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Abstract

The exploration of macroscopic quantum phenomena is a compelling frontier in modern
physics, driving both fundamental investigations into the nature of quantum mechanics and
the development of novel quantum technologies. While superconducting qubits have
emerged as a leading platform for quantum computing due to their fast operation and strong
coupling to microwave fields, they face limitations such as short coherence times and
crosstalk. Mechanical resonators, conversely, offer exceptional coherence properties, with
coherence times reaching milliseconds. However, in most implementations their inherent
linearity and weak coupling to external control fields present significant challenges. Hybrid
guantum systems, which combine the complementary strengths of different physical
platforms while mitigating their individual limitations, offer a promising solution to these

challenges.

This thesisa a hybrid electromechanical quantum system where interaction is
mediated by magnetic field quantum fluctuations. To maximize this interaction, we propose a
coupling scheme that integrates gradiometer superconducting flux qubits with mechanical
resonators. This approach circumvents some limitations of conventional optomechanical and
electromechanical schemes by exploiting the enhanced flux sensitivity of flux qubits while

leveraging mechanical resonators' exceptional coherence properties.

The work begins with the design and fabrication of high-quality mechanical resonators
using both silicon membranes and diamond nanobeams. To effectively couple to these
resonators, a gradiometer flux qubit was developed, as its design enables the application of a

uniform magnetic field to enhance the coupling.

As the gradiometer qubit's design makes it insensitive to global external magnetic fields, it
cannot be magnetically biased by an external coil. Therefore, we developed a Bragg-
terminated resonator, which allows the application of a DC current for the generation of a

local magnetic flux, thus enabling the magnetic flux biasing of the qubit.

The gradiometer flux qubits demonstrated quantum coherent operation with

relaxation rated down to 33 kHz, and Hahn echo coherence rates down to 80 kHz at optimal



point. The primary limitation was identified as flux noise attributed to fabrication-induced

contamination and direct transmission line coupling.

Quantum gate fidelities were characterized with randomized benchmarking, achieving
average gate fidelities of 99.3%. Interleaved randomized benchmarking yield fidelity of 99.7%

for X/, gate.



1. Scientific Background

1.1 Quantum Behavior of Macroscopic Objects

The interpretation of quantum mechanics and its transition to the macroscopic world can be
fundamentally reformulated into the question: "Can a macroscopic object be put in a quantum
superposition?"! This question, first illustrated by Schrédinger's famous thought experiment
in 1935, has evolved from philosophical speculation to experimental reality. While quantum
mechanics traditionally describes microscopic phenomena? such as atoms, electrons, and
photons, the exploration of quantum effects in macroscopic systems has emerged as a
compelling frontier in modern physics3™. In contrast to passively observing naturally occurring
phenomena, the research field of macroscopic objects takes a proactive, engineering-driven
approach. The primary motivation for this approach, and its most significant advantage over
studies of natural quantum systems like atoms or molecules, is the prospect of control.
Whereas the properties of an atom are fixed by nature, the parameters of an artificial
macroscopic object—its resonance frequency, its coupling strength to other systems, its
intrinsic nonlinearity, and its dissipative environment—can be precisely designed and
fabricated using modern lithographic techniques. This design flexibility provides an
unprecedented toolkit for both fundamental investigations into quantum mechanics and the

development of novel quantum technologies.

To coax a macroscopic object, composed of billions of constituent atoms, into displaying its
underlying quantum nature, two stringent prerequisites must be met. First, the temperature
of the object, typically a resonator, must be tuned well below the characteristic energy scale
defined by the resonance frequency: kgT < hw, where kg is the Boltzmann constant, T is
the temperature, # is the reduced Planck constant, and w is the resonance frequency. This
condition ensures that thermal fluctuations do not overwhelm the quantum nature of the
system. Achieving this regime necessitates working at dilution refrigerator temperatures,
typically in the millikelvin range (5-20 mK). Even at these extremely low temperatures,
additional cooling strategies, such as sideband cooling and active feedback cooling, are often
required to bring the macroscopic object to its quantum ground state. Second, the quality

factor of the resonator is much greater than unity: Q = % > 1, where I'is the damping rate.

A high quality-factor ensures that the resonator can maintain its quantum coherence for
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sufficiently long times to enable meaningful quantum operations and measurements. This
requirement translates to minimizing all sources of energy dissipation and decoherence in the
system along with careful engineering of the resonator materials, geometry, and coupling to

the environment.

1.2 Superconducting Qubits

Among the different technologies, superconducting qubits have emerged as one of the
leading platforms for near-term quantum computing applications, with major demonstrations
of quantum advantage achieved using this technology®®. Superconducting qubits are
macroscopic electronic circuits fabricated from superconducting materials like aluminum or
niobium, which exhibit quantum mechanical behavior when cooled to millikelvin
temperatures. A critical component in these circuits is the Josephson junction, a tunnel barrier
between two superconducting electrodes that introduces nonlinearity to the circuit without
dissipation, effectively transforming classical harmonic oscillators into anharmonic quantum
systems. The anharmonicity allows to isolate two distinct energy levels suitable for qubit
operation. These systems are often referred to as "artificial atoms" because, unlike natural
atoms with fixed properties, their quantum characteristics can be precisely engineered and
controlled through circuit design parameters®. By adjusting the inductance, capacitance, and
critical current of the Josephson junctions, researchers can tune fundamental properties of
the "atom" such as the transition frequency between energy levels and the circuit's
characteristic impedance, allowing for tailored performance for specific quantum computing

applications.

The significant advantage offered by superconducting qubits is their strong coupling to

10-12 The large

microwave radiation, which enables fast and efficient quantum operations
electric dipole moments inherent to these artificial atoms facilitate rapid gate operations,
typically executed within nanoseconds, while simultaneously allowing for high-fidelity
guantum state readout through dispersive coupling to microwave resonators. This strong
microwave coupling also enables straightforward integration with conventional microwave
electronics and control systems, providing a practical interface between the quantum

processor and classical control infrastructure. Furthermore, the ability to coherently couple

multiple qubits through shared microwave cavities or transmission line resonators forms the
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foundation for scalable quantum architectures, where entangling operations and quantum
information transfer can be efficiently mediated by the electromagnetic field modes. Indeed,
recent advances have demonstrated processors exceeding 100 qubits, with Google's Willow*3

and China's Zuchongzhi 3.08.

Despite their advantages, superconducting qubits face several significant challenges that limit
their current quantum computing applications'**2. Qubit lifetime remains a primary concern,
as decoherence processes including relaxation (T;) and dephasing (T,) typically limit
coherence times to tens of microseconds, constraining the depth of quantum circuits that can
be executed before quantum information is lost to the environment. Cross-talk between
neighboring qubits presents another major obstacle, as the strong coupling that enables fast
gates can also lead to unwanted interactions and frequency shifts that reduce gate fidelities

and complicate multi-qubit operationst14,

1.3 Mechanical Resonators

Mechanical resonators have emerged as a cornerstone technology for both advanced sensing
and fundamental quantum physics. These versatile platforms bridge the classical and
guantum regimes, providing tools for probing fundamental physics at the intersection of
quantum mechanics and gravity’>?’. Modern implementations, ranging from vibrating
membranes to suspended beams, demonstrate remarkable performance with quality factors
exceeding 10° at MHz to GHz frequencies, leading to quantum coherence times approaching

100 milliseconds—a significant leap beyond typical electromechanical systems?,

These exceptional coherence properties enable a wide array of applications. For instance,
resonators are coupled to superconducting qubits to achieve control over mechanical motion,
enabling phonon-number-resolved measurements that extend quantum electrodynamics into
new frequency regimes®. This has been shown with strong dispersive coupling between
fluxonium superconducting qubits and mechanical oscillators at approximately 700 MHz,

achieving coupling rates of g = 2m X 14 MHz%°.

Moreover, these devices offer extraordinary force sensitivity, with resonant force noise
spectral densities as low as 650 zN/Hz2. This opens applications in fields such as magnetic
resonance force microscopy, single molecule detection, and dark matter detection®. Beyond

sensing applications, these resonators provide unique platforms for testing fundamental
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physics theories, with their long lifetimes and large zero-point fluctuations making MHz-
frequency drums excellent candidates for testing gravitational collapse phenomena
postulated by Didsi-Penrose models and enabling tests of the boundary between classical and

quantum physics, including constraints on continuous spontaneous localization?.

In the context of quantum information processing, mechanical oscillators typically comprise
micro- and nano-resonators with masses down to femtograms'%2!, These resonators possess
several characteristics that make them suitable for quantum applications. Their isolation from
the environment results in high quality factors, enabling long coherence times essential for
quantum state preservation?2. The frequency range of these resonators spans from kilohertz
to gigahertz, providing flexibility in system design and integration®. Additionally, their small

physical dimensions allow for compact integration with other quantum components?3.
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Figure 1 — Quality factor of different mechanical resonators over the years | The quality factor has doubled about every 14

months. Adapted from reference 22.

The performance of a mechanical oscillator is characterized by two fundamental parameters.

The first is the coherence time t, which is directly associated with thermal fluctuations and is
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approximated by T = k—hT Q, where Q is the quality factor of the resonator. The second is the
B

Q X f product, where f is the mechanical resonance frequency, and this metric quantifies the

resonator's energy storage capability.

For optimal performance in quantum applications, the condition Q X f > k’% (~10* at 1K)

must be fulfilled to overcome thermal decoherence with higher values indicating superior

performance for quantum applications. A summary of recent experimental demonstrations

that have achieved high Q X f systems can be found in Table 1.

Table 1 — Properties of various mechanical resonators

Membrane?* AlGaAs 5.00x10°8 3.00x10° 1.50%x10%2
HBAR?® AIN/Al,O3 6.68x10° 7.11x10° 4.75x10%°
HBAR?® AIN/AI,O3 6.06x10° 9.00x10° 5.45x10%

Cantilever?’ Diamond 2.00x10° 1.63x10° 3.26x10%!

Nanobeam?8 Diamond 5.76x10° 4.40%10° 2.53x10%°

Ring?° Diamond 2.97x10° 4.29x10* 1.27x10%

Nanobeam3® GaP 2.80x10° 4.18x10% 1.17x10%

Nanobeam3? LiNbO5 1.80x10° 1.70x10% 3.06x10%

Hierarchical®? SisNa 1.07x10° 7.80x10% 8.35x1013

Membrane!® SizNa 1.49x10° 1.50x10° 2.23x10%°

Membrane33 SisNa 1.14x10° 1.09x10° 1.24x10%°

Nanobeam3* SizNg 1.10x108 2.00x107 2.20x10%3

Nanobeam3® SisNa 1.33x10° 8.00x10% 1.06x10%°

Polygon-shaped3® SisNg 3.50x10° 3.60x10° 1.26x10%°

Spiderweb3’ SizNg 1.34x10° 1.82x108 2.44x10%3

Trampoline3® SisNg 4.09x10* 4.50%x10° 1.84x1011

Nanobeam?3° SiC 2.80x10° 2.90x10° 8.12x10%

Trampoline®° Silicon 1.41x10° 1.20x108 1.69x101

Nanobeam®* Silicon 5.00x10° | 4.92x10%° 2.46x10%°
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Membrane?? Silicon 4.13x10° 5.34x10° 2.21x1013

Nanobeam® sSi 1.46x10° 1.30x1010 1.90x10%®

The isolation from the environment that enables high Q-factors simultaneously present
challenges for controllability and readout of mechanical systems. The weak coupling to
external fields necessitates sophisticated phonon-to-photon transducers which are usually
lossy. Additionally, the intrinsic linearity of mechanical oscillators restricts their utility for

guantum information processing.

To overcome these limitations, mechanical resonators can be coupled to other quantum
systems in hybrid architectures?3. These hybrid systems, that we will present in the following
sections, combine the long coherence times of mechanical oscillators with the controllability

and nonlinearity of other quantum platforms.

1.4 Hybrid Systems

The future of quantum computing will likely involve hybrid approaches that leverage the
complementary strengths of different quantum platforms while mitigating their individual

weaknesses?344746,

Mechanical oscillators present compelling advantages for quantum information processing.
As discussed previously, they offer exceptional coherence properties. Additionally, these
mechanical resonators operate at MHz-GHz frequencies with micron-scale footprints, making
them significantly more compact than alternative superconducting cavities in these range of

frequencies.

However, mechanical systems face three key limitations. First, their MHz-range operation
corresponds to energy scales of ~107° K, preventing passive cooling to the quantum ground
state since cryogenic refrigerators typically reach only ~107® K. Second, the environmental
isolation that preserves their superior coherence inherently limits coupling rates to external
control systems, creating a fundamental trade-off between coherence and controllability.
Third, mechanical oscillators have evenly spaced energy levels, preventing their direct use as

gubits, which require anharmonicity to isolate specific two-level transitions.

Hybrid architecture offers promising solutions to these challenges. By coupling mechanical

oscillators to more controllable quantum systems—through optical fields in optomechanical
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schemes or electrical signals in electromechanical approaches—researchers can exploit their
superior storage capabilities while circumventing their native limitations in control and

nonlinearity.

X 1 3

Superconducting qubit
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Superconducting resonator
CEEAT TN S ARG

Nanomechanical Single defect = = B
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wave resonator > < spin ensemble
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Superconducting
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Photon

Bulk acoustic Ferromagnetic L
wave resonator = spin-wave resonator <
Phonon Circuit QED Magnon
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Electromagnetic
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Figure 2 — Hybrid quantum systems | The schematics show the different paths to couple mechanical systems, such as

nanomechanical, SAW or BAW resonators, to optical, microwave or spin systems. The figure was adopted from reference 45.
1.4.1 Quantum Optomechanics and Electromechanics

Quantum optomechanics and electromechanics constitute research fields investigating the
interaction between electromagnetic radiation and mechanical motion at the quantum
level’®. These systems explore the coupling between electromagnetic radiation and
nanomechanical or micromechanical motion, where a mechanical oscillator is coupled to a
guantum harmonic oscillator associated with electromagnetic fields at optical or microwave
frequencies through radiation pressure forces or electrostatic interactions. The quantum
regime is achieved when the thermal energy scale kzT becomes comparable to or smaller
than the mechanical resonance energy hw,,, enabling the observation of quantum

phenomena in macroscopic mechanical systems.

The theoretical frame work of cavity optomechanics is used to describe the coupling to optical

photons while analogous physical principles apply to microwave and radio frequencies falls
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under circuit quantum electrodynamics (cQED)*’. For simplicity, we refer only to
electromechanical systems, though the underlying physics applies equally to optical
frequencies. The mechanical motion modulates the cavity resonance frequency, while
intracavity photons exert radiation pressure forces on the mechanical element. For
electromechanical systems, the coupling between mechanical displacement and microwave
cavity modes occurs mainly through capacitive interaction. Both platforms enable

investigation of quantum phenomena in mechanical systems, including ground state

51,52 53,54

cooling®48-30 quantum state preparation®'°2, and entanglement generation

Optical Mechanical Microwave
resonators resonators resonators

Bulk acoustic wave

Fabry-Perot ' Qubit
] e oo

Surface acoustic wave
[
\\_ /‘ 2D resonator
Photonic crystal Phononic crystal
< lm y \ . T
Whispering gallery \EMembranefd rumhead 3D cavity

\ Micro-disk l' 1‘
Figure 3 — Different experimental systems used for optomechanics and electromechanics demonstrations | The arrows

indicate the achieved coupling. The image was adopted from reference 23.

The theoretical framework describing both optomechanical and electromechanical systems
relies on similar Hamiltonians, differing primarily in the coupling mechanisms and frequency

regimes. The electromechanical interaction is described by the Hamiltonian:

H = hw.ata + ho,b'h — hgoata(b + bt) (1)
where @ and b represent the microwave and mechanical annihilation operators, respectively,
w, is the microwave cavity frequency, w,, is the mechanical frequency, and g, X x;pF is the
vacuum electromechanical coupling®®. Here, x;pp is the amplitude of the zero-point motion
of the mechanical resonator. The coupling term —hgoc’iT&(B + BT) describes how the photon

number modulates the mechanical oscillator position and vice versa.
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For coherent drive @ = & + &d the electromechanical interaction can be linearized when the
cavity average drive amplitude & significantly exceeds the vacuum fluctuations §a. The

interaction Hamiltonian takes the form:

Hine = —hgo(@ + sa)T (@ + sa)(b + bt) (2)
The term proportional to |@|? can be omitted by shift of the displacement’s origin, and the
term proportional to §at8a is negligible. Thus, the linearized interaction Hamiltonian

becomes:

K = —hgovn(sa + sat) (b + bt) (3)
with the electromechanical coupling strength defined as g = gox/ﬁ, and 1 = |@|? is the
average number of photons in the cavity. When the condition k < w,,, where k is the cavity
decay rate, is satisfied, the modulation of the cavity frequency results with visible individual
sidebands. In this so-called resolved sideband regime different terms in the interaction
Hamiltonian are dominant, depending on the detuning A; = w, — w,,. To make it clear, let us
move to the interaction picture where §a(t) = dde " dat, h(t) = be~i¥m! and the interaction

Hamiltonian takes the form:

KL = —hgovn|e {Catemt(5ath + sabt) + e~{Ca~omt(5atht + 5ab)| (4)
In the red-detuned case, where A; = —w,,, provoking the rotating wave approximation
(RWA) vyields the “beam-splitter” interaction H = —hg(5&+l3+5df)+). This interaction
enables the negatively detuned drive photons to scatter into the cavity's high-energy
resonance, effectively cooling the mechanical resonator by transferring its thermal energy
away>. For blue detuning, A; = +w,,, the RWA leads to the “two-mode squeezing”
interaction H = —hg(5d*5* + 5&5), which is used for parametric amplification and to

entangle the optical and the mechanical modes>*.

For electromechanical systems the coupling is usually capacitive. The vibrating element, such

as a cantilever or a membrane, is incorporated in a capacitor C. The change in capacitance is

translated to a change in the cavity frequency w, = with L the inductance of the cavity.

I
LCc(u)

. . . . 5} .
The resulting single-photon coupling rate is g, = %xzpp. In the case of a capacitor made of

parallel plates at distance d from each other, if x;pr < d, the capacitive response is given by

|6wc
ax

w . . w
= 2—; and the coupling is thus g, = Z—;xzpp.
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Experimentally, g,/2m ranges from 10° — 102 Hz for both optical and microwave
electromagnetic systems!&48-51,5354,56-58 Thjs weak coupling (gy < k, [, Where T, is the
mechanical damping rate) fundamentally limits the ability to generate non-Gaussian quantum

states directly in the mechanical degree of freedom. To put these values in context, typical

experimental parameters include cavity decay rates % ranging from kHz to MHz, and
mechanical quality factors Q,, = (:—m between 10* and 10° depending on the operating
m

environment and device design®®.

Although coupling strength g can be enhanced by driving the cavity with many photons, this
amplification strategy introduces fundamental limitations. In optical systems, intense laser
drives cause unwanted heating that degrades the mechanical coherence and pushes the
system away from the quantum regime. In microwave electromechanical systems, the
coupling is typically capacitive, constrained by the physical dimensions of the coupling
capacitor. Larger capacitors yield stronger coupling but result in lower mechanical frequencies,

creating a fundamental trade-off between coupling strength and mechanical performance.

An alternative strategy employs magnetic coupling mechanisms to overcome these
limitations®°. The fundamental mechanism relies on the transduction of mechanical
displacement into magnetic flux variations that modulates the inductance of a
superconducting quantum interference device (SQUID) embedded within a microwave cavity.
By making one arm of the SQUID’s loop a free-standing beam (See Figure 4 for example) and
applying a parallel magnetic field Bj, the mechanical motion of the beam determines the
magnetic flux threading the SQUID’s loop resulting in a position-varying inductance of the
resonator. This approach circumvents the geometric limitations inherent to capacitive

coupling schemes and provides a pathway toward single-photon strong-coupling regimes.

Cryogenic i

- fllJOnBH Filter !—1—

Figure 4 — Experimental realization of a superconducting quantum interference device (SQUID) with a free-standing arm

embedded in an LC resonator | Left panel: colorized scanning electron microscope micrograph. The beam resonator (R),
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Josephson junctions (J) and SQUID bias line (S) are shown in red. Right panel: Schematics of the measurement system with

coupling magnetic field B applied parallel to the SQUID. Adopted from reference 60.

The theoretical model follows the optomechanics Hamiltonian, but with different single-

photon coupling g,. The resonance frequency of the microwave cavity is modulated by the

flux-dependent inductance w, = \/L(lchW' Consequently, the single-photon coupling becomes

dw,
o0

dw¢
@ypr, Where PP

is the flux responsivity of the cavity and ®,pr is the magnetic flux

fluctuation induced in the SQUID due to zero-point fluctuations of the mechanical resonator.
For a parallel magnetic field B} acting on a SQUID with a vibrating beam of length L as an arm

®zpr = YB Lxzpr, where y is a scaling factor that depends on the mechanical mode shape.
Hence, the single-photon coupling is g, = Z—(:)O)/B"szpp. Reported values®'®? in the range of

Jo/2m = kHz set an improvement of one order of magnitude compared to the capacitive
coupling. However, these purely magnetic coupling mechanism, regardless of their strength,
remain fundamentally linear interaction that preserve the Gaussian character of quantum
states, thereby precluding the generation of exotic non-Gaussian mechanical states essential
for advanced quantum information processing. Non-Gaussian states like cat states and
squeezed states are essential because they provide quantum advantages that classical or
Gaussian quantum states cannot achieve, enabling applications such as quantum

computational advantage®®®* and quantum sensing with improved precision®>-6¢

Achieving single-photon ultra-strong coupling (USC), where the coupling strength is
comparable to the system's resonant frequencies, can also unlock the ability to generate
exotic quantum states, such as two-mode squeezed states, macroscopic "cat" states, and the
photon blockade effect®”%°, Yet, the fundamental obstacle to reaching USC is the inherently
weak nature of radiation pressure coupling, which is further constrained by device geometry
and material properties. Because achieving strong single-photon coupling through purely
electromagnetic means is so difficult, a different approach is needed to create non-Gaussian
mechanical states. A promising alternative involves coupling the mechanical oscillator to a
nonlinear artificial atom. This method bypasses the limitations of linear electromagnetic
coupling by using the artificial atom's anharmonicity to introduce the necessary nonlinearity
for advanced quantum state engineering. The details of this hybrid approach will be discussed

in the next section.
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1.4.2 Coupling to Artificial Atoms

Following the limitations of the linear interaction discussed in the previous section, artificial
atoms offer a fundamentally different approach to generating non-classical mechanical states.
Unlike linear optomechanical interactions that preserve the Gaussian character of the
coherent drive, the intrinsic anharmonicity of artificial atoms, i.e. superconducting qubits,
enables direct access to non-Gaussian quantum states through nonlinear coupling
mechanisms. The integration of artificial atoms with mechanical resonators constitutes an
extension of cavity optomechanics where the mechanical element couples to a nonlinear

superconducting qubit rather than a harmonic electromagnetic cavity.

The system Hamiltonian for the qubit-mechanical oscillator configuration is:

aon A o
H = how,,bTh + hiaz + 1(b + b')(g.6y + 9,6,) )

where w,, represents the mechanical oscillator frequency, b and bt denote the mechanical
mode annihilation and creation operators, respectively. The parameter A is the energy
splitting between the two lowest energy levels of the superconducting qubit, and &, , are the
Pauli operators within the qubit subspace. The coupling term exhibits both transverse (g,)
and longitudinal (g,) components, where the dominant coupling mechanism depends on the
specific superconducting qubit implementation and the coupling scheme employed. For

convenience we will denote the coupling strength g.

This Hamiltonian is formally equivalent to the cQED model, with the mechanical resonator
substituting for the microwave cavity. Following established cQED analysis*’, the rotating wave
approximation remains valid under typical experimental conditions’® where g < w,,,, A. The
rapidly oscillating, non-energy-conserving terms bé_ and BT&r can be neglected, reducing the

Hamiltonian to the Jaynes-Cummings form:
SN A . ~
H = hw,b™h + h=6; + hg(bté_+ bé,)

where g denotes the coupling strength and 6_, 4, represent the qubit ladder operators.

For nanomechanical resonators coupled to superconducting qubits, the system typically

operates in the dispersive regime, characterized by g << A; where the detuning parameter is
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defined as A; = |A — w,,|. In this regime, the qubit and mechanical system are far detuned,

preventing direct energy exchange while enabling measurements of the mechanical state’?.

The Jaynes-Cummings Hamiltonian can be diagonalized to first order in Aithrough application
da

of the Schrieffer-Wolff transformation’2. By selecting the transformation operator § =

—Ai (l;fc?_ — 136+) the effective Hamiltonian becomes:
d

A 1
H = honb'h + 56, + hy (b*b + E) 8, (6)

g2

where y = " represents the dispersive coupling strength. The resulting interaction term
da

indicates that the qubit transition frequency depends linearly on the phonon occupation
number of the mechanical resonator. This dispersive frequency shift has magnitude + %

xzprVpc 9C (2e)

The coupling strength for charge-based mechanisms”3is g = o
q

, where Vp is the

. . . . . ac .
voltage applied to the mechanical resonator, C, is the capacitance of the qubit, and P the

position dependent qubit-mechanical resonator capacitance.

Most demonstrations employ electromechanical coupling where mechanical motion
modulates the charge state of the qubit. For Cooper-pair box (CPB) qubits, mechanical
displacement changes the gate capacitance, resulting in a charge-dependent coupling that is
predominantly longitudinal (g, coupling). A vibrating cantilever or membrane changes the
capacitive coupling between the mechanical element and the qubit island, leading to coupling
strengths on the order of 10 MHz depending on the applied gate voltage and device

geometry.’L74

For transmon qubits, the coupling mechanism differs due to their charge-insensitive design.
Transmons operate in the regime where the Josephson energy E; significantly exceeds the
charging energy E, reducing sensitivity to charge noise.”> However, mechanical motion can
still couple to transmons through modulation of the qubit transition frequency via capacitive
interactions’®. In transmon-based systems, the coupling is typically transverse (g, coupling)

rather than longitudinal with strength up to the order of 10> MHz.”’

A different approach is to use piezoelectric coupling that utilizes strain-induced electric fields

to couple mechanical motion to the qubit charge. The strain associated with acoustic waves
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generates electric fields that couple to the qubit via capacitive interactions.”® The coupling

. ) o f 1, . . .

strength is proportional to g « ?q%z o with e, the piezoelectric coupling, €, p and v, the
e

substrate permittivity, density and speed of sound, respectively. The realization of such

systems is via surface acoustic wave (SAW) and high-overtone bulk acoustic wave (HBAR)

resonators fabricated on piezoelectric substrates such as lithium niobate (LiNbO3) or gallium

arsenide. These systems have shown coupling strength on the MHz range achieving the strong

coupling regime’°0

Overall, coupling mechanical resonators to artificial atoms offers significant advantages over
purely electromagnetic approaches. The intrinsic nonlinearity of superconducting qubits
enables the storage of non-Gaussian quantum states, that remain inaccessible through linear
optomechanical interactions, in the mechanical resonator. Experimental achievements
include dispersive coupling with transmons and successful demonstrations of quantum state
tomography®®, multi-phonon entanglement, and Fock state preparation®'. However,
fundamental limitations persist, including decoherence from thermal environments and finite

mechanical quality factors.
1.4.3 Encoding a Qubit In a Cavity

A qubit can be encoded in the infinite Hilbert space of the quantum harmonic oscillators were
the logical basis composed of superposition of coherent states also known as a 'cat state'?.
This approach is advantageous because of the redundant encoding of information and the
need for only a single ancilla qubit is to control the cavity state®283 and to detect the dominant
error syndrome (a photon loss) in a quantum non-demolition measurement®. Yet, the
scalability of microwave cavities is questionable due to their large physical dimensions.
Recently a ‘cat-state’ was demonstrated in a high-overtone bulk acoustic-wave resonator

(HBAR)®>, showing the potential use of compact mechanical “cats”.

The energy levels of the quantum mechanical oscillator are equidistant and therefore at first
sight, it is not possible to specifically address two levels in the energy manifold. However, a
gubit can be encoded in cavities with logical basis composed of superposition of coherent
states also known as a 'cat state'?. In the following, we will explain briefly how such a qubit

called a “cat state” can be formed in a cavity.
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Let’s introduce two operators acting on the cavity eigenstates, namely the displacement

operator D and the parity operator P. The displacement operator D(a) = e(®d'-a"a) j5 5
unitary operator and its action is to map the ground state of the cavity to a state called
coherent state |a) = D(a)|0) which is an eigenvector of the annihilation operator a. The

inata i unitary (P? = [) and its action on a Fock state is given by P|n) =

parity operatorl3 =e
(—1)™|n). Let’s now consider a superposition of two coherent states of equal amplitude «

and phase difference of m:

|w;7r) =NI(la) £ [-a) ~ \/iiqa) + |—a)) (7)

1
NE = [2(1 4 e 7] 2

The two states |UJ§) are often referred as the 'even' and 'odd' m-cat-states. They are

eigenstates of the parity operator P with different eigenvalue, namely I3|LIJ§> = i|UJ§) and

thus, with parity measurement can distinguish between these two states. One method to

prepare cat states is by introducing nonlinearities in the Hamiltonian of the resonator H}, =

—K(a%ta)%. When a coherent state |a) propagates through the Kerr medium, it evolves

according to

_ _ﬂ a’ iKn2T (8)
W (1) = e 2 ZV_n_!eK In)

. 2 N
Consequently, after time interval T = ?n the system comes back to its initial state. However,

after time intervals T = qlK a g-component cat state is generated. For example, if ¢ = 2:

2 n
ou(r =)} =% Do m = (e i)
An alternative route to create the desired cat states consists of using an ancilla qubit®. For
example, a superconducting transmon qubit can be placed at the center of two 3D machined
microwave cavities®”:88 as shown in Figure 5. One cavity is the quantum harmonic oscillator
that stores the information, and the second cavity is used to manipulate and readout of the

transmon. Transmission line antenna couples the qubit to the TE101 mode of the cavities.
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Figure 5 — Three-dimensional aluminum microwave cavities coupled to a superconducting transmon qubit | The coupling of

the transmon to the cavities is via transmission line antennas. The figure is adopted from reference 88.
The Hamiltonian of the Josephson junction in the center of the transmon qubit is given by:

H = —E; cos(®) (10)
with E; the Josephson energy and © the magnetic flux threading the transmon. Excitations of
the microwave modes cause current fluctuations in the Josephson junction that in turn are
translated to fluctuations in the magnetic flux ®. Consequently, the total magnetic fluxis @ =
OFpr(a, +al) + O5pr(as + al) + O%pp(a, + al) with ©%p the magnetic flux fluctuation
due to current fluctuation from element i and &j/&i the creation/annihilation operator of

element i. The result Hamiltonian that describes the system is:
H = —E; cos|0Fpp(a, + a)) + OFpr(as + al) + 0%pp(a, + al)] (11)

where CDinF is the magnetic flux change due to excitation in element i. The operators of the
qubit and the storage and readout cavities are denoted with the subscripts "q", "s" and "r",
respectively. By taking the Taylor expansion of the cosine term up to fourth order and omitting
high-order and rotating terms the Hamiltonian becomes882°:

9 = hw,dla, + hwsalds + ho.ala, — bh ()% ata, - %ajar) - )%aiasaiar (12)
The first three terms describe each element as a harmonic oscillator with resonance
frequency w;. The last three terms are dispersive shifts y; of each element. During the
interaction between the transmon qubit and the storage cavity the readout resonator is not
populated (&I&r = 0). In addition, the transmon is considered as a two-level system, so the

effective Hamiltonian is:

H = hogle)el + (hws — xgsle)el)ala; (13)

In the off-resonance strong dispersive regime®® the detuning A and coupling between the

2
qubit and resonator g obey ‘% > max {% r, K},g > max {% r, K} with T the coherence time
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of the qubit and I' and k the decay rate of the storage and readout cavities, respectively. In
this regime the dispersive shift of the cavity resonance due to change in the qubit's state is
larger than its width. If the qubit is in the ground/excited state and the resonance of the cavity
differ by y,4s. The qubit acts as a switch that allow signals at w = wg — x4 to pass into the

cavity only when in the excited state. It is controlled by pulses at frequency w, which do not

affect the cavity because of the detuning. If we put the qubit in the superposition % and
send signal at w = ws — x4s the result state of the system is |W) = %. Applying a

second 7-pulse to the qubit yields the superposition |W) = %(lg, 0) —le,0) + |e,a) + |g, a)),

which after the measurement of the qubit in either |g) or |e) turns to:

) (14)
i) = (la) +10) = (la) £ 10))/V2
V2[1 £ exp(—|al?/2)]
Lastly, we connect the storage cavity to a resonant source to displace the state:
|Wr) = D(=a/2)IV) = (la/2) £ |- a/2))/V2 (15)

which is the desired m-phase cat. Indeed, the three-dimensional circuit QED architecture was

used to deterministically encode cat states®® and observe photon loss error syndromes®?.

The general form of the two-component cat state |W) = cy|a) + ¢;|a) is not an eigenstate of
the parity operator. Therefore, a more robust state is needed for the application of quantum
error correction. The so-called cat code®3#* exploits higher dimension of the cavity's Hilbert

space and uses superposition of cat states as the computational basis:
IC3) = Ng (la) £ |—a)) (16)
|Ci&) = N (lia) + |—ia))

Let us define the logical |0) = |C}) and |1) = |C;,) and arbitrarily set the initial state to

be |lUg) = ¢o|CF) + ¢4IC;t). We can now explore what happens in the case of photon loss:
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|l'utlz> = a|w3) = Ny [co(la) = [=a)) + ici(lia) — |=ia))] = colCq) +ici|Cip) (17)
|W2) = a|wg) = Nt co(la) + |—a)) — ci(lia) + |—ia))] = ¢o|Ca) — c1|Cih)
|W3) = a|wg) = Ny [eo(la) — |—a)) —icy(lia) — |—ia)] = ol Cy) — ic1|Ci)

a|w3) = Ng[co(la) + |—a)) + ¢ (lia) + |—ia))] = |Wg)
We have a closed set of states {|W};)} under the operation of a, even with arbitrary ¢y, ¢;. In
addition, the expectation value of the parity operator obeys (W%|P|W) = (—1)". Thus, the
sign of the parity measurement will change every time a single photon is lost, i.e. an error
syndrome occurs. Finally, in the absence of photon jumps the states W] evolve
deterministically according to |W2(t)) = |UJZ€_,¢/2), with k the decay rate of the cavity.

Overall, if the system is initialized at |lUg) and m jumps occur during time interval T the final

state will |W;"e"lc,’§‘}2) is known. The information can then be decoded to the ancilla qubit,

corrected, and re-encoded to the cavity. This scheme was implemented successfully®® with
the same 3D architecture mentioned before to demonstrate for the first time gainful quantum

error correction.

In this chapter we showed the different ways mechanical oscillators are exploited for
guantum information processing. When coupled to artificial atoms they can serve as a
guantum memory with long lifetime, although strong single-phonon coupling is still a
challenge. To overcome this limitation, we seek to combine the nonlinear capabilities of
artificial atoms with the enhanced coupling strengths demonstrated in magnetic flux-
mediated systems. As shown in previous sections, magnetic coupling schemes can achieve
single-photon coupling rates, representing order-of-magnitude improvements over capacitive
approaches. The next chapter presents the central goal of this thesis: to develop and
demonstrate magnetic coupling between a superconducting flux qubit and mechanical
resonators. Moreover, harmonic oscillators can be used for the generation of cat-state qubits.
However, with microwave cavities, scalability is a major issue while mechanical cat-state only
demonstrated recently. The proposal suggests that by swapping the microwave cavity for a

mechanical cavity, our architecture would be capable of generating a mechanical cat-state.

Page | 18



2. Methodology

2.1 Introduction

Traditional approaches to quantum control of mechanical resonators rely on coupling to
electromagnetic harmonic oscillators through optomechanical and electromechanical
interactions. While these methods have enabled groundbreaking demonstrations of ground-
state cooling and basic quantum state preparation, the coupling strengths achieved through
radiation pressure and capacitive mechanisms remain inherently limited. Single-photon
coupling rates g, typically reach only 10°= 102 Hz, falling short of the strong coupling regime

(go > k) necessary for efficient quantum control.

Magnetic coupling schemes have emerged as a promising solution to this fundamental
limitation, offering enhanced coupling strengths through flux-mediated interactions. By
embedding mechanical resonators within SQUIDs, researchers have demonstrated single-
photon coupling rates reaching g,/2m ~ kHz%%%2, representing an order-of-magnitude
improvement over conventional approaches. Yet, the magnetic coupling does not allow for

the creation on non-Gaussian quantum states.

To transcend this limitation, coupling schemes involving nonlinear artificial atoms, specifically
superconducting qubits, have been developed and demonstrated. The intrinsic anharmonicity
of superconducting qubits enables the preparation of non-classical states including

mechanical cat states®, squeezed states’4, and multi-phonon Fock states®?.

We propose a novel approach that combines the enhanced coupling strengths of magnetic
flux-mediated systems with the nonlinear capabilities of superconducting artificial atoms.
Specifically, we present a methodology for coupling mechanical resonators, implemented as

diamond nano-beams or silicon suspended membranes, to a superconducting flux qubit.

At the heart of our scheme is the superconducting flux qubit. This qubit offers superior
sensitivity to magnetic flux variations compared to conventional SQUID, making it ideal

candidates for detecting mechanical motion through flux-mediated interactions.

By positioning the mechanical resonator on one of the arms of the superconducting flux qubit
loop, similar to the one detailed in section 1.4.1, the mechanical motion can alter the

magnetic flux threading the loop if a parallel magnetic field is applied.
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The enhanced sensitivity also presents significant experimental challenges. The control of flux
qubit parameters requires precise control of the magnetic flux threading its loop, while the
inherent flux sensitivity can result in environmental noise overwhelming the mechanical signal

of interest.

To mitigate these challenges, we propose implementing the flux qubit in a gradiometer
configuration. This design allows us to apply a strong, parallel magnetic field to increase the
coupling between the qubit and the mechanical resonator. Crucially, the gradiometer
geometry ensures this uniform field does not directly affect the qubit; instead, the qubit is
only influenced by the localized magnetic flux changes produced by the mechanical motion of

the resonator.

Previously, gradiometric flux qubits were developed to address the fabrication challenges
inherent in flux qubits—where the energy gap depends exponentially on junction
dimensions—enabling the realization of tunable gaps®°’. The gradiometric design eliminated
crosstalk between gap tuning and energy bias control, both implemented via dedicated flux
lines. While these gradiometric flux qubits demonstrated gap tunability across a GHz range
and decay times of T; = 1.5 — 150 us, their coherence times remained limited to and T, =

65 — 300 ns?>°°,

The gradiometer configuration can successfully enhance the coupling, yet it introduces a new
challenge: the suppression of global magnetic field from external coils that are typically used
to flux-bias the qubit to operate at the optimal point. To overcome this limitation, we
implement a local biasing strategy that enables precise flux control while preserving the

uniform field rejection properties of the gradiometer design.

Our proposed methodology incorporates the flux qubit within a carefully designed coplanar
waveguide resonator architecture. The resonator is terminated by a Bragg filter on one end,
which provides a notch filter around the resonance frequency of the qubits. The opposite end
is shorted to ground, creating a well-defined boundary condition for the electromagnetic

modes.

This resonator configuration serves dual purposes: it facilitates the application of precise DC
magnetic bias fields required for optimal flux qubit operation, while simultaneously acting as

a Purcell filter that removes unwanted microwave frequencies close to the qubit which could
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otherwise degrade the system performance. The grounded termination provides a stable

reference and enables the establishment of the necessary DC bias conditions.

The following sections detail the theoretical framework, device design principles, fabrication

methodology, and experimental protocols necessary to realize this quantum platform.

2.2 Diamond Nano-beams

This chapter outlines the methodology employed for the fabrication and analysis of diamond

nano-mechanical resonators.
2.2.1 Diamond as a Material Platform

The selection of single-crystal diamonds for fabricating nano-mechanical systems is motivated
by a unique combination of superior material properties, despite notable fabrication and cost

challenges.

Single-crystal diamond exhibits Young's modulus values of approximately Ey = 1010 GPa,
substantially exceeding silicon or silicon nitride as shown in Table 2. This high elastic modulus
leads to increased Ey/p ratio, with p the density, that enables the realization of mechanical
resonators with frequencies extending into the gigahertz range®. The mechanical quality
factors of diamond nano-beams®9928 can exceed 104, with peak value of Q,,, = 1.2 x 10’ for

a nano beam embedded in a phononic crystal'®,

Table 2 — Mechanical properties of diamond, silicon, and silicon nitride

Material Young's modulus [GPa] Density [g/cm?3] Ev/p [GPa:cm3/g]
Diamond 1010%01 3.52 286.93
Silicon Nitride 362102 3.26 111.04

130 (100) orientation,

169 (110) orientation1%3 2.33 68.67

Silicon

Diamond also serves as an optimal substrate material for superconducting quantum circuits
due to several key properties'®. The chemical inertness of diamond allows for surface
treatments that reduce contamination at the substrate-metal interface. This directly improves
the coherence of superconducting qubits by mitigating dielectric loss, which primarily
originates at these material interfaces.’®> Additionally, diamond exhibits high thermal

conductivity, facilitating efficient thermalization of superconducting circuits.
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2.2.2 Free-Standing Triangular Beams

The mechanical behavior of free-standing diamond nano-beams is analyzed using Euler-
Bernoulli beam theory, which provides a description of flexural vibrations in structures where
the beam length significantly exceeds the cross-sectional dimensions.1% This theoretical
framework enables prediction of resonance frequencies, mode shapes, and quality factors for
different geometries. We focus on triangular cross-section beams due to considerations that

are detailed in the Nano-Beam Fabrication section.

For small deflections relative to beam dimensions, the bending moment M (x, t) relates to the

beam curvature through:

M) = B Ot e (18)
x,t) = Eyl 5= (x,

where Ey represents Young's modulus and I denotes the moment of inertia. The equation of

motion for free vibrations, derived from Newton's second law, takes the form:

0%u d0%u (19)
—EYI (x t) = pA (x t)

where A and p represent the cross-sectional area and mass density, respectively. Variable
separation u(x, t) = U(x)T(t) yields solutions for the spatial and temporal components of

the beam motion.

For doubly-clamped beams of length L, the boundary conditions require zero displacement
and slope at both ends: u(0) = u(L) = u'(0) = u'(L) = 0. These constraints reflect the rigid
attachment of the beam to the substrate at both clamping points. The general solution for the

position-dependent component becomes:
U, (x) = Cy[sinh B, x — sin Bpx + a, (cosh B,x — cos Bpx)] (20)

__ sinh BpL—sin By

with a,, = .
n cos B L—cosh L

The frequency parameters (3, satisfy the transcendental equation

cos BpL-cosh 5,L =1, yielding B, = 4.730, 5, = 7.853, and 53 = 10.996 for the first three
modes. Figure 6 shows the mode shapes corresponding to these first three vibration modes

of a fully-clamped triangular diamond beam.
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Figure 6 — Vibration modes of a fully-clamped triangular diamond beam | Analytic solution of the first three modes of a

diamond beam withw = h = 200mm, L = 1 um, Ey = 1000 GPa and p = 3510 %.

The temporal solution exhibits harmonic oscillation: T,,(t) = cos(w,t), where the natural

frequency of the nth mode is:

8 [Ba (21)

“n =72 pA

For triangular cross-sections with width w and height h, the out-of-plane moment of inertia

wh3

equals [ = fohysz =

Under high-vacuum and cryogenic conditions, the mechanical quality factor becomes limited

by clamping losses arising from energy dissipation into the supporting substrate. The diamond

substrate thickness significantly exceeds the shear wavelength 1, = :—S ~ 1um, where ¢; =
m

k . . s
12 Tm represents the transverse wave propagation speed in diamond. Under these conditions,

the mechanical quality factor follows!%’:

1L (L)" (22)
™ Aw\h
where A =~ 33.4 represents a numerical coefficient weakly dependent on Poisson's ratiov =

0.1.

The design of optimal beam parameters involves competing requirements. High operational
frequencies minimize thermal occupation, favoring short and wide beams, while high quality
factors require long and narrow geometries. Resolution of this trade-off necessitates

numerical analysis using finite element methods.
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We employed COMSOL Multiphysics structural mechanics simulations of a model consisting
of triangular beams with equal width and height, etched from cubic diamond substrates with
dimensions comparable to the shear wavelength (Figure 7). Low-reflecting boundary
conditions prevent spurious energy reflections, while the beam and surrounding regions are
maintained under high vacuum (P = 10°® mbar). The simulations systematically vary beam

length and width to analyze the out-of-plane vibrational modes.

=
3
N
.__\
b v v W sl oSS

Figure 7 — COMSOL model | (a) Triangular diamond beam (purple) surrounded by high vacuum (grey). (b) Out-of-plane
vibration mode shape. The color bar presents the displacement amplitude in arbitrary units determined by the simulation

normalization.
Each simulation generates a spectral response normalized by the software. Extraction of zero-
point fluctuations requires fitting the spectral response with Lorentzian functions and

normalizing by the bending energy from the simulation to account for software normalization

procedures. To do so we compare the simulated bending energy U,, to the resonator’s ground

h . . .
energy U, = 7(” Both energies are proportional to the square of the displacement, hence the

zero-point fluctuation is uzpr = u+/Uy/U,, with u the simulated displacement of the beam.

The analysis encompasses beams with widths w € [40nm,60nm]| and lengths L €
[800 nm, 1000 nm]. The corresponding resonance frequencies span 0.6 GHz to 1.2 GHz, in
good agreement with the analytical solution given by Equation 21. The quality factors range
from 20,000 to 300,000, not far from the prediction from clamping losses (see Equation 22).

A representative result is shown in Figure 8a.

Page | 24



a

65 12
.
/" \ 11
55
//’ .\\. g 1
E / i\ £ 09%
45 #L =800nm* 2 )
: S w=50nm *° £ 08~
b [0}
35 /@ =30088 . 3 07
/ \\.\
) AN 06
25 L

130

155 180

205

40
300

850 900 950 1000

fn=1013[GHZ]+X[kHZ] Beam width [nm]

Figure 8 — COMSOL simulations results | (a) Simulated and re-normalized spectral response (blue dots) of an 800 nm long and
50 nm wide diamond beam with a Lorentzian fit (solid red line). The out-of-plane resonance frequency is w, /21 = 1.013 GHz
and the quality factor of the mode is Q = 30,088. (b) Color map of the resonance frequency of beams with different

dimensions. The contour lines are the quality factor of the out-of-plane vibration mode
Figure 8b presents a color map of the simulated resonance frequency for beams with different

dimensions, with contour lines indicating the quality factor of the out-of-plane vibration

mode.

2.3 Silicon Membrane

This section examines silicon as a platform for suspended membranes. We analyze the
material properties that make silicon suitable for micromechanical applications, and discuss

the theoretical models used to predict their mechanical response.
2.3.1 Silicon as a Material Platform

As shown in Table 2, silicon demonstrates directionally dependent elastic properties, with
Young's modulus values varying between 130 GPa in the (100) orientation and 169 GPa in the
(110) direction®, This crystallographic anisotropy allows optimization of the mechanical

performance through strategic device orientation.

Silicon on Insulator (SOI) is a semiconductor substrate technology that consists of a thin silicon
device layer separated from the bulk silicon substrate by an insulating layer, typically silicon
dioxide (SiO2)%8. One particularly relevant application of SOI technology is in the fabrication
of silicon membranes. In this process, the buried oxide layer serves as a sacrificial layer that
can be selectively etched away using hydrofluoric acid (HF) or other appropriate etchants,
leaving behind a free-standing silicon membrane from the top device layer. The ability to use

the insulating layer as a sacrificial layer provides an additional degree of structural control.
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109

The resonance frequency of silicon mechanical resonators!® is usually in the order of 1-100

MHz with quality factors above 10% Record quality factors above 106, at MHz frequencies,

were achieved using square plate Lamé-mode resonator#?119,

In this work, we focus on silicon membranes that can be coupled with a superconducting flux
gubit. The coupling mechanism will be discussed later. Below, we overview the mechanical

behavior of silicon membranes.
2.3.2 Mechanics of Circular Membranes

Membranes are two-dimensional structures characterized by thickness much smaller than

their lateral dimensions. For circular membranes with radius R and mass density p, the

dynamic behavior follows the Kirchhoff-Love plate equationt!!

12(1—v?) 9*w (23)
Viw + E P = 0

where w(r, 0, t) represents the transverse displacement, Ey is Young's modulus, v is Poisson's
ratio, and h is the membrane thickness. The operator V? denotes the Laplacian in polar

coordinates.

The solution to equation 23 yields the mode shapes for a clamped circular membrane:

. 24
i—:g::gg Iy(¥mnr) | [cos(mB) + sin(m8)]e'wt (24)

Here, J,, and I, are the normal and modified Bessel functions, respectively. The first few

Wm’n(r, 0, t) = Cm,n ]m(ym,nr) -

values of the quantized parameter are: y,;R = 3.19622,y;,R = 4.61090, y,;R =
5.90568,y,,R = 6.30644. The vibrational modes are characterized by two integer indices (m,
n) that define the spatial oscillation pattern. Angular index m determines the number of nodal
diameters (radial lines where displacement equals zero) while the radial index n corresponds

to the number of nodal circles, determined by the n-th root of the Bessel functions.
For a thin plate with thickness h << R, the mode eigenfrequencies are:

_ (Ym,nR)z EY (25)

fmn = 2mR?2 [12p(1 —v2) h
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The effective mass of each vibrational mode is given by m.sr = ptA.sr, where the effective

areais Agpp = 2m fOR Wy n(r)dr. For the fundamental mode (0,1), the ratio /S = 0.3289.

mR2

The zero-point fluctuation amplitude, critical for the coupling mechanism that will be

presented later, is uzpp = \/A/4TM g f frnn-

The total quality factor of a vibrating membrane results from multiple loss mechanisms:

1 1 1 1
Qtot Qfluidic Qintrinsic champing

The dominant contribution at low temperature and under high-vacuum is from clamping
losses (i.e. energy dissipation through the membrane supports). For a thin circular membrane
the clamping losses are given by!'2:
3 h1* (27)
= 1601 =12 | GonR) 7| con
champing hs

where hy is the thickness of the support and ¢y, = 1 is a numerical factor related to the

radiation admittance of the substrate and the normal force along the disk edge. The expected

. - . . h
quality factor for the fundamental mode of a silicon membrane with v = 0.28 and ratio =

S
110 nm
3 um

~ 0.073 5 Qciamping ~ 3000.

To validate the theoretical predictions and calculate realistic parameters, we performed finite
element analysis using COMSOL Multiphysics Solid Mechanics module. The simulation
geometry consisted of a 10 um thick Si substrate of lateral dimensions 10 um x 10 um with 3
um thick oxide layer and a 220 nm Si device layer on top. Circular hole of radius R =
{0.5,1,1.5,2} umis etched through the oxide to define the suspended silicon membrane (see
Silicon Membrane Fabrication section). The outer boundaries are set as low-reflecting to
minimize wave reflections. Figure 9 shows the fundamental vibrational mode of the silicon-

on-insulator membrane structure.
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Figure 9 — COMSOL simulation of a circular Si membrane | The membrane is made of thin Si layer (220 nm) on top of a 3 um
layer of SiO,and a 10 um Si substrate (not shown in the image). Eigenfrequency analysis result with good agreement to the

theoretical prediction for the fundamental mode of membranes with R = {0.5, 1, 1.5, 2} um.

The simulated eigenfrequencies show good agreement with the analytical prediction of
equation 25 with maximum deviation of 3%. In subsequent analysis of the coupling strength
between mechanical resonators and superconducting flux qubits, we will use the values

obtained for R = 1 um: f; = 384 MHz, and effective mass m,¢r = %fff wdV = 3.62 fg,

which corresponds to zero-point fluctuation amplitude uzpr = 2.5 fm.

2.4 Gradiometer Superconducting Flux Qubit

Flux qubits are quantum two-level systems with macroscopic degrees of freedom, realized
through superconducting loops interrupted by Josephson junctions!!3!4 The potential
energy of the qubit exhibits two local minima that correspond to persistent currents
circulating in opposite directions as illustrated in Figure 10a. When those states degenerate,
the qubit states manifest as their symmetric and anti-symmetric superpositions. The
persistent current, typically 100-500 nA in micron-sized loops, generate magnetic dipole
moments on the order of 10° us, which is five orders of magnitude larger than atomic

magnetic moments!®,

M M
SOS SSS

Pa ®1 () P3

S N N (V2

ray 7% raY 7N SSS
M
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Figure 10 — Gradiometer flux qubit topology | Left panel: Standard flux qubit topology where four Josephson junctions
intersect a superconducting loop. The persistent current I, can flow in two opposite directions depending on the external
magnetic flux @. The mutual inductance of the loop M is also depicted. Right panel: Gradiometer flux qubit with top (t) and
bottom (b) loops. The persistent current is divided equally between the loops while the mutual inductance of each arm remains

the same.

The large magnetic dipole moment fundamentally enhances the magnetic flux sensitivity of
flux qubits compared to conventional superconducting quantum interference devices
(SQUIDs). The qubit energy levels shift linearly with applied magnetic flux, on the order of 500
GHz/G, providing a direct transduction mechanism between magnetic field and measurable
energy’®. Under optimal conditions at millikelvin temperatures, flux qubits achieve flux

sensitivities of 108 ®,/Hz, representing an improvement over DC SQUIDs!Y’.

To enhance sensitivity to local magnetic flux changes induced by mechanical nano-beams,
through a mechanism that will be discussed later; while rejecting common-mode, we employ
gradiometer architecture. The gradiometer flux qubit (GFQ) utilizes a figure-eight geometry
with two loops of different areas, creating a differential magnetometer that responds to
magnetic field gradients rather than uniform fields. This configuration, schematically drawn in
Figure 10b, provides inherent rejection of spatially uniform magnetic field, including those
from distant sources and electromagnetic interference, while maintaining high sensitivity to

localized magnetic signatures such as those generated by the mechanical motion.
2.4.1 Model of Gradiometer Flux Qubit

The gradiometer flux qubit schematically drawn in Figure 10b, consists of a figure-eight
superconducting loop configuration designed to provide differential magnetic field sensitivity.
Unlike conventional single-loop flux qubits, the GFQ comprises two superconducting loops
that share a common arm containing four Josephson junctions. Three junctions are identical
with critical current I, while the fourth junction has a reduced critical current al., where a <

1 is the asymmetry parameter.

The gradiometer architecture exploits the principle of common-mode rejection. Uniform
magnetic fields threading both loops generate equal and opposite flux contributions, resulting
in zero net flux through the differential setup. Conversely, spatially varying magnetic fields

create unequal flux threading each loop, producing a measurable differential signal. This
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configuration is particularly sensitive to localized flux sources, such as those generated by the

mechanical motion of a nano-beam.

Applying Faraday's law around each loop yields:

o, (28)
Pat Q1+ P2t @3 = 2w =
0
O
Pat 1+ Q2+ @3 =21 =
0

where @; represents the superconducting phase difference across the i-th Josephson junction,
®, (D,) is the magnetic flux through the top (bottom) loop, and ®, = % ~ 2.07 X 107 Wb

is the magnetic flux quantum. These constraints can be combined to eliminate the phase
across the asymmetric junction:
(O (29)

<Pa=7TcT—<P1—<P2—<P3
0

where the differential flux ®; = ©, — ®, becomes the fundamental control parameter for

the qubit energy levels.

The potential energy of the gradiometer circuit arises from the Josephson coupling across

. . . ) . . Do, . .
each junction. For junctions with Josephson energies E; = ﬁ, the total potential energy is:

3

OF]
g cos(¢g;) + acos <7T o Q1 — @y — (Ps)
i=1 0

(30)

At the optimal operating point % = 1, the potential energy exhibits two degenerate minima.
0

At that point, the phases across the junctions satisfy ¢;—;,3 = @* where sin(¢”) =

asin(3¢™).

The two degenerate solutions correspond to persistent current states with opposite

circulation directions:

(31)
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The kinetic energy arises from the charging energy stored in the junction and geometric
capacitances. The circuit, as shown in Figure 11, contains both junction capacitances C; and

parasitic capacitances C;; between superconducting islands.

Ipc/2
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(E.Ec) (E;.Ec) (E;.Ec) (ak), ake)
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Figure 11 —Schematic circuit drawing of the gradiometer flux qubit | The Josephson junctions, depicted by X and characterized
by the Josephson energy E; and the capacitive energy E, create four superconducting islands I; connected via the capacitors

Cyj. Direct current bias Ip is used to control the energy of the qubit.

The total kinetic energy of the circuit can be expressed as'!®:

1 2 1 32
K =3 (=) +5G10, = V) + (5= VP + =V 4 e = vy B2
i%j
where V; represents the electrostatic potential of the i-th superconducting island. In matrix

form, the kinetic energy becomes:

O 33

withV = (V; V, V; V,)T.The junction capacitance matrix (f] and geometric capacitance

matrix C; are given by:

I+a -1 0 —«a (34)
. 1 2 -1 2
G=6 o -1 2 -1
—a 0 -1 l14+a
Cip+ Ci3+Cy —Cy —Ci3 —Cy
C. = —Cy; Ci+ Cr3+ Cy —Cy;3 —Cyy
G —Cy3 —Cy;3 Ci3+ Cr3+ Cyy —C3y
—Cyy —Cy —C3y Cig+ Coy+ Csy

The Hamiltonian of the gradiometer flux qubit can be derived with respect to different basis.

We will work with the so-called charge basis that allows direct simulation of the capacitive
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contribution. To do so we introduce a transformation from absolute voltages V to junction
voltages V; = P~1V. Here V; = (V2 Vo3 V34)T where V;; = V; — V. In the case where the

000
100
110
111

island I; is grounded (V; = 0) the transformation matrix reduces to P =

. . . . . D .
Let us define the conjugate charge variables using the Josephson relation 2—7‘;(;1]- =V

no=liOE R o (35)
I = hog, 2 Y

Resulting with the complete Hamiltonian in the charge representation:

g = (36)

2¢)? o
(;) AT (PTCP) A+ U

where i = (N M, 73)T represents the charge operators and € = C; + C; is the total
capacitance matrix. In the vicinity of the optimal operating point, the energy spectrum
demonstrates a near-perfect qubit behavior. This is characterized by a clear separation
between the two lowest energy states and the higher excited states (in some cases, the third
energy level is located above the superconducting gap). This enables an effective two-level

description with the pseudo-Hamiltonian:

h
H =2 (86, + 6y) 87)

. I h . .
The energy eigenvalues of the Hamiltonian are E, = i; A? + €2 where A is the tunnelling

i
energy between the two lowest energy states, and € = ;”(G)d — ®,) represents the energy
bias controlled by the differential flux. By defining the flux parameter of the gradiometer qubit

o . . .
o= 7‘1, we obtain the expression for € as of a standard flux qubit!!®:

€ = — —_—

- (-3 >

At the degeneracy point ® = %, the flux dependent term € vanish and the qubit is immune

to first-order flux noise, providing optimal coherence properties.

The gradiometer responds to external magnetic fields through the differential flux ®,. For
identical loops, global uniform magnetic field will result with ®; = 0. Therefore, we introduce

the current bias Ip. (see Figure 11) that will split evenly between the two loops creating
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opposite magnetic flux through the top and bottom loops. Considering only the mutual

inductance of the outer arms M, the flux threading each loop is:

I
O, = M- = -0, 39)
L
_Ipc
® =M=

. . . o) .
Note that at the optimal operating point where ® = 70, the mutual inductance can be

experimentally determined:

(OR (40)
Ioptimal
DC

In the case of loops with different areas, an external magnetic field can be used to bias the

qubit. The flux difference between the loops of the gradiometer is given by:

Dy = MIpe + 8AB,, cos(6) (41)
with §A the difference between the area of the top and bottom loops. B,,; and 8 are the

magnitude and angle of an external magnetic field, respectively.

2.5 Coplanar Waveguide Resonator With Bragg Filter Termination

A Bragg reflector consists of a periodic structure of alternating high and low impedance
sections that creates a notch filter around specific frequencies. The Bragg reflector can be
designed to provide high reflectivity at a desired frequency range while maintaining DC
conductivity. The structure consists of alternating sections of narrow and wide coplanar
waveguide geometries, creating impedance variations that produce the required reflection

properties.

The key advantage of the Bragg reflector is that it provides the necessary boundary conditions
for resonator operation while allowing DC current flow. The periodic structure acts as a high-
or low impedance termination at the resonator frequency (depending on the choice of the
impedance adjacent to the resonator), effectively confining the electromagnetic field within
the resonator volume. Simultaneously, the continuous superconducting path allows

unimpeded DC current flow for qubit biasing.
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In this section we will follow the scattering-matrix formalism proposed in reference 118 and
apply it to a coplanar waveguide (CPW) transmission line terminated on one end by a Bragg

filter and on the other end shorted to the ground.
2.5.1 Transmission Line Model

To analyze the electromagnetic properties of coplanar waveguide resonators in our circuit QED
architecture, we employ a distributed transmission line model. This approach is essential for
understanding wave propagation and reflection phenomena at microwave frequencies, where

the wavelength becomes comparable to the physical dimensions of the circuit elements.

The coplanar waveguide transmission line is modeled as a cascade of infinitesimal LC
elements, as illustrated in Figure 12. Each unit cell of length u is characterized by inductance
L, and capacitance C,. This discrete representation captures the fundamental

electromagnetic properties while enabling mathematical analysis of wave propagation.

Figure 12 — Distributed-element model of transmission line | Each unit cells u of the transmission line in characterized by its

inductance L,, and capacitance to the ground C,,.
In the continuum limit, where u — 0, the inductance and capacitance are normalized to unit
length, yielding the distributed parameters £ and C representing inductance and capacitance

per unit length, respectively. This continuum approximation is valid when the unit cell length

is much smaller than the wavelength of interest.

The voltage V(x, t) and current I (x, t) along the transmission line are governed by Kirchhoff's

laws applied to each infinitesimal element:

ov._ ol (42)
ox ot
ol Cav
ox ot
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These coupled equations describe the fundamental relationship between voltage and current
in distributed systems, where spatial and temporal derivatives are coupled through the line

parameters.

To decouple these equations and analyze wave propagation, we introduce forward and
backward propagation amplitudes. These quantities represent the decomposition of voltage

and current into waves traveling in opposite directions along the transmission line:

%
A =—+1/Z, (43)

N

%4
AT =——-1,27,
VZo
where Z,=./L/C is the characteristic impedance of the transmission line. This
transformation separates the electromagnetic field into components propagating in the +x

and -x directions. Substituting the propagation amplitudes into Kirchhoff's equations yields

decoupled wave equations:

d0A~ 0A~ _ 0 (44)
ot ' “Tox

oA~ _ 0A” _

ot “ox

where ¢ = 1/VLC is the electromagnetic wave velocity in the transmission line. These
equations demonstrate that A~ represents a wave traveling in the +x direction with velocity
¢, while AT represents a wave traveling in the -x direction with the same velocity. For

harmonic excitation at frequency w, the forward propagating wave solution takes the form:

A”(x,t) = A(x)"e @t 4+ c.c. (45)

The spatial dependence A (x) satisfies the reduced wave equation, yielding:

A(X) = ACetkx (46)

where k = w/c is the propagation constant (wave number).

The phase accumulated by electromagnetic wave propagation from position x; to position x,

along the transmission line is:

X2 — X3

¢=w = k(x; — x1) (47)
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This phase relationship is fundamental for understanding interference phenomena in Bragg
filters, where constructive and destructive interference between waves reflected from
periodic impedance discontinuities creates the desired filtering characteristics. For a quarter-
wavelength section (the basic building block of Bragg filters), the phase accumulation is ¢ =

%, corresponding to a 90° phase shift. Multiple quarter-wave sections with alternating

impedances create the periodic structure necessary for Bragg reflection.
2.5.2 Scatter-Matrix Analysis

The behavior of electromagnetic waves at discontinuities in transmission line circuits can be
systematically analyzed using scattering matrix methods. This approach is essential for
understanding the reflection and transmission properties of impedance mismatches, lumped

elements, and periodic structures that form the basis of Bragg filters.

(a) 47 —— — %
5
Aam“_ _— 4’;m
(b) Zg (c)
ZS

Figure 13 — Scattering elements | (a) general scattering element embedded in a transmission line. Scattering element of

impedance Zs connected in series (b) or in parallel (short to ground, c) to the transmission line.

Single Elements

The relationship between incoming and outgoing electromagnetic waves at a scattering

element, depicted in Figure 13, is described by the scattering matrix formalism:
. —_— (48)
(Aout> _ (7’1_ t<_> (Ain>
d - ’ 16—
A out t, 7, A in
wherer_ (1) and t_, (t_) represent the reflection and transmission coefficients respectively.
For symmetric scatterers, these coefficients satisfy r_ = 1, = r and t_, = t_ = t, simplifying

the analysis. Throughout this analysis, we assume single-sided excitation (A';l = 0).
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The simplest element is a uniform transmission line segment of length | which introduces no
reflection but accumulates phase according to the propagation constant. The scattering

parameters are:

r=20 (49)
t = ikl
where the phase factor e'*! represents the time delay for wave propagation across the

segment.

For an impedance Zs connected in parallel to the transmission lines, as exemplified in Figure

13c the Kirchhoff's equations become:

Voltage =V=V (50)
constraint:
V. .
Current Z_s L =1—1
continuity: S

This configuration yields the scattering coefficients:

1 (51)
2z+1

r=—

_ 2z
T 2z+1

where z = Zs/Z, is the normalized impedance.

t

For an abrupt transition between transmission lines with impedances Z; and Z,, continuity of

voltage and current at the interface requires:

Voltage V=V - JZ,(4; + A5.) = \/Z_Z(A;l + A’:ut) (52)
constraint:
Current ' 1 - - 1 " o
I =1 ﬁ_(Ain_Aout =_(Aout_Ain)
1z

continuity: V21

The resulting scattering coefficients are:
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Z,— 7, 2./7,7, (53)

r=—— t=———
Z,+ 7, Z;+7Z,
’ Zl _ZZ t, 2w/Z1Z2
Y = ——— ; = ——
Zi+7Z, Zi+ 7,

These expressions form the foundation for analyzing impedance mismatches in Bragg filters.

Transmission Line Resonator Terminated by Asymmetrical Terminations

The most general case involves a transmission line of length L terminated by different
scatterers S and S’ at each end as depicted in Figure 14. This configuration provides the
framework for analyzing complex resonator systems where the terminations have distinct
reflection and transmission properties, such as a Bragg filter on one end and a short circuit on

the other.

I(w) X i) L-x
s W YT s —

1 : ¢ : teikx I tt! ekl
| — | — | —
| | I
T | | I
— | | I
| | I
) [ . I . I
tZeLRZer | tetk(ZL—x)rr | telkLTr |
«— | «— | «— |
| | I
| ) | ) I ]
| teszL r'r | telk(2L+x)rrT I tt'elk?’LT’T
[ N [ > I ,
I I I
| | I
) 5 o 5 o,
$2ptkaL,12, : teik(4L—x) 112 . : teik3Lyr? ) :
¢ | ¢ | ¢ |

Figure 14 — Asymmetrical transmission line | Transmission line of length L, terminated by different scatterers S and S'. The

current at each point of the transmission line [(x) results from an infinite number of reflections.

For an electromagnetic wave incident from the side of scatterer S, multiple reflections occur
between the two terminations, creating an infinite series of forward and backward
propagating waves. The total reflection (r*) and transmission (t*) coefficients for this

asymmetrically terminated system are:
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t(w)zr’(w)eikZL
1—71'(w)r(w)etkl

(@) = () + t(w)2e* 2Ly (w) Z (eimr'(w)r(w))" — r(w) +
n=0

n_ tl)t (w)e™
T 1-7'(0)r(w)eikL

t"(w) = t(a’)tl(a))eiuZ[T'(a))r(a))eikn]
n=0

Where r(w), t(w) and r'(w), t'(w) are the scattering coefficients of the individual
terminations S and S’ respectively. The complex wave number k = %(w + ik) includes both

the propagation constant and any losses k in the transmission line.

The current at any position x along the transmission line can be expressed in terms of the
incident propagation amplitude A;,,:

1
VZo

where f,(x,w) represents the difference between forward and backward propagating

(55)

I(x,w) = f.(x, w)A;,

current waves. The spatial distribution function account for all multiple reflections between

the terminations:

ikx ' Jik(2L—x) (56)

e —re

folx,w) =t

1—r'retk2l
These expression reveal the standing wave pattern that develops within the asymmetrically
terminated transmission line, with the specific distribution depending on the frequency-

dependent reflection properties of both terminations.

The asymmetrically terminated transmission line supports resonant modes when specific
phase and amplitude conditions are satisfied. For constructive interference and efficient

energy storage, the round-trip phase accumulated by electromagnetic waves must satisfy:

arg[r (w)r(w)] + 2kL = 2nn (57)
where n is an integer and k = w/c is the real part of the wave number. This phase condition
ensures that waves returning after a complete round trip between the terminations interfere
constructively with the original wave. For high-quality resonances, an additional amplitude

condition must be approximately satisfied:

Ir' (w)r(w)]| = 1 (58)
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This condition requires that the product of reflection magnitudes from both terminations
approaches unity, minimizing energy loss during each round trip and enabling sustained

oscillation within the cavity.

The combination of these conditions determines the resonance frequencies and quality
factors of the system. When both terminations have high reflectivity (|r'(w) |, |r(w)| = 1), the
amplitude condition is readily satisfied, and the resonance frequency is primarily determined
by the phase matching requirement. The quality factor depends on how closely the amplitude

condition is met, with deviations from unity leading to energy decay and finite Q values.

Chain of Elements
The analysis of multiple scattering elements requires accounting for multiple reflections
between adjacent discontinuities. Consider two scatterers separated by a transmission line

segment of length L similar to Figure 15.

! L
\ ‘kL

ikZL)

t?rye*2L(rre

tyryre 1 (7'17'26
ik2L) ‘,,,//””/’ \\\\\\\‘“\\‘

Figure 15 — A chain of two scatterers

When an electromagnetic wave encounters the first scatterer, part is reflected while part is
transmitted. The transmitted wave propagates distance L, accumulating phase e‘*t, before
encountering the second scatterer. Multiple reflections occur between the scatterers, creating
an infinite series that must be summed up. The total reflection and transmission coefficients

for the cascaded system are:

tir,eth2L , t2r ethL (59)
;0 r =n+

1— etk 1 —ryryetkl

1 — etk
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where 1y, t; and 1y, t, are the individual scattering coefficients of the first and second elements

respectively.

Bragg Filters
These scattering matrix results provide the building blocks for analyzing Bragg filters as
cascaded networks of impedance mismatches and transmission line segments. Microwave

Bragg filters are constructed from periodic structures of transmission lines with alternating
. y) .
characteristic impedances Z; and Z,, where each segment has length L, = TB, with Ag the

center wavelength to be filtered.

The fundamental design parameters of a Bragg filter include the impedance values Z; and Z,
which determine the reflection per interface, the number of doublets m which sets the total
reflection magnitude and bandwidth, the segment length L, that ensures constructive
interference at the design frequency, and the resulting internal interfaces n = 2m — 1 that

create the periodic structure through impedance mismatches.

n=1 n =3 n=>5 n=7
i | 1 i
1 1 1

m=1 m=2 m=3 m=4

Figure 16 —Bragyg filter | m = 4 doublets and n = 7 internal interfaces between low impedance (Z;) and high impedance (Z)

segments.

For a Bragg filter with m = 4 doublets, there are n = 7 internal impedance mismatches as
shown in Figure 16. The periodic structure alternates between low and high impedance
sections, creating a photonic bandgap around the design frequency that provides the desired

filtering characteristics while maintaining DC conductivity throughout the structure.

Using the cascaded scattering formulas derived earlier, the total reflection and transmission
of the Bragg filter can be calculated systematically. The elements are chained in sequence
through phase accumulation during propagation in Z; quarter-wave segments, impedance

mismatches at Z;/Z, interfaces, phase accumulation during propagation in Z, quarter-wave
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segments, impedance mismatches at Z,/Z; interfaces, with this pattern repeated for m

Z=2Z;
Zq +Z2,

doublets. Each impedance mismatch contributes reflection according to Tinterface =
iZ

while each quarter-wave segment contributes phase delay tsogmen: = € 2. The recursive

application of the cascading formulas builds up the total response through constructive and

destructive interference between multiple internal reflections. For example, Figure 17 shows

the reflection and transmission coefficients of the Bragg filter for a center frequency w,, Z; =

Q

2m
35Q, Z, = 80Q, and m = 4. The effective impedance on the filter is Z,¢r = (%) Zy
1

37kQ, with Z, = 50 Q the input line impedance!®®.

10%(a) 1 180(b) It

\ .. i ..'. //' .‘.' Lr
10-2, 901 /

0y
104 /
—-90- / /

— It

10~/ |r|2 / /
: | —180/ ! !
0.2 0.6 1. 1.4 1.8 0.2 0.6 1. 1.4 1.8
win/w( win/wc

Figure 17 — Bragyq filter response | Transmission and reflection power (a) and phase response (b) of a Bragg filter withm = 4,

Z; =350 and Z, = 80 (). The x-axis represents the incoming frequency w;, normalized by the center filtered frequency w,.

The calculated reflection and transmission coefficients exhibit the characteristic Bragg filter

response. The reflection shows high values (|7|? ~ 0.99) in the stopband around % = 1 with

c

sharp transitions at band edges, multiple reflection nulls at frequencies where destructive
interference occurs, and bandwidth determined by the impedance contrastratio Z,/Z; ~ 2.3.
This frequency selectivity enables electromagnetic isolation at the resonator frequency while

preserving DC conductivity.

The phase response of the Bragg filter shows characteristic behavior crucial for resonator
applications. The reflection phase exhibits rapid phase variation through the stopband with
phase jumps of +180° at reflection nulls and smooth phase transition in passbands. The
transmission phase demonstrates linear phase accumulation outside the stopband, enhanced
group delay within the Bragg frequency range, and phase penetration depth effects that

contribute to quality factor enhancement.
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The phase penetration depth effects arise from the finite spatial extent over which
electromagnetic waves penetrate the Bragg structure before being reflected. Unlike an ideal
mirror that reflects instantaneously at the interface, the Bragg filter allows waves to propagate
several periods into the periodic structure as evanescent modes before complete reflection
occurs. This penetration creates an effective additional optical path length that manifests in
the transmission phase as an enhanced phase accumulation compared to simple impedance
mismatches. In the transmission phase response, these effects appear as a frequency-
dependent phase delay that exceeds the geometrical phase accumulation expected from the
physical length of the filter. Near the Bragg frequency, the group velocity of electromagnetic
waves decreases significantly as they interact with the periodic structure, leading to increased
phase accumulation per unit frequency change. This enhanced phase response corresponds
to increased photon storage time within the resonator system. The frequency-dependent
phase response creates modified boundary conditions that are more favorable for energy
storage, as photons experience extended interaction times with the resonator boundaries
during the penetration and reflection process. The magnitude of this enhancement depends
on the impedance contrast ratio, number of periods, and the specific frequency of operation,
with stronger impedance contrasts and more periods generally yielding greater enhancement

factors.

Bragg-Terminated Resonator with Short Circuit
A specific implementation of practical importance for the gradiometer flux qubit system
consists of a transmission line of length L = %/1 terminated by a Bragg filter on one end and a

short circuit to ground on the other end as presented in Figure 18. This configuration combines
the electromagnetic isolation properties of the Bragg filter with the perfect reflection
characteristics of the short circuit, creating an efficient resonator structure while maintaining

DC conductivity.

I(w) i(x) —2
L g |- )

Figure 18 — Transmission line of length 2/1 terminated by a Bragg filter and a short circuit.
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For the short circuit termination, the scattering coefficients are obtained by setting the
normalized impedance z = 0 in Equation 51, yielding 75,0+ = —1 and tsport = 0. The short
circuit provides perfect reflection with a m phase shift while completely blocking transmission.
Applying the asymmetrical termination formulas of Equation 54 with these boundary

conditions, the total reflection and transmission coefficients become:

. w K
3m——2L— 60
tBragg(w)zel o, (60)

r(w) = rBragg(w) - K

3r2 1%
1+ rBragg(w)e ©r ¢

t*(w) =0
The zero transmission-coefficient confirms that no electromagnetic energy passes through the
short-circuited end, making this an ideal resonator configuration. The reflection coefficient

exhibits frequency-dependent behavior determined by the interplay between the Bragg filter
characteristics and the 3/1 electrical length.
The current distribution (Equation 56) along the transmission line is given by:

eikx + eik(ZL—x) (61)

1+ 7ragg (w)etk2L

folxw) = tBragg (w)

this expression reveals the standing wave pattern within the resonator, with current nodes
occurring at the short circuit termination and at specific positions determined by the
frequency and Bragg filter properties. The current distribution results with optimized galvanic
coupling to the qubit at appropriate locations, where the current is maximal along the

transmission line.

The resonance condition for this system requires that the total phase accumulated during a

round-trip equals 4. This condition corresponds to n = 2 in Equation 38, and is a result of
the length of the transmission line defined as L = 3&. The total phase consists of
contributions from the Bragg filter reflection @g,q44 = ¢*(w), the transmission line
propagation @ = a)%, and the short circuit reflection @410+ = . The resulting resonance
frequency is:

(37— 0" ()] (62)

(1),-=2—
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This expression shows that the resonance frequency is determined not only by the geometric
length but also by the frequency-dependent phase response of the Bragg filter, providing

additional tunability compared to conventional capacitively terminated resonators.

The energy decay rate of the resonator k. is determined by the ratio between the round-trip
time T = d,¢,c and the energy loss per round trip. Unlike capacitor-terminated resonators
where the accumulated phase is linear in frequency, the Bragg termination introduces
frequency-dependent phase behavior. Near the resonance frequency, this phase response

becomes effectively linear, allowing the round-trip time to be expressed as:

3 (63)
T= ]/w—
N

The enhancement factor y > 1 accounts for the finite penetration depth of electromagnetic
waves into the Bragg structure before reflection occurs. This penetration creates additional
phase delay compared to ideal reflection, effectively increasing the photon storage time and

improving the quality factor.

As energy loss occurs only at the Bragg filter (the short circuit provides perfect reflection), the

decay rate and quality-factor are:

_ |tBragg|2 (64)
Ke=
w 3y
Qe=t=——s
¢ |tpraggl

This configuration achieves quality-factor enhancement through both the high reflectivity of
the Bragg filter and the phase penetration effects that increase the effective photon storage
time by the factor y. The resulting performance represents a significant improvement over
simple impedance-mismatched terminations while maintaining the DC conductivity essential

for gradiometer flux qubit operation.

2.6 Coupling Flux Qubit To Bragg Resonator
2.6.1 Circuit QED Hamiltonian and Coupling Derivation

The system Hamiltonian for the coupled qubit-resonator system is given by:
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A €
H/h= wr&Td + 562 + Ec?x + gﬁx(fﬁ + @) (65)

where w, is the resonator frequency, @t and @ are the photon creation and annihilation
operators. Here we consider only a specific mode of the resonator, and the mode index is

omitted. A is the qubit minimal frequency (gap), and g is the coupling strength. The Pauli

matrices &, and d, represent the qubit operators in the computational basis.

At the optimal operating point of the flux qubit where € = 0, the coupling term g arises from

flux fluctuations in the qubit loop. Following Equation 38, the energy bias fluctuation is:

21 I
8¢ = =260 = =Ml (@’ +a) (66)

where I, is the persistent current, M is the mutual inductance between the resonator and

qubit loop, and &1 represents the current fluctuation amplitude in the resonator. The resulting

coupling is:
OH b€ I
7:76,6 =Mﬁ§16x(5ﬁ+&) EgO’x(dT +d) (67)
This yields the inductive coupling strength:
I (68)
=M-251
AT

To estimate the coupling strength the current fluctuation 61 is calculated'*® using 61(x) =

\/f;—az) |f, (x, w)|? and the mutual inductance is given by Equation 40.
0

2.7 Flux Qubit Relaxation and Dephasing

The coherence properties of gradiometer flux qubits are fundamentally limited by their
interaction with environmental degrees of freedom. Understanding these decoherence

mechanisms is essential for characterizing and optimizing their performance.
2.7.1 Purcell Decay

Relaxation refers to the process by which a qubit in the excited state spontaneously decays to
its ground state by releasing energy to the environment. This energy exchange results from

coupling between the qubit and environmental degrees of freedom, such as electromagnetic
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fields, phonons, or other microscopic excitations. For a qubit initially in the excited state, the

probability of remaining in that state decays exponentially:

P(t) = e t/T (69)
where P(t) is the probability that the qubit remains in the excited state at time t, and T} is
the relaxation time. In circuit QED systems, Purcell decay arises from the coupling between

the qubit and electromagnetic modes of the resonator. The interaction Hamiltonian is:

! 7
Hine/ T = M- 81(6,A + G_AT) (70)

where M is the mutual inductance, I, is the persistent current, and 81 represents current

fluctuations in the resonator. According to Fermi's Golden Rule!??, the Purcell decay rate is:

MI,\? (71)
= 21 (2) [5i(wge) + Si(-ge)]

where S, = %ft(l(t)I(O))ei‘"t is the current power spectrum. For the transmission line

resonator, the current power spectrum is:

_ L&)l (72)

S Saz
I 7, A

in
where f,(x, w) is the current distribution function and SA& is the photon influx power

spectrum. By writing the explicit form 4;, = Y., /i hwn&ne;i“’t + H.c and moving to the

) - h .
continuum limit = hw, — —w, the photon influx power spectrum can be calculated
L) Al dw 41

from:
heo ({881 w >0 (73)
SAL,—;1 - E
(ata,) w<0

For a finite temperature environment T, the total Purcell rate becomes:

hw (MI\° hw (74)
o= (M) e cotn (1)
P 220( h ) I G )l eoth | 177
This expression shows that the Purcell decay rate depends on the coupling strength, the

current distribution in the resonator, and the thermal occupation of electromagnetic modes.

2.7.2 Qubit Dephasing Mechanisms
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Dephasing, characterized by the time constant T,, represents the loss of phase coherence
between components of a quantum superposition without energy exchange with the
environment. This process occurs when fluctuations in the qubit frequency due to
environmental noise lead to the accumulation of random relative phases between basis

states.

The overall dephasing rate I, = 1/T, combines the effects of both pure dephasing I, and

relaxation I :

1 (75)
==l +T
2= 350 )

The dephasing decay is not strictly exponential and depends on the power spectrum of the

noise source.

Free Induction Decay (Ramsey)

Consider a qubit undergoing free evolution for a time t. The total accumulated phase is
@(t) = wget + 5(t), where wy, is the nominal qubit transition frequency. The second term,
6 (t), is a stochastic phase error caused by fluctuations SA(t) in the Hamiltonian, which induce

a frequency noise Sw(t). The phase error is the integral of this frequency noise: 6(t) =

t ’. ’
J, Sw(t)dt'.
If we assume the underlying frequency fluctuations dw(t) constitute a Gaussian process then
the accumulated phase 6(t) is a Gaussian random variable. The statistical uncertainty in this
phase causes dephasing across an ensemble of measurements. This loss of coherence
manifests as the free induction decay (FID), also known as Ramsey decay:

' : ’ L (76)
fa(®) = (e°®) = e 20*0) = exp [_%(a;)je> f_m dwS (w) sinc® (%t>]

where S, (w) is the power spectrum of the noise source A(t). In the case of white noise where

the power spectrum equals some constant S;(w) = ¢, the decay is exponential fz(t) =
6wge)2
exp[ t( ” nc].

Hahn Echo Decay

A Hahn-Echo sequence is a powerful method for mitigating the effects of low frequency noise.

The sequence begins with the qubit evolving freely for a time t/2. During this interval, it
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accumulates a phase error §;. A m-pulse is then applied, which inverts the qubit state. This
pulse has the crucial effect of reversing the sign of the phase accumulated during the
subsequent free evolution period. The qubit then evolves for a second identical interval of
T/2, accumulating a second phase error §,. Due to the pulse, the total deterministic phase
cancels out, and the net stochastic phase, Q;otq; = 61 — 6,, is the difference between the
noise accumulated in the two intervals. Assuming the underlying frequency fluctuations
dw(t) constitute a Gaussian process, the net phase error @;,:q; is also a Gaussian random
variable with zero mean. The decay of the echo signal, fz(t), is determined by the ensemble

average of the final phase factor:

fE(t) = (ei(l’total) = e_%«ogotal) (77)

The variance ((pfotal) can be calculated by filtering the noise power spectral density S;(w)
through a function determined by the echo sequence. This gives the final expression for the

decay:

fo(t) = exp [_ ; (a;)iqe>2 jodwsa(w) sin? (%) sinc? (%)] (78]

This result shows how the Hahn-Echo sequence effectively cancels the influence of low-

frequency noise where w — 0. If the noise is white, we get again an exponential decay

2
function fz(t) = exp [—t (%) nc].

Magnetic Flux Noise Dephasing
Superconducting flux qubits are sensitive to low-frequency magnetic flux noise. This noise is
often characterized as "pink noise" or 1/f noise, meaning its power spectral density, S; (w) =

Aﬁ/w, is inversely proportional to frequency.

This noise couples to a qubit's transition frequency, wg,, causing it to fluctuate and leading to
dephasing. The impact of this noise depends critically on the experimental sequence used to
measure coherence. In a Ramsey experiment, a qubit's free evolution exposes it to the entire
noise spectrum. Due to its divergence at zero frequency, the effect of 1/f noise must be

integrated. The low-frequency cutoff is set by measurement time t, while the high-frequency
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cutoff, w,g, is arbitrary. The integrated effect of this noise is represented by the formula

In (L) which leads to a Gaussian decay:

wIRt
dw,,\ 1 (79)
—t2[ =22 | A2In ( )
daA wpt

For typical cutoff frequency w;g = 1 MHz and measurement time t = 1 second per point,

fr(t) = exp

1 .
In (m) equals approximately 3.7.

A Hahn-Echo sequence applies a m-pulse that refocuses the qubit's phase. This pulse sequence
acts as a high-pass filter, effectively canceling the slow phase drifts caused by low-frequency
noise. For 1/f noise, this completely removes the dependence on the arbitrary cutoff wig,

resulting in a cleaner decay form:

dwye)\ (80)
fo(t) = exp|—t? (=) A2In(2)
oA
For the case of flux qubit, described by the Hamiltonian in Equation 37, the frequency wgy, =

VA% + €2 depends on the energy bias €, which is controlled by the external magnetic flux. It

is through € that the 1/f flux noise affects the qubit.
The qubit's first-order sensitivity to this noise is given by the derivative d.wg, = e/wge

2 p_
(pwge = (ﬂ) %W). The corresponding decay rates, defined by f(¢) = e~"’, are:

h
2 (81)
[_6 _ € c | 1 ) rcD _ % o - CDO/Z A(D | 1
2R =~ Hfpr (IN ) 2R ——Agr [In
Wge wirt h Wge wRt
€ 21\ ® — /2
e =——Aon/n@ 5 1% =(52) — 2242/
ge ge

with A€ (A®) the power spectrum amplitude of the noise affecting € (®). By tuning of the
external flux so that € = 0, the sensitivity vanishes. This special operating point is known as
the flux sweet spot. At this point, the qubit becomes, to first order, immune to flux noise, and

the dephasing rates become zero.
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However, coherence is still limited. Even at the sweet spot, the qubit's energy has a non-zero

2
0°Wge
&2

curvature, given by the second derivative o = Az/wge (e)3. This means the qubit frequency

still has a residual sensitivity to noise, also when € vanish. In a previous work!'® an empirical
law for the second order flux noise was established, which, with respect to € and O, are given

by:

o2 144 % (82)

2
€ 2 . o,2) _ 144 A le
2 = 3 (Aqu) D e Oy
' 21 wg,(€) ' ' 21 wge (D)

2

o \2
7 (432)
Photon Noise

A common source of dephasing in circuit QED systems arises from the qubit's interaction with
photons in its coupled readout resonator. Even at millikelvin base temperatures, thermal
photons from warmer stages can contribute to this dephasing, disrupting the qubit's quantum
state. The thermal photon occupation follows Bose-Einstein statistics:

1 (83)

hw
eksT —1

Nep =
For a multi-stage dilution refrigerator, the total thermal population is:

ALt (w) = Z D (84)

T

where ar represents the attenuation factor from stage at temperature T. Thermal photons
arrive from both the input port used for control signals and the output measurement port,

where the amplifier chain operates at an effective temperature of approximately 10 K despite

cryogenic pre-amplification. Typical values range from ﬁfﬁt ~ 107 for well-filtered systems to

nLtot ~ 1072 for poorly isolated configurations.

The dispersive interaction between the qubit and the photon in its coupled readout resonator
is described by the interaction Hamiltonian H;,; = hyd, (ﬁ +§) Here, n = (&Tc’i) is the
average number of photons in the resonator and y = g?/A is the dispersive coupling strength.
This Hamiltonian means that the qubit's transition frequency, wge, is shifted by % for every

single photon present in the resonator. Consequently, any random fluctuations in the number

of photons, §n(t) = ata — (&T&), will act as a direct source of frequency noise for the qubit:
5wge (t) = 2xn(t) (85)
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The factor of 2 arises because the dispersive shift affects both qubit states with opposite signs,

doubling the frequency difference between them.

The number of photons in the resonator fluctuates because the resonator is coupled to an
environment, causing photons to randomly leak out at a rate k. For a resonator with an

average photon number 71, this process creates noise with a Lorentzian power spectrum?*?°;

n(n+1)
K2+w?'

Sai(w) = g This allows us to simplify the spectrum by taking its value at frequencies

. . i A(+1
much smaller than the resonator linewidth, where it is nearly constant: S;(w < k) = n(z;r ).

This flat spectral response in the relevant frequency range simplifies the analysis of dephasing
effects. For Hahn-Echo sequences, the dephasing can be calculated using the filter function

approach. The decay function becomes:

fe(t) = exp [_ﬁ<6wge>2 fdeﬁ(w « k) sin? <th) sinc’ <%t)] (8

2\ dn

Because dzwge = 2x and the photon noise spectrum is approximately flat over the relevant

frequency range; this integral evaluates to:

2
fe(t) = exp [—t%ﬁ(ﬁ +1) (87)

The resulting photon noise dephasing rate is:

_ 4y? 88
= 2+ 1) #3

The photon shot noise dephasing rate exhibits several important characteristics. The
dependence on (11 + 1) reflects the quantum nature of photon statistics, where both the
classical term 712 and the quantum correction 11 contribute to fluctuations. For large photon

numbers, the dephasing scales approximately as I";‘, o 2.

The inverse dependence on k indicates that broader resonator linewidths help suppress
photon shot noise by reducing the correlation time of photon number fluctuations. However,
this must be balanced against other considerations such as readout fidelity and Purcell decay

rates.

The quadratic dependence on the dispersive shift y = g2/A shows that stronger coupling

(larger g) or smaller detuning (smaller A) both increase susceptibility to photon noise. This
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creates a fundamental trade-off between the coupling strength needed for fast quantum

operations and the coherence degradation from photon fluctuations.

Charge Noise

Charge fluctuations couple to flux qubits through the charging energy of Josephson junctions.
While flux qubits are inherently less sensitive to charge noise than charge qubits, residual
coupling can contribute to dephasing, particularly when operating away from charge-

insensitive points.

The charge noise spectrum typically exhibits 1/f characteristics: Sy = % with amplitude

JAq = 1073 \/% for typical devices. The charge dephasing rate for a flux qubit is:

o = 2 ‘/A_Q(aaar)zl)m -

i=123 '
where n; represents the charge on the i-th superconducting island. The decay rate can be
estimated numerically by simulating the Hamiltonian of the qubit with different charge states

on each superconducting island.

2.8 Randomized Benchmarking

Quantum process tomography (QPT) requires computational resources that scale
exponentially with system size, making it impractical for larger quantum devices. Moreover,

estimating the fidelity of a gate requires to compensate for readout and preparation errors.

Randomized Benchmarking (RB) addresses this challenge by providing a scalable, statistically
robust method for characterizing average gate error rates without requiring precise
knowledge of state preparation and measurement (SPAM) errors?%122, Unlike traditional QPT,
which suffers from exponential scaling and sensitivity to SPAM errors, RB offers a practical
framework for evaluating gate performance that is directly relevant to quantum computing

applications.
2.8.1 The Clifford Group

RB circumvents these limitations by estimating average gate error rates through stochastic

sampling of random gate sequences. The protocol employs gates from the Clifford group, C,,,
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defined as the finite subgroup of unitary operators that preserve the Pauli group under

conjugation:

C,={UeuQ@"): UPU =P} (90)

where P; and P; represent Pauli operators'?3.

The n-qubit Clifford group possesses several properties that make it suitable for benchmarking
applications. First, it is generated by a small set of elementary gates, for example: the
Hadamard gate, phase gate, and controlled-NOT gate?3. Second, the group structure enables
efficient classical simulation according to the Gottesman-Knill theorem, facilitating the
computation of expected outcomes!?*. Most importantly for RB, random sampling over
Clifford operations effectively converts arbitrary noise channels into depolarizing channels
through the twirling property*?2. This transformation reduces complex, multi-parameter noise
models into a single-parameter depolarizing channel, enabling direct extraction of average

gate error rates from simple exponential decay fits.
2.8.2 Sequence Construction and Measurement Protocol

An RB sequence contains m+1 quantum operations:

1. Random gates: m gates (C;, C,, ..., C,,) selected uniformly at random from the Clifford

group.

2. Correction gate: C,,,; chosen to ensure the complete sequence implements the

identity operation in the absence of errors.

) Ha Ha | Ha Ha Cuet | Cm | Cusa |—|1)

Figure 19 — Randomized benchmarking sequence | The first m operations C; (orange) that are acting on the quantum state
[1) are chosen randomly from the Clifford set, while the last operation C,,.; (blue) is selected to ensure the entire sequence

is equal to the identity operator.

The correction gate is uniquely determined by the group property of Clifford operations:
Crs1 = (CpoCpgo.oC)T =Cloclo..oCh

In the ideal, error-free case, every RB sequence implements the identity: C,,,;71° Cp © ...

C; = L. Any deviation from identity behavior directly reflects the presence of errors.
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The measurement protocol exploits the fact that ideal RB sequences leave the input state
unchanged. We prepare an initial state p (typically |0){0|) and measure how likely we are to
recover this state after applying the RB sequence. For a specific sequence labeled by index set

im = {i3, 15 ... ;y}, the survival probability is!?>:

p, () = Tr[E,S, (p)] (91)
where §;  represent the noisy RB sequence and E, is the positive operator-valued measure

element for detecting the initial state .

In realistic implementations, each gate suffers from imperfections. We model each noisy gate

as the composition of an ideal Clifford operation Cl-j followed by an error channel Aij,j. The

complete noisy RB sequence becomes:

Sim = Aim+1,m+1 o C o Aim,m o Cim o ..0 Ai1,1 o Cil (92)

Im+1

The error Aij,j can depend on which specific gate i; is applied and on the position j in the

sequence. Moreover, typically the noise is considered Markovian, that is each error is

independent of previous operations.

Because each random sequence gives a different survival probability, we must average over
many sequences to extract meaningful information. For sequences of fixed length m, we

define:

() = _ 1 (93)
Pn ) = 1 Zpimw) =1 ZTr[Eq,sim(p)]

To make analytical progress, we assume that gate errors are approximately independent of

both the specific gate and its position in the sequence /\l-].,j = A. This approximation is valid

when all gates suffer from similar dominant noise sources, gate-to-gate variations are small
compared to the average error, and systematic drifts over sequence duration are negligible.

Under this approximation, we can evaluate the average sequence operator analytically.

The average sequence operator S,, = Iil_IZim S, can be written explicitly as:
" (94)

S =A ! ZCT AoC
m |C,l

CeCp
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The expression in brackets is the twirling of channel A over the Clifford group A; =
1

= |ZCECn CT o Ao C.Forany quantum channel A, averaging over random Clifford gates makes

it look like a depolarizing channel that changes quantum states toward the maximally mixed
- . . 1-

state. Hence, the twirling of a single channel is given by A7 (p) = pp + Tp, whered = 2" and

p represents the depolarizing parameter. Composition of m consecutive twirls results with

AN =p™Mp + % and the average sequence fidelity becomes:
F(m,y) =Tr (wam(p)) = Aogp™ + By (95)
where Ay = Tr [E¢A (p - é)] and By =Tr [E¢A (é)] account for the SPAM errors.

The average error rate over the entire Clifford set, defined as the average error per twirl, is

related to the depolarizing parameter p through:

_ 1-py_(@d-1DA-p) (96)
r_l_(“ d )‘ d
F(1,9)

As Clifford gates are composed of multiple primitive gates, we must account for the average
gate count. Using our generating set {I, X, Xom, YV, YJ_r,T} with average length 1.875
-2 -2

primitive gates, the error rate per gate isr; = r/1.875.

The complete set of Clifford operators used in our implementation is provided in Appendix

7.1.
2.8.3 Interleaved Randomized Benchmarking

Standard RB provides error rates averaged over the entire Clifford group, but quantum
computing applications require characterization of specific gate implementations. Interleaved
RB (IRB) addresses this need by enabling targeted assessment of individual gates within the

Clifford group through a comparative measurement protocol'?®.

The IRB protocol consists of two distinct measurement phases. First, standard RB is performed
on random sequences of Clifford gates to establish a reference baseline, yielding the
composite depolarizing parameter p,.r for the entire gate set. Second, sequences are
constructed by systematically interleaving a specific target gate C of interest between

uniformly random Clifford elements.
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For a sequence of length m, the interleaved protocol applies the pattern: C;C —
C,C—...—Cp,C — Cpy1, where each C; represents a uniformly random Clifford operation, C is
the target gate, and C,,,4; is the correction gate ensuring the complete sequence implements
the identity operation. This construction results in m applications of the target gate

interspersed with m random Clifford gates as illustrated in Figure 20.

vy 4 & | He & | @ Cn 1 C | HCuss |—|1)

Figure 20 — Interleaved randomized benchmarking sequence | The gate of interest C (pink) is interleaved between m random
Clifford operations C; (orange). The final operation Cy,; (blue) is chosen such the entire sequence do not change the quantum
state ).

The key insight underlying IRB is that the interleaved sequences probe the combined error of
random Clifford operations and the specific target gate. If we denote the error channel
associated with the target gate as €, and the average error channel for random Clifford
operation as €44, then the interleaved sequence experiences the composite error process.
The interleaved sequence fidelity follows the same decay as the standard sequence. Thus,
using Equation 95 the composite depolarizing parameter for sequences containing the target

gate p. can be extracted.

The derivation of the specific gate error rate relies on the relationship between the composite
and reference depolarizing parameters. The depolarizing parameter for a sequence containing
both random Clifford operations and the target gate can be expressed as p¢ = ppgate, Where
Pgate is the depolarizing parameter associated specifically with the target gate C. This
multiplicative relationship arises because each gate in the sequence contributes

independently to the overall depolarization under the twirling approximation. The average

. . d—-1)(1- . .
gate error rate for random Clifford operation is 1y..r = #. Similarly, the composite
. . _ (d-1-pc) e
error rate for interleaved sequences is r; = — The specific gate error rate can then

be isolated by recognizing that pc = ppgate, Which gives pgqre = D¢ /p- Substituting this into

the error rate formula (Equation 96) yields:

d-1 p (97)
=428
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This expression directly relates the specific gate error to the experimentally measured
depolarizing parameters from both standard and interleaved RB measurements. The bound

for Equation 97 are given by 74 T E, with'2:

d—1 Pc (98)
[l -+
E = min
2[d?> -1
5 7 +2/1—pJd*—1

2.9 Coupling Flux Qubit To Mechanical Resonator

The coupling of the flux qubit to the mechanical resonator is based on the same interaction

Hamiltonian described in the section Coupling to Artificial Atoms which takes the form:

A o
homb'h + 158, + hgmo(b +b?) (99)

with w,, the mechanical frequency, bt, b the creation and annihilation operators. A is the

energy splitting of the flux qubit, 4; are the Pauli operators. g,, is the coupling strength. The

flux dependency of the qubit’s energy is through € = % (G) - %), where [, is the persistent

current and @ the magnetic flux threading the loop of the qubit. Thus, the coupling can be

expressed in equivalence to the magnetic coupling derived in the Quantum Optomechanics
and Electromechanics section as g, = g—;d)zpF. @pr is the magnetic flux fluctuation induced
in the flux qubit due to the mechanical motion of the resonator.

For a parallel magnetic field B} acting on a flux qubit with a vibrating beam of length L as an
arm Ozpr = yB|Lxzpp, where y~0.5is a scaling factor that depends on the mechanical mode

21

shape. Hence, the coupling is g,, = prB"LxZPF ~ 217 kHz for typical parameters of I, =
300 nA, By = 100G, L = 800 nm and xzpr = 60 fm.

To couple the motion of a vibrating membrane to the flux qubit, one arm of the qubit’s loop
can be positioned along the center line of the membrane. In that case, the coupling has the

21
same form g,,/B; = pr(ZR)prF as in the case of vibrating beam. For a silicon membrane

of R = 1 um and xzpr = 2.5 fm, the coupling to the fundamental vibration mode is g,,, = 36

kHz, with B, = 100 G and y,; = 0.5269.
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Type Material Size Frequency Q XzpF g
Beam Diamond L =800 nm f = 1.013 GHz Q = 30,088 | 60fm 21.7 MHz/T
Membrane Silicon R = 1000 nm for = 384 MHz Q.= 3000 | 2.5fm 3.58 MHz/T

3.Sample Design And Fabrication

3.1 Mechanical Resonators Fabrication

The successful realization of the proposed architecture in this thesis relies on the development
of high-quality mechanical resonators. This section outlines the fabrication techniques
established to produce two such devices: diamond nano-beams and silicon membranes. We

will detail the multi-step processes engineered for each material system.
3.1.1 Nano-Beam Fabrication

To overcome the limitations of fabricating devices from single-crystal diamond, we
collaborated with the Finkler Lab at the Weizmann Institute of Science (WIS) to employ an
angled-etching technique that uses anisotropic, oxygen-based plasma'?’. This method utilizes
a custom-designed Faraday cage to direct plasma ions toward the substrate at specific angles.
This allows for the fabrication of suspended structures with triangular cross-sections directly

from a bulk diamond substrate, as shown in Figure 21.

Figure 21 — Nano-beam fabrication using the angled-etching technique | (a) Schematic of the 20 nm thick Ti hard mask used
to define the etch area. (b) Illlustration of the angular RIE process that undercuts the mask to form the suspended beam. (c)
Tilted-view (20°) scanning electron micrograph (SEM) of a fabricated nano-beam with length L = 2.9 um and widthw = 125

nm. (d) Cross-sectional SEM showing triangular geometry; dark regions represent diamond; bright regions show conductive
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Ti coating for imaging. Inset shows geometric approximation of triangular cross-section. Panel (b) is adapted from reference
127.

The fabrication sequence begins at WIS with rigorous surface preparation of the diamond
substrate, which includes ultrasonic cleaning in acetone followed by a heated tri-acid solution
(NHO3:H2S04:HCIO4) to ensure optimal surface conditions. Next, alignment marks are
patterned using photolithography, followed by the deposition of a 30 nm titanium (Ti) layer

and liftoff in acetone. Next, the sample is delivered to our laboratory.

The nano-beam geometry is then defined using electron-beam lithography in a PMMA resist.
The final beam’s length (L) and width (w) are set by the dimensions of, and distance between,
pairs of rectangles patterned in the resist. Following development of the resist, a 20 nm Ti

layer is deposited at WIS to act as a durable hard mask for the subsequent etching steps.

The diamond is etched in a two-stage process. First, a vertical reactive-ion etch (RIE) using
oxygen (0z) and chlorine (Cl;) plasma transfers the hard mask pattern into the diamond
substrate. Second, a tent-assisted angular etch with 0;:Cl; plasma undercuts the structures,
releasing the free-standing nano-beams, as illustrated in Figure 21b. Finally, the Ti mask is

stripped, and the diamond is cleaned in a piranha solution to complete the process.
The key parameters for each step of the fabrication process are summarized in Table 3.

Table 3 — Fabrication steps of diamond nano-beams.

Process Description

Surface Preparation WIS

Solvents cleaning

Acetone ultrasonic bath

Acid cleaning

NHO3:H2S04:HCIO4 (1:1:1) at 180° C

Alignment Mark Formation

WIS

Spin coating

$1805: 4000 rpm, 40 s; bake 110° C, 1 min

UV lithography

70 mJ cm™2 (MicroWriter ML®3)

Development

MF319 developer, 40 s

Metal deposition

Ti layer, 30 nm (Odem Selene)

Liftoff Acetone
Nano-beam Pattern Definition BIU
Spin coating PMMA 950A3: 4000 rpm, 60 s; bake 180° C, 5 min

E-beam lithography

50KeV, 30 pA; dose 500 11.C cm? (Crestec-CABL)

Development

MIBK:IPA (1:3), 45 s

WIS
Metal deposition Ti hard mask, 20 nm (Odem Selene)
Liftoff Acetone
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Diamond Etching WIS
Vertical etching 0,:Cl; (50:2 sccm), 10 mbar, 700 W ICP
Angular etching 02:Cl; (50:2 sccm), 10 mbar, 1000 W ICP
Final cleaning WIS
Acid cleaning Piranha solution (H2S04:H,0, 3:1)

This fabrication process yields free-standing diamond nano-beams. Figure 21c shows a
scanning electron micrograph (SEM) of an exemplary beam with a length L = 2.9 um and
width w = 125 nm. An SEM micrograph of a beam's triangular cross-section is shown in Figure

21d.
3.1.2 Silicon Membrane Fabrication

For the fabrication of silicon (Si) membranes, we developed a technique that uses a silicon
oxide (SiO,) sacrificial layer on a silicon-on-insulator (SOI) wafer. The core concept is to create
a nano-scale hole in the top Si device layer and then use an isotropic wet etch to remove the
buried oxide layer. This process defines a fully clamped circular membrane whose radius is

determined by the etching time.

The fabrication process, illustrated schematically in Figure 22, begins with a piranha cleaning
of a SOl wafer, which consists of a 220 nm Si device layer, a 3 um buried oxide layer, and a 130

um Si base layer.

(a) Sample preparation (C) Dry etch
CSAR (AR-P 6200.09) 200 nmn CSAR

Al 70 mn Al

St 220 nm Si

Si0, - 3 Si0, 3

Si— 130 pm Si— 130 pm
(b) E-Beam lithography (d) Wet etch and cleaning
CSAR

Al 70 mn

Si - 220 nm Si

Si0, 3 pm Si0,

Si— 130 pm Si— 130 pm

Figure 22 — Schematic of the Si membrane fabrication process.

A 70 nm Al layer is evaporated onto the top device layer to serve as a conductive layer for the

e-beam lithography and a hard mask for the Si etching. The etching holes are patterned using
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electron-beam lithography in a CSAR resist. The pattern is then transferred into the top Al
layer via reactive-ion etching (RIE) with BCls. After the pattern transfer, the CSAR resist is
removed by Oz plasma ashing. With the Al acting as a hard mask, the pattern is etched through
the Si device layer using RIE with SFs. In the final step, the wafer is submerged in hydrofluoric
(HF 48%) acid, which selectively removes the buried SiO, layer through the etched hole,

leaving a suspended, circular Si membrane as shown in Figure 23.

330 nm 476 nm

0 nm

Figure 23 — Atomic force microscope (AFM) scans of fabricated Si membranes | The images show topography of two different
circular membranes, with the blue dashed lines indicating the membrane edges at a radius of 1.65 um. The central holes used
for etching are marked with pink dashed lines. (a) A membrane fabricated with a 290 nm diameter etch hole. (b) A membrane
fabricated with a 360 nm diameter etch hole. A height difference of 1 nm is visible in the regions where the buried oxide was

etched.

The key parameters for each fabrication step are summarized in Table 5.

Table 4 — Etching Rates.

Material Etch Process Etch Rate [nm/s]
Si RIE, SFe 1.5-2.5
Al RIE, BCl3 1.15-1.3
SiO, HF 48% 1.3-1.5

Table 5 — fabrication steps of Si membranes.

Process Description

Surface Preparation
Solvents cleaning Acetone ultrasonic bath
Acid cleaning NHO3:H,S04:HCIO4 (1:1:1) at 180° C
Metal deposition
Backside Sputtering Al, 350 nm (Intelvac Nano Quest)
Topside e-beam Al, 70 nm (Plassys MEB 5508S)
evaporation
Holes Pattern Definition
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Spin coating CSAR (AR-P 6200.09): 4500 rpm, 60 s; bake 100° C, 5
min
E-beam lithography 50KeV, 30 pA; dose 500 11.C cm™ (Crestec-CABL)
Development MIBK:IPA (1:3), 45 s
Al etching RIE: BCls (Versaline SLR 770)
Resist removal O3 plasma ashing, 10 min
Si etching RIE: SFe (20 sccm), 20W (Versaline SLR 770)
SiO; etching HF 48%
Final cleaning
Acid cleaning Piranha solution (H2S04:H,0, 3:1)

3.2 Superconducting Resonators Fabrication

The hybrid quantum systems explored in this thesis require the integration of mechanical
elements with high-coherence superconducting circuits. This section outlines the fabrication
techniques developed to produce two such circuits: 1/2 coplanar resonators on diamond, and

Bragg resonators on silicon.
3.2.1 A/2 Coplanar Resonators on Diamond

This section describes the design and fabrication of standard capacitively-terminated A/2
coplanar waveguide resonators on diamond substrates. An example of such a resonator is
shown in Figure 24. We pursued two primary objectives with these resonators: determining
the relative permittivity and measuring the loss tangent of the diamond substrates.

/

g
Coupling
capacitor

Coplanar
waveguide b/

".éaupﬁng
capacitor

Figure 24 — 1/2 coplanar waveguide resonator | Optical micrograph of a resonator fabricated from 150 nm niobium film on
diamond substrate. The serpentine geometry achieves the target length for w, = 7.5 GHz resonance, with interdigitated

coupling capacitors (C, = 0.9 fF, Q. = 1.75 X 10°) providing controlled coupling to the 50 ( feedline.

The resonator is designed as a coplanar waveguide (CPW) consisting of a central conductor of
length [ = 10.875 mm and width w = 21 um placed between two ground planes separated

by distance h = 4 um from the central conductor. The resonance frequency of the resonator
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is given by f, = %vph, where v, = —— is the phase velocity with ¢ the speed of light in

+/ Eeff

1 . . . . . .
ter is the effective dielectric constant. The dielectric constant of the

2

vacuum and €. =

diamond substrate is €,, = 5.7.

For electromagnetic waves, the phase velocity v,, = 1/V.LC also relates to the capacitance

C and inductance £ per unit length'?®, The impedance of the CPW is given by Z, = \/L/C.

The capacitance is given by C = 4€p€.5f % For superconducting films, the total inductance
0

L = L, + Ly has contributions from both geometric L, and kinetic £, inductances. The value

. . K(k§ . T
of the geometricinductance is given by L, = % KEk‘)g, where K is the complete elliptic integral
0

of the first kind, k, = ﬁ, and kcl, =41- kg. The geometric inductance is related to the

ARs , with A and kg

sheet resistance R, of the superconducting film via the relation £;, = TrenkoT.
. Blc

the reduced Planks’ and Boltzmann’s constants and T, the superconducting critical
temperature of the film. The parameters of our superconducting layers and the result CPW

resonators are shown in Table 6.

Table 6 — Design parameters of the CPW resonators.

Thickness T,

Al 150 nm 1.9K 0.19 Q/sq. 6.74nH/m | 50.73Q | 7.449 GHz 0.9 pF 1.75 % 10°

Nb 150 nm 8.7K 1.00 Q/sq. 7.65nH/m | 50.81Q | 7.438 GHz 0.9 pF 1.75 x 10°

The total quality factor Q7% = Qfl + Q-1 is determined by internal losses (Q;) and coupling

to the drive line (Q.). The coupling quality factor is controlled by the coupling capacitors C,,

. _ 4 . . . . .
with Q-1 = - (Zyw,C.)? for two identical capacitors. The internal quality factor relates to the

Eeff
Eeff+1

substrate loss tangent through Q[l = ptand, where p = is the participation ratio. In

the regime Q. > Q;, the total quality factor is governed by internal losses: Q; = Q;.

The VNA transmission signal for a microwave resonator with two identical ports, given by

&)2 1
Qc 1+4Qg(w)2

wr

input-output  theory!?®, follows |521|2=( with  phase 4£8,; =

— arctan (ZQT w;wr).

r
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For this experiment, we used two types of diamond substrates from Element Six. The

properties of both samples are summarized in Table 7.

Table 7 — Properties of Diamond Samples.

. . . Surface
Sample Supplier Dimensions [mm)] T
A Element Six 6.4x6.3x0.5 Single crystal Ra<1lnm N<1ppm
(SCLA_0062) ' ' ' large area PP
B . Single crystal N<1ppm
(SCOP_1460) Element Six 6.0x6.0x0.5 optical grade (l1A) Ra<1lnm B < 0.05 ppm

The fabrication process begins with rigorous surface cleaning through immersion in boiling
(180° C) triacid solution (H2S04:HNO3;HCIO4, 1:1:1) using an air-cooled condenser (Radleys
Findenser) with silica ball filter to maintain reflux, as shown in Figure 25a. This enables 24-
hour cleaning cycles that result with pristine surface as presented in Figure 25b and Figure

25c.

[18 nm

= (70 pm

0 nm
G nm

0 nm

Figure 25 — Surface preparation and characterization | (a) Custom triacid cleaning setup with reflux condenser and silica ball
filter enabling extended 24-hour cleaning cycles at 180°C. AFM topography images showing surface quality after cleaning for

(b) Sample A and (c) Sample B, both achieving Ra < 1 nm roughness.

Following cleaning, samples are rinsed with deionized water, dried with nitrogen, and baked
at 180°C to promote outgassing before transfer to the e-beam evaporator load chamber.
Samples remain in the evaporator chamber overnight until reaching 107 mbar vacuum. To
achieve 108 mbar, titanium is first evaporated as a gettering material for two minutes while
the sample surface is protected with a mechanical shutter. The superconducting metal (Nb or

Al) is then deposited onto the clean diamond surface. Device patterns are subsequently
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defined using direct laser lithography in photoresist, followed by pattern transfer through

etching.

For aluminum resonators, we employ AZ1505 photoresist for lithography and transfer the
pattern through wet etching with type-A Al-etchant followed by brief AZ726 immersion. The
niobium fabrication process is more complex, utilizing AZ1512 photoresist and a multi-step
etching approach. The first step involves reactive ion etching with BCls-Cl; gas, monitored by
laser interferometry to prevent diamond damage. The etching is stopped before the Nb layer
is completely etched and the remaining thin Nb layer is then removed using triacid for 10
minutes after bubble formation. This approach achieves complete removal of thin etched
regions while preserving thick patterned areas, as demonstrated in Figure 26a. Finally,
samples are mounted on custom printed circuit boards and connected via wire bonding.

Summary of the fabrication steps is given in Table 8.

155 nm 11 nm

0.5 um
MR

0 nm 0 nm

Figure 26 — Etching process outcomes and substrate reuse challenges | (a) AFM micrograph showing clean Nb step profile
(150 nm height) achieved through combined RIE and triacid etching, demonstrating selective material removal without
diamond substrate damage. (b) Qubit pattern (dark features) etched in the diamond surface, most likely due to oxygen plasma

ashing. Inset: Height profile along the white line with 4 nm negative step.

Due to the high cost of diamond substrates, extensive reuse was necessary. We observed
persistent device patterns on diamond surfaces even after comprehensive cleaning including
triacid treatment, piranha solution, organic solvent sonication, and oxygen plasma ashing.
Under AFM, as shown in Figure 26b, we detected that pattern is etched into the diamond. We
attribute the etching of the diamond to the oxygen plasma ashing conducted through the

qubit mask, as described later.

Table 8 — Fabrication steps of superconducting CPW resonators.

Process Description
Surface Preparation

Page | 66



Solvents cleaning Acetone ultrasonic bath

Acid cleaning NHO3:H2S04:HCIO4(1:1:1) at 180° C
Al Resonator Formation
Metal deposition Al layer, 150 nm at 0.5 nm s (Plassys MEB 5508S)

Bake: 180°C for 10 min
Plasma ashing: O2N3, 5min

Adhesion promotion

Spin coating AZ1505 photoresist: 5000 rpm, 60 s; bake 80° C, 5 min
UV lithography MLA150: dose =23 mJcm™2, 4 = 405 nm
Development AZ726 developer: 45s; hard bake 120°C for 5min

Al etchant type A: 10min
AZ726 developer: 1min

Metal etching

Nb Resonator Formation

Metal deposition Nb layer, 150 nm at 0.3 nm s~ (Plassys MEB 5508S)
Spin coating AZ1512 photoresist: 5000 rpm, 60 s; bake 100° C, 45 s
UV lithography MLA150: dose =40 mJcm™2, 1 = 405 nm
Development AZ726 developer: 45s; hard bake 120°C for 5min

RIE: BCls-Cl; (Versaline SLR 770)
NHO3:H2S04:HClO4(1:1:1): 180° C, 10 min

Metal etching

Final cleaning
Solvents cleaning NMP: 80° C, Overnight

Figure 27 shows resonator characterization employed by vector network analyzer (VNA)
transmission measurements. The aluminum resonator on Sample A showed measured
resonance frequency f,, = 7.480 GHz and total quality factor Q, = 4.21 X 10°. The total
quality factor is larger than the intended coupling quality factor, which indicates we had a

design error, hindering the calculation of the internal quality factor. Accordingly, we can only

- 1 _
put an upper limit on the loss tangent tan§ < — = 2.38 X 10"%. The measurement was
t

obtained with average number of photons inside the resonator n = 20.
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Figure 27 — VNA transmission characterization of 3 CPW resonators | (a) Aluminum resonator on Sample A showing f, =

7.480 GHz with Q, = 4.21 X 10°, yielding tan § < 2.38 x 107° for the diamond substrate. (b) Niobium resonator on Sample

B demonstrating f, = 7.395 GHz with Q. = 9.71 x 10°, corresponding to tan § < 1.03 x 107>,

The niobium resonator on Sample B demonstrated measured resonance frequency f, = 7.395
GHz and total quality factor Q; = 9.71 X 10*. The upper bound on the loss tangent is tan § <

1.15 X 10™°.

Table 9 — Superconducting resonators results summary

Sample  f, |f, = f5'™ Q. tan &
A | 7480 | 31MHz 421x10° | 2.38x10°
B | 7395 | 43 MHz 9.71x10* | 1.03x10°

The aluminum resonator on the higher-grade substrate (Sample A) demonstrated superior
performance with higher internal quality factor and lower loss tangent. This high internal
quality factor ensures minimal additional losses from the readout resonator. While niobium
fabrication is more complex, it offers advantages including enhanced SEM visibility for
alignment mark location in subsequent qubit fabrication, resistance to piranha solution
cleaning enabling device recovery from fabrication failures, and higher critical temperature
reducing quasiparticle density. Aluminum provides simpler fabrication and stable native oxide
protection, but devices are removed during piranha cleaning required for fabrication error
recovery. Additionally, niobium oxidation is less uniform and stable, potentially degrading
long-term performance compared to aluminum's superior electrical performance on high-

grade substrates.
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3.2.2 2/1 Resonator on Silicon

This section presents the design and fabrication of quarter-wave resonators implemented on
silicon substrates. The resonator architecture, outlined in the Methodology chapter,
comprises a 50-Q transmission line with a Bragg reflector termination on one end and a
ground short on the other, as illustrated in Figure 28. These devices serve dual purposes in
our experimental setup: providing selective noise attenuation within a frequency band
surrounding the qubit transition while maintaining transmission for control and readout

signals, and enabling DC current injection for magnetic flux bias control of the qubit.

6

\\( ) )

N AN WH AN N NN 8 N N N N 0 0 R R A

Figure 28 — Layout design of gl Bragg resonator on silicon substrate | The 50 Q transmission line (center) terminates in a

four-period impedance-alternating Bragg reflector (Z, = 35 2, Z, = 80 2) creating a stopband filter, while the opposite end

connects to ground. The geometry enables both noise filtering around the qubit frequency and DC flux bias injection.

The substrate material consists of intrinsic silicon wafers with native oxide layers sourced from
Virginia Semiconductors, featuring phosphorus impurity density less than 10*? cm3. Each
wafer is segmented into 23 mm x 23 mm square sections, with individual sections containing

14 device sites measuring 3 mm x 10 mm, each hosting a single Bragg resonator structure.

Our design parameters target a transmission line length L = 8.044 mm, establishing a bare
resonance frequency % ~ 11.09 GHz. Here, we assume €; = 11.7 for our silicon substrates.

The width of the central line and the distance between the central line and the ground please

were 10 and 5 um respectively, yielding a characteristic impedance Z, = 50 Q.

The Bragg reflector incorporates m = 4 impedance doublets with alternating characteristic
impedances of Z; = 35 Qand Z, = 80 Q. The low (high) impedance was achieved with center
line width of 46 (8) um and distance to the ground plane of 7 (26) um. This impedance contrast

yields a reflection coefficient magnitude |rinterface|z0.4 and power reflectivity
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|rinterface|2 ~ 15% at each interface. Each impedance section extends Lz = 3.44 cm in
length. Electromagnetic simulations assuming lossless conditions predict the filter response
shown in Figure 29, revealing a stopband centered at 8.58 GHz with nearly complete reflection
|r5]? = 99%. At the design frequency of 11.09 GHz, the Bragg structure exhibits transmission
|ts]? ~ 19% with phase 21y ~ 85°. Linear fitting of the phase response near the filter center

frequency yields an expected enhancement factor y = 1.52.
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Figure 29 — Simulated response of Bragg resonator | m =4, Z; = 350, Z, = 80 .

The complete resonator phase response, depicted in Figure 30a, clearly demonstrates the

modified phase velocity within the stopband region. The Bragg-modified resonance appears
as a sharp phase discontinuity at% = 10.19 GHz, with corresponding decay rate k, = 82 MHz

and quality factor Q. = 780. Current fluctuation simulations predict maximum values

reaching §; = 30 nA, as shown in Figure 30b.
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Figure 30 — Simulation of Bragg resonator | (a) Phase response of the reflected signal. (b) Current and voltage fluctuations.

Sample preparation follows a comprehensive surface treatment protocol to ensure optimal
conditions for superconducting film adhesion. The process begins with sequential organic
solvent cleaning using acetone and isopropyl alcohol to remove surface contaminants and
particles. Subsequently, samples undergo aggressive chemical treatment in piranha solution
(sulfuric acid and hydrogen peroxide mixture) at 120°C for 15 minutes, effectively eliminating
residual organic compounds and metallic impurities. After thorough deionized water rinsing,
samples are soaked in isopropyl alcohol, nitrogen-dried, and immediately loaded into the
electron-beam evaporation system vacuum chamber. The subsequent metal deposition and
photolithographic patterning procedures mirror those established for aluminum devices on

diamond substrates, as depicted in the fabrication flow diagram of Figure 31.

Sample preparation Wet etch
AZ1505 - 500nm AZ1505
Al—150nm Al
Si Si
UV lithography Cleaning
AZ1505
Al Al
Si Si

Figure 31 — Fabrication steps of superconducting aluminum devices.
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Experimental characterization utilized vector network analyzer reflection measurements, with
results presented in Figure 32. The measured resonance frequency was % = 10.162 GHz,
necessitating a correction to our estimated permittivity value to €; = 11.896. This
corresponds to an in-resonator light speed of ¢ = 118,060,115 m-s™". The experimental decay

rate k. = 6.24 MHz yielded a quality factor Q. = 10%.
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Figure 32 — VNA reflection measurement of the Bragg resonator.

The successful implementation of these Bragg resonators on silicon substrates provides the
necessary filtering characteristics for qubit protection while maintaining the required
transmission properties for control signal delivery. The close correspondence between
simulated and experimental parameters validates our design methodology and fabrication

approach, establishing a reliable platform for integration with subsequent qubit devices.

3.3 Flux Qubit Fabrication

Superconducting flux qubits constitute the central elements of this thesis work. This section
details the design methodology and fabrication protocols for gradiometer flux qubits

implemented on both diamond and silicon substrates.
3.3.1 Josephson Junction Fabrication

The fundamental building block for superconducting qubit devices is the Josephson junction.
Our approach employs a geometric design colloquially termed the "telephone" junction,
named for its distinctive layout pattern visible in Figure 31. This configuration enables the

simultaneous fabrication of two junctions with independently controlled dimensions within a
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single device structure. The design incorporates a primary junction characterized by width w;,
and height h,,, alongside a smaller secondary junction with reduced dimensions w, and h,,

providing the asymmetric junction ratio essential for flux qubit operation.

W, Wn

—_— — —_— —

ha | oy, | e
| /
| % |

\

A

Figure 33 — Schematic layout of the "telephone" Josephson junction design | The characteristic geometry enables fabrication
of asymmetric junction pairs. The design yields a primary junction (width wy,, height h,,) and a smaller a-junction (width w,,
height hy) within a single shadow mask pattern. The telephone shape derives from the distinctive connection geometry

required for independent electrical access to both junctions.

Junction fabrication relies on a bilayer aluminum structure consisting of a thin initial layer (20
nm) that undergoes controlled oxidation, followed by deposition of a thicker capping layer (30
nm). The process utilizes the established Dolan shadow evaporation technique, wherein the
first aluminum layer is deposited through a suspended mask onto the bare substrate.
Following in-situ oxidation to form the tunnel barrier, the second aluminum layer is deposited
at a predetermined angle 6 relative to the substrate normal, creating an overlap region where
the two layers intersect to form the active junction area. The effective junction area follows
A = w(h + 2t), where t represents the thickness of the initial superconducting layer. For any
given oxidation protocol, this junction area directly determines the characteristic Josephson

energy E; and charging energy E. parameters.

The fabrication sequence begins with formation of a suspended bridge structure using a
trilayer resist stack comprising high-sensitivity electron beam resist (MAA EL7), an
intermediate metallic masking layer (60 nm germanium), and low-sensitivity top resist (CSAR),
as illustrated in Figure 32. The complete stack undergoes electron beam exposure followed by
development of the top resist layer. Reactive ion etching transfers the pattern into the
germanium mask, after which a second development step and plasma ashing sequence

creates the required undercut profile in the trilayer stack.
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Figure 34 — Trilayer technique for double-angle shadow evaporation fabrication sequence for Josephson junctions.

The prepared sample is then loaded into an electron beam evaporator where the first
aluminum layer is deposited at normal incidence while maintaining the substrate at -44°C. The
suspended bridge structure casts a shadow onto the substrate, defining the junction region.
Without breaking vacuum, controlled oxidation proceeds to form the insulating aluminum
oxide barrier on exposed metal surfaces. The oxidation process begins at -10° C and concludes
at 4° C under 0.019 mbar oxygen pressure. Subsequently, the second aluminum layer is
deposited at an elevated substrate temperature of 9° C and at angle 8 relative to the surface
normal, creating the overlap region that constitutes the tunnel junction. Final static oxidation
at 10 mbar for 10 minutes forms a protective oxide layer over the entire device structure.
Following evaporation completion, the resist mask is dissolved using heated N-methyl-2-
pyrrolidone (NMP). Additional e-Beam lithography process is used to define a rectangular
patch that overlaps both qubit and central line of the resonator. Argon ion milling through the
patch ensures good surface contact before aluminum is evaporated to create galvanic contact
between the qubits and the resonator. Final cleaning is done by soaking the sample in NMP
overnight. The completed device is mounted on a dedicated printed circuit board with wire-

bond connections. Summary of the fabrication process steps is given in Table 9.

Table 10 — Complete fabrication protocol for Josephson junctions.

Process Description

Tri-Layer Formation

MAA EL7: 2000 rpm, 60 s; bake 180° C for 1 min
MAA EL7: 2000 rpm, 60 s; bake 180° C for 10 min

Spin coating

Page | 74



Metal deposition

Ge layer: 60 nm at 0.3 nm s~ (Plassys MEB 550S)

Spin coating

CSAR (AR-P 6200.09): 4500 rpm, 60 s; bake 100° C, 5 min

Junctions Formation

E-beam lithography

Elionix ELS Boden 100: dose = 1300 uC cm?, 1 =1 nA

Development

MIBK:IPA (1:3), 5 min

Metal Etching

RIE: SF6 20 sccm, Py =20 W, laser interferometer calibration
(Versaline SLR 770)

Development

MIBK:IPA (1:3), 90 s

Plasma ashing

02+Ny, 3.5 min

Metal deposition

First Al layer: 20 nm of Alat 0.3 nm s, T =-44° C, 6=0°

Dynamic oxidation: Tstart = =10° C, Tend = 4° C, P = 0.019 mbar

Second Al layer: 30 nm of Alat 0.3 nm s, T=9°C, 6+#0°

Static oxidation: 10 min, P = 10 mbar

Cleaning
Solvents cleaning NMP: 80° C, Overnight
Re-contact
. ) MAA EL7: 2000 rpm, 60 s; bake 120° C for 4 min
Spin coating

PMMA 950A3: 6000 rpm, 60 s; bake 120° C for 4 min

E-beam lithography

Elionix ELS Boden 100: dose = 1000 uC cm™, | = 10 nA

Development

MIBK:IPA (1:3), 1 min

lon-milling Plassys MEB 550S: P<10°® mbar, Ar 20 sccm, 500 V, 17.5 mA
Metal deposition Plassys MEB 550S: Al 170 nm, 0.5 nm s™*
Cleaning

Solvents cleaning

NMP: 80° C, Overnight

3.3.2 Josephson Junctions Characterization

Junction characterization required dedicated test structures featuring junctions of varying
dimensions. Normal-state resistance measurements using four-probe techniques enabled
extraction of the resistance-area product, providing the design parameter necessary for
achieving specific normal resistance values. Through the Ambegaokar-Baratoff relationship
detailed in the methodology chapter, normal resistance directly correlates with critical

current, enabling precise control of qubit parameters through accurate junction dimension

control.

Test structures were implemented on both substrate types to establish fabrication
parameters. The diamond test array contained six distinct junction geometries with twenty
repetitions of each design distributed across the chip area to average spatial fabrication
variations. Each site contained a single junction element, yielding 120 total junctions per chip.

Figure 33 presents the measured resistance plotted against inverse junction area,

demonstrating the expected linear relationship.
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Figure 35 — Josephson junction characterization and substrate comparison | (a) Normal-state resistance versus inverse
junction area demonstrating the predicted linear relationship. Dataset D1 (diamond, immediate): Rﬁ'D =27.214+058
Q-um? Dataset D2 (diamond, 24-day aging): Rﬁ'D = 27.52 + 0.58 Q-um? Dataset S1 (silicon, immediate): Rﬁ'Si =19.77 +

0.12 Q-um? AFM topography of completed junctions on (b) diamond and (c) silicon substrates.

Initial measurements immediately following fabrication yielded R,‘f'D = 27.21+ 0.58 Q-uym?
for diamond substrates. To assess temporal stability, devices were stored under ambient
laboratory conditions and re-measured after 24 days, producing R,‘;"D = 27.52 + 0.58 Q-um?2.
While individual junction resistances increased by approximately 9 Q, the resistance-area
product remained essentially constant, confirming minimal aging effects on junction

properties.

Silicon test arrays employed a similar characterization approach with ten junction variants and
twenty repetitions per design. Each test site incorporated four individual junctions, resulting

in 80 junctions per geometry and 800 total junctions across the full array. Immediate post-

fabrication measurements yielded R,‘;"Si = 19.77 £ 0.12 Q-um? for silicon substrates.
3.3.3 Gradiometer Flux Qubit Fabrication

The gradiometer flux qubit design employed in this work appears in Figure 36. The
gradiometer geometry is characterized by its height h and length [ parameters, which together
determine the total loop area A. The length of each gradiometer arm, measured at the center
of the 600 nm wide metal strip, follows L = h + | — 2w. The loop area governs the magnetic
flux threading the gradiometer structure, while the arm length affects qubit-resonator

coupling through its associated inductance.

Page | 76



Figure 36 — Gradiometer flux qubit geometry and design parameters | The symmetric gradiometer loop is characterized by
height h and length 1, yielding total area A = h X | and arm length L = h + | — 2w (measured at center of strip width w).
Inset shows detailed view of asymmetric Josephson junction pair with normal junction (w,, hy) and a-junction (w,, h,).

To enable identification of individual devices, eleven distinct qubits were designed with

parameters summarized in Table 10. x,;, represents the position of the qubit along the

transmission line of the resonator with respect to the end of the Bragg filter.

Table 11 — Gradiometer flux qubit design matrix.

Parameter Qu Q Qs Qs Qs Qs Qs Qs Qo Qio Qa1
h [pm] 5.00 5.15 5.30 5.45 5.60 5.75 5.90 6.05 6.20 6.35 6.50
L [um] 8.80 8.95 9.10 9.25 9.40 9.55 9.70 9.85 10.00 | 10.15 10.30

A [umz] 19.36 | 20.02 | 20.68 | 21.34 | 22.00 22.66 23.32 | 2398 | 24.64 | 25.30 | 25.96

Xgb [um] 955 1305 1655 2005 2355 2705 3055 3405 3755 4105 4455

The Josephson junction elements within each qubit are characterized by their geometric
parameters. Both normal and a junction heights were fixed at h,, = h, = 180 nm, with widths

designed as w, = 245 nm and w, = 125 nm.

To assess the fabricated Josephson junctions the experimental chip 28 test structures
arranged with four Josephson junctions per array, comprising 18 structures featuring normal

junctions and 10 incorporating a junctions.
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Room-temperature resistance measurements result with normal resistances of RY = 710 +
38 Q for standard junctions and R = 1235+ 99 Q for a junctions, corresponding to E, =
201+ 11 GHzand a = 0.57 £ 0.06.

The geometric capacitance of the junctions was simulated using COMSOL Electrostatics (see
Figure 37a), following the rational developed in reference 118. The result geometric
capacitance is given by Equation 34 with C;, = 0.28216 fF, C;3 = 0.22577 fF, C14, = 0.27159 fF,
C,; = —0.05037 fF, C,, = —0.00189 fF, C3, = —0.05687 fF.

0.52 0.54 0.56 0.58 0.60 0.62
a

Figure 37 — Simulations of the gradiometer flux qubit | (a) COMSOL model of the gradiometer qubit used to evaluate its
geometric capacitance. (b) Energy gap and persistence current from the solution of the full Hamiltonian of the gradiometer
flux qubit with E; = 201 GHz and E]/EC ~ 53 GHz. For the target parameter « = 0.575, the energy gap is A = 2.74 GHz and

the persistent current is I, = 190 nA.

With all design parameters in hand, we numerically solved the full Hamiltonian to extract the
energy splitting of the qubit and its persistence current, as shown in Figure 37b. For our design
parameters, E; = 201 GHz and E; /E; =~ 53 GHz, we expect to get A = 2.74 GHz and I, =190
nA.

Figure 38 shows the coupling between the Bragg resonator and the qubit as well as the Purcell
decay rate where calculated based on the design parameters and positions x,;, of the qubits
along the transmission line part of the Bragg resonator that are given in Table 10. Coupling
strength is on the range of 30 MHz to 80 GHz while according to Equation 74 the expected

Purcell decay rate is on the range of 60-190 kHz.
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Figure 38 — Simulated coupling strength g and Purcell decay rate Ip.

The double-angle evaporation process inherently creates two superconducting loops within
the completed device structure, as shown in Figure 39. To prevent unwanted flux trapping in
the parasitic loop formed during second-layer deposition, this redundant circuit element must
be electrically isolated. This isolation is accomplished through focused ion beam milling to
sever the unwanted loop while preserving the primary gradiometer circuit.

| F

Figure 39 — Completed gradiometer flux qubit structure and parasitic loop removal | (a) Schematic overlay showing first
aluminum layer pattern (purple stripes) and second aluminum layer (gray solid) illustrating the double-angle evaporation
result. The overlap regions form the active Josephson junctions while creating an unwanted parasitic loop. (b) Tilted SEM
image (30° tilt) of finished device after focused ion beam cutting to eliminate the redundant superconducting loop, preventing

flux trapping while preserving the primary gradiometer circuit.

4. Experimental System

This chapter presents comprehensive details of the measurement infrastructure employed for
characterizing superconducting resonators and flux qubits. The experimental configurations

are tailored to accommodate two distinct measurement scenarios: coplanar waveguide

Page | 79



resonator characterization and integrated flux qubit systems incorporating Bragg resonator.
Additionally, we describe the implementation and optimization of a traveling wave parametric

amplifier (TWPA) readout application.

4.1 Coplanar Waveguide Resonator Characterization Setup

Sample mounting for coplanar waveguide (CPW) resonator measurements utilize PMMA
adhesive to secure devices onto microwave-compatible printed circuit boards (PCBs) made
from TMM10 ceramics. These boards incorporate precision-etched 50 Q coplanar waveguide
transmission lines that route signals from the device location to SMP connectors, enabling
connection to external coaxial infrastructure. Electrical continuity between the sample and
board is established through wire bonding, providing zero-resistance pathways for both signal

and ground connections.

The complete assembly is housed within a gold-plated copper enclosure engineered for
minimal electromagnetic mode volume, thereby reducing parasitic coupling and improving
measurement sensitivity. This packaged system operates within a Cryoconcept Hexadry 200
dilution refrigerator featuring low mechanical vibration characteristics. Thermal anchoring to
the mixing chamber achieves base temperatures of 15 mK, essential for accessing the

guantum regime of superconducting devices.

Microwave characterization employs a Keysight PNA-L N5235 vector network analyzer (VNA)
as the primary measurement instrument. Signal routing from room temperature to the
cryogenic environment begins with TestPro 4.5 cables connecting the VNA output to copper-
nickel composite cables within the refrigerator. These CuNi cables provide the necessary
balance between thermal isolation and electrical conductivity while routing signals from

ambient temperature to the 4 K thermal stage.

At the intermediate temperature stage, microwave signals undergo controlled attenuation
through an XMA -20 dB attenuator before transition to superconducting NbTi coaxial cables
for the final connection to the mixing chamber stage. Additional signal conditioning at the
base temperature stage incorporates XMA attenuators providing attenuation from -10 dB to -

40 dB, depending on the specific experiment.
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The signal detection pathway incorporates a shielded double-circulator (QCY-060400CM?20,
QuinStar Tech.) positioned at the mixing chamber stage to enforce unidirectional signal-flow
and minimize reflections. Signal amplification occurs in multiple stages, beginning with a low-
noise cryogenic HEMT amplifier (LNF-LNC4_8C) at the 4 K stage, followed by additional room-
temperature amplification using a second HEMT amplifier (LNF-LNR1_15A). The conditioned
signal returns to the VNA input port for digital processing and analysis. The complete
measurement architecture is illustrated in Figure 40, showing the temperature-staged signal

routing and conditioning elements.
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4K H 20dB LNF-LNC_112A
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CPW Resonator
T

Figure 40 — Measurement infrastructure for CPW resonator characterization | The schematic shows signal routing from room
temperature VNA through temperature-staged attenuation and amplification within a dilution refrigerator. Key components
include CuNi thermal isolation cables (RT to 4K), superconducting NbTi cables (4K to 15mK), staged HEMT amplification (LNF-
LNC4_8C at 4K, LNF-LNR1_15A at RT), and shielded circulators for signal isolation. The CPW resonator sample is housed in a

gold-plated copper enclosure thermally anchored to the 15 mK mixing chamber stage.

4.2 Bragg Resonator and Flux Qubit Measurement Configuration

Silicon substrates containing integrated Bragg resonators and gradiometer flux qubits require
a more sophisticated experimental arrangement to accommodate both microwave
characterization and magnetic flux control. Sample mounting follows similar protocols as
described for CPW resonators, utilizing identical PCB technology and wire bonding techniques

for device connectivity.
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The critical enhancement for flux qubit experiments involves implementation of a custom
superconducting magnetic coil system. This coil features a gold-plated copper bobbin wound
with 387 meters of NbTi wire embedded in a CuNi stabilizing matrix. The total wire diameter
was 0.152 mm. Room temperature coil resistance measures 10.38 kQ, yielding a current-to-

magnetic-field conversion efficiency of 0.3788 G/mA at the sample location.

The coil assembly accommodates multiple sample orientations, enabling magnetic field
application either parallel or perpendicular to the substrate surface, as demonstrated in Figure
41. This flexibility proves essential for investigating different coupling mechanisms between

external fields and the gradiometer loop structures.

Signal A
Mixing

| chamber

. DBccosorb. 7

~m i

Figure 41 — Custom superconducting magnetic coil system for flux qubit bias control | Flexible sample mounting enables
magnetic field orientation parallel (a) or perpendicular (b) to substrate surface, essential for investigating different
gradiometer coupling mechanisms. The coil features gold-plated copper bobbin with NbTi-in-CuNi wire. (c) Multi-layer
magnetic shielding combines superconducting Ti-64 alloy inner shield with high-permeability CryoPhy outer housing. Eccosorb
AN-72 absorbing material seals cable penetrations to prevent electromagnetic leakage while maintaining thermal anchoring

to the mixing chamber base temperature.

Magnetic noise suppression employs a multi-layer shielding approach incorporating both
superconducting and high-permeability materials. The primary shield consists of a
superconducting titanium alloy (Ti-64%3°) enclosure that eliminates low-frequency magnetic
fluctuations through flux expulsion. Secondary shielding utilizes high-permeability CryoPhy
material (Meca Magnetic) to attenuate residual magnetic noise at higher frequencies.
Electromagnetic radiation suppression is achieved through strategic placement of Eccosorb

AN-72 absorbing material at potential leakage points.

Current sourcing for magnetic bias control utilizes a BILT BE-2102 precision voltage source

coupled to a custom voltage-to-current converter. This converter incorporates a series-
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connected capacitor and 1 kQ precision resistor maintained at constant temperature (37°C) to
minimize resistance drift and ensure stable current conversion. Temperature regulation proves

critical for maintaining current stability over extended measurement periods.

The DC signal for sample biasing is applied by additional BILT source. The signal goes through
multiple filtering stages to achieve the noise levels required for coherent qubit operation.
Initial filtering employs an inductive low-pass filter (R =142 Q, L = 16 H) at room temperature
followed by a Mini-Circuits VLFX 1050 low-pass filter and an XMA -20 dB attenuation at the 4
K stage. Further noise reduction at the mixing chamber stage utilizes a cascaded filter chain
including a custom Eccosorb filter (approximately -6 dB/GHz'3), and a MiniCircuit SLP-1.9+

commercial filter.

For practical implementation, the DC bias current I is applied through a T-type attenuator

circuit (see Figure 42) to provide impedance matching and signal isolation.

T-attenuator
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Figure 42 — Circuit diagram of a T-attenuator

The effective resistance R relating the applied voltage Vp to the bias current I is:

R = R*R, + R*R, + R? + 2R,R, (100)
= 7
. . . . . N-1 RZ-R?
where R™ is the residual resistance of connecting wires, and R; = R, iz R, = onare the
1

attenuator resistors. The attenuator parameters are designed to match the system impedance

dB
R, and provide attenuation factor N = 1020. This configuration enables precise control of the

qubit operating point while maintaining proper impedance matching for microwave signals.

Microwave signal generation employs dual-source architecture optimized for independent
resonator and qubit control. Resonator driving signals originate from a Keysight E8257 analog
signal generator, while qubit manipulation employs an R&S SMA100B RF generator. Pulse

modulation occurs at intermediate frequencies spanning 10-200 MHz using a Quantum
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Machines OPX+ control system connected to MITEQ IRM0618/IRM0408 frequency mixers.
Fine amplitude control utilizes a Pulsar AAR-29-479 voltage-controlled attenuator providing

continuous adjustment across 0.5-64 dB range.

Signal combination prior to refrigerator entry employs a Pulsar PS2-18-450/9S two-way power
divider, enabling simultaneous resonator and qubit addressing. Thermal noise minimization
incorporates staged attenuation with XMA -20 dB attenuation at 4 K and XMA -30 dB
attenuation at the mixing chamber stage. Additional filtering utilizes a custom!3! impedance-
matched copper powder filter providing -10 dB attenuation at 10 GHz. A shielded circulator
(QCY_0812, QuinStar Tech.) eliminates reflected signal leakage.

DC and microwave signals are combined at the mixing chamber stage through a Marki BT-0018
bias-T and undergo final filtering through a -3 dB IR filter before sample connection. This

configuration enables simultaneous flux biasing and microwave control of the qubit system.

Readout signal processing employs reflection measurements from the Bragg resonator with
extensive filtering prior to parametric amplification. The signal processing chain includes a 3
dB IR filter, shielded double circulator (QCY_0812), 8-12 GHz bandpass filter (MicroTronics
BPC50406), and DC blocking capacitor. Following TWPA amplification, additional signal
conditioning includes circulator isolation and cryogenic HEMT amplification (LNF-LNC1_12A).
Room temperature processing incorporates secondary HEMT amplification (LNF-LNR_15A),
signal demodulation, and voltage amplification using a Femto HVA-500M-20-B amplifier. Final
signal acquisition utilizes the analog inputs of the OPX+ control system. The complete
experimental configuration is detailed in Figure 43, illustrating the integration of all signal

generation, conditioning, and detection components.
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Figure 43 — Experimental configuration for flux qubit characterization with Bragg resonator readout | The system integrates

dual-source microwave generation, Quantum Machines OPX+ pulse control, staged cryogenic filtering and attenuation,

custom magnetic coil with multi-layer shielding, and traveling wave parametric amplifier. Signal processing includes

temperature-staged amplification, extensive filtering chains, and real-time demodulation. The modular design enables

simultaneous flux biasing, microwave control, and high-fidelity readout of superconducting flux qubits.

Page | 85



4.3 Traveling Wave Parametric Amplifier Implementation

The reversed Kerr traveling wave parametric amplifier (RKerr-TWPA) used in this work was
developed by the research team led by Dr. Nicolas Roch at the Néel Institute in Grenoble. The
amplifier is integrated directly into the readout signal path at the mixing chamber base
temperature, positioned between the sample filtering chain and the cryogenic HEMT
amplifier stage. This placement ensures that the weak reflected signals from the Bragg
resonator receive immediate low-noise amplification before encountering additional circuit

elements that could degrade the signal-to-noise ratio.

The TWPA requires independent pump signal generation and DC bias control for optimal
operation. The pump line utilizes an additional R&S SMA100B signal generator with dedicated
signal conditioning including XMA -20 dB attenuators at both 4 K and mixing chamber stages,
followed by custom copper powder filtering to minimize noise coupling into the amplification
process. DC biasing of the TWPA employs a separate BILT source with precise voltage control

to maintain the optimal flux operating point.

TWPA characterization begins with VNA transmission measurements in the absence of a
pump. These measurements reveal spurious mode oscillations that vary with applied
magnetic flux, as presented in Figure 44a. The optimal operating point for reversed Kerr
amplification occurs at the 'half-flux' condition corresponding to minimized spurious mode
amplitude. Based on these measurements, we selected V. = 0.08 V as the optimal flux bias

point for subsequent operation.
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Figure 44 — TWPA characterization and optimization | (a) VNA transmission mapping versus frequency and flux bias showing
spurious mode oscillations that determine optimal operating conditions. The 'half-flux' point at Vp = 0.08 V corresponds to

minimum spurious mode amplitude, providing optimal phase-matching conditions for reversed Kerr amplification. (b)
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Parametric gain optimization showing peak gain of 21 dB achieved at pump frequency fpymp = 8.174 GHz and pump power

5dBm.

Parametric gain optimization requires systematic characterization of both pump power and
frequency to identify conditions yielding maximum signal amplification. The measurement
protocol involves VNA transmission measurements using narrow-bandwidth drive signals
(10.19 GHz £ 5 MHz) while varying pump parameters. Gain calculation compares average
transmitted power with and without pump activation. This optimization procedure identified
optimal conditions of f,mp = 8.174 GHz and 5 dBm pump power, yielding peak gain of 21
dB, as shown in Figure 44b.

5. Results and Discussion

This chapter presents experimental characterization of gradiometer superconducting flux
qubits (GFQs) coupled to Bragg resonators on a high resistivity silicon substrate. Detailed
device design and fabrication are given in section 3.2.2. The GFQ consists of a figure-eight
superconducting loop intersected by three or four Josephson junctions, where the two sub-
loops form a gradiometer configuration that cancels homogeneous magnetic field

dependence.

Early implementations demonstrated significant capabilities but with notable limitations. The
first tunable-gap GFQ achieved gap control up to 12 GHz through tunable a-junctions, though
coherence times remained very short®®. Strong coupling between a tunable GFQ and
microwave resonator was subsequently demonstrated, but coherence was still limitedto T; =
1.5 us and T, = 300 ns®. GFQs also enabled studies of the quantum-to-classical transition in
macroscopic systems®® and investigations of kinetic inductance effects on qubit

performance®’.

In this work, we eliminate the need for dedicated flux lines by implementing a Bragg-filter
terminated coplanar waveguide resonator. The Bragg filter termination enables DC current
application through the resonator's center conductor while simultaneously providing noise
suppression through high-frequency signal filtering. Each qubit has a different loop area (see
Table 10), thus their anticrossing appears at different values of the bias current. To maximize

gubit-resonator coupling strength, the GFQ is galvanically connected directly to the resonator.
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We demonstrate quantum coherent operation through spectroscopic analysis, coherence
time measurements (I'; = 33 kHz, I', ; = 80 kHz), and randomized benchmarking protocols

(; =9x107°).

5.1 Bragg Resonator Integration and Performance

Figure 45a presents the Bragg resonator device fabricated on a silicon substrate using a 150
nm aluminum superconducting layer, following the fabrication protocols detailed previously.
The device features a Bragg filter architecture consisting of m = 4 doublets with alternating
impedances of Z; = 35Q and Z, = 80 Q, where each impedance segment has a length of
Lg = 3.44 mm. This Bragg filter configuration achieves near-perfect reflection with |r|? =
99% at the stopband center frequency of 8.58 GHz. Beyond the Bragg filter, an 8.044 mm
coplanar transmission line accommodates eleven gradiometer flux qubits, which are
galvanically connected to the central line, before terminating in a short circuit to ground, with
both microwave and DC signals transmitted through the Bragg filter via a single port. Figure
45 displays scanning electron microscopy image of qubit A, showing the completed
gradiometer structure after removal of the redundant loop using focused ion beam
processing. Comprehensive details regarding sample design and fabrication procedures are

provided in Chapter 3.
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Figure 45 — Circuit implementation | (a) Optical microscopy image of complete device showing quarter-wave Bragg resonator.
Eleven GFQs are integrated along the transmission line section. (b) Scanning electron micrograph of qubit A after the focused

ion beam cut the parasitic superconducting loop. (c) Vector network analyzer reflection measurement demonstrating
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resonator performance with measured frequency % = 10.162 GHz, decay rate k. = 6 MHz, and quality factor Q. ~ 10°,

confirming integration without significant loss mechanisms. (d) Resonator spectroscopy versus Ipc revealing distinct
anticrossing patterns of six qubits and two overlapping signatures, validating flux control through transmission line current

injection. (e) Detailed anticrossing analysis for qubit A yielding coupling strength g(A) = 19.3 MHz through model fitting.

The experimental system employs dedicated microwave sources to generate local oscillator
signals for resonator and qubit control, which are mixed with intermediate frequency pulses
from an OPX+ system before being combined and transmitted to the sample housed within a
Cryoconcept dilution refrigerator operating at a base temperature of 15 mK. The outgoing
signals undergo attenuation and filtering along the transmission path to the sample, while the
reflected signals from the sample are amplified through a multi-stage amplification chain
consisting of a reversed Kerr traveling wave parametric amplifier (RKerr-TWPA) providing ~21
dB gain positioned at the mixing chamber stage, followed by high electron mobility transistor
amplifiers located at 4 K and room temperature. The amplified signals are subsequently
demodulated and measured using the OPX+ system at room temperature, with

comprehensive details of the experimental setup provided in Chapter 4.

Figure 45c shows vector network analyzer reflection measurements used to characterize the

resonator response. The measured resonance frequency of was % = 10.162 GHz required

correction of our estimated substrate permittivity to erSi = 11.896, corresponding to an in-
resonator light velocity of ¢ = 118,060,115 m-s™". The experimental decay rate kK, = 6 MHz
produced a quality factor Q. = 10%, demonstrating good correspondence with theoretical

predictions established in previous chapters.

DC current bias measurements revealed the anticipated anticrossing behavior characteristic
of strong qubit-resonator coupling, as demonstrated in Figure 45d. Systematic investigation
identified responses from eight of the eleven integrated qubits. Six devices exhibited distinct
magnetic flux responses while two displayed overlapping characteristics. This outcome
validates our approach using current injection through the Bragg filter and into the resonator

transmission line to magnetically bias the qubits.

Of the three unobserved qubits, one sustained damage during the focused ion beam
procedure, while the remaining two are believed to operate far detuned from the resonator
frequency, rendering them undetectable within our measurement bandwidth. We analyzed

the relationship between the design sizes of the qubit loops and the positions of the optimal
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flux bias points to assign each pattern to a specific qubit. We found that the qubits appearing

in Figure 45d correspond to the designed positions 3 (qubit A) and 8 (qubit B).

Detailed analysis concentrated on qubits A and B, which demonstrated clear anticrossing
signatures suitable for quantitative characterization. Figure 45e presents the anticrossing
pattern for qubit A, from which we extracted coupling strength g(A) = 19.3 MHz through
fitting to the established resonator-qubit interaction model. Similar analysis of qubit B yielded
coupling strength g(B) = 21.5 MHz, indicating comparable interaction strengths across

different device positions within the resonator.

5.2 Spectroscopic Characterization and Qubit Parameters

Comprehensive qubit characterization required spectroscopic measurements under variable

magnetic bias conditions. The qubit transition frequency follows % =A% 4+ €2, where e =

21y

- (CD - %), represents the energy offset from the optimal flux point. Here, ® = % with @4

the flux difference between the two loops of the GFQ. This relationship enables extraction of

the fundamental qubit parameters: energy splitting A and persistent current I,.

Experimental results shown in Figure 46a and b yielded A = 9.097 GHz with IIEA) = 138 nA,
and A®) = 7226 GHz with I;B) = 147 nA. These parameters correspond to Josephson
energies E](A) = 194 GHz and E](B) = 191 GHz, with asymmetry ratios a = 0475 and

a® = 0.499. The Josephson energy is in good agreement with the expected values from
room temperature characterization of the test junctions while the reduced values of a reflect

dimensional variations in junction fabrication.

The voltage-to-flux conversions were calibrated through measurements at the optimal flux
point ® = ®,/2. Knowledge of the applied DC voltage at operation VDOL?t allowed conversion
of arbitrary voltages Vp. to magnetic flux using G)=VDC/2VDOCpt [Dy]. We used the
relationship given in Equation 40 to calculate the mutual inductance of the qubits per

gradiometer loop length M = 1.00 + 0.06 pH/um.
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Figure 46 — Comprehensive flux qubit characterization and coherence measurements | (a,b) Spectroscopic determination of
qubit parameters showing energy splitting A and persistent current I,, for qubit A (4@ = 9.097 GHz, Il(,A) = 138 nA) and qubit
B (AB) = 7.226 GHz, Iz(,B) = 147 nA), with theoretical fits confirming gradiometer flux response. (c,d) Coherence time

measurements reveal relaxation rate I (33 kHz for qubit A, 113 kHz for qubit B) and decoherence rate I, (80 kHz for qubit

A, 275 kHz for qubit B) through standard decay and Hahn-Echo protocols respectively. (e,f) Flux noise amplitude extraction

from coherence data yielding A = 13.3 ud, and A®) = 6.6 ud,.

On the basis of the spectroscopic parameters, we implemented coherent qubit control using
tailored microwave pulses. Continuous wave pulses employed tapered-cosine window
envelopes to minimize spectral leakage, with pulse durations of 100 ns for qubit A and 16 ns
for qubit B, both incorporating 8 ns rise/fall times. Rabi-like calibration procedures determined
m-pulse amplitudes by measuring qubit state populations versus drive strength. Half-
amplitude pulses generated the required m/2 rotations for coherence measurements.
Frequency and power correction based on the ALLXY method'3? were implemented to

increase the fidelity of the gate.

Readout fidelity optimization involved comparing resonator responses between qubit ground
states (following extended relaxation periods, t,,,ir > 5T;) and excited states (immediately
after m-pulse application). This process generated distinct populations in the resonator's I-Q
measurement plane, which were aligned along the I-axis through coordinate rotation. Optimal

state discrimination thresholds yielded ground-state fidelities of f,, = 97% for qubit A and
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95% for qubit B. Excited-state fidelities reached f,, = 87% for qubit A and 77% for qubit B.
The origin of the low excited-state fidelity remains unclear, as while readout errors and pulse
control issues contribute to the reduced fidelity, they cannot fully account for the observed
degradation—the high ground-state measurement fidelity indicates minimal readout error
contribution, and randomized benchmarking experiments (described in a subsequent section)
show that pulse control errors alone are insufficient to explain the magnitude of the fidelity

loss.

fee ]Ce
fre ngl, where f;;

represents the probability of measuring state j when the qubit was prepared in state i, to

In subsequent measurements we used the readout fidelity matrix R =

improve results visibility. Each measurement yielded probability vectors P = (pe,pg), which

were corrected through P. = PR~ to account for finite readout fidelity.

Relaxation time characterization employed standard energy decay measurements, initializing
qubits in excited states through m-pulse application and monitoring population decay over
variable delay periods. The measured relaxation rates were FEA) = 33.1 £ 0.55kHz and FEB) =
113 + 1.4 kHz, as presented in Figure 46¢ and d respectively. To validate we are not limited by

the Purcell decay, we calculated the decay rate using Equation 74. We found F;A) = 2.109 kHz,

and F;B) = 0.105 kHz, assuming T = 20 mK. Thus, we can conclude the Purcell effect does not

limit the decay rate of the qubits.

Dephasing time measurements utilize Hahn-Echo sequences. The protocol involved ground
state initialization, m/2-pulse application, free evolution for time t/2, m-pulse refocusing,

additional free evolution for time t/2, and final t/2-pulse readout. This approach yielded echo
coherence rates Fg‘g = 80 + 5 kHz and FfE) = 275 £ 9 kHz, demonstrated in Figure 46¢ and

d. Consequently, the pure dephasing rates ngA) = 63 + 5 kHz and ngB) =219+ 9.

Following established theoretical frameworks detailed in the Flux Qubit Relaxation and
Dephasing section, these coherence measurements enabled extraction of flux noise
amplitudes AW =133 ud, and AB) =66 ud,, as shown in Figure 46e and f. These values

exceed previously measured flux noise levels (~1 u®,) in our experimental systems, which we
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attribute to residual gallium ions and substrate degradation in the immediate qubit vicinity

from focused ion beam processing.

At the optimal point, the decay rate due to second order flux noise (see Equation 82) is given

1,49 -\
by F%z) = ;;—Z'Z(pT‘”’E) which equals 262 (58) kHz for qubit A (B). These values exceed the

estimated photon noise FZ = 13 (3) Hz and charge noise Fg = 3.203 (4.281) kHz. Therefore,
we conclude that flux noise is the dominant decoherence mechanism also at the optimal

point.

5.3 Gradiometer Design Validation

Gradiometers suppress uniform magnetic field fluctuations by using two loops with opposite
orientations, making them sensitive only to field gradients. This design principle requires
precise fabrication to achieve the necessary loop area matching and proper geometric

alignment.

The total magnetic flux threading each gradiometer loop combines contributions from two
distinct sources according to @/, = Dpiqs + Dexr, Where Opias = MIpc/2 represents flux
from bias current in the Bragg resonator transmission line and ®,,; = AB,,: cos(6,) accounts
for external field coupling with A representing the loop area, B,,; the external field strength,
and 6, the angle between the field and loop normal. In experimental conditions, perfect
alignment between the sample and external coil is practically impossible, introducing
systematic errors that must be accounted for in the differential flux calculation. Consequently,
the gradiometer differential flux becomes ®; = MIpc + AB,y: cos(6y + 60), where 5A
represents the inevitable area difference between the two loops and §6 accounts for sample
misalignment. For small misalighment angles the cosine term can be approximated as
cos(6y + 86) = cos(6,) — 86 sin(B,) and the differential flux takes the form of ®; = MIp. +
O0AB,,[cos(6y) — 60 sin(6y)].

We validated the gradiometer architecture through systematic characterization under
controlled external magnetic fields. The validation protocol employed the superconducting
coil system described in the Experimental System chapter to generate controlled magnetic
fields with both perpendicular and parallel orientations relative to the substrate surface.

Sample positioning within the coil enabled application of both perpendicular and parallel
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magnetic field orientations relative to the substrate surface, as illustrated in Figure 47a and b

respectively.
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Figure 47 — Gradiometer functionality validation under controlled external magnetic fields | (a,b) Schematic illustrations
showing sample orientations for perpendicular (B, ) and parallel (B;) magnetic field application relative to substrate surface.
(c,d) Experimental data and theoretical fits demonstrating gradiometer operation with loop area differences 6A/A = 0.12 +
0.002% for both qubits. Misalignment angles 56 = —2.09 + 0.03° and §6®) = —5.42 + 0.06° reflect variations in the

magnetic field due to the superconducting surface of the chip.

We measured qubit transition frequencies wg;, as functions of external magnetic field to

extract the magnetic flux response of each gradiometer loop. The qubit energy offset from

the optimal point follows € = ’wéb — A?, where A represents the energy splitting at zero flux

bias.

Figure 47c (d) presents systematic measurements of qubit A (B) with perpendicular (B, 8, =
0°,®4 = MIpc + 8AB,y:) and parallel magnetic fields (B, 8, =90°,®4; = MIpc —
6AB,,:60). In the perpendicular configuration, the external field couples maximally to both

gradiometer loops, making the measurement sensitive to loop area differences §A.

We performed fits to the frequency shift versus field strength data based on equation 38. The

perpendicular field measurements for qubit A and qubit B yielded a linear response with slope

544 544

corresponding to =~ = =5 = 0.12 + 0.002%. Here, AW s the designed area of qubit i.

This result represents a suppression factor of ~800 compared to single-loop devices,

significantly reducing sensitivity to homogeneous magnetic fields.

In parallel orientation, the external field should not be coupled to properly aligned

gradiometer loops, making the measurement sensitive to the angular misalignment 66.
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Systematic fitting of parallel field data revealed misalignment angles of 5604 = —2.09 + 0.03°
and §6B) = —5.42 + 0.06°. We believe these results stem from repulsion of magnetic fields

from the superconducting surfaces on the chip.

The comprehensive validation establishes that the gradiometer design achieves its intended
functionality of suppressing uniform magnetic field noise while maintaining sensitivity to local
flux bias control. The measured fabrication precision and geometric accuracy support the
viability of this approach for quantum computing applications requiring enhanced magnetic

field immunity.

5.4 Randomized Benchmarking

We evaluated gate performance using randomized benchmarking (RB) protocols to
characterize average gate fidelities and identify dominant error sources. Randomized
benchmarking provides a robust method for measuring gate performance by averaging over
random sequences of quantum operations, thereby isolating systematic errors from state

preparation and measurement errors.
5.4.1 Standard Randomized Benchmarking

We characterized the average gate fidelity across the complete Clifford gate set at the optimal
flux point. Our protocol generated 25 random sequences of varying lengths, with each
sequence containing m Clifford operations followed by an inverse operation to return the
qubit to its initial state. We varied the sequence length m from 1 to 200 operations and

repeated each measurement 400 times to achieve statistical precision.

The experimental protocol proceeded as follows: (1) initialize the qubit in the ground state,
(2) apply a random sequence of m Clifford gates, (3) apply the inverse sequence to return to
the ground state, and (4) measure the final qubit state. The sequence fidelity F(m) follows the
decay model F(m) = Ap™ + B, where p represents the depolarizing parameter, A accounts

for measurement contrast, and B represents the background offset.

Figure 48a shows results for qubit A, yielding a depolarizing parameter p(A) = 0.967 +
1 X 1073. Figure 48b presents qubit B results with p(B) = 0.974+ 1 x 103, We converted

these values to average gate error rates using rg/1.875 = (1 —p)/2, accounting for the fact
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that each Clifford operation requires 1.875 primitive gates on average. This analysis yielded

average gate error rates of rg(A) =0.009+ 1x 1073 and rg(B) = 0.0069 + 4 x 107*.

To assess whether decoherence limits gate performance, we calculated the expected error
. . 1 .
rate from pure dephasing: " ~tp 50, Where Ty, =T, 5 — 5 I'; represents the pure dephasing

rate. For qubit A with 100 ns gates, r*4) = 0.007, while qubit B with 16 ns gates yields r*®) =
0.003. The measured error rates exceed these decoherence-limited values, indicating that

control errors rather than decoherence dominate gate infidelity at the optimal point.

The higher error rate for qubit B despite shorter gate times results from increased sensitivity
to control parameter fluctuations. Short, high-amplitude pulses exhibit greater sensitivity to
amplitude and frequency errors, explaining why qubit B shows reduced gate fidelity compared

to the longer-pulse operation of qubit A.
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Figure 48 — Randomized benchmarking at the optimal point | Average Clifford set fidelity F(m) as a function of sequence
length m for (a) qubit A and (b) qubit B. Blue circles represent standard randomized benchmarking (RB) experiments
measuring composite Clifford gate performance, while orange triangles show interleaved randomized benchmarking (IRB)

results isolating individual X/, gate fidelity. The exponential decay model (solid lines) yields depolarizing parameters p(A) =

0.967 (qubit A) and p(B) = 0.974 (qubit B) for RB, corresponding to average gate error rates rg(A) = 0.009 and rg(B) = 0.0069

respectively. IRB measurements give individual X, gate errors of rg(ﬁt)e = 0.006 and rg(ft)e = 0.003.

5.4.2 Interleaved Randomized Benchmarking

We characterized individual gate performance using interleaved randomized benchmarking

(IRB). This protocol follows the standard RB procedure but inserts a specific gate (X, in our

Page | 96



case) after each random Clifford operation. Comparing IRB and RB decay rates isolates the

fidelity of the interleaved gate.

The IRB protocol yielded depolarizing parameters of pé‘z)te = 0.955 + 2 X 103 for qubit A and

(B)

Pgate = 0.968 + 2 X 1073 for qubit B. We extracted individual Xn/, gate error rates of r&) =

gate —
0.006 + 1 x 10~ and r;fge = 0.003+ 1 x 1073, These values fall within the theoretical
bounds [0, 0.032] and [0, 0.033] respectively, as established by the IRB formalism (see

Equation 98).

The X/, gate fidelities approach the decoherence limit calculated above, indicating that
individual pulse errors primarily stem from decoherence rather than control imperfections.
This contrasts with the composite Clifford operations, where control errors become more

significant due to error accumulation across multiple primitive gates.
5.4.3 Decoherence And Gate Performance

We investigated the transition between control-limited and decoherence-limited regimes by
operating qubits away from the optimal flux point. Magnetic flux bias reduces coherence
times, as demonstrated in Figure 46, allowing systematic study of gate performance versus

decoherence rates.

Figure 49a presents average gate error rates versus the product t,,;5. for both qubits.
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Figure 49 — Effect of decoherence on gate fidelity through flux bias detuning | Average gate error rates from randomized
benchmarking experiments versus the product ty,,s¢ I for different pulse durations and detuning conditions. (a) Standard RB
results showing the transition from control-limited to decoherence-limited regimes. For qubit A (green circles, tpyise =

100ns), gate errors remain constant below t,ysely ~ 0.025, indicating control parameter uncertainties dominate
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performance. Above this threshold, errors increase linearly with proportionality constant a = 0.18. Qubit B shows similar
behavior with a« = 0.24 for 92 ns pulses (orange triangles) and a = 0.99 for 16 ns pulses (blue stars). (b) Interleaved RB results
for individual X/, gates showing decoherence-limited behavior across all measured ratios. Linear fits yield « = 0.16 (qubit
A, 100 ns) and a = 0.85 (qubit B, 16 ns). The smaller proportionality constants compared to composite Clifford operations

reflect the reduced complexity of single-gate sequences.
Two distinct regimes emerge:

Decoherence-limited regime (ty,,;5.l, > 0.025): Gate errors increase linearly with the
product ty,,5.Mg according to 1, = atyysely + ¢. We measured proportionality constants
a = 0.259 + 0.007 (qubit A, 100 ns pulses), « = 0.251 + 0.008 (qubit B, 92 ns pulses), and
a = 0.99 + 0.08 (qubit B, 16 ns pulses).

Constant fidelity regime (t,,s.[4 < 0.025): Gate errors remain approximately constant
despite varying coherence times. Control parameter uncertainties (amplitude, frequency,
phase) dominate the error budget. The error floor reflects systematic imperfections in pulse
calibration and environmental stability. Moreover, we believe that in this regime 1/f noise is
dominant. Subsequently, the assumption that errors do not depend on the gate position in

the sequence (that is, time dependent) is not valid. This can affect the RB model and results.

The transition occurs when the product of pulse length and recoherence rate become
comparable to 0.025. Below this threshold, gates complete before significant decoherence
occurs, and control errors dominate. Above this threshold, decoherence during gate execution

becomes the primary error source.

Figure 49b shows IRB results, where X/, gate errors exhibit decoherence-limited behavior
across all measured ratios. Linear fits yield « = 0.16 + 0.02 (qubit A, 100 ns) and ¢ = 0.85 t+
0.04 (qubit B, 16 ns). The smaller proportionality constants compared to composite Clifford
operations reflect lower sensitivity of the X/, gate compared to the average sensitivity of the

entire set used to construct the Clifford group.

The counterintuitive result that shorter pulses show greater sensitivity to decoherence arises
from the averaging effect of longer gate sequences. During RB experiments, qubits undergo
random rotations on the Bloch sphere, effectively averaging over static field inhomogeneities
and low-frequency noise sources. This averaging mechanism resembles dynamical decoupling

sequences like Hahn-Echo experiments.
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Longer pulse durations provide extended averaging windows, reducing the impact of noise.
Conversely, short pulses cannot average over noise fluctuations occurring on comparable time

scales, leading to increased sensitivity to decoherence effects.

The analysis reveals three primary error sources: (1) systematic control errors affecting all
gates, (2) decoherence during gate execution, and (3) noise averaging effects that depend on
gate duration. Understanding these mechanisms enables targeted improvements through
enhanced control calibration, reduced gate times, and optimized pulse shapes that minimize

sensitivity to environmental fluctuations.

6. Conclusion

6.1 Summary of Research Contributions

The central challenge addressed by this dissertation was the architectural realization of a
hybrid mechanical-superconducting quantum processor. The primary thesis posited that by
successfully coupling a high-coherence mechanical resonator to a superconducting flux qubit,
one could establish a powerful platform for quantum transduction and computation. The work
detailed herein has successfully laid the experimental and theoretical groundwork for this

goal, culminating in three significant, self-contained contributions.

First, we demonstrated the successful fabrication and preparatory characterization of the two
key, disparate components required for the hybrid system: diamond nanobeams and silicon
membranes (mechanical resonators) and the gradiometer flux qubit architecture

(superconducting element).

Second, we achieved the first experimental realization of a gradiometer flux qubit integrated
with cQED readout. Crucially, this architecture delivered a new benchmark in coherence: our
qubits exhibited a low relaxation rate (I; = 33 kHz) and the best-reported dephasing rate
(I, = 80 kHz) for gradiometer flux qubits to date. This high coherence confirms the viability

of the architecture for future quantum experiments.

Third, we performed a quantitative study, based on randomized benchmarking
measurements, characterizing the relationship between single-qubit gate fidelity and
coherence time. This investigation identified two distinct operational regimes: a coherence-

dependent regime and a constant fidelity regime. The transition threshold between these two
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was empirically determined (t,y 5.l = 0.025), providing essential design guidance for

optimizing gate operations in future processors.

6.2 Scientific Significance and Technological Impact

The results of this dissertation represent a substantial advancement in the development of
hybrid superconducting architectures. The successful implementation of a gradiometer flux
gubit utilizing cQED readout establishes a pioneering platform. The gradiometer, which senses
a magnetic field gradient rather than a uniform field, is inherently more robust against
common-mode magnetic noise, providing the critical stability needed for high-fidelity

operations.

The record-setting coherence metrics achieved—specifically the dephasing rate—set a new
standard of performance for gradiometer flux qubits. This is pivotal, as the gradiometer design
is essential for achieving the required magnetic coupling to the mechanical resonator, which

is the ultimate goal of the hybrid system.

Furthermore, the architecture’s intrinsic ability to hinder qubit-qubit crosstalk marks a
significant step towards scalability. By mitigating parasitic interactions between neighboring
gubits, the gradiometer design addresses one of the most persistent and difficult challenges
in building multi-qubit processors. Our findings confirm that this system is not merely a path
to quantum transduction but also an intrinsically superior architectural choice for larger-scale

superconducting quantum circuit integration.

6.3 Limitations and Caveats

While the experimental demonstration of high-coherence gradiometer flux qubits is robust,
the current work is subject to specific constraints. The conclusions regarding qubit
performance are derived from measurements of a relatively small number of qubits, which

limits the statistical generalization of the results across fabrication batches.

A significant experimental caveat stems from the dominant environmental noise, where the
system performance was primarily limited by 1/f flux noise. This noise source remains the

principal constraint on ultimate coherence. Additionally, the standard randomized
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benchmarking model used for gate characterization does not intrinsically account for or filter
the effects of this dominant 1/f noise, meaning the characterized gate error may not fully

isolate the noise-independent performance of the underlying quantum gates.

6.4 Outlook and Future Research Trajectories

The successful foundation established by this research immediately suggests several high-

impact research directions that are both concrete and actionable:

Refined Gradiometer Design and Noise Mitigation: The most immediate and critical future
step is to develop and test an improved gradiometer design that removes the necessity of
Focused lon Beam fabrication steps. Eliminating this process is projected to substantially
reduce materials-related defects and intrinsic flux noise, pushing the coherence limits even

further toward the coherence-independent regime.

Integration and Demonstration of Hybrid Coupling: The logical next phase is the execution of
the primary thesis goal: the direct integration of the high-coherence gradiometer flux qubit
with the prepared mechanical resonators. This requires demonstrating and characterizing the
coherent quantum coupling between the superconducting and mechanical degrees of

freedom, the fundamental building block of a quantum transducer.

Advanced Metrology for 1/f Noise: New experimental protocols should be implemented to
more accurately characterize gate fidelity under non-Markovian noise conditions. Specifically,
applying advanced quantum metrology techniques that explicitly model or filter the effects of
the dominant 1/f noise will provide a clearer picture of the intrinsic gate error, leading to more

targeted optimization strategies.

Multi-Qubit Processor Feasibility: Future work should leverage the crosstalk suppression the
gradiometer architecture and focus on the design and experimental testing of a small-scale
multi gradiometer flux qubit processor. This trajectory will directly explore the scalability
advantages identified in this dissertation and validate the architecture's potential for complex

guantum algorithms.
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8. Appendices

8.1 List of The Clifford Group Operations
1.1 7.Y n/2 13. Xy /2 /2 19. Xy /5
2.X, 8.X,Y, 14.X_n/3Yn/: 20.X_p /5y
3'YT[ 9'YTL'/2XTL'/2 15.X7-[/2Y_n-/2 21'XTL'/2YTL'/2X—T[/2
4'Xﬂ/2 10 Y—TL’/ZXTL'/Z 16'X—T[/2Y—TL'/2 22'XTL'/2Y—TL'/2X—TL'/2
S'YT[/Z ll.YT[/ZX_T[/Z 17 Yn-/zxn- 23'XTL'/2YTL'/2XT[/2
6.X_T[/2 12 Y_n-/zx_n-/z 18 Y_n-/zxn- 24‘.X_T[/2Y7T/2X_n-/2

8.2 Bragg Filter Simulation Python Script

# %% Imports

import numpy as np
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from scipy.constants import constants

# $$ Functions
def phase accumulation(omega, x, kappa, c):
t=x/c

return omega * t + 1j * kappa * t

def interface(zl, z2):
r = (z2 - z1) / (z1 + z2)
t =2 * np.sqgrt(z2 * zl) / (z1 + z2)
return np.matrix(
[[r, t],
[t, -rl]

def transmission line (omega, L, kappa, c):
phi = phase accumulation(omega, L, kappa, c=c)
r =0
t = np.exp(lj * phi)
return np.matrix(
[[x, t],
(t, rll

def two elements chain(sl, s2):
rl backward = s1.A[0][O]
rl forward = sl.A[1][1]

tl backward = s1.A[0][1]
tl forward = s1.A[1][0]
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r2 backward = s2.A[0][0]
r2 forward = s2.A[1][1]

t2 backward = s2.A[0][1]

t2 forward = s2.A[1][0]
r backward = rl backward + (tl forward * tl backward *
r2 backward) / (1 - rl forward * r2 backward)

r forward = rZ2 forward + (t2 backward * t2 forward *

rl forward) / (1 - rl forward * r2 backward)

t forward = (tl forward * t2 forward) / (1 - rl forward *
r2 backward)
t backward = (t2 backward * tl backward) / (1 - rl forward
* r2 backward)
return np.matrix(
[[r backward, t backward],

[t forward, r forward]]

def bragg filter (omega, L, zl, z2, m, z0=50, kappa=0,
c=constants.c):
phi = transmission line (omega, L, kappa, c)
n=2mm-1
for 1 in range(n):
s temp = (-1)**1 * two elements chain(phi,

interface(zl, z2))

if 1 ==

0
I

two elements chain(interface(z0, z1), s temp)

else:

0
I

two elements chain(s, s temp)
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s = two_elements chain(s, phi)

return two elements chain(s, interface(z2, z0))

# %% Si parameters
epsilon Si = 11.7
epsilon r = (1 + epsilon Si) / 2

c_eff = constants.c / np.sqgrt(epsilon r)

# %% Bragg parameters

m doublets = 4 # range(l, 13) # Number of 1-h doublets
35 # Ohm

80 # Ohm

zZ 1
Z h

L bragg = 3438e-6 # m

wl Bragg = L bragg * 4 # m

f Bragg = c_eff / wl Bragg # Hz

# %% Bragg-CPW-short

omega = np.linspace(0.2 * 2 * np.pi * £ Bragg, 1.8 * 2 * np.pi
* £ Bragg, 1001, endpoint=True)

r tot, t tot = [1, []

r Bragg, r prime Bragg, t Bragg = [], [], []
r CPW, t CPW = [], []

r Short, t Short = [], I[]

for omega 1in omega:

bragg = bragg filter (omega , L bragg, Z 1, Z h,

m doublets, c=c eff)

r Bragg.append(bragg.A[0] [0])
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8.3

r prime Bragg.append(bragg.A[1][1])
t Bragg.append(bragg.A[1] [0])
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