). Finally the white hatched region indicates that the
ground and first excited states are eigenvectors of the total number of excitations Niot With
eigenvalue 3.

Since our model in eq. 5.5 only contains pairs Pauli operators, we can see that the
time-reversal operator will leave the Hamiltonian unchanged. Therefore, assuming
our states are not degenerate with any others, the action of the time reversal operator

will be to map them back to themselves, possible acquiring a phase:

U ls) = exp(igy) |s) (5.10)

where s € {1,/}. We can combine this information to demonstrate vanishing ex-
pectation values as follows. From the above we see that the expectation value of

operator 6" in state U |s) is given by:

(s|UT6™U |s) = (s| 6" |s). (5.11)
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Simultaneously from eq. 5.9 we see:
(s|UT6"U |s) = — (s] 6" s) . (5.12)

Therefore (s| 6" |s) = — (s| 6" |s) = 0.

If the system contains an odd number of sites then the total spin will be a half
integer and according to Kramers theorem all eigenstates of the Hamiltonian will
form degenerate multiplets and the action of the time reversal operator will be non-
trivial. Therefore for the above argument to hold the chain must contain an even

number of sites.

5.2 Circuit design

This development is promising, however it is a challenging task to find a physical
system where long range interactions are not only of similar strength to the nearest
neighbour interactions but also of opposite sign. Fortunately for us, the toolset of su-
perconducting electronics offers methods to engineer such interactions via directly
connecting distant sites in a chain. In the following we propose an implementation
of our Hamiltonian using an array of Josephson junctions. In our design the spins
are formed by the radial Josephson junctions shown in blue in Fig. 5.2.1(a), which
have Josephson energy Ej, and charging energy Ec,. Each junction, whose gate
charge is tuned to Ny = 0.5, forms a Cooper pair box superconducting qubit.

These qubits are coupled to their nearest neighbours via Josephson junctions
with Josephson energy Ej, and to their diametrically opposite counterparts via
Josephson junctions of Josephson energy Ej;. These two types of junctions will
henceforth be referred to as azimuthal and diametric junctions. Tunneling across
these junctions can be used to recreate the flip-flop coupling above. Meanwhile the
charging energies of the azimuthal junctions E¢, are chosen such that Ec,/Ec, < 1.
In this case a long range charge coupling of strength ~ E, arises between the qubits
which recreates the all-to-all 6° ® ¢* coupling.

The relative sign of the flip-flop interactions is controlled by the choice of the

flux threading through the circuit. At the optimal point the flux threading through
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each internal sector is tuned to half a flux quantum ®(/2, while the flux threading
the outer loops is 3®( /2. This can be easily arranged by applying a homogeneous
external magnetic field and choosing the appropriate circuit dimensions. For ease
of fabrication we choose all three junction types to have the same plasma frequency
V8E;Ec/h =10 GHz. In Fig. 5.2.1(b) we plot the transition frequency between
the ground (]|0)) and first excited (|1)) states of the circuit @y, /27 as a function
of E¢y/Ej, and Ej;/Ej, assuming Ej,/h = 6 GHz. These axes are analogous to
those used in Fig. 5.1.1(b) since the strengths of the nearest neighbour flip-flop,
range 3 flip-flop and all-to-all 6° ® 6* couplings are proportional to Ej,, E;; and

Ec¢, respectively.

We shall now outline the process of quantizing this circuit and obtaining the
Hamiltonian, which is explained in more detail in [14, 15, 144]. The circuit is
treated as a graph consisting of a grounded node in the centre connected to 6 outer
nodes via radial Josephson junctions. The voltage of node n at time ¢ is written
as v, (), from which we define the node fluxes by ¢,(r) = fix, vu(t')dt'. The La-
grangian is then divided into a kinetic part 7" which consists of the capacitive charg-
ing energies, and a potential part V which is the sum of the inductive energies of the
Josephson junctions. If we denote the capacitances of the radial, azimuthal (nearest-
neighbour) and diametric (next-next-nearest-neighbour) junctions by C,, C, and C;

respectively then we can write the kinetic term as

l\.)l>—‘

. 1S . :
Ca(@ms1 — m)> +Cry) + 5 Y Ci(dam — domi3)? (5.13)
m=1

o (5.14)

,,f

NI*—‘
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Figure 5.2.1: Realizing the protected states in a superconducting circuit. (a) Circuit
diagram of the qubit showing a superconducting loop intersected by six identical azimuthal
Josephson junctions of Josephson energy Ej, (green). Each of the islands - whose phases
are labelled ¢; to @ - is connected both radially to ground via a Josephson junction of
charging energy E¢, (blue) and to its diametrically opposite counterpart by a junction with
Josephson energy Ej; (orange). (b) Transition frequency to the first excited state of the qubit
@y /27 as a function of E¢,/Ej, and E;;/Ej, assuming all the junctions of the circuit have
the same plasma frequency /S8E;Ec/h = 10 GHz. The hatched region corresponds to pa-
rameters where the ground and first excited states do not exhibit the required symmetries
for protection of the qubit against decoherence. The red lines indicate contours of constant
anharmonicity o = @2/ ;. The white cross corresponds to the qubit parameters we chose
for the remainder of the article. (c) Potential landscape in the (x,y) plane. In this plane two
valleys of global minima can be seen. The wavefunctions of the ground and first excited
state are localised in the potential minima. (d) Potential energy along the horizontal direc-
tion shown in (c) as a dashed black line. Two global potential minima are observed for
x = +2m/3 and correspond to states with clockwise or anti-clockwise current flowing in the
circuit. The ground (resp. first excited) state wavefunction consists of a symmetric (resp.
anti-symmetric) superposition of these states.
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where in the second line we have introduced the capacitance matrix:

C+2C,+C —C, 0 —C 0 —C,
—C, CH2CHC —C, 0 —C 0
o 0 —C, CH2C,HC, —C, 0 —C
—C 0 —C,  CH2C+C —C, 0
0 —C 0 —C,  CH2CHC  —C,
—C, 0 —C 0 —C,  CrH2C,+C
(5.15)

In order to write down the potential term we must be careful to take account of
any fluxes which may be threading through the loops of the circuit. We first define
a spanning tree which reaches all nodes of the circuit without forming any loops.
In our case this spanning tree consists of all the radial Josephson junctions. Each
Josephson junction in the circuit makes a contribution to the inductive energy of the
form —E;cos(¢ /o) where ¢ is the difference in node fluxes across that junction.
For junctions lying within the spanning tree, i.e. the radial junctions, this phase
difference is simply given by the node fluxes ¢,(z). However if the junction lies
outside the spanning tree then the flux difference must account for the external flux
threaded through the loop it forms. According to Maxwell’s equations the change
in potential energy when traversing a loop is proportional to the rate of change of

magnetic flux through that loop:
j{E cdx = — 0 Peyy. (5.16)

If we integrate this relation over time then we find that the sum of flux differences
across circuit elements within a loop will be equal to the external flux threading the

loop. This allows us to write the flux differences across the mth azimuthal A¢, ,,
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and diametric A¢; ,, junctions as

A¢a,m = Omt1— Om — q)a,m (5.17)

AQ i = P2ms3 — O2m — Prm (5.18)

where @, ,, and ®; ,, are the external fluxes threading through the loops formed by
these junctions. Finally, these flux differences can be used to write the potential part

of the Lagrangian as

%o

6 m 6 m - m_q)am
V:—EJchos<%) —EJaZCOS((P +1 =9 )
m=1 0 m=1

3
—Ey Y cos (<P2m+3 —(Z)jm _q)lm). (5.19)

m=1

where @ is the reduced flux quantum. To convert this Lagrangian to the form of a

Hamiltonian we must first obtain the node charges. These are given by

aL
= __ 5.20a
6 .
=Y Cunbn (5.20b)
n=1
After performing a Legendre transformation the Hamiltonian is given by
6 .
H=Y ¢ngm—L (5.21a)
m=1
=T+V (5.21b)
where we now express the kinetic term as
1 &
T=5 Y Counnin (5.22)
mn=1

This Hamiltonian can be quantized by replacing g, — 2e(N, — N,,) and

21,/ Dy — 0, where Ng.n is the gate charge on site n and the commutation re-
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lation [6,,,N,,] = i holds. This gives the complete Hamiltonian in the form

6 6
H=2¢>Y Cp (N —Ngm) Wy —Ngn) —Eyr Y cos (em)
m=1

mn=1
6
A A cI)am
—Ey, cos(@ 1—6,, — )
n; 1 i Po
> A A q)lm
—Ej ) cos ( O3 — O — o) (5.23)
m=1

If denoted the fluxes through the six inner and three outer loops of the circuit by

®;,, and Py, then we can rewrite the external fluxes as:
Dy = cI)I,ma Dy, = cI)I,m =+ cI)I,m—ﬁ—l =+ cI)I,m—Q—Z =+ cI)07m- (5.24)

We can now demonstrate the relationship between this Hamiltonian and our original
spin model more clearly. We start with the potential term which recreates the flip-
flop couplings of the spin-1/2 model. We can see this by rewriting the potential in

terms of the tunneling operators

2t =Y |n+1)(n|, (5.25a)
n
2T =Y |n)(n+1] (5.25b)
which cause Cooper pairs to tunnel back and forth across the radial junctions, and

are written in terms of the Cooper pair number states N |n) = 1 |n). These operators

are useful for representing the cosine and sine functions as

cos(6,) = (Z,; —1—22), (5.262)

sin(6,,) =

|~ N =

(z; - z;) . (5.26b)

Using compound angle formulae the nearest neighbour coupling is then rewritten
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as

N A D 1 g _ i
cos (Gm—i—l — 0, — % ) = E(E’Jﬂrz’m+lel¢am/(po +ZmZZ+1€ ICIDam/‘PO)_ (5.27)

Similarly the diametric coupling is rewritten as

A A~ Dy, 1 _ _ i
cos (9m+3 — 6 — %) =3 (Z$Zm+3e@’"’/% +X,5) qe ’q”m/“’o) - (5.28)

In order to arrange the current signs for these couplings we simply choose

D,/ @0 = 1w and Dy, /Py = 4T.

Next we look at the charge coupling. In the limit C,/C, — 0 the inverse of the
capacitance matrix gives an all to all charge coupling according to
1 2 6 .
Cn—=eer T30 Y., (N —Ngm) Ny — N ). (5.29)
r

m,n=1

If the gate charges are tuned to a half integer then we can make the identification
N—Ng ~ %Gz and this coupling will be of the same form as the all-to-all ¢},0;; we
examined earlier. In this manner we can use our circuit to engineer a Hamiltonian
which is analogous to the simple spin-1/2 model with Cooper pairs now taking the
role of the excitations which can now tunnel between sites via Josephson junctions.
Our circuit respects the key translation and inversion symmetries we identified ear-
lier however whereas this previous model consisted of two level sites, each site in
our circuit has many levels. But there is another set of terms in our circuit Hamilto-
nian which we have not yet mentioned: the radial Josephson junctions allow Cooper
pairs to tunnel back and forth between the nodes of our circuit and ground. This
breaks the conservation of excitations which was a key component of our symmetry
arguments. Fortunately in the next section we shall see that this does not pose a

significant problem.

Our next task is to find some realistic circuit parameters which produce ground
and first excited states with the desired symmetries and which have usable energies

i.e. they have a gap which can be driven by microwave pulses and they can be
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separated from higher states in the spectrum. We start by assuming that all of the
junctions in our circuit have a plasma frequency of /8E;Ec/h = 10 GHz. In prac-
tise this means that all of the junctions have the same thickness. During fabrication
this allows them to all be created simultaneously in a single oxidation step, which
will make the task considerably easier. Next we choose E;, = 6 GHz and make a

sweep of Ec, and Ej;.

Again we search for a region of parameter space in which the symmetries listed
in eqs. 5.2 are met. Since E¢, controls the strength of the charge coupling in
the small C, limit and Ej; controls the strength of the diametric flip-flop coupling,
sweeping these parameters is comparable to sweeping & and A in Fig. 5.1.1. We
diagonalize the Hamiltonian in eq. 5.23 using the PRIMME eigensolver available
in Python [145]. We include 8 charge states on each site in the chain, which is found
to be sufficient for calculations to converge. We find a regime in which the desired
inversion and translation eigenvalues are obtained. The gap in energy between the
ground and first excited states within this regime is portrayed using a colourplot in
Fig. 5.2.1(b). The gap is not displayed in the hatched area outside this regime, since

the corresponding states are of no interest to us.

We identify a particular set of parameters (Ej,/h = 1.7 GHz, E;,/h = 6.0 GHz
and Ej;/h = 30.0 GHz), marked by the white cross, which will be used in the fol-
lowing to demonstrate our design. At this location the transition frequency of the
qubit is @p; /2w = 704 MHz and the anharmonicity of transitions to the next ex-
cited state is @12/ = 4, where @, is the transition frequency between the first
and second excited states of the circuit. Given this large anharmonicity we will be

able to address our qubit states without the participation of higher levels.

Lastly we mention the total number operator A/. We remarked earlier that our
Hamiltonian does not conserve excitations, but it is crucial part of our symmetry
arguments. Despite this problem we find that our qubit states are approximately

eigenstates of /. We find

(O[N0) (I[N

—107¢ 5.30
VO VAN 30
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which indicates that our symmetry arguments should still hold to some level of

approximation.

5.3 Wavefunctions

So far we have very limited information about what these states look like. We
only know that they obey a few symmetries, i.e. translation and inversion, but have
no other clues as to their form. We will understand them better by examining their
wavefunctions in the basis of phase eigenstates 6,, |6,,) = 6, |6,,). For our purposes
it will also be useful to define the transformed phase states \é,ﬁg> = ¢iNe' 16),
which will allow us to remove background oscillations due to the gate charges. We

write the wavefunctions as

\PO(67Ng) = <§7_‘g|0>7 (5313-)
¥, (6,N,) = (6,N,|1). (5.31b)

where 6 = (61,6,,05,04,65,06) and ]Vg = (Ng,1,Ng2,Ng3,Ng 4, Ny 5,Ng6). To see
exactly why it is necessary to use the transformed phase states we must understand
that the charge states present in the wavefunctions are centered around the gate
charges. This can be proven by recognising that the Hamiltonian is invariant under
the exchange of all charge states above the gate charge with the charge states below
the gate charge i.e. || Ng| —m) <> || Ng| +m). This action can be implemented via

the unitary operator

o)
A

F(Ng)= Y |[Ng| —m)(|Ng]+m| (5.32)

m—=—oo

which acts on the number and tunneling operators according to

F(N)NE(Ng) =2|Ng| +1-N (5.33a)

F(N,)XFF(Ng) = X¥. (5.33b)
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Provided that the gate charges are tuned to half integers, this transformation will
leave the charge couplings terms of the Hamiltonian unchanged. In addition, if
the fluxes controlling the signs of the tunnel couplings are tuned to half or full
integers of flux quanta, these terms will also be left unchanged. Hence the overall

Hamiltonian and its eigenstates must respect this symmetry.

Next we examine a charge state expressed in the phase basis as

_L —in6
\n>_m/dee 16). (5.34)

This charge state takes the form of a plane wave oscillating with angular frequency
n. Since the charge states contributing to our qubit states are centered on the
gate charges, we should expect the the frequencies contributing to the wavefunc-
tions to also be centered on the gate charges. This background frequency is re-
moved in the |§,Z_Vg) basis, which produces the potential and wavefunctions plot-
ted in Fig. 5.2.1(c). We represent the potential along a two-dimensional (x — )
cut of the six-dimensional Hilbert space, within which the node phases are given
by 6, = nx+y. To sets of global minima are observed forming two valleys
along the lines y = x & 2?” In Fig. 5.2.1(b) we plot the potential along y = 0
along with the wavefunctions of the qubit states. We observe that the wavefunc-
tions are localised in the potential minima. The co-ordinates of the left minimum
¢ = (—2m/3,—4m/3,—61/3,—8m/3,—10m/3,—127/3) correspond to a clock-
wise current flowing in each azimuthal junction of I, = I,sin(w /3) where I, is
the critical current of these junctions, while the current in the junctions of the
outer loops are all zero. Similarly, the co-ordinates of the right minimum ¢ =
(27/3,4m/3,6m/3,87n/3,10m/3,127/3) correspond to an anti-clockwise current
of I, = I.4sin(m/3). We denote the states localised in these minima by |©) and |©)

so that the qubit states are given by |0) = %(\O} +]O)) and [1) = %(!O) —|O)).

By looking at the potential and our states in the phase basis it is also possible
to see why our states are approximately eigenstates of the the total excitation oper-

ator, despite the Hamiltonian not conserving total excitations. To see why, we must
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express the Cooper pair number operators in the phase basis as follows:

<9,Ng\fv:/de'<e,Ngye'><e’yN
= MO (9|N
— _ie M09, (g

— N, —idg (6,Ng|. (5.35)

We can then obtain express the total Cooper pair number operator N = 2,6,1:1 Ny, as

6
<9, g|N: Z(Ng7m_i89m<97Ng|)
m=1
6 - —
= Z Ng,m_iay <9<X,y)7Ng" (536)

3
[

In other words the total Cooper pair number operator acts like a derivative with re-
spect the y coordinate, with an added offset from the gate charges. Within the valleys
formed by the global minima we see that neither the potential nor the wavefunctions
vary with respect to y. Hence, within these minima Cooper pairs are approximately
conserved, despite the fact that in general the radial junctions allow Cooper pairs to

tunnel back and forth from the ground node.

5.4 Coherence properties

We now turn our attention to the coherence properties of our proposed qubit, both
at the optimal point and away from it. Sources of decoherence can be divided into
two basic types: relaxation due to exchange of energy between the qubit and its
environment, and dephasing whereby the energy gap of the qubit may vary stochas-
tically in time causing the experimentalist to lose track of the accumulated phase.
In our design we will consider dephasing due to charge and flux noise, and we will

consider relaxation via quasiparticle tunneling and dielectric losses.
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Figure 5.3.1: Decoherence properties of the qubit. Upper: Spectroscopy of the qubit
showing the first four transition frequencies vs. the total charge AQyo: and flux Ady offsets
from the optimal point. Middle: Relaxation rate of the qubit due to quasiparticle tunneling.
Lower: Pure dephasing rate away from the optimal point due to charge noise (Fﬁ,) or flux

noise (F{;). The spectral density of the both charge and flux noise is assumed to behave
as 1/f with an IR cutoff of 1 Hz and a UV cutoff of 1 MHz. The amplitudes of the power
spectra at 1 Hz are assumed to be /A€ = 2 x 10~* ¢ for charge noise and VAT =2x 1070 &,
for flux noise. This charge and flux noise is divided evenly among the nodes and loops of
the circuit.
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5.4.1 Dephasing

We begin with dephasing. In any realistic design we expect our circuit to undergo
both charge noise and flux noise. The microscopic sources of charge noise may
include fluctuating charges in the substrate of the circuit or in the oxide layers
formed within both the Josephson junctions and on top of the lines of the circuit
[146, 147, 148, 149, 150]. Meanwhile flux noise is thought to originate from spin
defects [151, 152]. Only spins near the edges of the loops of circuit would con-
tribute to flux noise since the net flux of a dipole far from the edge would tend
to zero. Temperature-activated motion of these charge fluctuators and spins is ex-
pected to produce noise in the gate charges and external fluxes with a 1/f power

spectral density (PSD).

We will now introduce the theory which allows us to calculate the dephasing
time of the qubit in the presence of such noise [153, 154]. We consider a Hamil-
tonian H which depends on some time varying set of noisy parameters X() whose
long-time average is zero X = 0. If the PSD of the noise is limited to frequencies
below the gaps between the eigenstates of the Hamiltonian then it will be unable to
cause transitions. Therefore we can treat the noise adiabatically and consider the
occupation probabilities of all eigenstates to be constant. Our qubit is formed by

the lowest two eigenstates of H (J_c’(t)), whose splitting frequency is written as
o1 (¥(t)) = a01(0) + S (X(1)) (5.37)

where Sy (X(¢)) denotes any fluctuations in the splitting frequency due to the
noise. The state of our qubit consists of a superposition of these states and is written

as

lw(2)) = a(1)[0)+B(1)[1). (5.38)

In order to study the coherence of the qubit during its evolution we must calculate
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the ensemble average state over many experiments. This will be given by

p(t) =E[[y(t)) (w()]] (5.39)
_ [ Po C(
C'(t) pi

t>> (5.40)

where pg and p; represent the occupation probabilities of states |0) and |1) and C(¢)
represents the coherence of their superposition. The evolution of this coherence can

be written as

C(1) = Ela(t)B*(1)],
= \/pop1exp(—i@yit) fo(t). (5.41)

where f(t) = Elexp(—i¢(¢))] and ¢ (t) = [} Swo1 (¥(t))dt. This evolution consists
of two principal parts: an oscillation at the average frequency of the qubit multi-
plied by a term which accounts for the variations in the accumulated phase in each
experimental run. The latter term decays over time due to destructive interference
between these variations, causing the qubit to decohere. Our task is to calculate
fo(t) numerically by taking many samples of the noise from an appropriate PSD,
calculating @ (¢) for each sample, and finally taking the ensemble average of the

phase. We define the PSD of a component of the noise as

S, (@) = / " Ru(t) exp(—iwT)dr, (5.422)

—o0

R (1) =E[x(7)x(t + 7)]. (5.42b)
We find it useful to write S(®) is terms of a normalized PSD as
Se(®) = A,So(@). (5.43)

A sample from the normalized PSD is denoted by %(¢) and the corresponding sam-

ple from the unnormalized PSD is x(f) = v/A%(¢). If we have noise on a single
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parameter then we can write the frequency variation of the qubit using a Taylor

expansion as

Sy (£) = x(£)dewpy + %xz(r)afcom +OE0)

= (1) VA, w1 + 1o (1)AdZ o1 + O(F (1))

2
_ 1.
= D&(t) + EDx,xazz(t) + O (1)) (5.44)
in which we use
D, =VAdwy and D,,=Ad>w. (5.45)

If we expand to multi-parameter noise then the frequency variation is given by
S, (1) = ;xm (t)Dy,, + %H%Dx,mxnim(t)fn (1) +OF (1)) (5.46)
for which we define
D,, = VAd,, @ and D, =Ad,d, 0. (5.47)

These derivatives can be calculated by numerically by diagonalizing H (X) for many
samples of X and fitting a Taylor expansion to the resulting values of @y (X). We
will present the results of these dephasing calculations in section 5.4.3 alongside

calculations of the relaxation time.

5.4.2 Relaxation

There are two principal sources of relaxation to examine: dielectric losses due to
currents flowing in the oxide layer of the Josephson junctions, and the tunneling
of quasiparticles across these junctions. We start by demonstrating that dielectric
losses should be negligible, before moving on to quasiparticle tunneling.

The theory describing dielectric losses is based on the quantum fluctuation-
dissipation relation and Fermi’s golden rule [155]. We expect the voltage across
each junction in the circuit to fluctuate with a PSD proportional to Ectan(5) where

E¢ is the charging energy of that junction and tan(J) is the loss tangent of the dielec-
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tric within the junction. Using Fermi’s golden rule we can calculate the transition
rate due to these fluctuations [27]. We obtain an order of magnitude estimate for the

relaxation rate due to dielectric losses in junction i according to

Fu ~ EQ,-tan(Si) mf;{X(Nj,k) (5.48)

Js
where N, = (1/N;|0) (0| N |1). However, due to our symmetry arguments we
expect such transition matrix elements to vanish. For our design parameters we
calculate | (0| N;|1)| < 107!, Given a typical loss tangent of tan(§) ~ 1075 [27,
156] we therefore expect I'y ; < 10~17 Hz so dielectric losses will not be a significant

source of relaxation.

We can now move on to quasiparticle tunneling [157, 158, 159, 155]. Quasi-
particles within the circuit act as a bath with which the superconducting states may
exchange energy. The energy required for a quasiparticle to tunnel across a junction
may be provided by a relaxation of the state of the qubit. The contribution to the

relaxation rate of quasiparticle tunneling over a single junction is given by

(1]sin (379) 0)

where E; is the Josephson energy of the junction, A is the superconducting gap, 56

(5.49)

is the phase difference over the junction and xp is the quasiparticle density. The full
relaxation rate is obtained by summing the relaxation rates for all of the junctions

in the circuit.

5.4.3 Coherence results

Now that we have the tools to calculate both the dephasing and relaxation rates of
our qubit we can plot how these quantities change as the fluxes and gate charges
of the circuit are varied. In Fig. 5.3.1 we display how the energies of the four
lowest excited states of the Hamiltonian change as we vary the total gate charge and
flux offsets: AQio = 2e¢ 221:1 Ngn and ADy, = Zf;lzl Dy + an:l @ . Varying

the gate charges does not have a significant effect on the transition frequency of
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our qubit, but varying the flux away from the optimal point generates a magnetic
dipole where one current state (|O) or |©))) becomes more favourable and therefore
increases the transition frequency by ~ I,,A®. This behaviour is similar to what
is usually observed with flux qubits but the sensitivity of the transition frequency to
changes in the flux is significantly reduced since the persistent current flowing in
our circuit /, = 10 nA is two orders of magnitude smaller than the typical current
flowing in a flux qubit. Eventually the transition frequency will increase until the

first and second excited states cross at wy; /27 ~ 4 GHz.

The rate of relaxation due to quasiparticle tunneling is plotted in the middle
panel of Fig. 5.3.1. These result were calculated using a quasiparticle density of
Xgp =5 X 10~? and a superconducting gap of A =200 peV for aluminium [160]. At
the optimal point we find a relaxation rate of I'y = 0.2 kHz which corresponds to a
relaxation time of 77 = 5 ms. The relaxation rate is insensitive to charge detuning,

but it decreases when the flux is detuned from the optimal point.

Finally we examine dephasing. Flux and charge noise are generated witha 1/ f
spectrum i.e. with a PSD of the form
1

So(@) = o (5.50)

For the charge noise we choose an overall power of A. = (2 x 107%¢)? which we

divide among the six gate charges so that each gate charge has a PSD of
Ac
S2eNg(®) = FSO((D). (5.51)

For this spectrum we choose an infrared cutoff of @ /27 = 1 Hz and an ultraviolet
cutoff of wyv /2w = 1 MHz. Similarly for flux noise we choose an overall power of
VAF=2x 10~5®, which is divided among the 9 loops of the circuit such that we

have

A
Sty g (@) = ?fso(w). (5.52)
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We use these power spectra to produce the dephasing rates plotted in the lower
panel of Fig. 5.3.1. We plot the rate of dephasing up to second order in both charge
and flux noise. At the optimal point these values give pure dephasing times of
T =2.9 ms and T(Pf = 5.2 ms. When the flux is detuned from the optimal point the
qubit becomes vulnerable to flux noise, while when the gate charges are detuned

from the optimal point the qubit becomes vulnerable to charge noise.

5.5 Operating the qubit

These coherence times are promising, but conversely they also make it challenging
to communicate with the qubit. Typically, the better protected a qubit is from its
environment, the harder it is to control, initialize and read its state. We would like
to perform these tasks using a circuit-QED architecture and thus coupling our qubit
to a microwave resonator is key a requirement. In the next section we will outline a
design to implement this coupling by galvanically connecting a resonator to one of
the loops of the circuit, which allow some ability to control and read the state of the
qubit.

But we must also consider initialization. Initialization is particularly chal-
lenging given the small transition frequency of the qubit, which is only @y, /27 =
704 MHz. At the base temperature of a dilution refrigerator, i.e. around 20 mK,
we expect the thermal state of the qubit to be highly mixed. In order to create a
pure ground state we intend to use the flux line to detune the qubit from its optimal
point and increase the transition frequency. However, as we can see from Fig. 5.3.1
this will also lead to a suppression of the relaxation rate to such a low level as to be

impractical for experimental purposes.

But there is a solution. We could use the resonator to enhance the speed of
intialization via the Purcell effect [161]. If we tune the qubit to the frequency of the
resonator then the two systems hybridize and the excited state of the qubit decays via
the resonator at a highly accelerated rate. Once this operation has been completed
we can adiabatically tune the flux back to the optimal point for operation. The

details of this procedure and the resonator coupling will be explained below.
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Figure 5.5.1: Operating the qubit. (a) Circuit diagram showing a mode of operation of the
qubit. A resonator of frequency ®,/2mw = 3 GHz and quality factor Q = w,/x = 10000 is
galvanically connected to the qubit via a small inductance / = 40 pH. The resulting strength
of the coupling between the resonator and the qubit is g ~# 11MHz. In addition the qubit
can be biased by a DC flux line, which is used to detune the flux threading the qubit from
the optimal point for the purposes of initialization and readout. (b) Control sequence used
to initialize the qubit. Due to its relatively small transition frequency the excited state of
the qubit in thermal equilibrium (25 mK) is significantly occupied. In this sequence we use
the flux line to adiabatically increase the qubit transition frequency over a period of 10 us
and bring it into resonance with the microwave resonator. At this point the qubit hybridizes
with the resonator and relaxes by Purcell decay to the new thermal state at a rate k/2.
This thermal state is much closer to a pure ground state due to the larger frequency of the
resonator. The flux can then be adiabatically tuned back to the optimal point. (c) Simulation
of Rabi oscillations with a period of 100 ns which can be produced at the optimal point by
driving the resonator at the qubit transition frequency with a power of P, = —80 dBm.

5.5.1 Engineering a coupling

In order to obtain a ground state with sufficient purity we need to engineer a res-
onator with a frequency far above the base fridge temperature. We aim for a fre-
quency of 3 GHz. In the lumped element approximation this frequency is given
byow=1/ V/LC, where L and C are the inductance and capacitance of the resonator

respectively. We take a typical characteristic impedance of Z = \/L/C =~ 30 Q from
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which the capacitance and inductance are then given by:

C= = 1.8 pF (5.53a)

Sl

L=

eIN

— 1.6 nH. (5.53b)

We couple to the qubit by a galvanic connection. A length of wire leading between
azimuthal Josephson jundctions is shared by both the resonator and the qubit as
illustrated in Fig. 5.5.1(a). We can boost the strength of the coupling by increasing
the inductance of this wire. This can be achieved either by lengthening it or by
constricting its width, which increases its kinetic inductance. The kinetic inductance
of the wire is given by

hR
l_

= A (5.54)

where R is its resistance and A is the superconducting gap, which is measured to be

around 200 eV in aluminium [160]. The resistance can be calculated according to

R= p_l = p_l (5.55)
S aw

where p is the normal resistivity, [ is it’s length, S is it’s cross-sectional area, w
is it’s width and a is it’s thickness. We choose the radius of our qubit to be 2 um
and the shared wire to also be of length 2 um. The width of the wire is 50 nm and
it’s thickness is 24 nm. The resistivity of aluminium is 240 nQm, which gives a
resistance of 40 Q and we therefore find our constricted wire should have a kinetic

inductance of / = 40 pH.

The potential energy of the circuit is altered by the addition of this constriction.
We now have a new node in the circuit, whose phase we denote by 6,. The phase
difference over the constriction can then be written as 6 = 6, — 0,. This phase
difference will alter the potential energy of the 1st Josephson junction. Combined

with the potential energy of this constriction the new terms in the Hamiltonian take
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the form

282

%
Viei=

A A a D
0 al
—F —0;—0— . .
T 74 COS (92 6, -6 ) (5.56)

By expanding the cosine we find

A

252 . R d R
Vi = q)(;l — Ej,cos (92—01—?11) cos (6)
~ ~ o A
+ Ej,sin (62 -0, — %) sin (5)
252 s . D A o
= gl —Ej,cos (92 —0; — ?al) cos (5) ~+ @ol, sin (5) (5.57)
0

in which I, is the current flowing in the junction, given by

. E AU
I, = =2%in (92 _ g, — A ) (5.58)
@ @

Next we can relate § to the current flowing in the constriction according to
00 =1 (5.59)

where the constriction current [; = I, + I, is equal to the sum of the junction current
and the the current in the resonator. Provided [ is sufficiently small we may say that
8 is also small. Then we can make the approximation sin(s )= § and rewrite the

constriction current to give

QD(%SZ A A q)al A A A N
Vi = 57 —Ej,cos| 6, —60) — ? cos (5) +U,(I,+1). (5.60)
0

Thus we see that there is a coupling between our qubit and the resonator of the form

Hcoupling = liafr- (5.61)
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The current in the resonator can be expressed as
I, = Izpp(a+d") (5.62)

where the zero point fluctuation is given by Izpp = @y /2—20. For a resonator of
frequency @y/2m = 3 GHz and impedance Zy = 30 Q we find Izpr = 25 nA. We
write the junction current operator in a truncated basis consisting of our qubit states

as

~ 1

I = 5({011a]0) = (1] £ |1)) 0 + (0 fa |1) 0+ .. (5.63)

where we have chosen the phases of our states such that (0|, |1) is real. If it is
valid to apply the rotating wave approximation then we will at last arrive a Jaynes-

Cummings coupling of the form
Heoupling = Uzpr (0|1, |1) (6ta+0a") (5.64)

with a coupling strength of g = IIzpr (0|, |1). At the optimal point we find
(0|1, ]1) ~ 7.5 nA. This gives us a coupling of g/27 = 11 MHz.

5.5.2 Initialization

Now that we have established how to couple our qubit to a microwave resonator we
can consider initialization. As stated above, this procedure can be carried out via
the Purcell effect, i.e. tuning our qubit to the frequency of the microwave resonator
and using the cavity decay to accelerate the process of thermalization, before tuning
the qubit back to the optimal point.

The variations in the flux must be carried out adiabatically in both directions.
During the initial sweep we must avoid transitions to higher states which will not
relax via the resonator, whereas on the return sweep we must preserve as occupation
probability in the ground state as possible. However, if the flux sweeps are carried
out too slowly then we will lose the advantage of using the Purcell effect to acceler-

ate initialization. We must balance these two conflicting considerations in order to
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obtain the optimum initialization protocol.

In order to demonstrate the feasibility of this initialization procedure we wish
to carry out simulations using the framework of the Lindblad master equation. How-
ever this is challenging because of the large size of the Hilbert space used to describe
the circuit. If each node in the circuit is represented by Hilbert space consisting of
10 charge states then the overall Hilbert space of the circuit will contain 10'° states.
The task of evolving such a large state over the entire initialization procedure is
beyond our means. Fortunately there is an alternative. Only the lowest eigenstates
of the Hamiltonian should contribute to this state and we can greatly accelerate our
simulation by truncating the basis. But this introduces a new complication: these
eigenstates will vary with the flux. How can we perform a simulation in a time-

dependent basis? We will now describe the formalism for such a situation.

Consider a Hamiltonian H(x) which depends on a time dependent parameter
x(t). Each eigenstate y,(x) corresponds to an eigenvalue ®,(x), both of which are

also dependent on x. The eigenvalue equation is written as

H (x) Yy (x) = 0,(x) Wy (x). (5.65)

Now consider a state ¥() which evolves in time according to the Schrodinger equa-
tion

i0,¥(t) = H (x(1))¥(1). (5.66)

We define the unitary operator which will transform our frame to the x-dependent

eigenbasis of the Hamiltonian:

00 = (ol v 0. (5.67)



5.5. Operating the qubit 119

In this basis the state vector is described by

x(t)=U"(x(1))P(t) (5.68)
v (x(1)) (o)
= | wi(x(0)¥®() (5.69)

The time evolution of () is described in turn by

iat%(t) = Hmov(x»alx)X(t) (5.70a)

where Hpoy(x, dix) is an appropriate Hamiltonian. This Hamiltonian is not simply
the original Hamiltonian H transformed to a new static frame, but also accounts for
the change in the state vector ¥ due to the continually changing eigenbasis. This is

why Hp,oy depends on d;x as well as x. The new Hamiltonian is given by
Hinov (x,0,x) = UT (x)H(x)U (x) + idyx o,UT(x) U (x). (5.71)

The first term is simply a matrix of instantaneous eigenfrequencies
U'(x)H (x)U (x) = 0 @) ... (5.72)

and the second term describes changes due to the time-dependent basis. This second
term can be calculated using first order perturbation theory. Consider a small change

in the Hamiltonian due to a change in the parameter dx
H(x+6x) = H(x)+ 6xH'. (5.73)

In non-degenerate first order perturbation theory the changes in the eigenstates are
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given by

Yin (x4 0x) = WY (x) + Ox wi(x) + O(8x%). (5.74)

From the above we see that the first derivatives of the states are given by

T(x)H v, (x
deym() = Y, YY) ) 575)

& 0u(0) — o)

By writing the above we have implicitly fixed our gauge according to |, w;, = 0.

Now we can rewrite the second term using

(U U X)), = dyi(
i

= O, (X

X) Ya(x)
) Wn(x)

::EQEQEQQEQ(L—&my (5.76)
O (¥) — Oy (%)
We now have most of the components necessary to write down the Hamiltonian
describing the evolution of our state in the time-dependent basis, but there is a final
problem. What are the eigenfrequencies ®,,(x) and matrix elements W (x)H'y,,(x)?
We certainly don’t want to recalculate these quantities at every new value of x
throughout evolution, since this would require the very time consuming process of
calculating eigenvalues and eigenvectors of the ~ 10! x 10'° Hamiltonian which
describes the circuit. The alternative is to sample these quantities over a range of

values of x and interpolate between them during evolution.

We can now write down the Hamiltonian which describes the evolution of the

state during the initialization protocol:

Hic mov (APror) =U T(ACI)tot)H (AP U (ADyor) + wa'a
+ i, AP0t Ipp,, U JF(ACIDtot) U (ADyy)

+ 8(ADyor) (a] 1)(0] +a" [0)(1)). (5.77)
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In the above H(A®y) is equivalent to the original circuit Hamiltonian (eq. 5.23)
with Ady; describing the detuning of the flux from the optimal point. The loop

fluxes are given by

AD
Do )1m = TPo+ 9““. (5.78)

The transformation U (Ady) acts solely to diagonalize the circuit Hamiltonian and
leaves the resonator unaffected. As described above the second line represents the
change in the state vector of the circuit due to changes in the basis and the last line is
the Jaynes-Cummings coupling between the qubit states of the circuit (|) and |1))
and the resonator. The strength of the coupling g(Adyy) is also dependent on the
flux since it is proportional to the matrix element of an azimuthal Josephson current

between two flux dependent eigenstates i.e.

g(ACPtot) = llzpF <07Aq)t0t‘ ia | laAcI)tot> . (5.79)

Finally we can write down the master equation which includes the relaxation

of the cavity, making a simulation of Purcell initialization possible. This is given by
orp = —i[Hyc.mov(A®ior), p] + (1 +n)D[a]p + xnDla’]p (5.80)

where dissipation is described by D[O]p = OpOT — %(OTOp +p0O70). The Lind-
blad operators a and a' cause thermal relaxation and excitation of the cavity at a

rate K, leading to a cavity steady state containing n photons.

By increasing the flux offset to Ay /@y = 0.606 over 10 us we can tune
the qubit to the resonator frequency at ,/2w = 3 GHz. Given a quality factor of
Q = 10,000 we have a cavity relaxation rate of k/27 = 0.3 MHz. Once the qubit
and resonator have hybridized this allows the system to decay towards a thermal
state with a time constant T =2/k = 1.1 us. At temperature of 25 mK we use the
Bose distribution to calculate a thermal occupation of n = 0.003 photons. After a

resting time of 10 us the system has essentially reached its steady state, after which
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the flux can be returned to the optimal point over another 10 us to give a final

initialization fidelity of 99.7%.

5.5.3 Readout

We note that this process of adiabatically varying the flux through the circuit can
also be useful during readout. One of the most widely used techniques for measur-
ing the state of a superconducting qubit is known as dispersive readout, in which
the state of the qubit is inferred from shifts in the resonator frequency [1, 162].
This technique requires the qubit to be coupled to the resonator via a Jaynes-
Cummings type interaction in the dispersive regime, defined by g/|my; — ©,| < 1.
Such an interaction causes the resonator frequency to increase or decrease by
X = g*/|wo1 — @,| depending on the state of the qubit according to the dispersive

Hamiltonian

g + 1 g
He(w+—5 & i _ & \6E 5.81
( T —y )aa+<2%1+wol—wr) 81

If these shifts are larger than the linewidth of the cavity (i.e. ¥ 2 k) then they can
be used as a signature to detect the state of the qubit.

For our design at the optimal point we calculate )y (AP, = 0) /27w = 8.9 kHz,
which is clearly far smaller than the linewidth of k¥ /27w = 0.3 MHz. The solution to
this problem is to perform readout away from the optimal point. Instead we can tune
the qubit close to the resonator, but still with sufficient detuning that we are in the
dispersive regime. When the qubit is close to the resonator frequency we calculate
a coupling strength of g/2m ~ 2 MHz. If we choose the resonator shift to be equal
to the linewidth )y = k then we calculate a detuning of |y, — @,|/27 = 13.3 MHz.
From this we calculate g/|awy; — @,| = 0.15, which demonstrates that we are in the

dispersive regime and the above Hamiltonian is a good approximation.

5.5.4 Control
Finally we can mention control of the qubit. At the optimal point we expect to be
able to carry out single qubit gates by driving Rabi oscillations. It is well known

that in the Jaynes-Cummings model this can be achieved by applying a drive to the
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resonator at the frequency of the qubit. Here we will simply demonstrate that the
power required to drive such oscillations is realistic. These oscillations must occur
on a timescale short enough that many gates can be performed within the coherence
time of the qubit.

The Rabi frequency typically increases in proportion to the drive power applied
to the resonator, but this in turn is limited by the ability of the dilution refrigerator
to remove heat dissipated by the attenuators which protect the qubit against thermal
noise from higher temperature stages both within and outside the fridge. Therefore
there is a tradeoff between the maximum attainable Rabi frequency and the thermal

noise n.

We simulate Rabi oscillations using the following Hamiltonian
H= Z @, |n)(n| + w,a’a+ Hlpp(a+a’) + e cos(wyt) (a+a’) (5.82)
n

in which the eigenfrequencies and eigenstates of the qubit Hamiltonian are repre-
sented by @), and |n). This Hamiltonian also includes the resonator and the coupling
described above, as well as the resonator drive at amplitude € and frequency @,. Our

simulation also includes the Lindblad operators:

av/k(1+n), a'vVkn and  /7|0)(1]. (5.83)

The input power applied to the resonator is given by Py, () = hawye?(t) /k [29]. With
a drive power of —80 dBm we are able to drive Rabi oscillations with a time period

of 100 ns.

5.6 Conclusion

In this chapter we have introduced a new qubit design based on a superconducting
circuit consisting of a ring of Cooper Pair Boxes arranged in a ring which couple
to each other via both nearest neighbour and 3rd nearest neighbour couplings. The
symmetries inherent to this design produce promising coherence times in when we

consider both dephasing due to charge and flux noise and relaxation via quasipar-
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ticle tunneling and dielectric losses. Furthermore we have shown that this circuit
can be coupled to a microwave resonator in a cQED architecture. This opens up the
possibility of the control and readout using the standard techniques of this field.
Thus far, all of this work has been purely theoretical. Future work should of
course focus on the fabrication of this design and the demonstration of its proper-
ties. Yet there is still room for further theory work. So far we have not considered
multi qubit gates, which are essential to the operating of any quantum computer. In
many cQED based techniques for this procedure have been developed and it will
become increasingly important to assess which is most promising for our design.
Furthermore we have only considered uncorrelated noise in this chapter. In reality
this cannot be assumed [163] and we must consider what effects any correlations
will have on our predictions of the coherence time. Finally we may wish to consider
modifications to our design such as exploring longer chain lengths to see if they lead

to improved performance.
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