
 
 

Towards coupling a mechanical resonator to a 

superconducting flux-qubit 

 

Itamar Holzman 

 

Department of Physics 

Ph.D. Thesis 

Submitted to the Senate of Bar-Ilan University 

Ramat-Gan, Israel                                     October 2025



 
 

This work was carried out under the supervision of 

Dr. Michael Stern 

Department of Physics, Bar-Ilan University



 
 

Contents 
Abstract ............................................................................................................................................. i 

1. Scientific Background ............................................................................................................ 1 

1.1 Quantum Behavior of Macroscopic Objects ..................................................................... 1 

1.2 Superconducting Qubits .................................................................................................... 2 

1.3 Mechanical Resonators ..................................................................................................... 3 

1.4 Hybrid Systems .................................................................................................................. 6 

1.4.1 Quantum Optomechanics and Electromechanics .................................................... 7 

1.4.2 Coupling to Artificial Atoms .................................................................................... 12 

1.4.3 Encoding a Qubit In a Cavity ................................................................................... 14 

2. Methodology ....................................................................................................................... 19 

2.1 Introduction .................................................................................................................... 19 

2.2 Diamond Nano-beams .................................................................................................... 21 

2.2.1 Diamond as a Material Platform ............................................................................ 21 

2.2.2 Free-Standing Triangular Beams ............................................................................ 22 

2.3 Silicon Membrane ........................................................................................................... 25 

2.3.1 Silicon as a Material Platform ................................................................................. 25 

2.3.2 Mechanics of Circular Membranes ......................................................................... 26 

2.4 Gradiometer Superconducting Flux Qubit ...................................................................... 28 

2.4.1 Model of Gradiometer Flux Qubit .......................................................................... 29 

2.5 Coplanar Waveguide Resonator With Bragg Filter Termination ..................................... 33 

2.5.1 Transmission Line Model ........................................................................................ 34 

2.5.2 Scatter-Matrix Analysis ........................................................................................... 36 

2.6 Coupling Flux Qubit To Bragg Resonator ........................................................................ 45 

2.6.1 Circuit QED Hamiltonian and Coupling Derivation ................................................. 45 

2.7 Flux Qubit Relaxation and Dephasing ............................................................................. 46 

2.7.1 Purcell Decay .......................................................................................................... 46 



 
 

2.7.2 Qubit Dephasing Mechanisms ................................................................................ 47 

2.8 Randomized Benchmarking ............................................................................................ 53 

2.8.1 The Clifford Group .................................................................................................. 53 

2.8.2 Sequence Construction and Measurement Protocol ............................................. 54 

2.8.3 Interleaved Randomized Benchmarking ................................................................ 56 

2.9 Coupling Flux Qubit To Mechanical Resonator ............................................................... 58 

3. Sample Design And Fabrication ........................................................................................... 59 

3.1 Mechanical Resonators Fabrication ................................................................................ 59 

3.1.1 Nano-Beam Fabrication .......................................................................................... 59 

3.1.2 Silicon Membrane Fabrication ............................................................................... 61 

3.2 Superconducting Resonators Fabrication ....................................................................... 63 

3.2.1 𝜆𝜆/2 Coplanar Resonators on Diamond ................................................................... 63 

3.2.2 34𝜆𝜆 Resonator on Silicon ....................................................................................... 69 

3.3 Flux Qubit Fabrication ..................................................................................................... 72 

3.3.1 Josephson Junction Fabrication .............................................................................. 72 

3.3.2 Josephson Junctions Characterization .................................................................... 75 

3.3.3 Gradiometer Flux Qubit Fabrication ....................................................................... 76 

4. Experimental System ........................................................................................................... 79 

4.1 Coplanar Waveguide Resonator Characterization Setup ................................................ 80 

4.2 Bragg Resonator and Flux Qubit Measurement Configuration ....................................... 81 

4.3 Traveling Wave Parametric Amplifier Implementation .................................................. 86 

5. Results and Discussion ......................................................................................................... 87 

5.1 Bragg Resonator Integration and Performance .............................................................. 88 

5.2 Spectroscopic Characterization and Qubit Parameters .................................................. 90 

5.3 Gradiometer Design Validation ....................................................................................... 93 

5.4 Randomized Benchmarking ............................................................................................ 95 

5.4.1 Standard Randomized Benchmarking .................................................................... 95 

5.4.2 Interleaved Randomized Benchmarking ................................................................ 96 



 
 

5.4.3 Decoherence And Gate Performance ..................................................................... 97 

6. Conclusion ........................................................................................................................... 99 

6.1 Summary of Research Contributions .............................................................................. 99 

6.2 Scientific Significance and Technological Impact .......................................................... 100 

6.3 Limitations and Caveats ................................................................................................ 100 

6.4 Outlook and Future Research Trajectories ................................................................... 101 

7. References ......................................................................................................................... 102 

8. Appendices ........................................................................................................................ 113 

8.1 List of The Clifford Group Operations ........................................................................... 113 

8.2 Bragg Filter Simulation Python Script ........................................................................... 113 

8.3 List of Publications ........................................................................................................ 117 

 



 
 

List of Figures 

Figure 1 – Quality factor of different mechanical resonators over the years ............................ 4 

Figure 2 – Hybrid quantum systems .......................................................................................... 7 

Figure 3 – Different experimental systems used for optomechanics and electromechanics 

demonstrations .......................................................................................................................... 8 

Figure 4 – Experimental realization of a superconducting quantum interference device (SQUID) 

with a free-standing arm embedded in an LC resonator ......................................................... 10 

Figure 5 – Three-dimensional aluminum microwave cavities coupled to a superconducting 

transmon qubit ........................................................................................................................ 16 

Figure 6 – Vibration modes of a fully-clamped triangular diamond beam .............................. 23 

Figure 7 – COMSOL model ....................................................................................................... 24 

Figure 8 – COMSOL simulations result ..................................................................................... 25 

Figure 9 – COMSOL simulation of a circular Si membrane ...................................................... 28 

Figure 10 – Gradiometer flux qubit topology .......................................................................... 29 

Figure 11 – Schematic circuit drawing of the gradiometer flux qubit ..................................... 31 

Figure 12 – Distributed-element model of transmission line .................................................. 34 

Figure 13 – Scattering elements ............................................................................................... 36 

Figure 14 – Asymmetrical transmission line ............................................................................ 38 

Figure 15 – A chain of two scatterers ....................................................................................... 40 

Figure 16 – Bragg filter ............................................................................................................. 41 

Figure 17 – Bragg filter response ............................................................................................. 42 

Figure 18 – Transmission line of length 34𝜆𝜆 terminated by a Bragg filter and a short circuit. 43 

Figure 19 – Randomized benchmarking sequence .................................................................. 54 

Figure 20 – Interleaved randomized benchmarking sequence ................................................ 57 

Figure 21 – Nano-beam fabrication using the angled-etching technique ............................... 59 

Figure 22 – Schematic of the Si membrane fabrication process. ............................................ 61 

Figure 23 – Atomic force microscope (AFM) scans of fabricated Si membranes .................... 62 

Figure 24 – 𝜆𝜆/2 coplanar waveguide resonator....................................................................... 63 

Figure 25 – Surface preparation and characterization ............................................................. 65 

Figure 26 – Etching process outcomes and substrate reuse challenges .................................. 66 

Figure 27 – VNA transmission characterization of 𝜆𝜆2 CPW resonators ................................... 68 



 
 

Figure 28 – Layout design of 34𝜆𝜆 Bragg resonator on silicon substrate .................................. 69 

Figure 29 – Simulated response of Bragg resonator ................................................................ 70 

Figure 30 – Simulation of Bragg resonator .............................................................................. 71 

Figure 31 – Fabrication steps of superconducting aluminum devices. .................................... 71 

Figure 32 – VNA reflection measurement of the Bragg resonator. ......................................... 72 

Figure 33 – Schematic layout of the "telephone" Josephson junction design ........................ 73 

Figure 34 – Trilayer technique for double-angle shadow evaporation fabrication sequence for 

Josephson junctions. ................................................................................................................ 74 

Figure 35 – Josephson junction characterization and substrate comparison .......................... 76 

Figure 36 – Gradiometer flux qubit geometry and design parameters ................................... 77 

Figure 37 – Simulations of the gradiometer flux qubit ............................................................ 78 

Figure 38 – Simulated coupling strength 𝑔𝑔 and Purcell decay rate 𝛤𝛤𝛤𝛤. .................................. 79 

Figure 39 – Completed gradiometer flux qubit structure and parasitic loop removal ............ 79 

Figure 40 – Measurement infrastructure for CPW resonator characterization ....................... 81 

Figure 41 – Custom superconducting magnetic coil system for flux qubit bias control .......... 82 

Figure 42 – Circuit diagram of a T-attenuator .......................................................................... 83 

Figure 43 – Experimental configuration for flux qubit characterization with Bragg resonator 

readout ..................................................................................................................................... 85 

Figure 44 – TWPA characterization and optimization .............................................................. 86 

Figure 45 – Circuit implementation ......................................................................................... 88 

Figure 46 – Comprehensive flux qubit characterization and coherence measurements ........ 91 

Figure 47 – Gradiometer functionality validation under controlled external magnetic fields 94 

Figure 48 – Randomized benchmarking at the optimal point ................................................. 96 

Figure 49 – Effect of decoherence on gate fidelity through flux bias detuning ....................... 97 



 
 

List of Tables 

Table 1 – Properties of various mechanical resonators ............................................................. 5 

Table 2 – Mechanical properties of diamond, silicon, and silicon nitride ............................... 21 

Table 3 – Fabrication steps of diamond nano-beams. ............................................................. 60 

Table 4 – Etching Rates............................................................................................................. 62 

Table 5 – fabrication steps of Si membranes. .......................................................................... 62 

Table 6 – Design parameters of the CPW resonators. ............................................................. 64 

Table 7 – Properties of Diamond Samples. .............................................................................. 65 

Table 8 – Fabrication steps of superconducting CPW resonators. ........................................... 66 

Table 9 – Superconducting resonators results summary ......................................................... 68 

Table 10 – Complete fabrication protocol for Josephson junctions. ....................................... 74 

Table 11 – Gradiometer flux qubit design matrix. ................................................................... 77 

 



 
 

Table of Acronyms 
Acronym Meaning Acronym Meaning 

AC Alternating current RB Randomized benchmarking 
AFM Atomic force microscope RIE Reactive ion etching 
BAW Bulk acoustic wave RMS Root mean square 
CPW Coplanar waveguide RWA Rotating wave approximation 
DC Direct current SAW Surface acoustic wave 
FIB Focused ion beam SEM Scanning electron microscope 
FID Free induction decay SMP Sub miniature push-on 
GFQ Gradiometer flux qubit SOI Silicon-on-insulator 

HBAR High-overtone bulk acoustic wave SPAM State preparation and measurement 

HEMT High Electron Mobility Transistor SQUID Superconducting quantum 
interference device 

IR Infrared TWPA Traveling wave parametric amplifier 
IRB Interleaved randomized benchmarking USC Ultra strong coupling 
PCB Printed circuit board UV Ultraviolet 
QED Quantum electrodynamics VNA Vector network analyzer 
QPT Quantum process tomography ZPF Zero-point fluctuation 

Table of Key Variables 

Variable Description unit 

𝑪𝑪�𝑮𝑮 Geometric capacitance matrix F 

𝑪𝑪�𝑱𝑱 Junction capacitance matrix F 

𝒂𝒂�†,𝒂𝒂� Creation and annihilation operators of microwave cavity  

𝒃𝒃�†,𝒃𝒃� Creation and annihilation operators of mechanical resonator  

𝒏𝒏�𝒕𝒕𝒕𝒕 Number of thermal photons  

𝝈𝝈�𝒊𝒊 Pauli operator 𝑖𝑖  

𝛁𝛁𝟐𝟐 Laplacian operator  

𝓗𝓗𝐢𝐢𝐢𝐢𝐢𝐢 Interaction Hamiltonian J 

𝓗𝓗𝐢𝐢𝐢𝐢𝐢𝐢
𝐥𝐥𝐥𝐥𝐥𝐥  Linearized interaction Hamiltonian J 

𝐢𝐢𝒎𝒎 Sequence of 𝑚𝑚 Clifford operations  

𝓛𝓛𝒌𝒌,𝓛𝓛𝒈𝒈 Kinetic and geometric inductance per unit length H/m 

𝐭𝐭𝐭𝐭𝐭𝐭𝜹𝜹 Loss tangent  

𝚪𝚪𝟏𝟏 Relaxation rate Hz 

𝚪𝚪𝟐𝟐,𝑬𝑬
(𝟐𝟐) Second order Hahn-Echo decay rate Hz 

𝚪𝚪𝟐𝟐,𝑬𝑬 Hahn-Echo decay rate Hz 

𝚪𝚪𝟐𝟐,𝑹𝑹 Ramsey decay rate Hz 

𝚪𝚪𝟐𝟐 Dephasing rate Hz 

𝚪𝚪𝛟𝛟 Pure dephasing rate Hz 



 
 

𝚪𝚪𝑷𝑷 Purcell decay rate Hz 

𝚪𝚪𝒎𝒎 Damping rate of mechanical resonator Hz 

𝚪𝚪𝝋𝝋𝒏𝒏� Photon noise dephasing rate Hz 

𝚪𝚪𝝋𝝋𝑪𝑪 Charge noise dephasing rate Hz 

𝚫𝚫𝒅𝒅 Detuning between mechanical resonator and microwave cavity or qubit rad/s 

𝚲𝚲𝒊𝒊𝒋𝒋,𝒋𝒋 Error channel  

𝚽𝚽𝟎𝟎 Magnetic flux quantum Wb 

𝚽𝚽𝒁𝒁𝒁𝒁𝒁𝒁 Magnetic flux fluctuation due to 𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍  Wb 

𝚽𝚽𝒅𝒅 Differential flux of the GFQ, Φ𝑡𝑡 − Φ𝑏𝑏 Wb 

𝚽𝚽𝒕𝒕 (𝚽𝚽𝒃𝒃) Magnetic flux through the top (bottom) loop of the GFQ Wb 

𝑨𝑨→ (𝑨𝑨←) Forward (backward) traveling wave amplitude A/Hz1/2 

𝑨𝑨𝒆𝒆𝒆𝒆𝒆𝒆 Effective mode area m2 

𝑩𝑩∥,𝑩𝑩⊥ Parallel, perpendicular magnetic field T 

𝑩𝑩𝒆𝒆𝒆𝒆𝒆𝒆 External magnetic field amplitude T 

𝑪𝑪𝒊𝒊𝒋𝒋 Clifford operation  

𝑪𝑪𝑱𝑱 Capacitance of a Josephson junction F 

𝑪𝑪𝒊𝒊𝒊𝒊 Parasitic capacitances between superconducting islands F 

𝑪𝑪𝒏𝒏 Clifford group  

𝑪𝑪𝒒𝒒 Capacitance of qubit F 

𝑪𝑪𝒖𝒖 (𝓒𝓒) Capacitance per unit cell (length) F/m 

𝑫𝑫�(𝜶𝜶) Displacement operator, 𝑒𝑒�𝛼𝛼𝑎𝑎�†−𝛼𝛼∗𝑎𝑎��  

𝑬𝑬𝛙𝛙 Positive operator-valued measure element for detecting the state 𝜓𝜓  

𝑬𝑬𝑪𝑪 Charging energy GHz 

𝑬𝑬𝑱𝑱 Josephson energy GHz 

𝑰𝑰� Identity operator  

𝑰𝑰𝟎𝟎 Critical current of a Josephson junction A 

𝑰𝑰𝑫𝑫𝑫𝑫 Direct current bias of the GFQ A 

𝑰𝑰𝑫𝑫𝑫𝑫
𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 Current bias at the optimal point of the GFQ A 

𝑰𝑰𝒄𝒄 Superconducting critical current A 

𝑰𝑰𝒑𝒑 Persistent current of the flux qubit A 

𝑱𝑱𝒎𝒎 / 𝑰𝑰𝒎𝒎 Normal / modified Bessel functions  

𝑳𝑳𝑩𝑩 Length of Bragg filter segment m 

𝑳𝑳𝒖𝒖 (𝓛𝓛) Inductance per unit cell (length) H/m 

𝑷𝑷�(𝒂𝒂�) Parity operator, 𝑒𝑒𝑖𝑖𝑖𝑖𝑎𝑎†𝑎𝑎  

Michael Stern
The units should be sqrt(Power)- A^2 is in Watts



 
 

𝑷𝑷𝒊𝒊,𝑷𝑷𝒋𝒋 Pauli operators  

𝑸𝑸𝑪𝑪 Quality factor of the resonator  

𝑸𝑸𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 Clamping quality factor  

𝑸𝑸𝒎𝒎 Quality factor of mechanical resonator  

𝑸𝑸𝒕𝒕𝒕𝒕𝒕𝒕 Total quality factor  

𝑹𝑹𝒏𝒏 Normal state resistance of Josephson junction Ω 

𝑹𝑹𝒔𝒔 Sheet resistance Ω 

𝑺𝑺𝐢𝐢𝒎𝒎  Noisy RB sequence  

𝑺𝑺� Schrieffer-Wolff transformation operator  

𝑺𝑺𝟐𝟐𝟐𝟐 Transmission coefficient  

𝑻𝑻𝟏𝟏 Relaxation time s 

𝑻𝑻𝟐𝟐 Decoherence time s 

𝑻𝑻𝒄𝒄 Superconducting critical temperature K 

𝑼𝑼𝟎𝟎 Ground energy of mechanical resonator J 

𝑼𝑼𝒃𝒃 Bending energy J 

𝑽𝑽𝑫𝑫𝑫𝑫 Direct current voltage V 

𝑽𝑽𝒊𝒊 Electrostatic potential of the 𝑖𝑖-th superconducting island V 

𝒁𝒁𝟎𝟎 Characteristic impedance Ω 

𝒁𝒁𝟏𝟏,𝒁𝒁𝟐𝟐 Impedances of Bragg filter segments Ω 

𝒁𝒁𝑺𝑺 Scattering element impedance Ω 

𝒁𝒁𝒆𝒆𝒆𝒆𝒆𝒆 Effective impedance of the Bragg filter Ω 

𝒄𝒄𝒔𝒔 Transverse wave propagation speed m/s 

𝒇𝒇→(𝒙𝒙,𝝎𝝎) Spatial distribution function  

𝒇𝒇𝑬𝑬(𝒕𝒕) Hahn-Echo decay function  

𝒇𝒇𝑹𝑹(𝒕𝒕) Ramsey decay function  

𝒇𝒇𝒎𝒎,𝒏𝒏 Circular membrane resonance frequency of mode 𝑚𝑚,𝑛𝑛 Hz 

𝒈𝒈𝟎𝟎 Single photon coupling strength rad/s 

𝒈𝒈𝒙𝒙 Transverse coupling strength rad/s 

𝒈𝒈𝒛𝒛 Longitudinal coupling strength rad/s 

𝒊𝒊𝒋𝒋 Specific operation from i𝑚𝑚  

𝒌𝒌𝑩𝑩 Boltzmann constant J/K 

𝒎𝒎𝒆𝒆𝒆𝒆𝒆𝒆 effective mode mass Kg 

𝒏𝒏� Average number of photons in a cavity  

𝒏𝒏𝒋𝒋 Conjugate charge variable  



 
 

𝒑𝒑𝐢𝐢𝒎𝒎  Survival probability  

𝒑𝒑𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 Depolarization parameter of the interleaved gate  

𝒑𝒑𝒓𝒓𝒓𝒓𝒓𝒓 Depolarization parameter of the entire IRB set  

𝒓𝒓← (𝒕𝒕→) Reflection (transmission) coefficient  

𝒓𝒓𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 Average error rate of the interleaved gate  

𝒓𝒓𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 reflection of an interface between different impedances  

𝒕𝒕𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 Transmission coefficient of the Bragg filter  

𝒕𝒕𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 Phase delay of a transmission line segment  

𝒖𝒖𝒁𝒁𝒁𝒁𝒁𝒁 Zero-point fluctuation of mechanical resonator m 

𝒗𝒗𝒆𝒆 Speed of sound m/s 

𝒗𝒗𝒑𝒑𝒑𝒑 Phase velocity m/s 

𝒙𝒙𝒁𝒁𝒁𝒁𝒁𝒁 Amplitude of the zero-point motion of mechanical resonator m 

𝜶𝜶� Average coherent drive amplitude  

𝜶𝜶𝑻𝑻 Attenuation factor between different temperature stages  

𝜷𝜷𝒏𝒏 Mechanical frequency parameter  

𝜿𝜿𝑪𝑪 Decay rate of the resonator Hz 

𝝀𝝀𝑩𝑩 Center frequency of the Bragg filter m 

𝝀𝝀𝒔𝒔 Shear wavelength m 

𝝋𝝋𝒂𝒂𝒂𝒂𝒂𝒂 Accumulated phase during a round-trip in the resonator rad 

𝝋𝝋𝒊𝒊 Superconducting phase difference across the 𝑖𝑖-th Josephson junction rad 

𝝎𝝎𝑰𝑰𝑰𝑰 Frequency cut-off Hz 

𝝎𝝎𝒄𝒄 Microwave cavity resonance frequency rad/s 

𝝎𝝎𝒈𝒈𝒈𝒈 Transition frequency of the qubit rad/s 

𝝎𝝎𝒎𝒎 Mechanical resonator resonance frequency rad/s 

𝝎𝝎𝒏𝒏 Mechanical natural frequency of mode 𝑛𝑛 rad/s 

𝝎𝝎𝒓𝒓 resonance frequency of the resonator rad/s 

EY Young’s modulus Pa 

𝓗𝓗 Hamiltonian J 

ℏ Reduced Planck's constant J∙s 

𝚪𝚪 Damping rate Hz 

𝚫𝚫 Minimal transition frequency of the qubit rad/s 

𝚽𝚽 Magnetic flux Wb 

𝑨𝑨 Cross section area of a beam m2 

𝑪𝑪(𝒖𝒖) Deflection dependent capacitance F 



 
 

𝑭𝑭(𝒎𝒎) Sequence fidelity  

𝑰𝑰 Moment of inertia Kg∙m2 

𝑰𝑰(𝒙𝒙, 𝒕𝒕) Current along transmission line A 

𝑲𝑲 

Kerr constant m/V2 

Kinetic energy of a flux qubit J 

Complete elliptic integral of the first kind  

𝑳𝑳 

Inductance of microwave cavity H 

Length of a beam m 

Length of transmission line m 

𝑳𝑳(𝚽𝚽) Magnetic flux dependent inductance H 

𝑴𝑴 Mutual inductance H 

𝑴𝑴(𝒙𝒙, 𝒕𝒕) Bending momentum N∙m 

𝑷𝑷 
Pressure Bar 

Absolute to junction voltage transformation matrix  

𝑷𝑷(𝒕𝒕) State preservation probability  

𝑸𝑸 Quality factor  

𝑹𝑹 Radius of circular membrane m 

𝑻𝑻 Temperature K 

𝑼𝑼 Potential energy of flux qubit J 

𝑽𝑽(𝒙𝒙, 𝒕𝒕) Voltage along transmission line V 

𝒄𝒄 Speed of light m/s 

𝒆𝒆 The electron charge 1.602×10-19 C 

𝒇𝒇 Frequency Hz 

𝒈𝒈 Coupling strength rad/s 

𝒎𝒎 (𝒏𝒏) Number of doublets (internal interfaces) in the Bragg filter  

𝒑𝒑 Depolarization parameter  

𝒓𝒓 Average error rate of the entire RB set  

𝒖𝒖(𝒙𝒙, 𝒕𝒕) Displacement of mechanical resonator m 

𝒘𝒘,𝒉𝒉 width and height of a beam m 

𝒛𝒛 Normalized impedance, 𝑍𝑍𝑠𝑠
𝑍𝑍0

  

𝜶𝜶 Asymmetry parameter of Josephson junctions  

𝜸𝜸 
Mechanical mode shape scaling factor  

Bragg filter enhancement factor  

𝜹𝜹𝒂𝒂� Vacuum fluctuations of coherent drive  



 
 

𝜹𝜹𝜹𝜹 Area difference between the loops of the GFQ m2 

𝜹𝜹𝜹𝜹 Amplitude of current fluctuation in the resonator A 

𝜽𝜽 External magnetic field angle rad 

𝜿𝜿 
Decay rate of microwave cavity Hz 

Wave number, 𝜔𝜔/𝑐𝑐 1/m 

𝝀𝝀 Center wavelength of microwave cavity m 

𝝂𝝂 Poisson’s ratio  

𝝆𝝆 Density Kg/m3 

𝝉𝝉 
Mechanical resonator coherence time s 

Round-trip time inside the resonator s 

𝝌𝝌 Dispersive coupling strength rad/s 

𝝎𝝎 Angular frequency rad/s 

𝝐𝝐 
Electric permittivity F/m 

GFQ’s magnetic flux energy bias, 
2𝐼𝐼𝑝𝑝
ℏ
�Φ − Φ0

2
� rad/s 



 
 

Abstract 
The exploration of macroscopic quantum phenomena is a compelling frontier in modern 

physics, driving both fundamental investigations into the nature of quantum mechanics and 

the development of novel quantum technologies. While superconducting qubits have 

emerged as a leading platform for quantum computing due to their fast operation and strong 

coupling to microwave fields, they face limitations such as short coherence times and 

crosstalk. Mechanical resonators, conversely, offer exceptional coherence properties, with 

coherence times reaching milliseconds. However, in most implementations their inherent 

linearity and weak coupling to external control fields present significant challenges. Hybrid 

quantum systems, which combine the complementary strengths of different physical 

platforms while mitigating their individual limitations, offer a promising solution to these 

challenges. 

This thesisa a hybrid electromechanical quantum system where interaction is 

mediated by magnetic field quantum fluctuations. To maximize this interaction, we propose a 

coupling scheme that integrates gradiometer superconducting flux qubits with mechanical 

resonators. This approach circumvents some limitations of conventional optomechanical and 

electromechanical schemes by exploiting the enhanced flux sensitivity of flux qubits while 

leveraging mechanical resonators' exceptional coherence properties. 

The work begins with the design and fabrication of high-quality mechanical resonators 

using both silicon membranes and diamond nanobeams. To effectively couple to these 

resonators, a gradiometer flux qubit was developed, as its design enables the application of a 

uniform magnetic field to enhance the coupling. 

As the gradiometer qubit's design makes it insensitive to global external magnetic fields, it 

cannot be magnetically biased by an external coil. Therefore, we developed a Bragg-

terminated resonator, which allows the application of a DC current for the generation of a 

local magnetic flux, thus enabling the magnetic flux biasing of the qubit. 

The gradiometer flux qubits demonstrated quantum coherent operation with 

relaxation rated down to 33 kHz, and Hahn echo coherence rates down to 80 kHz at optimal 



 
 

point. The primary limitation was identified as flux noise attributed to fabrication-induced 

contamination and direct transmission line coupling. 

 Quantum gate fidelities were characterized with randomized benchmarking, achieving 

average gate fidelities of 99.3%. Interleaved randomized benchmarking yield fidelity of 99.7% 

for 𝑋𝑋𝜋𝜋 2⁄  gate.  
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1. Scientific Background 

1.1 Quantum Behavior of Macroscopic Objects 

The interpretation of quantum mechanics and its transition to the macroscopic world can be 

fundamentally reformulated into the question: "Can a macroscopic object be put in a quantum 

superposition?"1 This question, first illustrated by Schrödinger's famous thought experiment 

in 1935, has evolved from philosophical speculation to experimental reality. While quantum 

mechanics traditionally describes microscopic phenomena2 such as atoms, electrons, and 

photons, the exploration of quantum effects in macroscopic systems has emerged as a 

compelling frontier in modern physics3–5. In contrast to passively observing naturally occurring 

phenomena, the research field of macroscopic objects takes a proactive, engineering-driven 

approach. The primary motivation for this approach, and its most significant advantage over 

studies of natural quantum systems like atoms or molecules, is the prospect of control. 

Whereas the properties of an atom are fixed by nature, the parameters of an artificial 

macroscopic object—its resonance frequency, its coupling strength to other systems, its 

intrinsic nonlinearity, and its dissipative environment—can be precisely designed and 

fabricated using modern lithographic techniques. This design flexibility provides an 

unprecedented toolkit for both fundamental investigations into quantum mechanics and the 

development of novel quantum technologies. 

To coax a macroscopic object, composed of billions of constituent atoms, into displaying its 

underlying quantum nature, two stringent prerequisites must be met. First, the temperature 

of the object, typically a resonator, must be tuned well below the characteristic energy scale 

defined by the resonance frequency: 𝑘𝑘𝐵𝐵𝑇𝑇 ≪ ℏ𝜔𝜔, where 𝑘𝑘𝐵𝐵 is the Boltzmann constant, 𝑇𝑇 is 

the temperature, ℏ is the reduced Planck constant, and 𝜔𝜔 is the resonance frequency. This 

condition ensures that thermal fluctuations do not overwhelm the quantum nature of the 

system. Achieving this regime necessitates working at dilution refrigerator temperatures, 

typically in the millikelvin range (5-20 mK). Even at these extremely low temperatures, 

additional cooling strategies, such as sideband cooling and active feedback cooling, are often 

required to bring the macroscopic object to its quantum ground state. Second, the quality 

factor of the resonator is much greater than unity: 𝑄𝑄 = 𝜔𝜔
Γ
≫ 1, where Γ is the damping rate. 

A high quality-factor ensures that the resonator can maintain its quantum coherence for 
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sufficiently long times to enable meaningful quantum operations and measurements. This 

requirement translates to minimizing all sources of energy dissipation and decoherence in the 

system along with careful engineering of the resonator materials, geometry, and coupling to 

the environment.  

1.2 Superconducting Qubits 

Among the different technologies, superconducting qubits have emerged as one of the 

leading platforms for near-term quantum computing applications, with major demonstrations 

of quantum advantage achieved using this technology6–8. Superconducting qubits are 

macroscopic electronic circuits fabricated from superconducting materials like aluminum or 

niobium, which exhibit quantum mechanical behavior when cooled to millikelvin 

temperatures. A critical component in these circuits is the Josephson junction, a tunnel barrier 

between two superconducting electrodes that introduces nonlinearity to the circuit without 

dissipation, effectively transforming classical harmonic oscillators into anharmonic quantum 

systems. The anharmonicity allows to isolate two distinct energy levels suitable for qubit 

operation. These systems are often referred to as "artificial atoms" because, unlike natural 

atoms with fixed properties, their quantum characteristics can be precisely engineered and 

controlled through circuit design parameters9. By adjusting the inductance, capacitance, and 

critical current of the Josephson junctions, researchers can tune fundamental properties of 

the "atom" such as the transition frequency between energy levels and the circuit's 

characteristic impedance, allowing for tailored performance for specific quantum computing 

applications. 

The significant advantage offered by superconducting qubits is their strong coupling to 

microwave radiation, which enables fast and efficient quantum operations10–12. The large 

electric dipole moments inherent to these artificial atoms facilitate rapid gate operations, 

typically executed within nanoseconds, while simultaneously allowing for high-fidelity 

quantum state readout through dispersive coupling to microwave resonators. This strong 

microwave coupling also enables straightforward integration with conventional microwave 

electronics and control systems, providing a practical interface between the quantum 

processor and classical control infrastructure. Furthermore, the ability to coherently couple 

multiple qubits through shared microwave cavities or transmission line resonators forms the 
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foundation for scalable quantum architectures, where entangling operations and quantum 

information transfer can be efficiently mediated by the electromagnetic field modes. Indeed, 

recent advances have demonstrated processors exceeding 100 qubits, with Google's Willow13 

and China's Zuchongzhi 3.08.  

Despite their advantages, superconducting qubits face several significant challenges that limit 

their current quantum computing applications11,12. Qubit lifetime remains a primary concern, 

as decoherence processes including relaxation (𝑇𝑇1) and dephasing (𝑇𝑇2) typically limit 

coherence times to tens of microseconds, constraining the depth of quantum circuits that can 

be executed before quantum information is lost to the environment. Cross-talk between 

neighboring qubits presents another major obstacle, as the strong coupling that enables fast 

gates can also lead to unwanted interactions and frequency shifts that reduce gate fidelities 

and complicate multi-qubit operations11,14. 

1.3 Mechanical Resonators 

Mechanical resonators have emerged as a cornerstone technology for both advanced sensing 

and fundamental quantum physics. These versatile platforms bridge the classical and 

quantum regimes, providing tools for probing fundamental physics at the intersection of 

quantum mechanics and gravity15–17. Modern implementations, ranging from vibrating 

membranes to suspended beams, demonstrate remarkable performance with quality factors 

exceeding 109 at MHz to GHz frequencies, leading to quantum coherence times approaching 

100 milliseconds—a significant leap beyond typical electromechanical systems18. 

These exceptional coherence properties enable a wide array of applications. For instance, 

resonators are coupled to superconducting qubits to achieve control over mechanical motion, 

enabling phonon-number-resolved measurements that extend quantum electrodynamics into 

new frequency regimes19. This has been shown with strong dispersive coupling between 

fluxonium superconducting qubits and mechanical oscillators at approximately 700 MHz, 

achieving coupling rates of 𝑔𝑔 ≈ 2𝜋𝜋 × 14 MHz15. 

Moreover, these devices offer extraordinary force sensitivity, with resonant force noise 

spectral densities as low as 650 zN/Hz1/2. This opens applications in fields such as magnetic 

resonance force microscopy, single molecule detection, and dark matter detection18. Beyond 

sensing applications, these resonators provide unique platforms for testing fundamental 
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physics theories, with their long lifetimes and large zero-point fluctuations making MHz-

frequency drums excellent candidates for testing gravitational collapse phenomena 

postulated by Diósi-Penrose models and enabling tests of the boundary between classical and 

quantum physics, including constraints on continuous spontaneous localization20. 

In the context of quantum information processing, mechanical oscillators typically comprise 

micro- and nano-resonators with masses down to femtograms19,21. These resonators possess 

several characteristics that make them suitable for quantum applications. Their isolation from 

the environment results in high quality factors, enabling long coherence times essential for 

quantum state preservation22. The frequency range of these resonators spans from kilohertz 

to gigahertz, providing flexibility in system design and integration19. Additionally, their small 

physical dimensions allow for compact integration with other quantum components23. 

 

Figure 1 – Quality factor of different mechanical resonators over the years | The quality factor has doubled about every 14 

months. Adapted from reference 22.  

The performance of a mechanical oscillator is characterized by two fundamental parameters. 

The first is the coherence time 𝜏𝜏, which is directly associated with thermal fluctuations and is 
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approximated by 𝜏𝜏 ≈ ℏ
𝑘𝑘𝐵𝐵𝑇𝑇

𝑄𝑄, where 𝑄𝑄 is the quality factor of the resonator. The second is the 

𝑄𝑄 × 𝑓𝑓 product, where 𝑓𝑓 is the mechanical resonance frequency, and this metric quantifies the 

resonator's energy storage capability. 

For optimal performance in quantum applications, the condition 𝑄𝑄 × 𝑓𝑓 > 𝑘𝑘𝐵𝐵𝑇𝑇
ℏ

 (~1011 at 1K) 

must be fulfilled to overcome thermal decoherence with higher values indicating superior 

performance for quantum applications. A summary of recent experimental demonstrations 

that have achieved high 𝑄𝑄 × 𝑓𝑓 systems can be found in Table 1. 

 

Table 1 – Properties of various mechanical resonators 

Resonator type Material 𝑓𝑓 [Hz] 𝑄𝑄 𝑄𝑄 × 𝑓𝑓 [Hz] 

Membrane24 AlGaAs 5.00×106 3.00×105 1.50×1012 

HBAR25 AlN/Al2O3 6.68×109 7.11×105 4.75×1015 

HBAR26 AlN/Al2O3 6.06×109 9.00×105 5.45×1015 

Cantilever27 Diamond 2.00×106 1.63×105 3.26×1011 

Nanobeam28 Diamond 5.76×109 4.40×105 2.53×1015 

Ring29 Diamond 2.97×109 4.29×104 1.27×1014 

Nanobeam30 GaP 2.80×109 4.18×104 1.17×1014 

Nanobeam31 LiNbO₃ 1.80×109 1.70×104 3.06×1013 

Hierarchical32 Si3N4 1.07×105 7.80×108 8.35×1013 

Membrane18 Si3N4 1.49×106 1.50×109 2.23×1015 

Membrane33 Si3N4 1.14×106 1.09×109 1.24×1015 

Nanobeam34 Si3N4 1.10×106 2.00×107 2.20×1013 

Nanobeam35 Si3N4 1.33×106 8.00×108 1.06×1015 

Polygon-shaped36 Si3N4 3.50×105 3.60×109 1.26×1015 

Spiderweb37 Si3N4 1.34×105 1.82×108 2.44×1013 

Trampoline38 Si3N4 4.09×104 4.50×106 1.84×1011 

Nanobeam39 SiC 2.80×105 2.90×106 8.12×1011 

Trampoline40 Silicon 1.41×105 1.20×106 1.69×1011 

Nanobeam41 Silicon 5.00×109 4.92×1010 2.46×1020 
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Membrane42 Silicon 4.13×106 5.34×106 2.21×1013 

Nanobeam43 sSi 1.46×106 1.30×1010 1.90×1016 

The isolation from the environment that enables high Q-factors simultaneously present 

challenges for controllability and readout of mechanical systems. The weak coupling to 

external fields necessitates sophisticated phonon-to-photon transducers which are usually 

lossy. Additionally, the intrinsic linearity of mechanical oscillators restricts their utility for 

quantum information processing. 

To overcome these limitations, mechanical resonators can be coupled to other quantum 

systems in hybrid architectures23. These hybrid systems, that we will present in the following 

sections, combine the long coherence times of mechanical oscillators with the controllability 

and nonlinearity of other quantum platforms. 

1.4 Hybrid Systems 

The future of quantum computing will likely involve hybrid approaches that leverage the 

complementary strengths of different quantum platforms while mitigating their individual 

weaknesses23,44–46. 

Mechanical oscillators present compelling advantages for quantum information processing. 

As discussed previously, they offer exceptional coherence properties. Additionally, these 

mechanical resonators operate at MHz-GHz frequencies with micron-scale footprints, making 

them significantly more compact than alternative superconducting cavities in these range of 

frequencies. 

However, mechanical systems face three key limitations. First, their MHz-range operation 

corresponds to energy scales of ~10⁻⁵ K, preventing passive cooling to the quantum ground 

state since cryogenic refrigerators typically reach only ~10⁻³ K. Second, the environmental 

isolation that preserves their superior coherence inherently limits coupling rates to external 

control systems, creating a fundamental trade-off between coherence and controllability. 

Third, mechanical oscillators have evenly spaced energy levels, preventing their direct use as 

qubits, which require anharmonicity to isolate specific two-level transitions. 

Hybrid architecture offers promising solutions to these challenges. By coupling mechanical 

oscillators to more controllable quantum systems—through optical fields in optomechanical 
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schemes or electrical signals in electromechanical approaches—researchers can exploit their 

superior storage capabilities while circumventing their native limitations in control and 

nonlinearity.  

 

Figure 2 – Hybrid quantum systems | The schematics show the different paths to couple mechanical systems, such as 

nanomechanical, SAW or BAW resonators, to optical, microwave or spin systems. The figure was adopted from reference 45.  

1.4.1 Quantum Optomechanics and Electromechanics 

Quantum optomechanics and electromechanics constitute research fields investigating the 

interaction between electromagnetic radiation and mechanical motion at the quantum 

level19. These systems explore the coupling between electromagnetic radiation and 

nanomechanical or micromechanical motion, where a mechanical oscillator is coupled to a 

quantum harmonic oscillator associated with electromagnetic fields at optical or microwave 

frequencies through radiation pressure forces or electrostatic interactions. The quantum 

regime is achieved when the thermal energy scale 𝑘𝑘𝐵𝐵𝑇𝑇 becomes comparable to or smaller 

than the mechanical resonance energy ℏ𝜔𝜔𝑚𝑚, enabling the observation of quantum 

phenomena in macroscopic mechanical systems. 

The theoretical frame work of cavity optomechanics is used to describe the coupling to optical 

photons while analogous physical principles apply to microwave and radio frequencies falls 
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under circuit quantum electrodynamics (cQED)47. For simplicity, we refer only to 

electromechanical systems, though the underlying physics applies equally to optical 

frequencies. The mechanical motion modulates the cavity resonance frequency, while 

intracavity photons exert radiation pressure forces on the mechanical element. For 

electromechanical systems, the coupling between mechanical displacement and microwave 

cavity modes occurs mainly through capacitive interaction. Both platforms enable 

investigation of quantum phenomena in mechanical systems, including ground state 

cooling18,48–50, quantum state preparation51,52, and entanglement generation53,54. 

 
Figure 3 – Different experimental systems used for optomechanics and electromechanics demonstrations | The arrows 

indicate the achieved coupling. The image was adopted from reference 23.  

The theoretical framework describing both optomechanical and electromechanical systems 

relies on similar Hamiltonians, differing primarily in the coupling mechanisms and frequency 

regimes. The electromechanical interaction is described by the Hamiltonian: 

 ℋ = ℏ𝜔𝜔𝑐𝑐𝑎𝑎�†𝑎𝑎� + ℏ𝜔𝜔𝑚𝑚𝑏𝑏�†𝑏𝑏� − ℏ𝑔𝑔0𝑎𝑎�†𝑎𝑎��𝑏𝑏� + 𝑏𝑏�†� (1) 

where 𝑎𝑎� and 𝑏𝑏� represent the microwave and mechanical annihilation operators, respectively, 

𝜔𝜔𝑐𝑐 is the microwave cavity frequency, 𝜔𝜔𝑚𝑚 is the mechanical frequency, and 𝑔𝑔0 ∝ 𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍 is the 

vacuum electromechanical coupling19. Here, 𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍 is the amplitude of the zero-point motion 

of the mechanical resonator. The coupling term −ℏ𝑔𝑔0𝑎𝑎�†𝑎𝑎��𝑏𝑏� + 𝑏𝑏�†� describes how the photon 

number modulates the mechanical oscillator position and vice versa. 
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For coherent drive 𝑎𝑎� = 𝛼𝛼� + 𝛿𝛿𝑎𝑎� the electromechanical interaction can be linearized when the 

cavity average drive amplitude 𝛼𝛼� significantly exceeds the vacuum fluctuations 𝛿𝛿𝑎𝑎�. The 

interaction Hamiltonian takes the form: 

 ℋ𝑖𝑖𝑖𝑖𝑖𝑖 = −ℏ𝑔𝑔0(𝛼𝛼� + 𝛿𝛿𝑎𝑎�)†(𝛼𝛼� + 𝛿𝛿𝑎𝑎�)�𝑏𝑏� + 𝑏𝑏�†� (2) 

The term proportional to |𝛼𝛼�|2 can be omitted by shift of the displacement’s origin, and the 

term proportional to 𝛿𝛿𝑎𝑎�†𝛿𝛿𝑎𝑎� is negligible. Thus, the linearized interaction Hamiltonian 

becomes: 

 ℋ𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙 = −ℏ𝑔𝑔0√𝑛𝑛�(𝛿𝛿𝑎𝑎� + 𝛿𝛿𝑎𝑎�†)�𝑏𝑏� + 𝑏𝑏�†� (3) 

with the electromechanical coupling strength defined as 𝑔𝑔 = 𝑔𝑔0√𝑛𝑛�, and 𝑛𝑛� = |𝛼𝛼�|2 is the 

average number of photons in the cavity. When the condition 𝜅𝜅 ≪ 𝜔𝜔𝑚𝑚, where 𝜅𝜅 is the cavity 

decay rate, is satisfied, the modulation of the cavity frequency results with visible individual 

sidebands. In this so-called resolved sideband regime different terms in the interaction 

Hamiltonian are dominant, depending on the detuning Δ𝑑𝑑 = 𝜔𝜔𝑐𝑐 − 𝜔𝜔𝑚𝑚. To make it clear, let us 

move to the interaction picture where 𝛿𝛿𝑎𝑎�(𝑡𝑡) = 𝛿𝛿𝑎𝑎�𝑒𝑒−𝑖𝑖Δ𝑑𝑑𝑡𝑡, 𝑏𝑏�(𝑡𝑡) = 𝑏𝑏�𝑒𝑒−𝑖𝑖𝜔𝜔𝑚𝑚𝑡𝑡 and the interaction 

Hamiltonian takes the form: 

 ℋ𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙 = −ℏ𝑔𝑔0√𝑛𝑛��𝑒𝑒−𝑖𝑖(Δ𝑑𝑑+𝜔𝜔𝑚𝑚)𝑡𝑡�𝛿𝛿𝑎𝑎�†𝑏𝑏� + 𝛿𝛿𝑎𝑎�𝑏𝑏�†� + 𝑒𝑒−𝑖𝑖(Δ𝑑𝑑−𝜔𝜔𝑚𝑚)𝑡𝑡�𝛿𝛿𝑎𝑎�†𝑏𝑏�† + 𝛿𝛿𝑎𝑎�𝑏𝑏��� (4) 

In the red-detuned case, where Δ𝑑𝑑 ≈ −𝜔𝜔𝑚𝑚, provoking the rotating wave approximation 

(RWA) yields the “beam-splitter” interaction ℋ = −ℏ𝑔𝑔�𝛿𝛿𝑎𝑎�†𝑏𝑏� + 𝛿𝛿𝑎𝑎�𝑏𝑏�†�. This interaction 

enables the negatively detuned drive photons to scatter into the cavity's high-energy 

resonance, effectively cooling the mechanical resonator by transferring its thermal energy 

away55. For blue detuning, Δ𝑑𝑑 ≈ +𝜔𝜔𝑚𝑚, the RWA leads to the “two-mode squeezing” 

interaction ℋ = −ℏ𝑔𝑔�𝛿𝛿𝑎𝑎�†𝑏𝑏�† + 𝛿𝛿𝑎𝑎�𝑏𝑏��, which is used for parametric amplification and to 

entangle the optical and the mechanical modes54.  

For electromechanical systems the coupling is usually capacitive. The vibrating element, such 

as a cantilever or a membrane, is incorporated in a capacitor 𝐶𝐶. The change in capacitance is 

translated to a change in the cavity frequency 𝜔𝜔𝑐𝑐 = 1
�𝐿𝐿𝐿𝐿(𝑢𝑢)

 with 𝐿𝐿 the inductance of the cavity. 

The resulting single-photon coupling rate is 𝑔𝑔0 = 𝜕𝜕𝜔𝜔𝑐𝑐
𝜕𝜕𝜕𝜕

𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍. In the case of a capacitor made of 

parallel plates at distance 𝑑𝑑 from each other, if 𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍 ≪ 𝑑𝑑, the capacitive response is given by 

�𝜕𝜕𝜔𝜔𝑐𝑐
𝜕𝜕𝜕𝜕
� ≈ 𝜔𝜔𝑐𝑐

2𝑑𝑑
 and the coupling is thus 𝑔𝑔0 = 𝜔𝜔𝑐𝑐

2𝑑𝑑
𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍.  
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Experimentally, 𝑔𝑔0 2𝜋𝜋⁄  ranges from 100 – 102 Hz for both optical and microwave 

electromagnetic systems18,48–51,53,54,56–58. This weak coupling (𝑔𝑔0 ≪ 𝜅𝜅, Γ𝑚𝑚, where Γ𝑚𝑚 is the 

mechanical damping rate) fundamentally limits the ability to generate non-Gaussian quantum 

states directly in the mechanical degree of freedom. To put these values in context, typical 

experimental parameters include cavity decay rates 𝜅𝜅
2𝜋𝜋

 ranging from kHz to MHz, and 

mechanical quality factors 𝑄𝑄𝑚𝑚 = 𝜔𝜔𝑚𝑚
Γ𝑚𝑚

 between 10⁴ and 10⁶, depending on the operating 

environment and device design19. 

Although coupling strength 𝑔𝑔 can be enhanced by driving the cavity with many photons, this 

amplification strategy introduces fundamental limitations. In optical systems, intense laser 

drives cause unwanted heating that degrades the mechanical coherence and pushes the 

system away from the quantum regime. In microwave electromechanical systems, the 

coupling is typically capacitive, constrained by the physical dimensions of the coupling 

capacitor. Larger capacitors yield stronger coupling but result in lower mechanical frequencies, 

creating a fundamental trade-off between coupling strength and mechanical performance. 

An alternative strategy employs magnetic coupling mechanisms to overcome these 

limitations59. The fundamental mechanism relies on the transduction of mechanical 

displacement into magnetic flux variations that modulates the inductance of a 

superconducting quantum interference device (SQUID) embedded within a microwave cavity. 

By making one arm of the SQUID’s loop a free-standing beam (See Figure 4 for example) and 

applying a parallel magnetic field 𝐵𝐵∥, the mechanical motion of the beam determines the 

magnetic flux threading the SQUID’s loop resulting in a position-varying inductance of the 

resonator. This approach circumvents the geometric limitations inherent to capacitive 

coupling schemes and provides a pathway toward single-photon strong-coupling regimes. 

 
Figure 4 – Experimental realization of a superconducting quantum interference device (SQUID) with a free-standing arm 

embedded in an LC resonator | Left panel: colorized scanning electron microscope micrograph. The beam resonator (R), 
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Josephson junctions (J) and SQUID bias line (S) are shown in red. Right panel: Schematics of the measurement system with 

coupling magnetic field B applied parallel to the SQUID. Adopted from reference 60.  

The theoretical model follows the optomechanics Hamiltonian, but with different single-

photon coupling 𝑔𝑔0. The resonance frequency of the microwave cavity is modulated by the 

flux-dependent inductance 𝜔𝜔𝑐𝑐 = 1
�𝐿𝐿(Φ)𝐶𝐶

. Consequently, the single-photon coupling becomes 

𝜕𝜕𝜔𝜔𝑐𝑐
𝜕𝜕Φ

Φ𝑍𝑍𝑍𝑍𝑍𝑍, where 𝜕𝜕𝜔𝜔𝑐𝑐
𝜕𝜕Φ

 is the flux responsivity of the cavity and Φ𝑍𝑍𝑍𝑍𝑍𝑍 is the magnetic flux 

fluctuation induced in the SQUID due to zero-point fluctuations of the mechanical resonator. 

For a parallel magnetic field 𝐵𝐵∥ acting on a SQUID with a vibrating beam of length 𝐿𝐿 as an arm 

Φ𝑍𝑍𝑍𝑍𝑍𝑍 = 𝛾𝛾𝐵𝐵∥𝐿𝐿𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍, where 𝛾𝛾 is a scaling factor that depends on the mechanical mode shape. 

Hence, the single-photon coupling is 𝑔𝑔0 = 𝜕𝜕𝜔𝜔0

𝜕𝜕Φ
𝛾𝛾𝐵𝐵∥𝐿𝐿𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍. Reported values61,62 in the range of 

𝑔𝑔0 2𝜋𝜋⁄ ≈ kHz set an improvement of one order of magnitude compared to the capacitive 

coupling. However, these purely magnetic coupling mechanism, regardless of their strength, 

remain fundamentally linear interaction that preserve the Gaussian character of quantum 

states, thereby precluding the generation of exotic non-Gaussian mechanical states essential 

for advanced quantum information processing. Non-Gaussian states like cat states and 

squeezed states are essential because they provide quantum advantages that classical or 

Gaussian quantum states cannot achieve, enabling applications such as quantum 

computational advantage63,64, and quantum sensing with improved precision65,66 

Achieving single-photon ultra-strong coupling (USC), where the coupling strength is 

comparable to the system's resonant frequencies, can also unlock the ability to generate 

exotic quantum states, such as two-mode squeezed states, macroscopic "cat" states, and the 

photon blockade effect67–69. Yet, the fundamental obstacle to reaching USC is the inherently 

weak nature of radiation pressure coupling, which is further constrained by device geometry 

and material properties. Because achieving strong single-photon coupling through purely 

electromagnetic means is so difficult, a different approach is needed to create non-Gaussian 

mechanical states. A promising alternative involves coupling the mechanical oscillator to a 

nonlinear artificial atom. This method bypasses the limitations of linear electromagnetic 

coupling by using the artificial atom's anharmonicity to introduce the necessary nonlinearity 

for advanced quantum state engineering. The details of this hybrid approach will be discussed 

in the next section. 
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1.4.2 Coupling to Artificial Atoms 

Following the limitations of the linear interaction discussed in the previous section, artificial 

atoms offer a fundamentally different approach to generating non-classical mechanical states. 

Unlike linear optomechanical interactions that preserve the Gaussian character of the 

coherent drive, the intrinsic anharmonicity of artificial atoms, i.e. superconducting qubits, 

enables direct access to non-Gaussian quantum states through nonlinear coupling 

mechanisms. The integration of artificial atoms with mechanical resonators constitutes an 

extension of cavity optomechanics where the mechanical element couples to a nonlinear 

superconducting qubit rather than a harmonic electromagnetic cavity. 

The system Hamiltonian for the qubit-mechanical oscillator configuration is: 

 ℋ = ℏ𝜔𝜔𝑚𝑚𝑏𝑏�†𝑏𝑏� + ℏ
Δ
2
𝜎𝜎�𝑧𝑧 + ℏ�𝑏𝑏� + 𝑏𝑏�†�(𝑔𝑔𝑥𝑥𝜎𝜎�𝑥𝑥 + 𝑔𝑔𝑧𝑧𝜎𝜎�𝑧𝑧) (5) 

where 𝜔𝜔𝑚𝑚 represents the mechanical oscillator frequency, 𝑏𝑏� and 𝑏𝑏�† denote the mechanical 

mode annihilation and creation operators, respectively. The parameter Δ is the energy 

splitting between the two lowest energy levels of the superconducting qubit, and 𝜎𝜎�𝑥𝑥,𝑧𝑧 are the 

Pauli operators within the qubit subspace. The coupling term exhibits both transverse (𝑔𝑔𝑥𝑥) 

and longitudinal (𝑔𝑔𝑧𝑧) components, where the dominant coupling mechanism depends on the 

specific superconducting qubit implementation and the coupling scheme employed. For 

convenience we will denote the coupling strength 𝑔𝑔. 

This Hamiltonian is formally equivalent to the cQED model, with the mechanical resonator 

substituting for the microwave cavity. Following established cQED analysis47, the rotating wave 

approximation remains valid under typical experimental conditions70 where 𝑔𝑔 ≪ 𝜔𝜔𝑚𝑚, Δ. The 

rapidly oscillating, non-energy-conserving terms 𝑏𝑏�𝜎𝜎�− and 𝑏𝑏�†𝜎𝜎�+ can be neglected, reducing the 

Hamiltonian to the Jaynes-Cummings form: 

ℋ = ℏ𝜔𝜔𝑚𝑚𝑏𝑏�†𝑏𝑏� + ℏ
Δ
2
𝜎𝜎�𝑧𝑧 + ℏ𝑔𝑔�𝑏𝑏�†𝜎𝜎�− + 𝑏𝑏�𝜎𝜎�+� 

where 𝑔𝑔 denotes the coupling strength and 𝜎𝜎�−, 𝜎𝜎�+ represent the qubit ladder operators.  

For nanomechanical resonators coupled to superconducting qubits, the system typically 

operates in the dispersive regime, characterized by 𝑔𝑔 ≪ Δ𝑑𝑑 where the detuning parameter is 
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defined as Δ𝑑𝑑 = |Δ − 𝜔𝜔𝑚𝑚|. In this regime, the qubit and mechanical system are far detuned, 

preventing direct energy exchange while enabling measurements of the mechanical state71. 

The Jaynes-Cummings Hamiltonian can be diagonalized to first order in 𝑔𝑔
Δ𝑑𝑑

 through application 

of the Schrieffer-Wolff transformation72. By selecting the transformation operator 𝑆̂𝑆 =

− 𝑔𝑔
Δ𝑑𝑑
�𝑏𝑏�†𝜎𝜎�− − 𝑏𝑏�𝜎𝜎�+� the effective Hamiltonian becomes: 

 ℋ = ℏ𝜔𝜔𝑚𝑚𝑏𝑏�†𝑏𝑏� + ℏ
Δ
2
𝜎𝜎�𝑧𝑧 + ℏ𝜒𝜒 �𝑏𝑏�†𝑏𝑏� +

1
2
� 𝜎𝜎�𝑧𝑧 (6) 

where 𝜒𝜒 = 𝑔𝑔2

Δ𝑑𝑑
 represents the dispersive coupling strength. The resulting interaction term 

indicates that the qubit transition frequency depends linearly on the phonon occupation 

number of the mechanical resonator. This dispersive frequency shift has magnitude ± 𝜒𝜒
2
. 

The coupling strength for charge-based mechanisms73 is 𝑔𝑔 = 𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍𝑉𝑉𝐷𝐷𝐷𝐷
𝐶𝐶𝑞𝑞

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(2𝑒𝑒)
ℏ

, where 𝑉𝑉𝐷𝐷𝐷𝐷 is the 

voltage applied to the mechanical resonator, 𝐶𝐶𝑞𝑞 is the capacitance of the qubit, and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is the 

position dependent qubit-mechanical resonator capacitance. 

Most demonstrations employ electromechanical coupling where mechanical motion 

modulates the charge state of the qubit. For Cooper-pair box (CPB) qubits, mechanical 

displacement changes the gate capacitance, resulting in a charge-dependent coupling that is 

predominantly longitudinal (𝑔𝑔𝑧𝑧 coupling). A vibrating cantilever or membrane changes the 

capacitive coupling between the mechanical element and the qubit island, leading to coupling 

strengths on the order of 10 MHz depending on the applied gate voltage and device 

geometry.71,74 

For transmon qubits, the coupling mechanism differs due to their charge-insensitive design. 

Transmons operate in the regime where the Josephson energy 𝐸𝐸𝐽𝐽 significantly exceeds the 

charging energy 𝐸𝐸𝐶𝐶, reducing sensitivity to charge noise.75 However, mechanical motion can 

still couple to transmons through modulation of the qubit transition frequency via capacitive 

interactions76. In transmon-based systems, the coupling is typically transverse (𝑔𝑔𝑥𝑥 coupling) 

rather than longitudinal with strength up to the order of 102 MHz.77 

A different approach is to use piezoelectric coupling that utilizes strain-induced electric fields 

to couple mechanical motion to the qubit charge. The strain associated with acoustic waves 
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generates electric fields that couple to the qubit via capacitive interactions.78 The coupling 

strength is proportional to 𝑔𝑔 ∝ 𝐶𝐶𝑞𝑞
𝐶𝐶
𝑒𝑒𝑝𝑝𝑝𝑝
𝜖𝜖 � 1

𝜌𝜌𝑣𝑣𝑒𝑒
, with 𝑒𝑒𝑝𝑝𝑝𝑝 the piezoelectric coupling, 𝜖𝜖,𝜌𝜌 and 𝑣𝑣𝑒𝑒 the 

substrate permittivity, density and speed of sound, respectively. The realization of such 

systems is via surface acoustic wave (SAW) and high-overtone bulk acoustic wave (HBAR) 

resonators fabricated on piezoelectric substrates such as lithium niobate (LiNbO₃) or gallium 

arsenide. These systems have shown coupling strength on the MHz range achieving the strong 

coupling regime79,80 

Overall, coupling mechanical resonators to artificial atoms offers significant advantages over 

purely electromagnetic approaches. The intrinsic nonlinearity of superconducting qubits 

enables the storage of non-Gaussian quantum states, that remain inaccessible through linear 

optomechanical interactions, in the mechanical resonator. Experimental achievements 

include dispersive coupling with transmons and successful demonstrations of quantum state 

tomography80, multi-phonon entanglement, and Fock state preparation81. However, 

fundamental limitations persist, including decoherence from thermal environments and finite 

mechanical quality factors. 

1.4.3 Encoding a Qubit In a Cavity 

A qubit can be encoded in the infinite Hilbert space of the quantum harmonic oscillators were 

the logical basis composed of superposition of coherent states also known as a 'cat state'2.  

This approach is advantageous because of the redundant encoding of information and the 

need for only a single ancilla qubit is to control the cavity state82,83 and to detect the dominant 

error syndrome (a photon loss) in a quantum non-demolition measurement84. Yet, the 

scalability of microwave cavities is questionable due to their large physical dimensions. 

Recently a ‘cat-state’ was demonstrated in a high-overtone bulk acoustic-wave resonator 

(HBAR)85, showing the potential use of compact mechanical “cats”. 

The energy levels of the quantum mechanical oscillator are equidistant and therefore at first 

sight, it is not possible to specifically address two levels in the energy manifold. However, a 

qubit can be encoded in cavities with logical basis composed of superposition of coherent 

states also known as a 'cat state'2. In the following, we will explain briefly how such a qubit 

called a “cat state” can be formed in a cavity.  
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Let’s introduce two operators acting on the cavity eigenstates, namely the displacement 

operator 𝐷𝐷� and the parity operator 𝑃𝑃�.  The displacement operator 𝐷𝐷�(𝛼𝛼) = 𝑒𝑒�𝛼𝛼𝑎𝑎�†−𝛼𝛼∗𝑎𝑎�� is a 

unitary operator and its action is to map the ground state of the cavity to a state called 

coherent state |𝛼𝛼⟩ = 𝐷𝐷�(𝛼𝛼)|0⟩ which is an eigenvector of the annihilation operator 𝑎𝑎. The 

parity operator 𝑃𝑃� = 𝑒𝑒𝑖𝑖𝑖𝑖𝑎𝑎†𝑎𝑎 is unitary (𝑃𝑃�2 = 𝐼𝐼) and its action on a Fock state is given by 𝑃𝑃�|𝑛𝑛⟩ =

(−1)𝑛𝑛|𝑛𝑛⟩. Let’s now consider a superposition of two coherent states of equal amplitude 𝛼𝛼 

and phase difference of 𝜋𝜋: 

 �Ψα
±� = Nα

±(|α⟩ ± |−α⟩) ≈
1

√2
(|α⟩ ± |−α⟩)

Nα
± = �2�1 ± e−2|α|2��

−1
2

 

(7) 

The two states �Ψ𝛼𝛼
±� are often referred as the 'even' and 'odd' 𝜋𝜋-cat-states. They are 

eigenstates of the parity operator 𝑃𝑃� with different eigenvalue, namely 𝑃𝑃��Ψ𝛼𝛼
±� = ±�Ψ𝛼𝛼

±� and 

thus, with parity measurement can distinguish between these two states. One method to 

prepare cat states is by introducing nonlinearities in the Hamiltonian of the resonator ℋ𝑘𝑘 =

−𝛫𝛫(𝑎𝑎�†𝑎𝑎�)2. When a coherent state |𝛼𝛼⟩ propagates through the Kerr medium, it evolves 

according to 

 
|Ψ𝛼𝛼(𝜏𝜏)⟩ = 𝑒𝑒−

|𝛼𝛼|2

2 �
𝛼𝛼𝑛𝑛

√𝑛𝑛!
𝑒𝑒𝑖𝑖𝑖𝑖𝑛𝑛2𝜏𝜏|𝑛𝑛⟩

𝑛𝑛

 
(8) 

Consequently, after time interval 𝜏𝜏 = 2𝜋𝜋
𝐾𝐾

 the system comes back to its initial state. However, 

after time intervals 𝜏𝜏 = 𝜋𝜋
𝑞𝑞𝑞𝑞

 a q-component cat state is generated. For example, if 𝑞𝑞 = 2: 

 
�Ψ𝛼𝛼 �𝜏𝜏 =

𝜋𝜋
2𝐾𝐾
�� = 𝑒𝑒−

|𝛼𝛼|2

2 �
𝛼𝛼𝑛𝑛

√𝑛𝑛!
𝑒𝑒𝑖𝑖
𝜋𝜋
2𝑛𝑛

2
|𝑛𝑛⟩

𝑛𝑛

=
1

√2
�𝑒𝑒𝑖𝑖

𝜋𝜋
4 |𝛼𝛼⟩ + 𝑒𝑒−𝑖𝑖

𝜋𝜋
4 |−𝛼𝛼⟩� 

(9) 

An alternative route to create the desired cat states consists of using an ancilla qubit86. For 

example, a superconducting transmon qubit can be placed at the center of two 3D machined 

microwave cavities87,88 as shown in Figure 5. One cavity is the quantum harmonic oscillator 

that stores the information, and the second cavity is used to manipulate and readout of the 

transmon. Transmission line antenna couples the qubit to the TE101 mode of the cavities. 
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Figure 5 – Three-dimensional aluminum microwave cavities coupled to a superconducting transmon qubit | The coupling of 

the transmon to the cavities is via transmission line antennas. The figure is adopted from reference 88.  

The Hamiltonian of the Josephson junction in the center of the transmon qubit is given by: 

 ℋ = −𝐸𝐸𝐽𝐽 cos(Φ) (10) 

with 𝐸𝐸𝐽𝐽 the Josephson energy and Φ the magnetic flux threading the transmon. Excitations of 

the microwave modes cause current fluctuations in the Josephson junction that in turn are 

translated to fluctuations in the magnetic flux Φ. Consequently, the total magnetic flux is Φ =

Φ𝑍𝑍𝑍𝑍𝑍𝑍
𝑞𝑞 �𝑎𝑎�𝑞𝑞 + 𝑎𝑎�𝑞𝑞

†� + Φ𝑍𝑍𝑍𝑍𝑍𝑍
𝑠𝑠 �𝑎𝑎�𝑠𝑠 + 𝑎𝑎�𝑠𝑠

†� + Φ𝑍𝑍𝑍𝑍𝑍𝑍
𝑟𝑟 �𝑎𝑎�𝑟𝑟 + 𝑎𝑎�𝑟𝑟

†� with Φ𝑍𝑍𝑍𝑍𝑍𝑍
𝑖𝑖  the magnetic flux fluctuation 

due to current fluctuation from element 𝑖𝑖 and 𝑎𝑎�𝑖𝑖
†/𝑎𝑎�𝑖𝑖  the creation/annihilation operator of 

element 𝑖𝑖. The result Hamiltonian that describes the system is: 

 ℋ = −𝐸𝐸𝐽𝐽 cos�Φ𝑍𝑍𝑍𝑍𝑍𝑍
𝑞𝑞 �𝑎𝑎�𝑞𝑞 + 𝑎𝑎�𝑞𝑞

†� + Φ𝑍𝑍𝑍𝑍𝑍𝑍
𝑠𝑠 �𝑎𝑎�𝑠𝑠 + 𝑎𝑎�𝑠𝑠

†� + Φ𝑍𝑍𝑍𝑍𝑍𝑍
𝑟𝑟 �𝑎𝑎�𝑟𝑟 + 𝑎𝑎�𝑟𝑟

†�� (11) 

where Φ𝑍𝑍𝑍𝑍𝑍𝑍
𝑖𝑖  is the magnetic flux change due to excitation in element 𝑖𝑖. The operators of the 

qubit and the storage and readout cavities are denoted with the subscripts "𝑞𝑞", "𝑠𝑠" and "𝑟𝑟", 

respectively. By taking the Taylor expansion of the cosine term up to fourth order and omitting 

high-order and rotating terms the Hamiltonian becomes88,89: 

ℋ = ℏ𝜔𝜔𝑞𝑞𝑎𝑎�𝑞𝑞
†𝑎𝑎�𝑞𝑞 + ℏ𝜔𝜔𝑠𝑠𝑎𝑎�𝑠𝑠

†𝑎𝑎�𝑠𝑠 + ℏ𝜔𝜔𝑟𝑟𝑎𝑎�𝑟𝑟
†𝑎𝑎�𝑟𝑟 − 𝑏𝑏�†𝑏𝑏� �

𝜒𝜒𝑞𝑞𝑞𝑞
2
𝑎𝑎�𝑠𝑠
†𝑎𝑎�𝑠𝑠 −

𝜒𝜒𝑞𝑞𝑞𝑞
2
𝑎𝑎�𝑟𝑟
†𝑎𝑎�𝑟𝑟� −

𝜒𝜒𝑠𝑠𝑠𝑠
2
𝑎𝑎�𝑠𝑠
†𝑎𝑎�𝑠𝑠𝑎𝑎�𝑟𝑟

†𝑎𝑎�𝑟𝑟 (12) 

The first three terms describe each element as a harmonic oscillator with resonance 

frequency 𝜔𝜔𝑖𝑖. The last three terms are dispersive shifts 𝜒𝜒𝑖𝑖  of each element. During the 

interaction between the transmon qubit and the storage cavity the readout resonator is not 

populated �𝑎𝑎�𝑟𝑟
†𝑎𝑎�𝑟𝑟 ≈ 0�. In addition, the transmon is considered as a two-level system, so the 

effective Hamiltonian is: 

 ℋ = ℏ𝜔𝜔𝑞𝑞|𝑒𝑒⟩⟨𝑒𝑒| + �ℏ𝜔𝜔𝑠𝑠 − 𝜒𝜒𝑞𝑞𝑞𝑞|𝑒𝑒⟩⟨𝑒𝑒|�𝑎𝑎�𝑠𝑠
†𝑎𝑎�𝑠𝑠 (13) 

In the off-resonance strong dispersive regime90 the detuning ∆ and coupling between the 

qubit and resonator 𝑔𝑔 obey 𝑔𝑔
2

∆
> max �1

𝑇𝑇
, Γ, 𝜅𝜅� ,𝑔𝑔 > max �1

𝑇𝑇
, Γ, 𝜅𝜅� with 𝑇𝑇 the coherence time 
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of the qubit and Γ and 𝜅𝜅 the decay rate of the storage and readout cavities, respectively. In 

this regime the dispersive shift of the cavity resonance due to change in the qubit's state is 

larger than its width. If the qubit is in the ground/excited state and the resonance of the cavity 

differ by 𝜒𝜒𝑞𝑞𝑞𝑞. The qubit acts as a switch that allow signals at 𝜔𝜔 = 𝜔𝜔𝑠𝑠 − 𝜒𝜒𝑞𝑞𝑞𝑞 to pass into the 

cavity only when in the excited state. It is controlled by pulses at frequency 𝜔𝜔𝑞𝑞 which do not 

affect the cavity because of the detuning. If we put the qubit in the superposition |𝑔𝑔⟩+|𝑒𝑒⟩
√2

 and 

send signal at 𝜔𝜔 = 𝜔𝜔𝑠𝑠 − 𝜒𝜒𝑞𝑞𝑞𝑞 the result state of the system is |Ψ⟩ = |𝑔𝑔,0⟩+|𝑒𝑒,𝛼𝛼⟩
√2

. Applying a 

second 𝜋𝜋-pulse to the qubit yields the superposition |Ψ⟩ = 1
2

(|𝑔𝑔, 0⟩ − |𝑒𝑒, 0⟩ + |𝑒𝑒,𝛼𝛼⟩ + |𝑔𝑔,𝛼𝛼⟩), 

which after the measurement of the qubit in either |𝑔𝑔⟩ or |𝑒𝑒⟩ turns to: 

 |𝑖𝑖⟩ =
1

�2[1 ± exp(− |𝛼𝛼|2 2⁄ )]
(|𝛼𝛼⟩ ± |0⟩) ≈ (|𝛼𝛼⟩ ± |0⟩) √2⁄  (14) 

Lastly, we connect the storage cavity to a resonant source to displace the state: 

 �Ψ𝑓𝑓� = 𝐷𝐷�(−𝛼𝛼 2⁄ )|Ψ⟩ = (|𝛼𝛼 2⁄ ⟩ ± |−𝛼𝛼 2⁄ ⟩) √2⁄  (15) 

which is the desired 𝜋𝜋-phase cat. Indeed, the three-dimensional circuit QED architecture was 

used to deterministically encode cat states91 and observe photon loss error syndromes92.  

The general form of the two-component cat state |Ψ⟩ = 𝑐𝑐0|𝛼𝛼⟩ + 𝑐𝑐1|𝛼𝛼⟩ is not an eigenstate of 

the parity operator. Therefore, a more robust state is needed for the application of quantum 

error correction. The so-called cat code83,84 exploits higher dimension of the cavity's Hilbert 

space and uses superposition of cat states as the computational basis: 

 |𝐶𝐶𝛼𝛼±⟩ = 𝑁𝑁𝛼𝛼±(|𝛼𝛼⟩ ± |−𝛼𝛼⟩)

�𝐶𝐶𝑖𝑖𝑖𝑖
± � = 𝑁𝑁𝛼𝛼±(|𝑖𝑖𝑖𝑖⟩ ± |−𝑖𝑖𝑖𝑖⟩)

 
(16) 

Let us define the logical |0⟩ = |𝐶𝐶𝛼𝛼+⟩ and |1⟩ = |𝐶𝐶𝑖𝑖𝑖𝑖+ ⟩ and arbitrarily set the initial state to 

be �Ψ𝛼𝛼
0 � = 𝑐𝑐0|𝐶𝐶𝛼𝛼+⟩ + 𝑐𝑐1|𝐶𝐶𝑖𝑖𝑖𝑖+ ⟩. We can now explore what happens in the case of photon loss: 
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 �Ψ𝛼𝛼
1 � ≡ 𝑎𝑎�Ψ𝛼𝛼

0 � = 𝒩𝒩𝛼𝛼
−[𝑐𝑐0(|𝛼𝛼⟩ − |−𝛼𝛼⟩) + 𝑖𝑖𝑐𝑐1(|𝑖𝑖𝑖𝑖⟩ − |−𝑖𝑖𝑖𝑖⟩)] = 𝑐𝑐0|𝐶𝐶𝛼𝛼−⟩ + 𝑖𝑖𝑐𝑐1|𝐶𝐶𝑖𝑖𝑖𝑖− ⟩

�Ψ𝛼𝛼
2 � ≡ 𝑎𝑎�Ψ𝛼𝛼

1 � = 𝒩𝒩𝛼𝛼
+[𝑐𝑐0(|𝛼𝛼⟩ + |−𝛼𝛼⟩) − 𝑐𝑐1(|𝑖𝑖𝑖𝑖⟩ + |−𝑖𝑖𝑖𝑖⟩)] = 𝑐𝑐0|𝐶𝐶𝛼𝛼+⟩ − 𝑐𝑐1|𝐶𝐶𝑖𝑖𝑖𝑖+ ⟩  

�Ψ𝛼𝛼
3 � ≡ 𝑎𝑎�Ψ𝛼𝛼

2 � = 𝒩𝒩𝛼𝛼
−[𝑐𝑐0(|𝛼𝛼⟩ − |−𝛼𝛼⟩) − 𝑖𝑖𝑐𝑐1(|𝑖𝑖𝑖𝑖⟩ − |−𝑖𝑖𝑖𝑖⟩)] = 𝑐𝑐0|𝐶𝐶𝛼𝛼−⟩ − 𝑖𝑖𝑐𝑐1|𝐶𝐶𝑖𝑖𝑖𝑖− ⟩

𝑎𝑎�Ψ𝛼𝛼
3 � = 𝑁𝑁𝛼𝛼+[𝑐𝑐0(|𝛼𝛼⟩ + |−𝛼𝛼⟩) + 𝑐𝑐1(|𝑖𝑖𝑖𝑖⟩ + |−𝑖𝑖𝑖𝑖⟩)] = �Ψ𝛼𝛼

1 �                            

 

(17) 

We have a closed set of states {|Ψ𝛼𝛼
𝑛𝑛⟩} under the operation of 𝑎𝑎, even with arbitrary 𝑐𝑐0, 𝑐𝑐1. In 

addition, the expectation value of the parity operator obeys ⟨Ψ𝛼𝛼
𝑛𝑛|𝑃𝑃�|Ψ𝛼𝛼

𝑛𝑛⟩ = (−1)𝑛𝑛. Thus, the 

sign of the parity measurement will change every time a single photon is lost, i.e. an error 

syndrome occurs. Finally, in the absence of photon jumps the states Ψ𝛼𝛼
𝑛𝑛  evolve 

deterministically according to |Ψ𝛼𝛼
𝑛𝑛(𝑡𝑡)⟩ = �Ψ𝛼𝛼𝑒𝑒−𝜅𝜅𝜅𝜅 2⁄

𝑛𝑛 �, with 𝜅𝜅 the decay rate of the cavity. 

Overall, if the system is initialized at �Ψ𝛼𝛼
0 � and 𝑚𝑚 jumps occur during time interval 𝜏𝜏 the final 

state will �Ψ𝛼𝛼𝑒𝑒−𝜅𝜅𝜅𝜅 2⁄
𝑚𝑚mod4 � is known. The information can then be decoded to the ancilla qubit, 

corrected, and re-encoded to the cavity. This scheme was implemented successfully93 with 

the same 3D architecture mentioned before to demonstrate for the first time gainful quantum 

error correction. 

In this chapter we showed the different ways mechanical oscillators are exploited for 

quantum information processing. When coupled to artificial atoms they can serve as a 

quantum memory with long lifetime, although strong single-phonon coupling is still a 

challenge. To overcome this limitation, we seek to combine the nonlinear capabilities of 

artificial atoms with the enhanced coupling strengths demonstrated in magnetic flux-

mediated systems. As shown in previous sections, magnetic coupling schemes can achieve 

single-photon coupling rates, representing order-of-magnitude improvements over capacitive 

approaches. The next chapter presents the central goal of this thesis: to develop and 

demonstrate magnetic coupling between a superconducting flux qubit and mechanical 

resonators. Moreover, harmonic oscillators can be used for the generation of cat-state qubits. 

However, with microwave cavities, scalability is a major issue while mechanical cat-state only 

demonstrated recently. The proposal suggests that by swapping the microwave cavity for a 

mechanical cavity, our architecture would be capable of generating a mechanical cat-state. 
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2. Methodology 

2.1 Introduction 

Traditional approaches to quantum control of mechanical resonators rely on coupling to 

electromagnetic harmonic oscillators through optomechanical and electromechanical 

interactions. While these methods have enabled groundbreaking demonstrations of ground-

state cooling and basic quantum state preparation, the coupling strengths achieved through 

radiation pressure and capacitive mechanisms remain inherently limited. Single-photon 

coupling rates 𝑔𝑔0 typically reach only 10⁰– 10² Hz, falling short of the strong coupling regime 

(𝑔𝑔0 > 𝜅𝜅) necessary for efficient quantum control. 

Magnetic coupling schemes have emerged as a promising solution to this fundamental 

limitation, offering enhanced coupling strengths through flux-mediated interactions. By 

embedding mechanical resonators within SQUIDs, researchers have demonstrated single-

photon coupling rates reaching 𝑔𝑔0 2𝜋𝜋⁄ ≈ kHz61,62, representing an order-of-magnitude 

improvement over conventional approaches. Yet, the magnetic coupling does not allow for 

the creation on non-Gaussian quantum states. 

To transcend this limitation, coupling schemes involving nonlinear artificial atoms, specifically 

superconducting qubits, have been developed and demonstrated. The intrinsic anharmonicity 

of superconducting qubits enables the preparation of non-classical states including 

mechanical cat states85, squeezed states74, and multi-phonon Fock states81. 

We propose a novel approach that combines the enhanced coupling strengths of magnetic 

flux-mediated systems with the nonlinear capabilities of superconducting artificial atoms. 

Specifically, we present a methodology for coupling mechanical resonators, implemented as 

diamond nano-beams or silicon suspended membranes, to a superconducting flux qubit. 

At the heart of our scheme is the superconducting flux qubit. This qubit offers superior 

sensitivity to magnetic flux variations compared to conventional SQUID, making it ideal 

candidates for detecting mechanical motion through flux-mediated interactions. 

By positioning the mechanical resonator on one of the arms of the superconducting flux qubit 

loop, similar to the one detailed in section 1.4.1, the mechanical motion can alter the 

magnetic flux threading the loop if a parallel magnetic field is applied. 
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The enhanced sensitivity also presents significant experimental challenges. The control of flux 

qubit parameters requires precise control of the magnetic flux threading its loop, while the 

inherent flux sensitivity can result in environmental noise overwhelming the mechanical signal 

of interest. 

To mitigate these challenges, we propose implementing the flux qubit in a gradiometer 

configuration. This design allows us to apply a strong, parallel magnetic field to increase the 

coupling between the qubit and the mechanical resonator. Crucially, the gradiometer 

geometry ensures this uniform field does not directly affect the qubit; instead, the qubit is 

only influenced by the localized magnetic flux changes produced by the mechanical motion of 

the resonator. 

Previously, gradiometric flux qubits were developed to address the fabrication challenges 

inherent in flux qubits—where the energy gap depends exponentially on junction 

dimensions—enabling the realization of tunable gaps94–97. The gradiometric design eliminated 

crosstalk between gap tuning and energy bias control, both implemented via dedicated flux 

lines. While these gradiometric flux qubits demonstrated gap tunability across a GHz range 

and decay times of 𝑇𝑇1 = 1.5 − 150 μs, their coherence times remained limited to and 𝑇𝑇2 =

65 − 300 ns95,96.  

The gradiometer configuration can successfully enhance the coupling, yet it introduces a new 

challenge: the suppression of global magnetic field from external coils that are typically used 

to flux-bias the qubit to operate at the optimal point. To overcome this limitation, we 

implement a local biasing strategy that enables precise flux control while preserving the 

uniform field rejection properties of the gradiometer design. 

Our proposed methodology incorporates the flux qubit within a carefully designed coplanar 

waveguide resonator architecture. The resonator is terminated by a Bragg filter on one end, 

which provides a notch filter around the resonance frequency of the qubits. The opposite end 

is shorted to ground, creating a well-defined boundary condition for the electromagnetic 

modes. 

This resonator configuration serves dual purposes: it facilitates the application of precise DC 

magnetic bias fields required for optimal flux qubit operation, while simultaneously acting as 

a Purcell filter that removes unwanted microwave frequencies close to the qubit which could 
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otherwise degrade the system performance. The grounded termination provides a stable 

reference and enables the establishment of the necessary DC bias conditions. 

The following sections detail the theoretical framework, device design principles, fabrication 

methodology, and experimental protocols necessary to realize this quantum platform. 

2.2 Diamond Nano-beams 

This chapter outlines the methodology employed for the fabrication and analysis of diamond 

nano-mechanical resonators.  

2.2.1 Diamond as a Material Platform 

The selection of single-crystal diamonds for fabricating nano-mechanical systems is motivated 

by a unique combination of superior material properties, despite notable fabrication and cost 

challenges. 

Single-crystal diamond exhibits Young's modulus values of approximately EY = 1010 GPa, 

substantially exceeding silicon or silicon nitride as shown in Table 2. This high elastic modulus 

leads to increased EY/𝜌𝜌 ratio, with 𝜌𝜌 the density, that enables the realization of mechanical 

resonators with frequencies extending into the gigahertz range98. The mechanical quality 

factors of diamond nano-beams98,99,28 can exceed 104, with peak value of 𝑄𝑄𝑚𝑚 = 1.2 × 107 for 

a nano beam embedded in a phononic crystal100. 

Table 2 – Mechanical properties of diamond, silicon, and silicon nitride 

Material Young's modulus [GPa] Density [g/cm3] EY/𝝆𝝆 [GPa∙cm3/g] 
Diamond 1010101 3.52 286.93 

Silicon Nitride 362102 3.26 111.04 

Silicon 130 ⟨100⟩ orientation,1 
169 ⟨110⟩ orientation103 2.33 68.67 

Diamond also serves as an optimal substrate material for superconducting quantum circuits 

due to several key properties104. The chemical inertness of diamond allows for surface 

treatments that reduce contamination at the substrate-metal interface. This directly improves 

the coherence of superconducting qubits by mitigating dielectric loss, which primarily 

originates at these material interfaces.105 Additionally, diamond exhibits high thermal 

conductivity, facilitating efficient thermalization of superconducting circuits.  



Page | 22 
 

2.2.2 Free-Standing Triangular Beams 

The mechanical behavior of free-standing diamond nano-beams is analyzed using Euler-

Bernoulli beam theory, which provides a description of flexural vibrations in structures where 

the beam length significantly exceeds the cross-sectional dimensions.106 This theoretical 

framework enables prediction of resonance frequencies, mode shapes, and quality factors for 

different geometries. We focus on triangular cross-section beams due to considerations that 

are detailed in the Nano-Beam Fabrication section.  

For small deflections relative to beam dimensions, the bending moment 𝑀𝑀(𝑥𝑥, 𝑡𝑡) relates to the 

beam curvature through: 

 
𝑀𝑀(𝑥𝑥, 𝑡𝑡) = 𝐸𝐸𝑌𝑌𝐼𝐼

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2 (𝑥𝑥, 𝑡𝑡) 

(18) 

where 𝐸𝐸𝑌𝑌 represents Young's modulus and 𝐼𝐼 denotes the moment of inertia. The equation of 

motion for free vibrations, derived from Newton's second law, takes the form: 

 
−𝐸𝐸𝑌𝑌𝐼𝐼

𝜕𝜕4𝑢𝑢
𝜕𝜕𝑥𝑥4 (𝑥𝑥, 𝑡𝑡) = 𝜌𝜌𝜌𝜌

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2 (𝑥𝑥, 𝑡𝑡) 

(19) 

where 𝐴𝐴 and 𝜌𝜌 represent the cross-sectional area and mass density, respectively. Variable 

separation 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑈𝑈(𝑥𝑥)𝑇𝑇(𝑡𝑡) yields solutions for the spatial and temporal components of 

the beam motion. 

For doubly-clamped beams of length 𝐿𝐿, the boundary conditions require zero displacement 

and slope at both ends: 𝑢𝑢(0) = 𝑢𝑢(𝐿𝐿) = 𝑢𝑢ʹ(0) = 𝑢𝑢ʹ(𝐿𝐿) = 0. These constraints reflect the rigid 

attachment of the beam to the substrate at both clamping points. The general solution for the 

position-dependent component becomes: 

 𝑢𝑢𝑛𝑛(𝑥𝑥) = 𝐶𝐶𝑛𝑛[sinh𝛽𝛽𝑛𝑛𝑥𝑥 − sin𝛽𝛽𝑛𝑛𝑥𝑥 + 𝑎𝑎𝑛𝑛(cosh𝛽𝛽𝑛𝑛𝑥𝑥 − cos𝛽𝛽𝑛𝑛x)] (20) 

with 𝑎𝑎𝑛𝑛 = sinh𝛽𝛽𝑛𝑛𝐿𝐿−sin𝛽𝛽𝑛𝑛𝐿𝐿
cos𝛽𝛽𝑛𝑛𝐿𝐿−cosh𝛽𝛽𝑛𝑛𝐿𝐿

. The frequency parameters 𝛽𝛽𝑛𝑛 satisfy the transcendental equation 

cos𝛽𝛽𝑛𝑛𝐿𝐿∙cosh𝛽𝛽𝑛𝑛𝐿𝐿 = 1, yielding 𝛽𝛽1 = 4.730,𝛽𝛽2 = 7.853, and 𝛽𝛽3 = 10.996 for the first three 

modes. Figure 6 shows the mode shapes corresponding to these first three vibration modes 

of a fully-clamped triangular diamond beam. 
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Figure 6 – Vibration modes of a fully-clamped triangular diamond beam | Analytic solution of the first three modes of a 

diamond beam with 𝑤𝑤 = ℎ = 200 𝑛𝑛𝑛𝑛, 𝐿𝐿 = 1 𝜇𝜇𝜇𝜇, 𝐸𝐸𝑌𝑌 = 1000 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝜌𝜌 = 3510 𝑘𝑘𝑘𝑘
𝑚𝑚3. 

The temporal solution exhibits harmonic oscillation: 𝑇𝑇𝑛𝑛(𝑡𝑡) = cos(𝜔𝜔𝑛𝑛𝑡𝑡), where the natural 

frequency of the 𝑛𝑛th mode is: 

 
𝜔𝜔𝑛𝑛 =

𝛽𝛽𝑛𝑛2

𝐿𝐿2 �
𝐸𝐸𝑌𝑌𝐼𝐼
𝜌𝜌𝜌𝜌

 
(21) 

For triangular cross-sections with width 𝑤𝑤 and height ℎ, the out-of-plane moment of inertia 

equals 𝐼𝐼 = ∫ 𝑦𝑦2𝑑𝑑𝑑𝑑ℎ
0 = 𝑤𝑤ℎ3

36
. 

Under high-vacuum and cryogenic conditions, the mechanical quality factor becomes limited 

by clamping losses arising from energy dissipation into the supporting substrate. The diamond 

substrate thickness significantly exceeds the shear wavelength 𝜆𝜆𝑠𝑠 = 𝑐𝑐𝑠𝑠
𝜔𝜔𝑚𝑚

≈ 1 μm, where 𝑐𝑐𝑠𝑠 ≈

12 km
s

 represents the transverse wave propagation speed in diamond. Under these conditions, 

the mechanical quality factor follows107: 

 
𝑄𝑄𝑚𝑚 =

1
𝒜𝒜
𝐿𝐿
𝑤𝑤
�
𝐿𝐿
ℎ
�

4

 
(22) 

where 𝒜𝒜 ≈ 33.4 represents a numerical coefficient weakly dependent on Poisson's ratio 𝜈𝜈 =

0.1. 

The design of optimal beam parameters involves competing requirements. High operational 

frequencies minimize thermal occupation, favoring short and wide beams, while high quality 

factors require long and narrow geometries. Resolution of this trade-off necessitates 

numerical analysis using finite element methods. 
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We employed COMSOL Multiphysics structural mechanics simulations of a model consisting 

of triangular beams with equal width and height, etched from cubic diamond substrates with 

dimensions comparable to the shear wavelength (Figure 7). Low-reflecting boundary 

conditions prevent spurious energy reflections, while the beam and surrounding regions are 

maintained under high vacuum (𝑃𝑃 = 10⁻⁶ mbar). The simulations systematically vary beam 

length and width to analyze the out-of-plane vibrational modes. 

 
Figure 7 – COMSOL model | (a) Triangular diamond beam (purple) surrounded by high vacuum (grey). (b) Out-of-plane 

vibration mode shape. The color bar presents the displacement amplitude in arbitrary units determined by the simulation 

normalization. 

Each simulation generates a spectral response normalized by the software. Extraction of zero-

point fluctuations requires fitting the spectral response with Lorentzian functions and 

normalizing by the bending energy from the simulation to account for software normalization 

procedures. To do so we compare the simulated bending energy 𝑈𝑈𝑏𝑏 to the resonator’s ground 

energy 𝑈𝑈0 = ℏ𝜔𝜔
2

. Both energies are proportional to the square of the displacement, hence the 

zero-point fluctuation is 𝑢𝑢𝑍𝑍𝑍𝑍𝑍𝑍 = 𝑢𝑢�𝑈𝑈0 𝑈𝑈𝑏𝑏⁄ , with 𝑢𝑢 the simulated displacement of the beam. 

The analysis encompasses beams with widths 𝑤𝑤 ∈ [40 nm, 60 nm] and lengths 𝐿𝐿 ∈

[800 nm, 1000 nm]. The corresponding resonance frequencies span 0.6 GHz to 1.2 GHz, in 

good agreement with the analytical solution given by Equation 21. The quality factors range 

from 20,000 to 300,000, not far from the prediction from clamping losses (see Equation 22). 

A representative result is shown in Figure 8a.  
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Figure 8 – COMSOL simulations results | (a) Simulated and re-normalized spectral response (blue dots) of an 800 nm long and 

50 nm wide diamond beam with a Lorentzian fit (solid red line). The out-of-plane resonance frequency is 𝜔𝜔𝑛𝑛 2𝜋𝜋⁄ = 1.013 𝐺𝐺𝐺𝐺𝐺𝐺 

and the quality factor of the mode is 𝑄𝑄 = 30,088. (b) Color map of the resonance frequency of beams with different 

dimensions. The contour lines are the quality factor of the out-of-plane vibration mode 

Figure 8b presents a color map of the simulated resonance frequency for beams with different 

dimensions, with contour lines indicating the quality factor of the out-of-plane vibration 

mode. 

2.3 Silicon Membrane 

This section examines silicon as a platform for suspended membranes. We analyze the 

material properties that make silicon suitable for micromechanical applications, and discuss 

the theoretical models used to predict their mechanical response. 

2.3.1 Silicon as a Material Platform 

As shown in Table 2, silicon demonstrates directionally dependent elastic properties, with 

Young's modulus values varying between 130 GPa in the ⟨100⟩ orientation and 169 GPa in the 

⟨110⟩ direction103. This crystallographic anisotropy allows optimization of the mechanical 

performance through strategic device orientation. 

Silicon on Insulator (SOI) is a semiconductor substrate technology that consists of a thin silicon 

device layer separated from the bulk silicon substrate by an insulating layer, typically silicon 

dioxide (SiO2)108. One particularly relevant application of SOI technology is in the fabrication 

of silicon membranes. In this process, the buried oxide layer serves as a sacrificial layer that 

can be selectively etched away using hydrofluoric acid (HF) or other appropriate etchants, 

leaving behind a free-standing silicon membrane from the top device layer. The ability to use 

the insulating layer as a sacrificial layer provides an additional degree of structural control. 
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The resonance frequency of silicon mechanical resonators109 is usually in the order of 1-100 

MHz with quality factors above 104. Record quality factors above 106, at MHz frequencies, 

were achieved using square plate Lamé-mode resonator42,110.  

In this work, we focus on silicon membranes that can be coupled with a superconducting flux 

qubit. The coupling mechanism will be discussed later. Below, we overview the mechanical 

behavior of silicon membranes. 

2.3.2 Mechanics of Circular Membranes 

Membranes are two-dimensional structures characterized by thickness much smaller than 

their lateral dimensions. For circular membranes with radius 𝑅𝑅 and mass density 𝜌𝜌, the 

dynamic behavior follows the Kirchhoff-Love plate equation111 

 
∇4𝑤𝑤 +

12(1 − 𝜈𝜈2)
𝐸𝐸𝑌𝑌ℎ2 𝜌𝜌

𝜕𝜕2𝑤𝑤
𝜕𝜕2𝑡𝑡

= 0 
(23) 

where 𝑤𝑤(𝑟𝑟,𝜃𝜃, 𝑡𝑡) represents the transverse displacement, 𝐸𝐸𝑌𝑌 is Young's modulus, 𝜈𝜈 is Poisson's 

ratio, and h is the membrane thickness. The operator ∇2 denotes the Laplacian in polar 

coordinates. 

The solution to equation 23 yields the mode shapes for a clamped circular membrane: 

 
𝑤𝑤𝑚𝑚,𝑛𝑛(𝑟𝑟,𝜃𝜃, 𝑡𝑡) = 𝐶𝐶𝑚𝑚,𝑛𝑛 �𝐽𝐽𝑚𝑚�𝛾𝛾𝑚𝑚,𝑛𝑛𝑟𝑟� −

𝐽𝐽𝑚𝑚�𝛾𝛾𝑚𝑚,𝑛𝑛𝑅𝑅�
𝐼𝐼𝑚𝑚�𝛾𝛾𝑚𝑚,𝑛𝑛𝑅𝑅�

𝐼𝐼𝑚𝑚�𝛾𝛾𝑚𝑚,𝑛𝑛𝑟𝑟�� [cos(𝑚𝑚𝜃𝜃) + sin(𝑚𝑚𝜃𝜃)]𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
(24) 

Here, 𝐽𝐽𝑚𝑚 and 𝐼𝐼𝑚𝑚 are the normal and modified Bessel functions, respectively. The first few 

values of the quantized parameter are: 𝛾𝛾0,1𝑅𝑅 = 3.19622,𝛾𝛾1,1𝑅𝑅 = 4.61090, 𝛾𝛾2,1𝑅𝑅 =

5.90568,𝛾𝛾0,2𝑅𝑅 = 6.30644. The vibrational modes are characterized by two integer indices (m, 

n) that define the spatial oscillation pattern. Angular index m determines the number of nodal 

diameters (radial lines where displacement equals zero) while the radial index n corresponds 

to the number of nodal circles, determined by the n-th root of the Bessel functions. 

For a thin plate with thickness h ≪ R, the mode eigenfrequencies are: 

 
𝑓𝑓𝑚𝑚,𝑛𝑛 =

�𝛾𝛾𝑚𝑚,𝑛𝑛𝑅𝑅�
2

2𝜋𝜋𝑅𝑅2 �
𝐸𝐸𝑌𝑌

12𝜌𝜌(1 − 𝜈𝜈2)ℎ 
(25) 
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The effective mass of each vibrational mode is given by 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜌𝜌𝜌𝜌𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒, where the effective 

area is 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 = 2𝜋𝜋 ∫ 𝑤𝑤𝑚𝑚,𝑛𝑛(𝑟𝑟)𝑑𝑑𝑑𝑑𝑅𝑅
0 . For the fundamental mode (0,1), the ratio 

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒
𝜋𝜋𝑅𝑅2 = 0.3289. 

The zero-point fluctuation amplitude, critical for the coupling mechanism that will be 

presented later, is 𝑢𝑢𝑍𝑍𝑍𝑍𝑍𝑍 = �ℏ 4𝜋𝜋𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑚𝑚,𝑛𝑛⁄ . 

The total quality factor of a vibrating membrane results from multiple loss mechanisms: 

 1
𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡

=
1

𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+

1
𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+
1

𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ ⋯ (26) 

The dominant contribution at low temperature and under high-vacuum is from clamping 

losses (i.e. energy dissipation through the membrane supports). For a thin circular membrane 

the clamping losses are given by112: 

 1
𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= [6(1 − 𝜈𝜈)]−
3
2 �(𝛾𝛾0,𝑛𝑛𝑅𝑅)

ℎ
ℎ𝑠𝑠
�

4

𝑐𝑐0𝑛𝑛 
(27) 

where ℎ𝑠𝑠 is the thickness of the support and 𝑐𝑐0𝑛𝑛 ≈ 1 is a numerical factor related to the 

radiation admittance of the substrate and the normal force along the disk edge. The expected 

quality factor for the fundamental mode of a silicon membrane with 𝜈𝜈 = 0.28 and ratio ℎ
ℎ𝑠𝑠

=

110 nm
3 μm

≈ 0.073 is 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 3000. 

To validate the theoretical predictions and calculate realistic parameters, we performed finite 

element analysis using COMSOL Multiphysics Solid Mechanics module. The simulation 

geometry consisted of a 10 μm thick Si substrate of lateral dimensions 10 μm x 10 μm with 3 

μm thick oxide layer and a 220 nm Si device layer on top. Circular hole of radius 𝑅𝑅 =

{0.5, 1, 1.5, 2} μm is etched through the oxide to define the suspended silicon membrane (see 

Silicon Membrane Fabrication section). The outer boundaries are set as low-reflecting to 

minimize wave reflections. Figure 9 shows the fundamental vibrational mode of the silicon-

on-insulator membrane structure. 
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Figure 9 – COMSOL simulation of a circular Si membrane | The membrane is made of thin Si layer (220 nm) on top of a 3 μm 

layer of SiO2 and a 10 μm Si substrate (not shown in the image). Eigenfrequency analysis result with good agreement to the 

theoretical prediction for the fundamental mode of membranes with 𝑅𝑅 = {0.5, 1, 1.5, 2} μm. 

The simulated eigenfrequencies show good agreement with the analytical prediction of 

equation 25 with maximum deviation of 3%. In subsequent analysis of the coupling strength 

between mechanical resonators and superconducting flux qubits, we will use the values 

obtained for 𝑅𝑅 = 1 μm: 𝑓𝑓01 = 384 MHz, and effective mass 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜌𝜌
⟨𝑤𝑤⟩∭𝑤𝑤𝑤𝑤𝑤𝑤 = 3.62 fg, 

which corresponds to zero-point fluctuation amplitude 𝑢𝑢𝑍𝑍𝑍𝑍𝑍𝑍 = 2.5 fm.  

2.4 Gradiometer Superconducting Flux Qubit 

Flux qubits are quantum two-level systems with macroscopic degrees of freedom, realized 

through superconducting loops interrupted by Josephson junctions113,114. The potential 

energy of the qubit exhibits two local minima that correspond to persistent currents 

circulating in opposite directions as illustrated in Figure 10a. When those states degenerate, 

the qubit states manifest as their symmetric and anti-symmetric superpositions. The 

persistent current, typically 100-500 nA in micron-sized loops, generate magnetic dipole 

moments on the order of 105 μB, which is five orders of magnitude larger than atomic 

magnetic moments115. 
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Figure 10 – Gradiometer flux qubit topology | Left panel: Standard flux qubit topology where four Josephson junctions 

intersect a superconducting loop. The persistent current 𝐼𝐼𝑝𝑝 can flow in two opposite directions depending on the external 

magnetic flux 𝛷𝛷. The mutual inductance of the loop 𝑀𝑀 is also depicted. Right panel: Gradiometer flux qubit with top (t) and 

bottom (b) loops. The persistent current is divided equally between the loops while the mutual inductance of each arm remains 

the same. 

The large magnetic dipole moment fundamentally enhances the magnetic flux sensitivity of 

flux qubits compared to conventional superconducting quantum interference devices 

(SQUIDs). The qubit energy levels shift linearly with applied magnetic flux, on the order of 500 

GHz/G, providing a direct transduction mechanism between magnetic field and measurable 

energy116. Under optimal conditions at millikelvin temperatures, flux qubits achieve flux 

sensitivities of 10-8 Φ₀/Hz, representing an improvement over DC SQUIDs117.  

To enhance sensitivity to local magnetic flux changes induced by mechanical nano-beams, 

through a mechanism that will be discussed later; while rejecting common-mode, we employ 

gradiometer architecture. The gradiometer flux qubit (GFQ) utilizes a figure-eight geometry 

with two loops of different areas, creating a differential magnetometer that responds to 

magnetic field gradients rather than uniform fields. This configuration, schematically drawn in 

Figure 10b, provides inherent rejection of spatially uniform magnetic field, including those 

from distant sources and electromagnetic interference, while maintaining high sensitivity to 

localized magnetic signatures such as those generated by the mechanical motion. 

2.4.1 Model of Gradiometer Flux Qubit 

The gradiometer flux qubit schematically drawn in Figure 10b, consists of a figure-eight 

superconducting loop configuration designed to provide differential magnetic field sensitivity. 

Unlike conventional single-loop flux qubits, the GFQ comprises two superconducting loops 

that share a common arm containing four Josephson junctions. Three junctions are identical 

with critical current 𝐼𝐼𝑐𝑐, while the fourth junction has a reduced critical current 𝛼𝛼𝐼𝐼𝑐𝑐, where 𝛼𝛼 <

1 is the asymmetry parameter. 

The gradiometer architecture exploits the principle of common-mode rejection. Uniform 

magnetic fields threading both loops generate equal and opposite flux contributions, resulting 

in zero net flux through the differential setup. Conversely, spatially varying magnetic fields 

create unequal flux threading each loop, producing a measurable differential signal. This 
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configuration is particularly sensitive to localized flux sources, such as those generated by the 

mechanical motion of a nano-beam. 

Applying Faraday's law around each loop yields: 

 𝜑𝜑𝛼𝛼 + 𝜑𝜑1 + 𝜑𝜑2 + 𝜑𝜑3 = −2𝜋𝜋
Φ𝑡𝑡

Φ0

𝜑𝜑𝛼𝛼 + 𝜑𝜑1 + 𝜑𝜑2 + 𝜑𝜑3 = −2𝜋𝜋
Φ𝑏𝑏

Φ0

 

(28) 

where 𝜑𝜑𝑖𝑖 represents the superconducting phase difference across the 𝑖𝑖-th Josephson junction, 

Φ𝑡𝑡 (Φ𝑏𝑏) is the magnetic flux through the top (bottom) loop, and Φ0 = ℎ
2𝑒𝑒
≈ 2.07 × 10−15 Wb 

is the magnetic flux quantum. These constraints can be combined to eliminate the phase 

across the asymmetric junction: 

 𝜑𝜑𝛼𝛼 = 𝜋𝜋
Φ𝑑𝑑

Φ0
− 𝜑𝜑1 − 𝜑𝜑2 − 𝜑𝜑3 (29) 

where the differential flux Φ𝑑𝑑 = Φ𝑡𝑡 − Φ𝑏𝑏 becomes the fundamental control parameter for 

the qubit energy levels. 

The potential energy of the gradiometer circuit arises from the Josephson coupling across 

each junction. For junctions with Josephson energies 𝐸𝐸𝐽𝐽 = Φ0𝐼𝐼0
2𝜋𝜋

, the total potential energy is: 

 
𝑈𝑈 = −𝐸𝐸𝐽𝐽 �� cos(𝜑𝜑𝑖𝑖)

3

𝑖𝑖=1

+ 𝛼𝛼 cos �𝜋𝜋
Φ𝑑𝑑

Φ0
−𝜑𝜑1 − 𝜑𝜑2 − 𝜑𝜑3�� 

(30) 

At the optimal operating point Φ𝑑𝑑
Φ0

= 1, the potential energy exhibits two degenerate minima. 

At that point, the phases across the junctions satisfy 𝜑𝜑𝑖𝑖=1,2,3 ≡ 𝜑𝜑∗ where sin(𝜑𝜑∗) =

𝛼𝛼 sin(3𝜑𝜑∗).  

The two degenerate solutions correspond to persistent current states with opposite 

circulation directions: 

 
𝐼𝐼𝑝𝑝 = ±𝐼𝐼0�

3
4
−

1
4𝛼𝛼

 
(31) 
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The kinetic energy arises from the charging energy stored in the junction and geometric 

capacitances. The circuit, as shown in Figure 11, contains both junction capacitances 𝐶𝐶𝐽𝐽 and 

parasitic capacitances 𝐶𝐶𝑖𝑖𝑖𝑖 between superconducting islands.  

 

Figure 11 – Schematic circuit drawing of the gradiometer flux qubit | The Josephson junctions, depicted by × and characterized 

by the Josephson energy 𝐸𝐸𝐽𝐽 and the capacitive energy 𝐸𝐸𝐶𝐶, create four superconducting islands 𝐼𝐼𝑖𝑖 connected via the capacitors 

𝐶𝐶𝑖𝑖𝑖𝑖. Direct current bias 𝐼𝐼𝐷𝐷𝐷𝐷  is used to control the energy of the qubit. 

The total kinetic energy of the circuit can be expressed as118: 

 𝐾𝐾 =
1
2
�𝐶𝐶𝑖𝑖𝑖𝑖�𝑉𝑉𝑗𝑗 − 𝑉𝑉𝑖𝑖�

2

𝑖𝑖≠𝑗𝑗

+
1
2
𝐶𝐶𝐽𝐽[(𝑉𝑉2 − 𝑉𝑉1)2 + (𝑉𝑉3 − 𝑉𝑉2)2 + (𝑉𝑉4 − 𝑉𝑉3)2 + 𝛼𝛼(𝑉𝑉1 − 𝑉𝑉4)2] (32) 

where 𝑉𝑉𝑖𝑖 represents the electrostatic potential of the 𝑖𝑖-th superconducting island. In matrix 

form, the kinetic energy becomes: 

 𝐾𝐾 =
1
2
𝑉𝑉�𝑇𝑇𝐶̃𝐶𝐽𝐽𝑉𝑉� +

1
2
𝑉𝑉�𝑇𝑇𝐶̃𝐶𝐺𝐺𝑉𝑉�  (33) 

with 𝑉𝑉� = (𝑉𝑉1 𝑉𝑉2 𝑉𝑉3 𝑉𝑉4)𝑇𝑇. The junction capacitance matrix 𝐶̃𝐶𝐽𝐽 and geometric capacitance 

matrix 𝐶̃𝐶𝐺𝐺 are given by: 

 

𝐶̃𝐶𝐽𝐽 = 𝐶𝐶𝐽𝐽 �

1 + 𝛼𝛼
−1
−0
−𝛼𝛼

   

−1
−2
−1
−0

   

−0
−1
−2
−1

   

−𝛼𝛼
−2
−1

−1 + 𝛼𝛼

�

𝐶̃𝐶𝐺𝐺 = �

𝐶𝐶12 + 𝐶𝐶13 + 𝐶𝐶14
−𝐶𝐶12
−𝐶𝐶13
−𝐶𝐶14

   

−𝐶𝐶12
𝐶𝐶12 + 𝐶𝐶23 + 𝐶𝐶24

−𝐶𝐶23
−𝐶𝐶24

   

−𝐶𝐶13
−𝐶𝐶23

𝐶𝐶13 + 𝐶𝐶23 + 𝐶𝐶34
−𝐶𝐶34

   

−𝐶𝐶14
−𝐶𝐶24
−𝐶𝐶34

𝐶𝐶14 + 𝐶𝐶24 + 𝐶𝐶34

�

 

(34) 

The Hamiltonian of the gradiometer flux qubit can be derived with respect to different basis. 

We will work with the so-called charge basis that allows direct simulation of the capacitive 
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contribution. To do so we introduce a transformation from absolute voltages 𝑉𝑉�  to junction 

voltages 𝑉𝑉�𝑗𝑗 = 𝑃𝑃−1𝑉𝑉� . Here 𝑉𝑉�𝑗𝑗 = (𝑉𝑉12 𝑉𝑉23 𝑉𝑉34)𝑇𝑇 where 𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑗𝑗 − 𝑉𝑉𝑖𝑖. In the case where the 

island 𝐼𝐼1 is grounded (𝑉𝑉1 ≡ 0) the transformation matrix reduces to 𝑃𝑃 = �

0
1
1
1

 

0
0
1
1

 

0
0
0
1

 �.  

Let us define the conjugate charge variables using the Josephson relation Φ0

2𝜋𝜋
𝜑̇𝜑𝑗𝑗 = 𝑉𝑉𝑗𝑗,𝑗𝑗+1: 

 𝑛𝑛𝑗𝑗 ≡
1
ℏ
𝜕𝜕ℒ
𝜕𝜕𝜑̇𝜑𝑗𝑗

=
ℏ

(2𝑒𝑒)2 𝐶𝐶𝑗𝑗𝜑̇𝜑𝑗𝑗 
(35) 

Resulting with the complete Hamiltonian in the charge representation: 

 
ℋ =

(2𝑒𝑒)2

2
𝑛𝑛�𝑇𝑇�𝑃𝑃𝑇𝑇𝐶̃𝐶𝑃𝑃�

−1
𝑛𝑛� + 𝑈𝑈 

(36) 

where 𝑛𝑛� = (𝑛𝑛1 𝑛𝑛2 𝑛𝑛3)𝑇𝑇 represents the charge operators and 𝐶̃𝐶 = 𝐶̃𝐶𝐽𝐽 + 𝐶̃𝐶𝐺𝐺 is the total 

capacitance matrix. In the vicinity of the optimal operating point, the energy spectrum 

demonstrates a near-perfect qubit behavior. This is characterized by a clear separation 

between the two lowest energy states and the higher excited states (in some cases, the third 

energy level is located above the superconducting gap). This enables an effective two-level 

description with the pseudo-Hamiltonian: 

 ℋ =
ℏ
2

(Δ𝜎𝜎�𝑧𝑧 + 𝜖𝜖𝜎𝜎�𝑥𝑥) 
(37) 

The energy eigenvalues of the Hamiltonian are 𝐸𝐸± = ± ℏ
2
�Δ2 + 𝜖𝜖2 where Δ is the tunnelling 

energy between the two lowest energy states, and 𝜖𝜖 = 𝐼𝐼𝑝𝑝
ℏ

(Φ𝑑𝑑 − Φ0) represents the energy 

bias controlled by the differential flux. By defining the flux parameter of the gradiometer qubit 

Φ = Φ𝑑𝑑
2

, we obtain the expression for 𝜖𝜖 as of a standard flux qubit118: 

 𝜖𝜖 =
2𝐼𝐼𝑝𝑝
ℏ
�Φ −

Φ0

2
� 

(38) 

At the degeneracy point Φ = Φ0

2
, the flux dependent term 𝜖𝜖 vanish and the qubit is immune 

to first-order flux noise, providing optimal coherence properties. 

The gradiometer responds to external magnetic fields through the differential flux Φ𝑑𝑑. For 

identical loops, global uniform magnetic field will result with Φ𝑑𝑑 = 0. Therefore, we introduce 

the current bias 𝐼𝐼𝐷𝐷𝐷𝐷  (see Figure 11) that will split evenly between the two loops creating 
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opposite magnetic flux through the top and bottom loops. Considering only the mutual 

inductance of the outer arms 𝑀𝑀, the flux threading each loop is: 

 Φ𝑡𝑡 = 𝑀𝑀
𝐼𝐼𝐷𝐷𝐷𝐷
2

= −Φ𝑏𝑏

↓

Φ = 𝑀𝑀
𝐼𝐼𝐷𝐷𝐷𝐷
2

 

(39) 

Note that at the optimal operating point where Φ = Φ0

2
, the mutual inductance can be 

experimentally determined: 

 𝑀𝑀 =
Φ0

𝐼𝐼𝐷𝐷𝐷𝐷
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

(40) 

In the case of loops with different areas, an external magnetic field can be used to bias the 

qubit. The flux difference between the loops of the gradiometer is given by: 

 Φ𝑑𝑑 = 𝑀𝑀𝐼𝐼𝐷𝐷𝐷𝐷 + 𝛿𝛿𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 cos(𝜃𝜃) (41) 

with 𝛿𝛿𝛿𝛿 the difference between the area of the top and bottom loops. 𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 and 𝜃𝜃 are the 

magnitude and angle of an external magnetic field, respectively.  

2.5 Coplanar Waveguide Resonator With Bragg Filter Termination 

A Bragg reflector consists of a periodic structure of alternating high and low impedance 

sections that creates a notch filter around specific frequencies. The Bragg reflector can be 

designed to provide high reflectivity at a desired frequency range while maintaining DC 

conductivity. The structure consists of alternating sections of narrow and wide coplanar 

waveguide geometries, creating impedance variations that produce the required reflection 

properties. 

The key advantage of the Bragg reflector is that it provides the necessary boundary conditions 

for resonator operation while allowing DC current flow. The periodic structure acts as a high-

or low impedance termination at the resonator frequency (depending on the choice of the 

impedance adjacent to the resonator), effectively confining the electromagnetic field within 

the resonator volume. Simultaneously, the continuous superconducting path allows 

unimpeded DC current flow for qubit biasing. 
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In this section we will follow the scattering-matrix formalism proposed in reference 118 and 

apply it to a coplanar waveguide (CPW) transmission line terminated on one end by a Bragg 

filter and on the other end shorted to the ground. 

2.5.1 Transmission Line Model 

To analyze the electromagnetic properties of coplanar waveguide resonators in our circuit QED 

architecture, we employ a distributed transmission line model. This approach is essential for 

understanding wave propagation and reflection phenomena at microwave frequencies, where 

the wavelength becomes comparable to the physical dimensions of the circuit elements. 

The coplanar waveguide transmission line is modeled as a cascade of infinitesimal LC 

elements, as illustrated in Figure 12. Each unit cell of length 𝑢𝑢 is characterized by inductance 

𝐿𝐿𝑢𝑢 and capacitance 𝐶𝐶𝑢𝑢. This discrete representation captures the fundamental 

electromagnetic properties while enabling mathematical analysis of wave propagation. 

 
Figure 12 – Distributed-element model of transmission line | Each unit cells 𝑢𝑢 of the transmission line in characterized by its 

inductance 𝐿𝐿𝑢𝑢 and capacitance to the ground 𝐶𝐶𝑢𝑢. 

In the continuum limit, where 𝑢𝑢 → 0, the inductance and capacitance are normalized to unit 

length, yielding the distributed parameters ℒ and 𝒞𝒞 representing inductance and capacitance 

per unit length, respectively. This continuum approximation is valid when the unit cell length 

is much smaller than the wavelength of interest. 

The voltage 𝑉𝑉(𝑥𝑥, 𝑡𝑡) and current 𝐼𝐼(𝑥𝑥, 𝑡𝑡) along the transmission line are governed by Kirchhoff's 

laws applied to each infinitesimal element: 

 𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

= −ℒ
𝜕𝜕𝐼𝐼
𝜕𝜕𝑡𝑡

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

= −𝒞𝒞
𝜕𝜕𝑉𝑉
𝜕𝜕𝑡𝑡

 

(42) 
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These coupled equations describe the fundamental relationship between voltage and current 

in distributed systems, where spatial and temporal derivatives are coupled through the line 

parameters. 

To decouple these equations and analyze wave propagation, we introduce forward and 

backward propagation amplitudes. These quantities represent the decomposition of voltage 

and current into waves traveling in opposite directions along the transmission line: 

 𝐴𝐴→ =
𝑉𝑉
�𝑍𝑍0

+ 𝐼𝐼�𝑍𝑍0

𝐴𝐴← =
𝑉𝑉
�𝑍𝑍0

− 𝐼𝐼�𝑍𝑍0

 

(43) 

where 𝑍𝑍₀ = �ℒ 𝒞𝒞⁄  is the characteristic impedance of the transmission line. This 

transformation separates the electromagnetic field into components propagating in the +x 

and -x directions. Substituting the propagation amplitudes into Kirchhoff's equations yields 

decoupled wave equations: 

 ∂𝐴𝐴→

∂𝑡𝑡
+ 𝑐𝑐

∂𝐴𝐴→

∂𝑥𝑥
= 0

∂𝐴𝐴←

∂𝑡𝑡
− 𝑐𝑐

∂𝐴𝐴←

∂𝑥𝑥
= 0

 

(44) 

where 𝑐𝑐 = 1 √ℒ𝒞𝒞⁄  is the electromagnetic wave velocity in the transmission line. These 

equations demonstrate that 𝐴𝐴→ represents a wave traveling in the +x direction with velocity 

𝑐𝑐, while 𝐴𝐴← represents a wave traveling in the -x direction with the same velocity. For 

harmonic excitation at frequency 𝜔𝜔, the forward propagating wave solution takes the form: 

 𝐴𝐴→(𝑥𝑥, 𝑡𝑡) = 𝒜𝒜(𝑥𝑥)→𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐. 𝑐𝑐. (45) 

The spatial dependence 𝒜𝒜(𝑥𝑥) satisfies the reduced wave equation, yielding: 

 𝒜𝒜(x) = 𝒜𝒜0𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 (46) 

where 𝑘𝑘 = 𝜔𝜔 𝑐𝑐⁄  is the propagation constant (wave number).  

The phase accumulated by electromagnetic wave propagation from position 𝑥𝑥1 to position 𝑥𝑥2 

along the transmission line is: 

 𝜙𝜙 = 𝜔𝜔
𝑥𝑥2 − 𝑥𝑥1

𝑐𝑐
= 𝑘𝑘(𝑥𝑥2 − 𝑥𝑥1) (47) 
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This phase relationship is fundamental for understanding interference phenomena in Bragg 

filters, where constructive and destructive interference between waves reflected from 

periodic impedance discontinuities creates the desired filtering characteristics. For a quarter-

wavelength section (the basic building block of Bragg filters), the phase accumulation is 𝜙𝜙 =
𝜋𝜋
2
, corresponding to a 90° phase shift. Multiple quarter-wave sections with alternating 

impedances create the periodic structure necessary for Bragg reflection. 

2.5.2 Scatter-Matrix Analysis 

The behavior of electromagnetic waves at discontinuities in transmission line circuits can be 

systematically analyzed using scattering matrix methods. This approach is essential for 

understanding the reflection and transmission properties of impedance mismatches, lumped 

elements, and periodic structures that form the basis of Bragg filters. 

 
Figure 13 – Scattering elements | (a) general scattering element embedded in a transmission line. Scattering element of 

impedance 𝑍𝑍𝑆𝑆 connected in series (b) or in parallel (short to ground, c) to the transmission line. 

Single Elements 

The relationship between incoming and outgoing electromagnetic waves at a scattering 

element, depicted in Figure 13, is described by the scattering matrix formalism: 

 

�
𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜←

𝐴𝐴ʹ
𝑜𝑜𝑜𝑜𝑜𝑜
→ � = �𝑟𝑟← 𝑡𝑡←ʹ

𝑡𝑡→ 𝑟𝑟→ʹ
�

�������
𝑠𝑠

�
𝐴𝐴𝑖𝑖𝑖𝑖→

𝐴𝐴ʹ
𝑖𝑖𝑖𝑖
← � 

(48) 

where 𝑟𝑟← (𝑟𝑟→ʹ ) and 𝑡𝑡→ (𝑡𝑡←ʹ ) represent the reflection and transmission coefficients respectively. 

For symmetric scatterers, these coefficients satisfy 𝑟𝑟← = 𝑟𝑟→ʹ ≡ 𝑟𝑟 and 𝑡𝑡→ = 𝑡𝑡←ʹ ≡ 𝑡𝑡, simplifying 

the analysis. Throughout this analysis, we assume single-sided excitation (𝐴𝐴ʹ
𝑖𝑖𝑖𝑖
← = 0).  
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The simplest element is a uniform transmission line segment of length l which introduces no 

reflection but accumulates phase according to the propagation constant. The scattering 

parameters are: 

 𝑟𝑟 = 0

𝑡𝑡 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
 

(49) 

where the phase factor 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 represents the time delay for wave propagation across the 

segment. 

For an impedance 𝑍𝑍𝑆𝑆 connected in parallel to the transmission lines, as exemplified in Figure 

13c the Kirchhoff's equations become: 

Voltage 

constraint: 

𝑉𝑉𝑠𝑠 = 𝑉𝑉 = 𝑉𝑉 ʹ 

 

(50) 

Current 

continuity: 

𝑉𝑉𝑠𝑠
𝑍𝑍𝑠𝑠

= 𝐼𝐼𝑠𝑠 = 𝐼𝐼 − 𝐼𝐼ʹ  

This configuration yields the scattering coefficients: 

 𝑟𝑟 = −
1

2𝑧𝑧 + 1

𝑡𝑡 =
2𝑧𝑧

2𝑧𝑧 + 1

 

(51) 

where 𝑧𝑧 = 𝑍𝑍𝑆𝑆 𝑍𝑍0⁄  is the normalized impedance. 

For an abrupt transition between transmission lines with impedances 𝑍𝑍1 and 𝑍𝑍2, continuity of 

voltage and current at the interface requires: 

Voltage 

constraint: 

𝑉𝑉 = 𝑉𝑉 ʹ → �𝑍𝑍1(𝐴𝐴𝑖𝑖𝑖𝑖→ + 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜← ) = �𝑍𝑍2�𝐴𝐴ʹ
𝑖𝑖𝑖𝑖
← + 𝐴𝐴ʹ

𝑜𝑜𝑜𝑜𝑜𝑜
→ � 

 

(52) 

Current 

continuity: 
𝐼𝐼 = 𝐼𝐼ʹ →

1

�𝑍𝑍1
(𝐴𝐴𝑖𝑖𝑖𝑖→ − 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜← ) =

1

�𝑍𝑍2
�𝐴𝐴ʹ

𝑜𝑜𝑜𝑜𝑜𝑜
→ − 𝐴𝐴ʹ

𝑖𝑖𝑖𝑖
← �  

The resulting scattering coefficients are: 
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𝑟𝑟 =

𝑍𝑍2 − 𝑍𝑍1

𝑍𝑍1 + 𝑍𝑍2
; 𝑡𝑡 =

2�𝑍𝑍1𝑍𝑍2

𝑍𝑍1 + 𝑍𝑍2

𝑟𝑟 ʹ =
𝑍𝑍1 − 𝑍𝑍2

𝑍𝑍1 + 𝑍𝑍2
; 𝑡𝑡ʹ =

2�𝑍𝑍1𝑍𝑍2

𝑍𝑍1 + 𝑍𝑍2

 

(53) 

These expressions form the foundation for analyzing impedance mismatches in Bragg filters. 

Transmission Line Resonator Terminated by Asymmetrical Terminations 

The most general case involves a transmission line of length L terminated by different 

scatterers S and S′ at each end as depicted in Figure 14. This configuration provides the 

framework for analyzing complex resonator systems where the terminations have distinct 

reflection and transmission properties, such as a Bragg filter on one end and a short circuit on 

the other. 

 
Figure 14 – Asymmetrical transmission line | Transmission line of length 𝐿𝐿, terminated by different scatterers 𝑆𝑆 and 𝑆𝑆ʹ. The 

current at each point of the transmission line 𝐼𝐼(𝑥𝑥) results from an infinite number of reflections. 

For an electromagnetic wave incident from the side of scatterer S, multiple reflections occur 

between the two terminations, creating an infinite series of forward and backward 

propagating waves. The total reflection (𝑟𝑟∗) and transmission (𝑡𝑡∗) coefficients for this 

asymmetrically terminated system are: 
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𝑟𝑟∗(𝜔𝜔) = 𝑟𝑟(𝜔𝜔) + 𝑡𝑡(𝜔𝜔)2𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿𝑟𝑟 ʹ(𝜔𝜔)��𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿𝑟𝑟 ʹ(𝜔𝜔)𝑟𝑟(𝜔𝜔)�

𝑛𝑛
∞

𝑛𝑛=0

= 𝑟𝑟(𝜔𝜔) +
𝑡𝑡(𝜔𝜔)2𝑟𝑟ʹ(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿

1 − 𝑟𝑟 ʹ(𝜔𝜔)𝑟𝑟(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿

𝑡𝑡∗(𝜔𝜔) = 𝑡𝑡(𝜔𝜔)𝑡𝑡ʹ(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖��𝑟𝑟 ʹ(𝜔𝜔)𝑟𝑟(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿�
𝑛𝑛

∞

𝑛𝑛=0

=
𝑡𝑡(𝜔𝜔)𝑡𝑡ʹ(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

1 − 𝑟𝑟 ʹ(𝜔𝜔)𝑟𝑟(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿

 

(54) 

Where 𝑟𝑟(𝜔𝜔), 𝑡𝑡(𝜔𝜔) and 𝑟𝑟 ʹ(𝜔𝜔), 𝑡𝑡ʹ(𝜔𝜔) are the scattering coefficients of the individual 

terminations S and S′ respectively. The complex wave number 𝑘𝑘 = 1
𝑐𝑐

(𝜔𝜔 + 𝑖𝑖𝑖𝑖) includes both 

the propagation constant and any losses 𝜅𝜅 in the transmission line. 

The current at any position 𝑥𝑥 along the transmission line can be expressed in terms of the 

incident propagation amplitude 𝐴𝐴𝑖𝑖𝑖𝑖→ : 

 𝐼𝐼(𝑥𝑥,𝜔𝜔) =
1

�𝑍𝑍0
𝑓𝑓→(𝑥𝑥,𝜔𝜔)𝐴𝐴𝑖𝑖𝑖𝑖→  (55) 

where 𝑓𝑓→(𝑥𝑥,𝜔𝜔) represents the difference between forward and backward propagating 

current waves. The spatial distribution function account for all multiple reflections between 

the terminations: 

 
𝑓𝑓→(𝑥𝑥,𝜔𝜔) = 𝑡𝑡

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑟𝑟 ʹ𝑒𝑒𝑖𝑖𝑖𝑖(2𝐿𝐿−𝑥𝑥)

1 − 𝑟𝑟 ʹ𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿  
(56) 

These expression reveal the standing wave pattern that develops within the asymmetrically 

terminated transmission line, with the specific distribution depending on the frequency-

dependent reflection properties of both terminations. 

The asymmetrically terminated transmission line supports resonant modes when specific 

phase and amplitude conditions are satisfied. For constructive interference and efficient 

energy storage, the round-trip phase accumulated by electromagnetic waves must satisfy: 

 arg[𝑟𝑟 ʹ(𝜔𝜔)𝑟𝑟(𝜔𝜔)] + 2𝑘𝑘𝑘𝑘 = 2𝜋𝜋𝜋𝜋 (57) 

where 𝑛𝑛 is an integer and 𝑘𝑘 = 𝜔𝜔 𝑐𝑐⁄  is the real part of the wave number. This phase condition 

ensures that waves returning after a complete round trip between the terminations interfere 

constructively with the original wave. For high-quality resonances, an additional amplitude 

condition must be approximately satisfied: 

 �𝑟𝑟 ʹ(𝜔𝜔)𝑟𝑟(𝜔𝜔)� ≈ 1 (58) 
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This condition requires that the product of reflection magnitudes from both terminations 

approaches unity, minimizing energy loss during each round trip and enabling sustained 

oscillation within the cavity. 

The combination of these conditions determines the resonance frequencies and quality 

factors of the system. When both terminations have high reflectivity (�𝑟𝑟 ʹ(𝜔𝜔)�, |𝑟𝑟(𝜔𝜔)| ≈ 1), the 

amplitude condition is readily satisfied, and the resonance frequency is primarily determined 

by the phase matching requirement. The quality factor depends on how closely the amplitude 

condition is met, with deviations from unity leading to energy decay and finite 𝑄𝑄 values. 

Chain of Elements 

The analysis of multiple scattering elements requires accounting for multiple reflections 

between adjacent discontinuities. Consider two scatterers separated by a transmission line 

segment of length 𝐿𝐿 similar to Figure 15. 

 
Figure 15 – A chain of two scatterers 

When an electromagnetic wave encounters the first scatterer, part is reflected while part is 

transmitted. The transmitted wave propagates distance 𝐿𝐿, accumulating phase 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, before 

encountering the second scatterer. Multiple reflections occur between the scatterers, creating 

an infinite series that must be summed up. The total reflection and transmission coefficients 

for the cascaded system are: 

 
𝑟𝑟 = 𝑟𝑟1 +

𝑡𝑡1
2𝑟𝑟2𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿

1 − 𝑟𝑟1𝑟𝑟2𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿 ; 𝑟𝑟 ʹ = 𝑟𝑟2 +
𝑡𝑡2

2𝑟𝑟1𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿

1 − 𝑟𝑟2𝑟𝑟1𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿

𝑡𝑡 =
𝑡𝑡1𝑡𝑡2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

1 − 𝑟𝑟1𝑟𝑟2𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿 ; 𝑡𝑡ʹ =
𝑡𝑡1𝑡𝑡2𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

1 − 𝑟𝑟1𝑟𝑟2𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿

 

(59) 
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where 𝑟𝑟1, 𝑡𝑡1 and 𝑟𝑟2, 𝑡𝑡2 are the individual scattering coefficients of the first and second elements 

respectively. 

Bragg Filters 

These scattering matrix results provide the building blocks for analyzing Bragg filters as 

cascaded networks of impedance mismatches and transmission line segments. Microwave 

Bragg filters are constructed from periodic structures of transmission lines with alternating 

characteristic impedances 𝑍𝑍1 and 𝑍𝑍2, where each segment has length 𝐿𝐿𝑏𝑏 = 𝜆𝜆𝐵𝐵
4

, with 𝜆𝜆𝐵𝐵 the 

center wavelength to be filtered. 

The fundamental design parameters of a Bragg filter include the impedance values 𝑍𝑍1 and 𝑍𝑍2 

which determine the reflection per interface, the number of doublets 𝑚𝑚 which sets the total 

reflection magnitude and bandwidth, the segment length 𝐿𝐿𝑏𝑏 that ensures constructive 

interference at the design frequency, and the resulting internal interfaces 𝑛𝑛 = 2𝑚𝑚− 1 that 

create the periodic structure through impedance mismatches. 

 
Figure 16 – Bragg filter | 𝑚𝑚 = 4 doublets and 𝑛𝑛 = 7 internal interfaces between low impedance (𝑍𝑍1) and high impedance (𝑍𝑍2) 

segments.  

For a Bragg filter with 𝑚𝑚 = 4 doublets, there are 𝑛𝑛 = 7 internal impedance mismatches as 

shown in Figure 16. The periodic structure alternates between low and high impedance 

sections, creating a photonic bandgap around the design frequency that provides the desired 

filtering characteristics while maintaining DC conductivity throughout the structure. 

Using the cascaded scattering formulas derived earlier, the total reflection and transmission 

of the Bragg filter can be calculated systematically. The elements are chained in sequence 

through phase accumulation during propagation in 𝑍𝑍1 quarter-wave segments, impedance 

mismatches at 𝑍𝑍1 𝑍𝑍2⁄  interfaces, phase accumulation during propagation in 𝑍𝑍2 quarter-wave 
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segments, impedance mismatches at 𝑍𝑍2 𝑍𝑍1⁄  interfaces, with this pattern repeated for 𝑚𝑚 

doublets. Each impedance mismatch contributes reflection according to 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑍𝑍2−𝑍𝑍1

𝑍𝑍1+𝑍𝑍2
, 

while each quarter-wave segment contributes phase delay 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒𝑖𝑖
𝜋𝜋
2 . The recursive 

application of the cascading formulas builds up the total response through constructive and 

destructive interference between multiple internal reflections. For example, Figure 17 shows 

the reflection and transmission coefficients of the Bragg filter for a center frequency 𝜔𝜔𝑐𝑐, 𝑍𝑍1 =

35 Ω, 𝑍𝑍2 = 80 Ω, and 𝑚𝑚 = 4. The effective impedance on the filter is 𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒 = �𝑍𝑍2

𝑍𝑍1
�

2𝑚𝑚
𝑍𝑍0 ≈

37 kΩ, with 𝑍𝑍0 = 50 Ω the input line impedance119.  

 
Figure 17 – Bragg filter response | Transmission and reflection power (a) and phase response (b) of a Bragg filter with 𝑚𝑚 = 4, 

𝑍𝑍1 = 35 𝛺𝛺 and 𝑍𝑍2 = 80 𝛺𝛺. The x-axis represents the incoming frequency 𝜔𝜔𝑖𝑖𝑖𝑖 normalized by the center filtered frequency 𝜔𝜔𝑐𝑐 . 

The calculated reflection and transmission coefficients exhibit the characteristic Bragg filter 

response. The reflection shows high values (|𝑟𝑟|2 ≈ 0.99) in the stopband around 𝜔𝜔𝑖𝑖𝑖𝑖
𝜔𝜔𝑐𝑐

= 1 with 

sharp transitions at band edges, multiple reflection nulls at frequencies where destructive 

interference occurs, and bandwidth determined by the impedance contrast ratio 𝑍𝑍2 𝑍𝑍1 ≈ 2.3⁄ . 

This frequency selectivity enables electromagnetic isolation at the resonator frequency while 

preserving DC conductivity.  

The phase response of the Bragg filter shows characteristic behavior crucial for resonator 

applications. The reflection phase exhibits rapid phase variation through the stopband with 

phase jumps of ±180° at reflection nulls and smooth phase transition in passbands. The 

transmission phase demonstrates linear phase accumulation outside the stopband, enhanced 

group delay within the Bragg frequency range, and phase penetration depth effects that 

contribute to quality factor enhancement. 
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The phase penetration depth effects arise from the finite spatial extent over which 

electromagnetic waves penetrate the Bragg structure before being reflected. Unlike an ideal 

mirror that reflects instantaneously at the interface, the Bragg filter allows waves to propagate 

several periods into the periodic structure as evanescent modes before complete reflection 

occurs. This penetration creates an effective additional optical path length that manifests in 

the transmission phase as an enhanced phase accumulation compared to simple impedance 

mismatches. In the transmission phase response, these effects appear as a frequency-

dependent phase delay that exceeds the geometrical phase accumulation expected from the 

physical length of the filter. Near the Bragg frequency, the group velocity of electromagnetic 

waves decreases significantly as they interact with the periodic structure, leading to increased 

phase accumulation per unit frequency change. This enhanced phase response corresponds 

to increased photon storage time within the resonator system. The frequency-dependent 

phase response creates modified boundary conditions that are more favorable for energy 

storage, as photons experience extended interaction times with the resonator boundaries 

during the penetration and reflection process. The magnitude of this enhancement depends 

on the impedance contrast ratio, number of periods, and the specific frequency of operation, 

with stronger impedance contrasts and more periods generally yielding greater enhancement 

factors. 

Bragg-Terminated Resonator with Short Circuit 

A specific implementation of practical importance for the gradiometer flux qubit system 

consists of a transmission line of length 𝐿𝐿 = 3
4
𝜆𝜆 terminated by a Bragg filter on one end and a 

short circuit to ground on the other end as presented in Figure 18. This configuration combines 

the electromagnetic isolation properties of the Bragg filter with the perfect reflection 

characteristics of the short circuit, creating an efficient resonator structure while maintaining 

DC conductivity. 

 
Figure 18 – Transmission line of length 3

4
𝜆𝜆 terminated by a Bragg filter and a short circuit. 
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For the short circuit termination, the scattering coefficients are obtained by setting the 

normalized impedance 𝑧𝑧 = 0 in Equation 51, yielding 𝑟𝑟𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = −1 and 𝑡𝑡𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 0. The short 

circuit provides perfect reflection with a 𝜋𝜋 phase shift while completely blocking transmission. 

Applying the asymmetrical termination formulas of Equation 54 with these boundary 

conditions, the total reflection and transmission coefficients become: 

 
𝑟𝑟∗(𝜔𝜔) = 𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜔𝜔) −

𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜔𝜔)2𝑒𝑒𝑖𝑖3𝜋𝜋
𝜔𝜔
𝜔𝜔𝑟𝑟

−2𝐿𝐿𝜅𝜅𝑐𝑐

1 + 𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜔𝜔)𝑒𝑒𝑖𝑖3𝜋𝜋
𝜔𝜔
𝜔𝜔𝑟𝑟

−2𝐿𝐿𝜅𝜅𝑐𝑐

𝑡𝑡∗(𝜔𝜔) = 0

 

(60) 

The zero transmission-coefficient confirms that no electromagnetic energy passes through the 

short-circuited end, making this an ideal resonator configuration. The reflection coefficient 

exhibits frequency-dependent behavior determined by the interplay between the Bragg filter 

characteristics and the 3
4
𝜆𝜆 electrical length. 

The current distribution (Equation 56) along the transmission line is given by: 

 
𝑓𝑓→(𝑥𝑥,𝜔𝜔) = 𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜔𝜔)

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖(2𝐿𝐿−𝑥𝑥)

1 + 𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖2𝐿𝐿 
(61) 

this expression reveals the standing wave pattern within the resonator, with current nodes 

occurring at the short circuit termination and at specific positions determined by the 

frequency and Bragg filter properties. The current distribution results with optimized galvanic 

coupling to the qubit at appropriate locations, where the current is maximal along the 

transmission line. 

The resonance condition for this system requires that the total phase accumulated during a 

round-trip equals 4π. This condition corresponds to 𝑛𝑛 = 2 in Equation 38, and is a result of 

the length of the transmission line defined as 𝐿𝐿 = 3
4
𝜆𝜆.  The total phase consists of 

contributions from the Bragg filter reflection 𝜑𝜑𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝜑𝜑∗(𝜔𝜔), the transmission line 

propagation 𝜑𝜑𝑇𝑇𝑇𝑇 = 𝜔𝜔 2𝐿𝐿
𝑐𝑐

, and the short circuit reflection 𝜑𝜑𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜋𝜋. The resulting resonance 

frequency is: 

 𝜔𝜔𝑟𝑟 =
𝑐𝑐

2𝐿𝐿
[3𝜋𝜋 − 𝜑𝜑∗(𝜔𝜔𝑟𝑟)] (62) 
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This expression shows that the resonance frequency is determined not only by the geometric 

length but also by the frequency-dependent phase response of the Bragg filter, providing 

additional tunability compared to conventional capacitively terminated resonators.  

The energy decay rate of the resonator 𝜅𝜅𝐶𝐶  is determined by the ratio between the round-trip 

time 𝜏𝜏 = 𝜕𝜕𝜔𝜔𝜑𝜑𝑎𝑎𝑎𝑎𝑎𝑎 and the energy loss per round trip. Unlike capacitor-terminated resonators 

where the accumulated phase is linear in frequency, the Bragg termination introduces 

frequency-dependent phase behavior. Near the resonance frequency, this phase response 

becomes effectively linear, allowing the round-trip time to be expressed as: 

 𝜏𝜏 = 𝛾𝛾
3𝜋𝜋
𝜔𝜔𝑟𝑟

 (63) 

The enhancement factor 𝛾𝛾 > 1 accounts for the finite penetration depth of electromagnetic 

waves into the Bragg structure before reflection occurs. This penetration creates additional 

phase delay compared to ideal reflection, effectively increasing the photon storage time and 

improving the quality factor. 

As energy loss occurs only at the Bragg filter (the short circuit provides perfect reflection), the 

decay rate and quality-factor are: 

 
𝜅𝜅𝐶𝐶 =

�𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�
2

𝜏𝜏

𝑄𝑄𝐶𝐶 ≡
𝜔𝜔𝑟𝑟
𝜅𝜅𝐶𝐶

=
 3𝜋𝜋𝜋𝜋

�𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�
2

 

(64) 

This configuration achieves quality-factor enhancement through both the high reflectivity of 

the Bragg filter and the phase penetration effects that increase the effective photon storage 

time by the factor 𝛾𝛾. The resulting performance represents a significant improvement over 

simple impedance-mismatched terminations while maintaining the DC conductivity essential 

for gradiometer flux qubit operation. 

2.6 Coupling Flux Qubit To Bragg Resonator 

2.6.1 Circuit QED Hamiltonian and Coupling Derivation 

The system Hamiltonian for the coupled qubit-resonator system is given by: 
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 ℋ ℏ⁄ = 𝜔𝜔𝑟𝑟𝑎𝑎�†𝑎𝑎� +
Δ
2
𝜎𝜎�𝑧𝑧 +

𝜖𝜖
2
𝜎𝜎�𝑥𝑥 + 𝑔𝑔𝜎𝜎�𝑥𝑥(𝑎𝑎�† + 𝑎𝑎�) (65) 

where 𝜔𝜔𝑟𝑟 is the resonator frequency, 𝑎𝑎�† and 𝑎𝑎� are the photon creation and annihilation 

operators. Here we consider only a specific mode of the resonator, and the mode index is 

omitted. Δ is the qubit minimal frequency (gap), and 𝑔𝑔 is the coupling strength. The Pauli 

matrices 𝜎𝜎�𝑥𝑥 and 𝜎𝜎�𝑧𝑧 represent the qubit operators in the computational basis.  

At the optimal operating point of the flux qubit where 𝜖𝜖 = 0, the coupling term g arises from 

flux fluctuations in the qubit loop. Following Equation 38, the energy bias fluctuation is: 

 𝛿𝛿𝛿𝛿 =
2𝐼𝐼𝑝𝑝
ℏ
𝛿𝛿Φ =

𝐼𝐼𝑝𝑝
ℏ
𝑀𝑀𝑀𝑀𝑀𝑀(𝑎𝑎�† + 𝑎𝑎�) 

(66) 

where 𝐼𝐼𝑝𝑝 is the persistent current, 𝑀𝑀 is the mutual inductance between the resonator and 

qubit loop, and 𝛿𝛿𝛿𝛿 represents the current fluctuation amplitude in the resonator. The resulting 

coupling is: 

 𝛿𝛿ℋ
ℏ

=
𝛿𝛿𝛿𝛿
2
𝜎𝜎�𝑥𝑥 = 𝑀𝑀

𝐼𝐼𝑝𝑝
2ℏ

𝛿𝛿𝛿𝛿𝜎𝜎�𝑥𝑥(𝑎⃗𝑎† + 𝑎⃗𝑎) ≡ 𝑔𝑔𝜎𝜎𝑥𝑥(𝑎𝑎�† + 𝑎𝑎�) 
(67) 

This yields the inductive coupling strength: 

 𝑔𝑔 = 𝑀𝑀
𝐼𝐼𝑝𝑝
2ℏ

𝛿𝛿𝛿𝛿 (68) 

To estimate the coupling strength the current fluctuation 𝛿𝛿𝛿𝛿 is calculated118 using 𝛿𝛿𝛿𝛿(𝑥𝑥) =

�∫ ℏ𝜔𝜔
4𝜋𝜋𝑍𝑍0

|𝑓𝑓→(𝑥𝑥,𝜔𝜔)|2 and the mutual inductance is given by Equation 40. 

2.7 Flux Qubit Relaxation and Dephasing 

The coherence properties of gradiometer flux qubits are fundamentally limited by their 

interaction with environmental degrees of freedom. Understanding these decoherence 

mechanisms is essential for characterizing and optimizing their performance. 

2.7.1 Purcell Decay 

Relaxation refers to the process by which a qubit in the excited state spontaneously decays to 

its ground state by releasing energy to the environment. This energy exchange results from 

coupling between the qubit and environmental degrees of freedom, such as electromagnetic 
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fields, phonons, or other microscopic excitations. For a qubit initially in the excited state, the 

probability of remaining in that state decays exponentially: 

 𝑃𝑃(𝑡𝑡) = 𝑒𝑒−𝑡𝑡 𝑇𝑇1⁄  (69) 

where 𝑃𝑃(𝑡𝑡) is the probability that the qubit remains in the excited state at time 𝑡𝑡, and 𝑇𝑇1 is 

the relaxation time. In circuit QED systems, Purcell decay arises from the coupling between 

the qubit and electromagnetic modes of the resonator. The interaction Hamiltonian is: 

 ℋ𝑖𝑖𝑖𝑖𝑖𝑖 ℏ⁄ = 𝑀𝑀
𝐼𝐼𝑝𝑝
2ℏ

𝛿𝛿𝛿𝛿(𝜎𝜎�+𝐴𝐴 + 𝜎𝜎�−𝐴𝐴†) 
(70) 

where 𝑀𝑀 is the mutual inductance, 𝐼𝐼𝑝𝑝 is the persistent current, and 𝛿𝛿𝛿𝛿 represents current 

fluctuations in the resonator. According to Fermi's Golden Rule120, the Purcell decay rate is: 

 
Γ𝑃𝑃 = 2𝜋𝜋 �

𝑀𝑀𝐼𝐼𝑝𝑝
ℏ
�

2

�𝑆𝑆𝐼𝐼�𝜔𝜔𝑔𝑔𝑔𝑔� + 𝑆𝑆𝐼𝐼�−𝜔𝜔𝑔𝑔𝑔𝑔�� 
(71) 

where 𝑆𝑆𝐼𝐼 ≡
1

2𝜋𝜋 ∫ ⟨𝐼𝐼(𝑡𝑡)𝐼𝐼(0)⟩𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡  is the current power spectrum. For the transmission line 

resonator, the current power spectrum is: 

 
𝑆𝑆𝐼𝐼 =

|𝑓𝑓→(𝑥𝑥,𝜔𝜔)|2

𝑍𝑍0
𝑆𝑆𝐴𝐴𝑖𝑖𝑖𝑖→  

(72) 

where 𝑓𝑓→(𝑥𝑥,𝜔𝜔) is the current distribution function and 𝑆𝑆𝐴𝐴𝑖𝑖𝑖𝑖→  is the photon influx power 

spectrum. By writing the explicit form 𝐴𝐴𝑖𝑖𝑖𝑖→ = ∑ � 𝑐𝑐
2𝐿𝐿
ℏ𝜔𝜔𝑛𝑛𝑎𝑎�𝑛𝑛𝑒𝑒𝑛𝑛−𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐻𝐻. 𝑐𝑐𝑛𝑛  and moving to the 

continuum limit ∑ 𝑐𝑐
2𝐿𝐿
ℏ𝜔𝜔𝑛𝑛𝑛𝑛  → ∫ ℏ𝜔𝜔

4𝜋𝜋𝑑𝑑𝑑𝑑 , the photon influx power spectrum can be calculated 

from: 

 
𝑆𝑆𝐴𝐴𝑖𝑖𝑖𝑖→ =

ℏ𝜔𝜔
4𝜋𝜋

�
�𝑎𝑎�𝑛𝑛𝑎𝑎�𝑛𝑛

†� 𝜔𝜔 > 0

�𝑎𝑎�𝑛𝑛
†𝑎𝑎�𝑛𝑛� 𝜔𝜔 < 0

 
(73) 

For a finite temperature environment 𝑇𝑇, the total Purcell rate becomes: 

 
Γ𝑃𝑃 =

ℏ𝜔𝜔
2𝑍𝑍0

�
𝑀𝑀𝐼𝐼𝑝𝑝
ℏ
�

2

|𝑓𝑓→(𝑥𝑥,𝜔𝜔)|2 coth �
ℏ𝜔𝜔

2𝑘𝑘𝐵𝐵𝑇𝑇
� 

(74) 

This expression shows that the Purcell decay rate depends on the coupling strength, the 

current distribution in the resonator, and the thermal occupation of electromagnetic modes. 

2.7.2 Qubit Dephasing Mechanisms 
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Dephasing, characterized by the time constant 𝑇𝑇2, represents the loss of phase coherence 

between components of a quantum superposition without energy exchange with the 

environment. This process occurs when fluctuations in the qubit frequency due to 

environmental noise lead to the accumulation of random relative phases between basis 

states. 

The overall dephasing rate Γ2 ≡ 1/𝑇𝑇2 combines the effects of both pure dephasing Γϕ and 

relaxation Γ1: 

 Γ2 =
1
2

Γ1 + Γ𝜙𝜙 (75) 

The dephasing decay is not strictly exponential and depends on the power spectrum of the 

noise source.  

Free Induction Decay (Ramsey) 

Consider a qubit undergoing free evolution for a time 𝑡𝑡. The total accumulated phase is 

𝜑𝜑(𝑡𝑡) = 𝜔𝜔𝑔𝑔𝑔𝑔𝑡𝑡 + 𝛿𝛿(𝑡𝑡), where 𝜔𝜔𝑔𝑔𝑔𝑔 is the nominal qubit transition frequency. The second term, 

𝛿𝛿(𝑡𝑡), is a stochastic phase error caused by fluctuations 𝛿𝛿λ(𝑡𝑡) in the Hamiltonian, which induce 

a frequency noise 𝛿𝛿𝛿𝛿(𝑡𝑡). The phase error is the integral of this frequency noise: 𝛿𝛿(𝑡𝑡) =

∫ 𝛿𝛿𝛿𝛿(𝑡𝑡ʹ)𝑑𝑑𝑡𝑡ʹ𝑡𝑡
0 . 

If we assume the underlying frequency fluctuations 𝛿𝛿𝛿𝛿(𝑡𝑡) constitute a Gaussian process then 

the accumulated phase 𝛿𝛿(𝑡𝑡) is a Gaussian random variable. The statistical uncertainty in this 

phase causes dephasing across an ensemble of measurements. This loss of coherence 

manifests as the free induction decay (FID), also known as Ramsey decay: 

 
𝑓𝑓𝑅𝑅(𝑡𝑡) = �𝑒𝑒𝑖𝑖𝛿𝛿(𝑡𝑡)� = 𝑒𝑒−

1
2�𝜑𝜑

2(𝑡𝑡)� = exp �−
𝑡𝑡2

2
�
𝜕𝜕𝜔𝜔𝑔𝑔𝑔𝑔
𝜕𝜕𝜕𝜕

�
2

� 𝑑𝑑𝑑𝑑𝑆𝑆𝜆𝜆(𝜔𝜔) sinc2 �
𝜔𝜔𝜔𝜔
2
�

∞

−∞
� 

(76) 

where 𝑆𝑆𝜆𝜆(𝜔𝜔) is the power spectrum of the noise source λ(𝑡𝑡). In the case of white noise where 

the power spectrum equals some constant 𝑆𝑆𝜆𝜆(𝜔𝜔) = 𝑐𝑐, the decay is exponential 𝑓𝑓𝑅𝑅(𝑡𝑡) =

exp �−t �𝜕𝜕𝜔𝜔𝑔𝑔𝑔𝑔

𝜕𝜕𝜕𝜕
�

2
𝜋𝜋𝜋𝜋�. 

Hahn Echo Decay 

A Hahn-Echo sequence is a powerful method for mitigating the effects of low frequency noise. 

The sequence begins with the qubit evolving freely for a time 𝜏𝜏/2. During this interval, it 
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accumulates a phase error 𝛿𝛿1. A 𝜋𝜋-pulse is then applied, which inverts the qubit state. This 

pulse has the crucial effect of reversing the sign of the phase accumulated during the 

subsequent free evolution period. The qubit then evolves for a second identical interval of 

𝜏𝜏/2, accumulating a second phase error 𝛿𝛿2. Due to the pulse, the total deterministic phase 

cancels out, and the net stochastic phase, 𝜑𝜑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛿𝛿1 − 𝛿𝛿2, is the difference between the 

noise accumulated in the two intervals. Assuming the underlying frequency fluctuations 

𝛿𝛿𝛿𝛿(𝑡𝑡) constitute a Gaussian process, the net phase error 𝜑𝜑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is also a Gaussian random 

variable with zero mean. The decay of the echo signal, 𝑓𝑓𝐸𝐸(𝑡𝑡), is determined by the ensemble 

average of the final phase factor:  

 𝑓𝑓𝐸𝐸(𝑡𝑡) = �𝑒𝑒𝑖𝑖𝜑𝜑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� = 𝑒𝑒−
1
2�𝜑𝜑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2 � (77) 

The variance �𝜑𝜑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 � can be calculated by filtering the noise power spectral density 𝑆𝑆𝜆𝜆(𝜔𝜔) 

through a function determined by the echo sequence. This gives the final expression for the 

decay: 

 
𝑓𝑓𝐸𝐸(𝑡𝑡) = exp �−

𝑡𝑡2

2
�
𝜕𝜕𝜔𝜔𝑔𝑔𝑔𝑔
𝜕𝜕𝜕𝜕

�
2

� 𝑑𝑑𝑑𝑑𝑆𝑆𝜆𝜆(𝜔𝜔) sin2 �
𝜔𝜔𝜔𝜔
4
� sinc2 �

𝜔𝜔𝜔𝜔
4
�

∞

−∞

� 
(78) 

This result shows how the Hahn-Echo sequence effectively cancels the influence of low-

frequency noise where 𝜔𝜔 → 0. If the noise is white, we get again an exponential decay 

function 𝑓𝑓𝐸𝐸(𝑡𝑡) = exp �−t �𝜕𝜕𝜔𝜔𝑔𝑔𝑔𝑔

𝜕𝜕𝜕𝜕
�

2
𝜋𝜋𝜋𝜋�. 

Magnetic Flux Noise Dephasing 

Superconducting flux qubits are sensitive to low-frequency magnetic flux noise. This noise is 

often characterized as "pink noise" or 1/f noise, meaning its power spectral density, 𝑆𝑆𝜆𝜆(𝜔𝜔) =

𝐴𝐴𝜆𝜆2/𝜔𝜔, is inversely proportional to frequency.  

This noise couples to a qubit's transition frequency, 𝜔𝜔𝑔𝑔𝑔𝑔, causing it to fluctuate and leading to 

dephasing. The impact of this noise depends critically on the experimental sequence used to 

measure coherence. In a Ramsey experiment, a qubit's free evolution exposes it to the entire 

noise spectrum. Due to its divergence at zero frequency, the effect of 1/f noise must be 

integrated. The low-frequency cutoff is set by measurement time t, while the high-frequency 
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cutoff, 𝜔𝜔𝐼𝐼𝐼𝐼, is arbitrary. The integrated effect of this noise is represented by the formula 

�ln � 1
𝜔𝜔𝐼𝐼𝐼𝐼𝑡𝑡

� which leads to a Gaussian decay:  

 
𝑓𝑓𝑅𝑅(𝑡𝑡) = exp �−𝑡𝑡2 �

𝜕𝜕𝜔𝜔𝑔𝑔𝑔𝑔
𝜕𝜕𝜕𝜕

�
2

𝐴𝐴𝜆𝜆2 ln �
1

𝜔𝜔𝐼𝐼𝐼𝐼𝑡𝑡
�� 

(79) 

For typical cutoff frequency 𝜔𝜔𝐼𝐼𝐼𝐼 = 1 MHz and measurement time t = 1 second per point, 

�ln � 1
𝜔𝜔𝐼𝐼𝐼𝐼𝑡𝑡

� equals approximately 3.7. 

A Hahn-Echo sequence applies a 𝜋𝜋-pulse that refocuses the qubit's phase. This pulse sequence 

acts as a high-pass filter, effectively canceling the slow phase drifts caused by low-frequency 

noise. For 1/f noise, this completely removes the dependence on the arbitrary cutoff ωIR, 

resulting in a cleaner decay form: 

 
𝑓𝑓𝐸𝐸(𝑡𝑡) = exp �−𝑡𝑡2 �

𝜕𝜕𝜔𝜔𝑔𝑔𝑔𝑔
𝜕𝜕𝜕𝜕

�
2

𝐴𝐴𝜆𝜆2 ln(2)� 
(80) 

For the case of flux qubit, described by the Hamiltonian in Equation 37, the frequency 𝜔𝜔𝑔𝑔𝑔𝑔 =

�Δ2 + 𝜖𝜖2 depends on the energy bias 𝜖𝜖, which is controlled by the external magnetic flux. It 

is through 𝜖𝜖 that the 1/f flux noise affects the qubit. 

The qubit's first-order sensitivity to this noise is given by the derivative ∂ϵω𝑔𝑔𝑔𝑔 = 𝜖𝜖 ω𝑔𝑔𝑔𝑔⁄  

(∂Φω𝑔𝑔𝑔𝑔 = �2𝐼𝐼𝑝𝑝
ℏ
�

2 Φ−Φ0 2⁄
𝜔𝜔

). The corresponding decay rates, defined by 𝑓𝑓(𝑡𝑡) = 𝑒𝑒−(𝑡𝑡Γ)2, are: 

 
Γ2,𝑅𝑅
𝜖𝜖 =

𝜖𝜖
𝜔𝜔𝑔𝑔𝑔𝑔

𝐴𝐴𝜑𝜑,𝑅𝑅
𝜖𝜖 �ln �

1
𝜔𝜔𝐼𝐼𝐼𝐼𝑡𝑡

� ; Γ2,𝑅𝑅
Φ = �

2𝐼𝐼𝑝𝑝
ℏ
�

2 Φ − Φ0 2⁄
𝜔𝜔𝑔𝑔𝑔𝑔

𝐴𝐴𝜑𝜑,𝑅𝑅
Φ �ln �

1
𝜔𝜔𝐼𝐼𝐼𝐼𝑡𝑡

�

Γ2,𝐸𝐸
𝜖𝜖 =

𝜖𝜖
𝜔𝜔𝑔𝑔𝑔𝑔

𝐴𝐴𝜑𝜑,𝐸𝐸
𝜖𝜖 �ln(2) ; Γ2,𝐸𝐸

Φ = �
2𝐼𝐼𝑝𝑝
ℏ
�

2 Φ − Φ0 2⁄
𝜔𝜔𝑔𝑔𝑔𝑔

𝐴𝐴𝜑𝜑,𝐸𝐸
Φ �ln(2)

 

(81) 

with Aϵ (AΦ) the power spectrum amplitude of the noise affecting 𝜖𝜖 (Φ). By tuning of the 

external flux so that 𝜖𝜖 = 0, the sensitivity vanishes. This special operating point is known as 

the flux sweet spot. At this point, the qubit becomes, to first order, immune to flux noise, and 

the dephasing rates become zero. 
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However, coherence is still limited. Even at the sweet spot, the qubit's energy has a non-zero 

curvature, given by the second derivative ∂
2𝜔𝜔ge

∂ϵ2 = Δ2 𝜔𝜔𝑔𝑔𝑔𝑔(ϵ)3� . This means the qubit frequency 

still has a residual sensitivity to noise, also when 𝜖𝜖 vanish. In a previous work118 an empirical 

law for the second order flux noise was established, which, with respect to 𝜖𝜖 and Φ, are given 

by: 

 
Γ2,𝐸𝐸
𝜖𝜖,(2) =

14.4
2𝜋𝜋

Δ2

𝜔𝜔𝑔𝑔𝑔𝑔(𝜖𝜖)3  �𝐴𝐴𝜑𝜑,𝐸𝐸
𝜖𝜖 �

2
; Γ2,𝐸𝐸

Φ,(2) =
14.4
2𝜋𝜋

Δ2

𝜔𝜔𝑔𝑔𝑔𝑔(Φ)3 �
2𝐼𝐼𝑝𝑝
ℏ
�

2

�𝐴𝐴𝜑𝜑,𝐸𝐸
Φ �

2 
(82) 

Photon Noise 

A common source of dephasing in circuit QED systems arises from the qubit's interaction with 

photons in its coupled readout resonator. Even at millikelvin base temperatures, thermal 

photons from warmer stages can contribute to this dephasing, disrupting the qubit's quantum 

state. The thermal photon occupation follows Bose-Einstein statistics: 

 𝑛𝑛�𝑡𝑡ℎ =
1

𝑒𝑒
ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇 − 1

 (83) 

For a multi-stage dilution refrigerator, the total thermal population is: 

 𝑛𝑛�𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝑡𝑡(𝜔𝜔) = �𝛼𝛼𝑇𝑇𝑛𝑛�𝑡𝑡ℎ(𝑇𝑇,𝜔𝜔)
𝑇𝑇

 (84) 

where 𝛼𝛼𝑇𝑇 represents the attenuation factor from stage at temperature 𝑇𝑇. Thermal photons 

arrive from both the input port used for control signals and the output measurement port, 

where the amplifier chain operates at an effective temperature of approximately 10 K despite 

cryogenic pre-amplification. Typical values range from 𝑛𝑛�𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝑡𝑡 ≈ 10−3 for well-filtered systems to 

𝑛𝑛�𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝑡𝑡 ≈ 10−2 for poorly isolated configurations. 

The dispersive interaction between the qubit and the photon in its coupled readout resonator 

is described by the interaction Hamiltonian ℋ𝑖𝑖𝑖𝑖𝑖𝑖 = ℏ𝜒𝜒𝜎𝜎�𝑧𝑧 �𝑛𝑛� + 1
2
�. Here, 𝑛𝑛� = �𝑎𝑎�†𝑎𝑎��  is the 

average number of photons in the resonator and 𝜒𝜒 = 𝑔𝑔2/Δ is the dispersive coupling strength. 

This Hamiltonian means that the qubit's transition frequency, 𝜔𝜔𝑔𝑔𝑔𝑔, is shifted by 𝜒𝜒
2
 for every 

single photon present in the resonator. Consequently, any random fluctuations in the number 

of photons, 𝛿𝛿𝑛𝑛�(𝑡𝑡) = 𝑎𝑎�†𝑎𝑎� − �𝑎𝑎�†𝑎𝑎��, will act as a direct source of frequency noise for the qubit:  

 𝛿𝛿𝜔𝜔𝑔𝑔𝑔𝑔(𝑡𝑡) = 2𝜒𝜒𝑛𝑛�(𝑡𝑡) (85) 
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The factor of 2 arises because the dispersive shift affects both qubit states with opposite signs, 

doubling the frequency difference between them. 

The number of photons in the resonator fluctuates because the resonator is coupled to an 

environment, causing photons to randomly leak out at a rate 𝜅𝜅. For a resonator with an 

average photon number 𝑛𝑛�, this process creates noise with a Lorentzian power spectrum120: 

𝑆𝑆𝑛𝑛�(𝜔𝜔) = 𝜅𝜅
𝜋𝜋
𝑛𝑛�(𝑛𝑛�+1)
𝜅𝜅2+𝜔𝜔2 . This allows us to simplify the spectrum by taking its value at frequencies 

much smaller than the resonator linewidth, where it is nearly constant: 𝑆𝑆𝑛𝑛�(𝜔𝜔 ≪ 𝜅𝜅) = 𝑛𝑛�(𝑛𝑛�+1)
𝜋𝜋𝜋𝜋

. 

This flat spectral response in the relevant frequency range simplifies the analysis of dephasing 

effects. For Hahn-Echo sequences, the dephasing can be calculated using the filter function 

approach. The decay function becomes: 

 
𝑓𝑓𝐸𝐸(𝑡𝑡) = exp �−

𝑡𝑡2

2
�
𝜕𝜕𝜔𝜔𝑔𝑔𝑔𝑔
𝜕𝜕𝑛𝑛�

�
2

� 𝑑𝑑𝑑𝑑𝑆𝑆𝑛𝑛�(𝜔𝜔 ≪ 𝜅𝜅) sin2 �
𝜔𝜔𝜔𝜔
4
� sinc2 �

𝜔𝜔𝜔𝜔
4
�

∞

−∞

� 
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Because 𝜕𝜕𝑛𝑛�𝜔𝜔𝑔𝑔𝑔𝑔 = 2𝜒𝜒 and the photon noise spectrum is approximately flat over the relevant 

frequency range; this integral evaluates to: 

 
𝑓𝑓𝐸𝐸(𝑡𝑡) = exp �−𝑡𝑡

4𝜒𝜒2

𝜅𝜅
𝑛𝑛�(𝑛𝑛� + 1) � 

(87) 

The resulting photon noise dephasing rate is: 

 
Γ𝜑𝜑𝑛𝑛� =

4𝜒𝜒2

𝜅𝜅
𝑛𝑛�(𝑛𝑛� + 1) 

(88) 

The photon shot noise dephasing rate exhibits several important characteristics. The 

dependence on 𝑛̄𝑛(𝑛̄𝑛 + 1) reflects the quantum nature of photon statistics, where both the 

classical term 𝑛̄𝑛2 and the quantum correction 𝑛̄𝑛 contribute to fluctuations. For large photon 

numbers, the dephasing scales approximately as Γ𝜑𝜑𝑛𝑛� ∝ 𝑛𝑛�2.  

The inverse dependence on 𝜅𝜅 indicates that broader resonator linewidths help suppress 

photon shot noise by reducing the correlation time of photon number fluctuations. However, 

this must be balanced against other considerations such as readout fidelity and Purcell decay 

rates. 

The quadratic dependence on the dispersive shift 𝜒𝜒 = 𝑔𝑔2/Δ shows that stronger coupling 

(larger 𝑔𝑔) or smaller detuning (smaller Δ) both increase susceptibility to photon noise. This 
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creates a fundamental trade-off between the coupling strength needed for fast quantum 

operations and the coherence degradation from photon fluctuations. 

Charge Noise 

Charge fluctuations couple to flux qubits through the charging energy of Josephson junctions. 

While flux qubits are inherently less sensitive to charge noise than charge qubits, residual 

coupling can contribute to dephasing, particularly when operating away from charge-

insensitive points. 

The charge noise spectrum typically exhibits 1/f characteristics: 𝑆𝑆𝑄𝑄 = 𝐴𝐴𝑄𝑄
|𝜔𝜔| with amplitude 

�AQ ≈ 10−3  e

√Hz
 for typical devices. The charge dephasing rate for a flux qubit is: 

 
Γ𝜑𝜑𝐶𝐶 = � �𝐴𝐴𝑄𝑄 �

𝜕𝜕𝜔𝜔01

𝜕𝜕𝑛𝑛𝑖𝑖
��ln(2)

𝑖𝑖=1,2,3

 
(89) 

where 𝑛𝑛𝑖𝑖  represents the charge on the 𝑖𝑖-th superconducting island. The decay rate can be 

estimated numerically by simulating the Hamiltonian of the qubit with different charge states 

on each superconducting island. 

2.8 Randomized Benchmarking 

Quantum process tomography (QPT) requires computational resources that scale 

exponentially with system size, making it impractical for larger quantum devices. Moreover, 

estimating the fidelity of a gate requires to compensate for readout and preparation errors. 

Randomized Benchmarking (RB) addresses this challenge by providing a scalable, statistically 

robust method for characterizing average gate error rates without requiring precise 

knowledge of state preparation and measurement (SPAM) errors121,122. Unlike traditional QPT, 

which suffers from exponential scaling and sensitivity to SPAM errors, RB offers a practical 

framework for evaluating gate performance that is directly relevant to quantum computing 

applications.  

2.8.1 The Clifford Group 

RB circumvents these limitations by estimating average gate error rates through stochastic 

sampling of random gate sequences. The protocol employs gates from the Clifford group, 𝐶𝐶𝑛𝑛, 
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defined as the finite subgroup of unitary operators that preserve the Pauli group under 

conjugation: 

 𝐶𝐶𝑛𝑛 = �𝑈𝑈 ∈ 𝒰𝒰(2𝑛𝑛) ∶ 𝑈𝑈𝑃𝑃𝑖𝑖𝑈𝑈 = 𝑃𝑃𝑗𝑗� (90) 

where 𝑃𝑃𝑖𝑖  and 𝑃𝑃𝑗𝑗 represent Pauli operators123. 

The n-qubit Clifford group possesses several properties that make it suitable for benchmarking 

applications. First, it is generated by a small set of elementary gates, for example: the 

Hadamard gate, phase gate, and controlled-NOT gate123. Second, the group structure enables 

efficient classical simulation according to the Gottesman-Knill theorem, facilitating the 

computation of expected outcomes124. Most importantly for RB, random sampling over 

Clifford operations effectively converts arbitrary noise channels into depolarizing channels 

through the twirling property122. This transformation reduces complex, multi-parameter noise 

models into a single-parameter depolarizing channel, enabling direct extraction of average 

gate error rates from simple exponential decay fits. 

2.8.2 Sequence Construction and Measurement Protocol 

An RB sequence contains m+1 quantum operations: 

1. Random gates: m gates (𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑚𝑚) selected uniformly at random from the Clifford 

group. 

2. Correction gate: 𝐶𝐶𝑚𝑚+1 chosen to ensure the complete sequence implements the 

identity operation in the absence of errors. 

 
Figure 19 – Randomized benchmarking sequence | The first m operations 𝐶𝐶𝑖𝑖 (orange) that are acting on the quantum state 

|𝜓𝜓⟩ are chosen randomly from the Clifford set, while the last operation 𝐶𝐶𝑚𝑚+1 (blue) is selected to ensure the entire sequence 

is equal to the identity operator. 

The correction gate is uniquely determined by the group property of Clifford operations: 

𝐶𝐶𝑚𝑚+1 = (𝐶𝐶𝑚𝑚 ∘ 𝐶𝐶𝑚𝑚−1 ∘ … ∘ 𝐶𝐶1)† = 𝐶𝐶1
† ∘ 𝐶𝐶2

† ∘ … ∘ 𝐶𝐶𝑚𝑚
†  

In the ideal, error-free case, every RB sequence implements the identity: 𝐶𝐶𝑚𝑚+1 ∘ 𝐶𝐶𝑚𝑚 ∘ … ∘

𝐶𝐶1 = 𝕀𝕀. Any deviation from identity behavior directly reflects the presence of errors. 
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The measurement protocol exploits the fact that ideal RB sequences leave the input state 

unchanged. We prepare an initial state 𝜌𝜌 (typically |0⟩⟨0|) and measure how likely we are to 

recover this state after applying the RB sequence. For a specific sequence labeled by index set 

i𝑚𝑚 = {𝑖𝑖1, 𝑖𝑖2, … 𝑖𝑖𝑚𝑚}, the survival probability is125: 

 𝑝𝑝i𝑚𝑚(𝜓𝜓) = Tr�𝐸𝐸ψ𝑆𝑆i𝑚𝑚(𝜌𝜌)� (91) 

where 𝑆𝑆i𝑚𝑚  represent the noisy RB sequence and 𝐸𝐸ψ is the positive operator-valued measure 

element for detecting the initial state 𝜓𝜓. 

In realistic implementations, each gate suffers from imperfections. We model each noisy gate 

as the composition of an ideal Clifford operation 𝐶𝐶𝑖𝑖𝑗𝑗 followed by an error channel Λ𝑖𝑖𝑗𝑗,𝑗𝑗. The 

complete noisy RB sequence becomes: 

 𝑆𝑆i𝑚𝑚 = Λ𝑖𝑖𝑚𝑚+1,𝑚𝑚+1 ∘ 𝐶𝐶𝑖𝑖𝑚𝑚+1 ∘ Λ𝑖𝑖𝑚𝑚,𝑚𝑚 ∘ 𝐶𝐶𝑖𝑖𝑚𝑚 ∘ … ∘ Λ𝑖𝑖1,1 ∘ 𝐶𝐶𝑖𝑖1 (92) 

The error Λ𝑖𝑖𝑗𝑗,𝑗𝑗 can depend on which specific gate 𝑖𝑖𝑗𝑗 is applied and on the position 𝑗𝑗 in the 

sequence. Moreover, typically the noise is considered Markovian, that is each error is 

independent of previous operations. 

Because each random sequence gives a different survival probability, we must average over 

many sequences to extract meaningful information. For sequences of fixed length m, we 

define: 

 𝑝̅𝑝𝑚𝑚(𝜓𝜓) =
1

|i𝑚𝑚|�𝑝𝑝i𝑚𝑚(𝜓𝜓)
i𝑚𝑚

=
1

|i𝑚𝑚|� Tr�𝐸𝐸ψ𝑆𝑆i𝑚𝑚(𝜌𝜌)�
i𝑚𝑚

 (93) 

To make analytical progress, we assume that gate errors are approximately independent of 

both the specific gate and its position in the sequence Λ𝑖𝑖𝑗𝑗,𝑗𝑗 = Λ. This approximation is valid 

when all gates suffer from similar dominant noise sources, gate-to-gate variations are small 

compared to the average error, and systematic drifts over sequence duration are negligible. 

Under this approximation, we can evaluate the average sequence operator analytically. 

The average sequence operator 𝑆𝑆𝑚̅𝑚 = 1
|i𝑚𝑚|

∑ 𝑆𝑆i𝑚𝑚i𝑚𝑚  can be written explicitly as: 

 
𝑆𝑆𝑚̅𝑚 = Λ ∘ �

1
|𝐶𝐶𝑛𝑛| � 𝐶𝐶† ∘ Λ ∘ 𝐶𝐶

𝐶𝐶∈𝐶𝐶𝑛𝑛

�

∘𝑚𝑚

 
(94) 
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The expression in brackets is the twirling of channel Λ over the Clifford group Λ𝑇𝑇 =
1

|𝐶𝐶𝑛𝑛|
∑ 𝐶𝐶† ∘ Λ ∘ 𝐶𝐶𝐶𝐶∈𝐶𝐶𝑛𝑛 . For any quantum channel Λ, averaging over random Clifford gates makes 

it look like a depolarizing channel that changes quantum states toward the maximally mixed 

state. Hence, the twirling of a single channel is given by Λ𝑇𝑇(𝜌𝜌) = 𝑝𝑝𝑝𝑝 + 1−𝑝𝑝
𝑑𝑑

, where 𝑑𝑑 = 2𝑛𝑛 and 

𝑝𝑝 represents the depolarizing parameter. Composition of m consecutive twirls results with 

Λ𝑇𝑇∘𝑚𝑚 = 𝑝𝑝𝑚𝑚𝜌𝜌 + 1−𝑝𝑝𝑚𝑚

𝑑𝑑
 and the average sequence fidelity becomes: 

 𝐹𝐹(𝑚𝑚,𝜓𝜓) = Tr �𝐸𝐸𝜓𝜓𝑆𝑆𝑚̅𝑚(𝜌𝜌)� = 𝐴𝐴0𝑝𝑝𝑚𝑚 + 𝐵𝐵0 (95) 

where 𝐴𝐴0 = Tr �𝐸𝐸𝜓𝜓Λ �𝜌𝜌 − 1
𝑑𝑑
�� and 𝐵𝐵0 = Tr �𝐸𝐸𝜓𝜓Λ �1

𝑑𝑑
�� account for the SPAM errors. 

The average error rate over the entire Clifford set, defined as the average error per twirl, is 

related to the depolarizing parameter 𝑝𝑝 through: 

 
𝑟𝑟 = 1 − �𝑝𝑝 +

1 − 𝑝𝑝
𝑑𝑑

����������
𝐹𝐹(1,𝜓𝜓)

=
(𝑑𝑑 − 1)(1 − 𝑝𝑝)

𝑑𝑑
 

(96) 

As Clifford gates are composed of multiple primitive gates, we must account for the average 

gate count. Using our generating set �𝐼𝐼,𝑋𝑋±𝜋𝜋
2
,𝑋𝑋±𝜋𝜋,𝑌𝑌±𝜋𝜋

2
,𝑌𝑌±𝜋𝜋� with average length 1.875 

primitive gates, the error rate per gate is 𝑟𝑟𝑔𝑔 = 𝑟𝑟 1.875⁄ . 

The complete set of Clifford operators used in our implementation is provided in Appendix 

7.1. 

2.8.3 Interleaved Randomized Benchmarking 

Standard RB provides error rates averaged over the entire Clifford group, but quantum 

computing applications require characterization of specific gate implementations. Interleaved 

RB (IRB) addresses this need by enabling targeted assessment of individual gates within the 

Clifford group through a comparative measurement protocol126. 

The IRB protocol consists of two distinct measurement phases. First, standard RB is performed 

on random sequences of Clifford gates to establish a reference baseline, yielding the 

composite depolarizing parameter 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 for the entire gate set. Second, sequences are 

constructed by systematically interleaving a specific target gate 𝐶𝐶 of interest between 

uniformly random Clifford elements. 
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For a sequence of length 𝑚𝑚, the interleaved protocol applies the pattern: 𝐶𝐶1𝐶𝐶 −

𝐶𝐶2𝐶𝐶−. . .−𝐶𝐶𝑚𝑚𝐶𝐶 − 𝐶𝐶𝑚𝑚+1, where each 𝐶𝐶𝑖𝑖 represents a uniformly random Clifford operation, 𝐶𝐶 is 

the target gate, and 𝐶𝐶𝑚𝑚+1 is the correction gate ensuring the complete sequence implements 

the identity operation. This construction results in m applications of the target gate 

interspersed with m random Clifford gates as illustrated in Figure 20. 

 

Figure 20 – Interleaved randomized benchmarking sequence | The gate of interest 𝐶𝐶 (pink) is interleaved between m random 

Clifford operations 𝐶𝐶𝑖𝑖 (orange). The final operation 𝐶𝐶𝑚𝑚+1 (blue) is chosen such the entire sequence do not change the quantum 

state |𝜓𝜓⟩. 

The key insight underlying IRB is that the interleaved sequences probe the combined error of 

random Clifford operations and the specific target gate. If we denote the error channel 

associated with the target gate as 𝜖𝜖𝐶𝐶  and the average error channel for random Clifford 

operation as 𝜖𝜖𝑎𝑎𝑎𝑎𝑎𝑎, then the interleaved sequence experiences the composite error process. 

The interleaved sequence fidelity follows the same decay as the standard sequence. Thus, 

using Equation 95 the composite depolarizing parameter for sequences containing the target 

gate 𝑝𝑝𝐶𝐶  can be extracted. 

The derivation of the specific gate error rate relies on the relationship between the composite 

and reference depolarizing parameters. The depolarizing parameter for a sequence containing 

both random Clifford operations and the target gate can be expressed as 𝑝𝑝𝐶𝐶 = 𝑝𝑝𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, where 

𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is the depolarizing parameter associated specifically with the target gate 𝐶𝐶. This 

multiplicative relationship arises because each gate in the sequence contributes 

independently to the overall depolarization under the twirling approximation. The average 

gate error rate for random Clifford operation is 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝑑𝑑−1)(1−𝑝𝑝)
𝑑𝑑

. Similarly, the composite 

error rate for interleaved sequences is 𝑟𝑟𝐶𝐶 = (𝑑𝑑−1)(1−𝑝𝑝𝐶𝐶)
𝑑𝑑

. The specific gate error rate can then 

be isolated by recognizing that 𝑝𝑝𝐶𝐶 = 𝑝𝑝𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, which gives 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑝𝑝𝐶𝐶/𝑝𝑝. Substituting this into 

the error rate formula (Equation 96) yields: 

 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
𝑑𝑑 − 1
𝑑𝑑

�1 −
𝑝𝑝𝐶𝐶
𝑝𝑝
� 

(97) 



Page | 58 
 

This expression directly relates the specific gate error to the experimentally measured 

depolarizing parameters from both standard and interleaved RB measurements. The bound 

for Equation 97 are given by 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ± 𝐸𝐸, with126: 

 

𝐸𝐸 = min

⎩
⎪
⎨

⎪
⎧

𝑑𝑑 − 1
𝑑𝑑

��𝑝𝑝 −
𝑝𝑝𝐶𝐶
𝑝𝑝
� + 1 − 𝑝𝑝�

2
𝑝𝑝
�
𝑑𝑑2 − 1
𝑑𝑑2 + 2�1 − 𝑝𝑝�𝑑𝑑2 − 1�

  

(98) 

2.9 Coupling Flux Qubit To Mechanical Resonator 

The coupling of the flux qubit to the mechanical resonator is based on the same interaction 

Hamiltonian described in the section Coupling to Artificial Atoms which takes the form: 

 ℏ𝜔𝜔𝑚𝑚𝑏𝑏�†𝑏𝑏� + ℏ
Δ
2
𝜎𝜎�𝑧𝑧 + ℏ𝑔𝑔𝑚𝑚𝜎𝜎�𝑥𝑥�𝑏𝑏� + 𝑏𝑏�†� (99) 

with 𝜔𝜔𝑚𝑚 the mechanical frequency, 𝑏𝑏�†, 𝑏𝑏� the creation and annihilation operators. Δ is the 

energy splitting of the flux qubit, 𝜎𝜎�𝑖𝑖 are the Pauli operators. 𝑔𝑔𝑚𝑚 is the coupling strength. The 

flux dependency of the qubit’s energy is through 𝜖𝜖 = 2𝐼𝐼𝑝𝑝
ℏ
�Φ − Φ0

2
�, where 𝐼𝐼𝑝𝑝 is the persistent 

current and Φ the magnetic flux threading the loop of the qubit. Thus, the coupling can be 

expressed in equivalence to the magnetic coupling derived in the Quantum Optomechanics 

and Electromechanics section as 𝑔𝑔𝑚𝑚 = 𝜕𝜕𝜕𝜕
𝜕𝜕Φ

ΦZPF. ΦZPF is the magnetic flux fluctuation induced 

in the flux qubit due to the mechanical motion of the resonator.  

For a parallel magnetic field 𝐵𝐵∥ acting on a flux qubit with a vibrating beam of length 𝐿𝐿 as an 

arm Φ𝑍𝑍𝑍𝑍𝑍𝑍 = 𝛾𝛾𝐵𝐵∥𝐿𝐿𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍, where 𝛾𝛾~0.5 is a scaling factor that depends on the mechanical mode 

shape. Hence, the coupling is 𝑔𝑔𝑚𝑚 = 2𝐼𝐼𝑝𝑝
ℎ
𝛾𝛾𝐵𝐵∥𝐿𝐿𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍 ≈ 217 kHz for typical parameters of 𝐼𝐼𝑝𝑝 =

300 nA, 𝐵𝐵∥ = 100 G, 𝐿𝐿 = 800 nm and 𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍 = 60 fm.  

To couple the motion of a vibrating membrane to the flux qubit, one arm of the qubit’s loop 

can be positioned along the center line of the membrane. In that case, the coupling has the 

same form 𝑔𝑔𝑚𝑚 𝐵𝐵∥⁄ = 2𝐼𝐼𝑝𝑝
ℎ
𝛾𝛾(2𝑅𝑅)𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍 as in the case of vibrating beam. For a silicon membrane 

of 𝑅𝑅 = 1 μm and 𝑥𝑥𝑍𝑍𝑍𝑍𝑍𝑍 = 2.5 fm, the coupling to the fundamental vibration mode is 𝑔𝑔𝑚𝑚 ≈ 36 

kHz, with 𝐵𝐵∥ = 100 G and 𝛾𝛾0,1 = 0.5269. 
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Type Material Size Frequency 𝑸𝑸 𝒙𝒙𝒁𝒁𝒁𝒁𝒁𝒁 𝒈𝒈 
Beam Diamond 𝐿𝐿 = 800 nm 𝑓𝑓 = 1.013 GHz 𝑄𝑄 = 30,088 60 fm 21.7 MHz/T 

Membrane Silicon 𝑅𝑅 = 1000 nm 𝑓𝑓01 = 384 MHz 𝑄𝑄𝑐𝑐 ≈ 3000 2.5 fm 3.58 MHz/T 

3. Sample Design And Fabrication 

3.1 Mechanical Resonators Fabrication 

The successful realization of the proposed architecture in this thesis relies on the development 

of high-quality mechanical resonators. This section outlines the fabrication techniques 

established to produce two such devices: diamond nano-beams and silicon membranes. We 

will detail the multi-step processes engineered for each material system. 

3.1.1 Nano-Beam Fabrication 

To overcome the limitations of fabricating devices from single-crystal diamond, we 

collaborated with the Finkler Lab at the Weizmann Institute of Science (WIS) to employ an 

angled-etching technique that uses anisotropic, oxygen-based plasma127. This method utilizes 

a custom-designed Faraday cage to direct plasma ions toward the substrate at specific angles. 

This allows for the fabrication of suspended structures with triangular cross-sections directly 

from a bulk diamond substrate, as shown in Figure 21. 

 
Figure 21 – Nano-beam fabrication using the angled-etching technique | (a) Schematic of the 20 nm thick Ti hard mask used 

to define the etch area. (b) Illustration of the angular RIE process that undercuts the mask to form the suspended beam. (c) 

Tilted-view (20°) scanning electron micrograph (SEM) of a fabricated nano-beam with length 𝐿𝐿 = 2.9 µm and width 𝑤𝑤 = 125 

nm. (d) Cross-sectional SEM showing triangular geometry; dark regions represent diamond; bright regions show conductive 
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Ti coating for imaging. Inset shows geometric approximation of triangular cross-section. Panel (b) is adapted from reference 

127. 

The fabrication sequence begins at WIS with rigorous surface preparation of the diamond 

substrate, which includes ultrasonic cleaning in acetone followed by a heated tri-acid solution 

(NHO3:H2SO4:HClO4) to ensure optimal surface conditions. Next, alignment marks are 

patterned using photolithography, followed by the deposition of a 30 nm titanium (Ti) layer 

and liftoff in acetone. Next, the sample is delivered to our laboratory. 

The nano-beam geometry is then defined using electron-beam lithography in a PMMA resist. 

The final beam’s length (𝐿𝐿) and width (𝑤𝑤) are set by the dimensions of, and distance between, 

pairs of rectangles patterned in the resist. Following development of the resist, a 20 nm Ti 

layer is deposited at WIS to act as a durable hard mask for the subsequent etching steps. 

The diamond is etched in a two-stage process. First, a vertical reactive-ion etch (RIE) using 

oxygen (O2) and chlorine (Cl2) plasma transfers the hard mask pattern into the diamond 

substrate. Second, a tent-assisted angular etch with O2:Cl2 plasma undercuts the structures, 

releasing the free-standing nano-beams, as illustrated in Figure 21b. Finally, the Ti mask is 

stripped, and the diamond is cleaned in a piranha solution to complete the process. 

The key parameters for each step of the fabrication process are summarized in Table 3. 

Table 3 – Fabrication steps of diamond nano-beams. 

Process Description 
Surface Preparation WIS 

Solvents cleaning Acetone ultrasonic bath 
Acid cleaning NHO3:H2SO4:HClO4 (1:1:1) at 180° C 

Alignment Mark Formation WIS 
Spin coating S1805: 4000 rpm, 40 s; bake 110° C, 1 min 

UV lithography 70 mJ cm−2 (MicroWriter ML®3) 
Development MF319 developer, 40 s 

Metal deposition Ti layer, 30 nm (Odem Selene) 
Liftoff Acetone 

Nano-beam Pattern Definition BIU 
Spin coating PMMA 950A3: 4000 rpm, 60 s; bake 180° C, 5 min 

E-beam lithography 50KeV, 30 pA; dose 500 μC cm-2 (Crestec-CABL) 
Development MIBK:IPA (1:3), 45 s 

 WIS 
Metal deposition Ti hard mask, 20 nm (Odem Selene) 

Liftoff Acetone 
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Diamond Etching WIS 
Vertical etching O2:Cl2 (50:2 sccm), 10 mbar, 700 W ICP0  
Angular etching O2:Cl2 (50:2 sccm), 10 mbar, 1000 W ICP 
Final cleaning WIS 
Acid cleaning Piranha solution (H2SO4:H2O2, 3:1) 

This fabrication process yields free-standing diamond nano-beams. Figure 21c shows a 

scanning electron micrograph (SEM) of an exemplary beam with a length 𝐿𝐿 = 2.9 µm and 

width 𝑤𝑤 = 125 nm. An SEM micrograph of a beam's triangular cross-section is shown in Figure 

21d. 

3.1.2 Silicon Membrane Fabrication 

For the fabrication of silicon (Si) membranes, we developed a technique that uses a silicon 

oxide (SiO₂) sacrificial layer on a silicon-on-insulator (SOI) wafer. The core concept is to create 

a nano-scale hole in the top Si device layer and then use an isotropic wet etch to remove the 

buried oxide layer. This process defines a fully clamped circular membrane whose radius is 

determined by the etching time. 

The fabrication process, illustrated schematically in Figure 22, begins with a piranha cleaning 

of a SOI wafer, which consists of a 220 nm Si device layer, a 3 µm buried oxide layer, and a 130 

µm Si base layer. 

 

Figure 22 – Schematic of the Si membrane fabrication process. 

A 70 nm Al layer is evaporated onto the top device layer to serve as a conductive layer for the 

e-beam lithography and a hard mask for the Si etching. The etching holes are patterned using 
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electron-beam lithography in a CSAR resist. The pattern is then transferred into the top Al 

layer via reactive-ion etching (RIE) with BCl3. After the pattern transfer, the CSAR resist is 

removed by O2 plasma ashing. With the Al acting as a hard mask, the pattern is etched through 

the Si device layer using RIE with SF6. In the final step, the wafer is submerged in hydrofluoric 

(HF 48%) acid, which selectively removes the buried SiO2 layer through the etched hole, 

leaving a suspended, circular Si membrane as shown in Figure 23. 

 
Figure 23 – Atomic force microscope (AFM) scans of fabricated Si membranes | The images show topography of two different 

circular membranes, with the blue dashed lines indicating the membrane edges at a radius of 1.65 µm. The central holes used 

for etching are marked with pink dashed lines. (a) A membrane fabricated with a 290 nm diameter etch hole. (b) A membrane 

fabricated with a 360 nm diameter etch hole. A height difference of 1 nm is visible in the regions where the buried oxide was 

etched. 

The key parameters for each fabrication step are summarized in Table 5. 

Table 4 – Etching Rates. 

Material Etch Process Etch Rate [nm/s] 

Si RIE, SF6 1.5-2.5 

Al RIE, BCl3 1.15-1.3 

SiO2 HF 48% 1.3-1.5 

Table 5 – fabrication steps of Si membranes. 

Process Description 
Surface Preparation  

Solvents cleaning Acetone ultrasonic bath 
Acid cleaning NHO3:H2SO4:HClO4 (1:1:1) at 180° C 

Metal deposition  
Backside Sputtering Al, 350 nm (Intelvac Nano Quest) 

Topside e-beam 
evaporation 

Al, 70 nm (Plassys MEB 550S) 

Holes Pattern Definition  
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Spin coating CSAR (AR-P 6200.09): 4500 rpm, 60 s; bake 100° C, 5 
min 

E-beam lithography 50KeV, 30 pA; dose 500 μC cm-2 (Crestec-CABL) 
Development MIBK:IPA (1:3), 45 s 

Al etching RIE: BCl3 (Versaline SLR 770) 
Resist removal O2 plasma ashing, 10 min 

Si etching RIE: SF6 (20 sccm), 20W (Versaline SLR 770) 
SiO2 etching HF 48% 

Final cleaning  
Acid cleaning Piranha solution (H2SO4:H2O2, 3:1) 

3.2 Superconducting Resonators Fabrication 

The hybrid quantum systems explored in this thesis require the integration of mechanical 

elements with high-coherence superconducting circuits. This section outlines the fabrication 

techniques developed to produce two such circuits: 𝜆𝜆/2 coplanar resonators on diamond, and 

Bragg resonators on silicon. 

3.2.1 𝜆𝜆/2 Coplanar Resonators on Diamond  

This section describes the design and fabrication of standard capacitively-terminated 𝜆𝜆/2 

coplanar waveguide resonators on diamond substrates. An example of such a resonator is 

shown in Figure 24. We pursued two primary objectives with these resonators: determining 

the relative permittivity and measuring the loss tangent of the diamond substrates. 

 
Figure 24 – 𝜆𝜆/2 coplanar waveguide resonator | Optical micrograph of a resonator fabricated from 150 nm niobium film on 

diamond substrate. The serpentine geometry achieves the target length for 𝜔𝜔0 = 7.5 GHz resonance, with interdigitated 

coupling capacitors (𝐶𝐶𝑐𝑐 = 0.9 fF, 𝑄𝑄𝑐𝑐 = 1.75 × 105) providing controlled coupling to the 50 Ω feedline. 

The resonator is designed as a coplanar waveguide (CPW) consisting of a central conductor of 

length 𝑙𝑙 = 10.875 mm and width 𝑤𝑤 = 21 μm placed between two ground planes separated 

by distance ℎ = 4 μm from the central conductor. The resonance frequency of the resonator 
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is given by 𝑓𝑓𝑟𝑟 = 1
2𝑙𝑙
𝑣𝑣𝑝𝑝ℎ, where 𝑣𝑣𝑝𝑝ℎ = 𝑐𝑐

�𝜖𝜖eff
 is the phase velocity with 𝑐𝑐 the speed of light in 

vacuum and 𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒 = 1+𝜖𝜖𝑟𝑟
2

 is the effective dielectric constant. The dielectric constant of the 

diamond substrate is 𝜖𝜖𝑟𝑟 = 5.7. 

For electromagnetic waves, the phase velocity 𝑣𝑣𝑝𝑝ℎ = 1 √ℒ𝒞𝒞⁄  also relates to the capacitance 

𝒞𝒞 and inductance ℒ per unit length128. The impedance of the CPW is given by 𝑍𝑍0 = �ℒ 𝒞𝒞⁄ .  

The capacitance is given by 𝒞𝒞 = 4𝜖𝜖0𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒
𝐾𝐾(𝑘𝑘0)
𝐾𝐾�𝑘𝑘0′ �

. For superconducting films, the total inductance 

ℒ = ℒ𝑔𝑔 + ℒ𝑘𝑘 has contributions from both geometric ℒ𝑔𝑔 and kinetic ℒ𝑘𝑘 inductances. The value 

of the geometric inductance is given by ℒ𝑔𝑔 = 𝜇𝜇0
4

 𝐾𝐾�𝑘𝑘0
′�

𝐾𝐾(𝑘𝑘0), where 𝐾𝐾 is the complete elliptic integral 

of the first kind, 𝑘𝑘0 = 𝑤𝑤
𝑤𝑤+2ℎ

, and 𝑘𝑘0
ʹ = �1 − 𝑘𝑘0

2. The geometric inductance is related to the 

sheet resistance 𝑅𝑅𝑠𝑠 of the superconducting film via the relation ℒ𝑘𝑘 = ℏ𝑅𝑅𝑠𝑠
1.76𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇𝑐𝑐

, with ℏ and 𝑘𝑘𝐵𝐵 

the reduced Planks’ and Boltzmann’s constants and 𝑇𝑇𝑐𝑐 the superconducting critical 

temperature of the film. The parameters of our superconducting layers and the result CPW 

resonators are shown in Table 6. 

Table 6 – Design parameters of the CPW resonators. 

Metal Thickness 𝑻𝑻𝒄𝒄 𝑹𝑹𝒔𝒔 𝓛𝓛𝒌𝒌 𝒁𝒁𝟎𝟎 𝒇𝒇𝒓𝒓𝒔𝒔𝒔𝒔𝒔𝒔 𝑪𝑪𝒄𝒄 𝑸𝑸𝒄𝒄 

Al 150 nm 1.9 K 0.19 Ω/sq. 6.74 nH/m 50.73 Ω 7.449 GHz 0.9 pF 1.75 × 105 

Nb 150 nm 8.7 K 1.00 Ω/sq. 7.65 nH/m 50.81 Ω 7.438 GHz 0.9 pF 1.75 × 105 

The total quality factor 𝑄𝑄𝑡𝑡−1 = 𝑄𝑄𝑙𝑙−1 + 𝑄𝑄𝑐𝑐−1 is determined by internal losses (𝑄𝑄𝑙𝑙) and coupling 

to the drive line (𝑄𝑄𝑐𝑐). The coupling quality factor is controlled by the coupling capacitors 𝐶𝐶𝑐𝑐, 

with 𝑄𝑄𝑐𝑐−1 = 4
𝜋𝜋

(𝑍𝑍0𝜔𝜔𝑟𝑟𝐶𝐶𝑐𝑐)2 for two identical capacitors. The internal quality factor relates to the 

substrate loss tangent through 𝑄𝑄𝑙𝑙−1 = 𝑝𝑝 tan 𝛿𝛿, where 𝑝𝑝 = 𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒
𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒+1

 is the participation ratio. In 

the regime 𝑄𝑄𝑐𝑐 ≫ 𝑄𝑄𝑙𝑙, the total quality factor is governed by internal losses: 𝑄𝑄𝑡𝑡 ≈ 𝑄𝑄𝑙𝑙. 

The VNA transmission signal for a microwave resonator with two identical ports, given by 

input-output theory129, follows |𝑆𝑆21|2 = �𝑄𝑄𝑡𝑡
𝑄𝑄𝑐𝑐
�

2 1

1+4𝑄𝑄𝑡𝑡2�
𝜔𝜔−𝜔𝜔𝑟𝑟
𝜔𝜔𝑟𝑟

�
2 with phase ∠𝑆𝑆21 =

− arctan �2𝑄𝑄𝑇𝑇
𝜔𝜔−𝜔𝜔𝑟𝑟
𝜔𝜔𝑟𝑟

�. 
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For this experiment, we used two types of diamond substrates from Element Six. The 

properties of both samples are summarized in Table 7. 

Table 7 – Properties of Diamond Samples. 

Sample Supplier Dimensions [mm] Type Surface 
Roughness Purity 

A 
(SCLA_0062) Element Six 6.4 × 6.3 × 0.5 Single crystal  

large area Ra < 1 nm N < 1 ppm 

B 
(SCOP_1460) Element Six 6.0 × 6.0 × 0.5 Single crystal  

optical grade (IIA) Ra < 1 nm N < 1 ppm 
B < 0.05 ppm 

The fabrication process begins with rigorous surface cleaning through immersion in boiling 

(180° C) triacid solution (H2SO4:HNO3;HClO4, 1:1:1) using an air-cooled condenser (Radleys 

Findenser) with silica ball filter to maintain reflux, as shown in Figure 25a. This enables 24-

hour cleaning cycles that result with pristine surface as presented in Figure 25b and Figure 

25c. 

 
Figure 25 – Surface preparation and characterization | (a) Custom triacid cleaning setup with reflux condenser and silica ball 

filter enabling extended 24-hour cleaning cycles at 180°C. AFM topography images showing surface quality after cleaning for 

(b) Sample A and (c) Sample B, both achieving Ra < 1 nm roughness. 

Following cleaning, samples are rinsed with deionized water, dried with nitrogen, and baked 

at 180°C to promote outgassing before transfer to the e-beam evaporator load chamber. 

Samples remain in the evaporator chamber overnight until reaching 10-7 mbar vacuum. To 

achieve 10-8 mbar, titanium is first evaporated  as a gettering material for two minutes while 

the sample surface is protected with a mechanical shutter. The superconducting metal (Nb or 

Al) is then deposited onto the clean diamond surface. Device patterns are subsequently 
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defined using direct laser lithography in photoresist, followed by pattern transfer through 

etching. 

For aluminum resonators, we employ AZ1505 photoresist for lithography and transfer the 

pattern through wet etching with type-A Al-etchant followed by brief AZ726 immersion. The 

niobium fabrication process is more complex, utilizing AZ1512 photoresist and a multi-step 

etching approach. The first step involves reactive ion etching with BCl3-Cl2 gas, monitored by 

laser interferometry to prevent diamond damage. The etching is stopped before the Nb layer 

is completely etched and the remaining thin Nb layer is then removed using triacid for 10 

minutes after bubble formation. This approach achieves complete removal of thin etched 

regions while preserving thick patterned areas, as demonstrated in Figure 26a. Finally, 

samples are mounted on custom printed circuit boards and connected via wire bonding. 

Summary of the fabrication steps is given in Table 8. 

 
Figure 26 – Etching process outcomes and substrate reuse challenges | (a) AFM micrograph showing clean Nb step profile 

(150 nm height) achieved through combined RIE and triacid etching, demonstrating selective material removal without 

diamond substrate damage. (b) Qubit pattern (dark features) etched in the diamond surface, most likely due to oxygen plasma 

ashing. Inset: Height profile along the white line with 4 nm negative step. 

Due to the high cost of diamond substrates, extensive reuse was necessary. We observed 

persistent device patterns on diamond surfaces even after comprehensive cleaning including 

triacid treatment, piranha solution, organic solvent sonication, and oxygen plasma ashing. 

Under AFM, as shown in Figure 26b, we detected that pattern is etched into the diamond. We 

attribute the etching of the diamond to the oxygen plasma ashing conducted through the 

qubit mask, as described later. 

Table 8 – Fabrication steps of superconducting CPW resonators. 

Process Description 
Surface Preparation  
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Solvents cleaning Acetone ultrasonic bath 
Acid cleaning NHO3:H2SO4:HClO4 (1:1:1) at 180° C 

Al Resonator Formation  
Metal deposition Al layer, 150 nm at 0.5 nm s−1 (Plassys MEB 550S) 

Adhesion promotion Bake: 180°C for 10 min 
Plasma ashing: O2N2, 5min 

Spin coating AZ1505 photoresist: 5000 rpm, 60 s; bake 80° C, 5 min 
UV lithography MLA150: dose = 23 mJ cm−2, 𝜆𝜆 =  405 nm 
Development AZ726 developer: 45s; hard bake 120°C for 5min 

Metal etching Al etchant type A: 10min 
AZ726 developer: 1min 

Nb Resonator Formation  
Metal deposition Nb layer, 150 nm at 0.3 nm s−1 (Plassys MEB 550S) 

Spin coating AZ1512 photoresist: 5000 rpm, 60 s; bake 100° C, 45 s 
UV lithography MLA150: dose = 40 mJ cm−2, 𝜆𝜆 =  405 nm 
Development AZ726 developer: 45s; hard bake 120°C for 5min 

Metal etching RIE: BCl3-Cl2 (Versaline SLR 770) 
NHO3:H2SO4:HClO4 (1:1:1): 180° C, 10 min 

Final cleaning  
Solvents cleaning NMP: 80° C, Overnight 

 

Figure 27 shows resonator characterization employed by vector network analyzer (VNA) 

transmission measurements. The aluminum resonator on Sample A showed measured 

resonance frequency 𝑓𝑓𝑟𝑟 = 7.480 GHz and total quality factor 𝑄𝑄𝑡𝑡 = 4.21 × 105. The total 

quality factor is larger than the intended coupling quality factor, which indicates we had a 

design error, hindering the calculation of the internal quality factor. Accordingly, we can only 

put an upper limit on the loss tangent tan 𝛿𝛿 < 1
𝑄𝑄𝑡𝑡

= 2.38 × 10−6. The measurement was 

obtained with average number of photons inside the resonator 𝑛𝑛� ≈ 20.  
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Figure 27 – VNA transmission characterization of 𝜆𝜆

2
 CPW resonators | (a) Aluminum resonator on Sample A showing 𝑓𝑓𝑟𝑟 =

7.480 GHz with 𝑄𝑄𝑡𝑡 = 4.21 × 105, yielding 𝑡𝑡𝑡𝑡𝑡𝑡 𝛿𝛿 < 2.38 × 10−6 for the diamond substrate. (b) Niobium resonator on Sample 

B demonstrating 𝑓𝑓𝑟𝑟 = 7.395 GHz with 𝑄𝑄𝑡𝑡 = 9.71 × 104, corresponding to 𝑡𝑡𝑡𝑡𝑡𝑡 𝛿𝛿 < 1.03 × 10−5. 

The niobium resonator on Sample B demonstrated measured resonance frequency 𝑓𝑓𝑟𝑟 = 7.395 

GHz and total quality factor 𝑄𝑄𝑡𝑡 = 9.71 × 104. The upper bound on the loss tangent is tan 𝛿𝛿 <

1.15 × 10−5. 

Table 9 – Superconducting resonators results summary 

Sample 𝒇𝒇𝒓𝒓 �𝒇𝒇𝒓𝒓 − 𝒇𝒇𝒓𝒓𝒔𝒔𝒔𝒔𝒔𝒔� 𝑸𝑸𝒕𝒕 𝐭𝐭𝐭𝐭𝐭𝐭 𝜹𝜹 
A 7.480 31 MHz 4.21×105 2.38×10-6 
B 7.395 43 MHz 9.71×104 1.03×10-5 

The aluminum resonator on the higher-grade substrate (Sample A) demonstrated superior 

performance with higher internal quality factor and lower loss tangent. This high internal 

quality factor ensures minimal additional losses from the readout resonator. While niobium 

fabrication is more complex, it offers advantages including enhanced SEM visibility for 

alignment mark location in subsequent qubit fabrication, resistance to piranha solution 

cleaning enabling device recovery from fabrication failures, and higher critical temperature 

reducing quasiparticle density. Aluminum provides simpler fabrication and stable native oxide 

protection, but devices are removed during piranha cleaning required for fabrication error 

recovery. Additionally, niobium oxidation is less uniform and stable, potentially degrading 

long-term performance compared to aluminum's superior electrical performance on high-

grade substrates.  
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3.2.2 3
4
𝜆𝜆 Resonator on Silicon 

This section presents the design and fabrication of quarter-wave resonators implemented on 

silicon substrates. The resonator architecture, outlined in the Methodology chapter, 

comprises a 50-Ω transmission line with a Bragg reflector termination on one end and a 

ground short on the other, as illustrated in Figure 28. These devices serve dual purposes in 

our experimental setup: providing selective noise attenuation within a frequency band 

surrounding the qubit transition while maintaining transmission for control and readout 

signals, and enabling DC current injection for magnetic flux bias control of the qubit. 

 
Figure 28 – Layout design of 3

4
𝜆𝜆 Bragg resonator on silicon substrate | The 50 Ω transmission line (center) terminates in a 

four-period impedance-alternating Bragg reflector (𝑍𝑍₁ = 35 𝛺𝛺, 𝑍𝑍₂ = 80 𝛺𝛺) creating a stopband filter, while the opposite end 

connects to ground. The geometry enables both noise filtering around the qubit frequency and DC flux bias injection. 

The substrate material consists of intrinsic silicon wafers with native oxide layers sourced from 

Virginia Semiconductors, featuring phosphorus impurity density less than 1012 cm-3. Each 

wafer is segmented into 23 mm × 23 mm square sections, with individual sections containing 

14 device sites measuring 3 mm × 10 mm, each hosting a single Bragg resonator structure. 

Our design parameters target a transmission line length 𝐿𝐿 = 8.044 mm, establishing a bare 

resonance frequency 𝜔𝜔0

2𝜋𝜋
≈ 11.09 GHz. Here, we assume 𝜖𝜖𝑟𝑟𝑠𝑠 = 11.7 for our silicon substrates. 

The width of the central line and the distance between the central line and the ground please 

were 10 and 5 μm respectively, yielding a characteristic impedance 𝑍𝑍0 = 50 Ω. 

The Bragg reflector incorporates 𝑚𝑚 = 4 impedance doublets with alternating characteristic 

impedances of 𝑍𝑍1 = 35 Ω and 𝑍𝑍2 = 80 Ω. The low (high) impedance was achieved with center 

line width of 46 (8) μm and distance to the ground plane of 7 (26) μm. This impedance contrast 

yields a reflection coefficient magnitude �𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� ≈ 0.4 and power reflectivity 
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�𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�
2
≈ 15% at each interface. Each impedance section extends 𝐿𝐿𝐵𝐵 = 3.44 cm in 

length. Electromagnetic simulations assuming lossless conditions predict the filter response 

shown in Figure 29, revealing a stopband centered at 8.58 GHz with nearly complete reflection 

|𝑟𝑟𝐵𝐵|2 ≈ 99%. At the design frequency of 11.09 GHz, the Bragg structure exhibits transmission 

|𝑡𝑡B|2 ≈ 19% with phase ∠𝑟𝑟𝐵𝐵 ≈ 85°. Linear fitting of the phase response near the filter center 

frequency yields an expected enhancement factor 𝛾𝛾 = 1.52. 

 
Figure 29 – Simulated response of Bragg resonator | 𝑚𝑚 = 4, 𝑍𝑍1 = 35 𝛺𝛺, 𝑍𝑍2 = 80 𝛺𝛺. 

The complete resonator phase response, depicted in Figure 30a, clearly demonstrates the 

modified phase velocity within the stopband region. The Bragg-modified resonance appears 

as a sharp phase discontinuity at 𝜔𝜔𝑟𝑟
2𝜋𝜋

= 10.19 GHz, with corresponding decay rate 𝜅𝜅𝐶𝐶 = 82 MHz 

and quality factor 𝑄𝑄𝐶𝐶 = 780. Current fluctuation simulations predict maximum values 

reaching 𝛿𝛿𝐼𝐼 = 30 nA, as shown in Figure 30b. 
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Figure 30 – Simulation of Bragg resonator | (a) Phase response of the reflected signal. (b) Current and voltage fluctuations.  

Sample preparation follows a comprehensive surface treatment protocol to ensure optimal 

conditions for superconducting film adhesion. The process begins with sequential organic 

solvent cleaning using acetone and isopropyl alcohol to remove surface contaminants and 

particles. Subsequently, samples undergo aggressive chemical treatment in piranha solution 

(sulfuric acid and hydrogen peroxide mixture) at 120°C for 15 minutes, effectively eliminating 

residual organic compounds and metallic impurities. After thorough deionized water rinsing, 

samples are soaked in isopropyl alcohol, nitrogen-dried, and immediately loaded into the 

electron-beam evaporation system vacuum chamber. The subsequent metal deposition and 

photolithographic patterning procedures mirror those established for aluminum devices on 

diamond substrates, as depicted in the fabrication flow diagram of Figure 31. 

 
Figure 31 – Fabrication steps of superconducting aluminum devices. 
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Experimental characterization utilized vector network analyzer reflection measurements, with 

results presented in Figure 32. The measured resonance frequency was 𝜔𝜔𝑟𝑟
2𝜋𝜋

= 10.162 GHz, 

necessitating a correction to our estimated permittivity value to 𝜖𝜖𝑟𝑟𝑠𝑠 = 11.896. This 

corresponds to an in-resonator light speed of 𝑐𝑐 = 118,060,115 m·s⁻¹. The experimental decay 

rate 𝜅𝜅𝐶𝐶 = 6.24 MHz yielded a quality factor 𝑄𝑄𝐶𝐶 ≈ 104. 

 
Figure 32 – VNA reflection measurement of the Bragg resonator. 

The successful implementation of these Bragg resonators on silicon substrates provides the 

necessary filtering characteristics for qubit protection while maintaining the required 

transmission properties for control signal delivery. The close correspondence between 

simulated and experimental parameters validates our design methodology and fabrication 

approach, establishing a reliable platform for integration with subsequent qubit devices. 

3.3 Flux Qubit Fabrication 

Superconducting flux qubits constitute the central elements of this thesis work. This section 

details the design methodology and fabrication protocols for gradiometer flux qubits 

implemented on both diamond and silicon substrates. 

3.3.1 Josephson Junction Fabrication 

The fundamental building block for superconducting qubit devices is the Josephson junction. 

Our approach employs a geometric design colloquially termed the "telephone" junction, 

named for its distinctive layout pattern visible in Figure 31. This configuration enables the 

simultaneous fabrication of two junctions with independently controlled dimensions within a 
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single device structure. The design incorporates a primary junction characterized by width 𝑤𝑤𝑛𝑛 

and height ℎ𝑛𝑛, alongside a smaller secondary junction with reduced dimensions 𝑤𝑤𝛼𝛼 and ℎ𝛼𝛼, 

providing the asymmetric junction ratio essential for flux qubit operation. 

 
Figure 33 – Schematic layout of the "telephone" Josephson junction design | The characteristic geometry enables fabrication 

of asymmetric junction pairs. The design yields a primary junction (width 𝑤𝑤𝑛𝑛, height ℎ𝑛𝑛) and a smaller 𝛼𝛼-junction (width 𝑤𝑤𝛼𝛼, 

height ℎ𝛼𝛼) within a single shadow mask pattern. The telephone shape derives from the distinctive connection geometry 

required for independent electrical access to both junctions. 

Junction fabrication relies on a bilayer aluminum structure consisting of a thin initial layer (20 

nm) that undergoes controlled oxidation, followed by deposition of a thicker capping layer (30 

nm). The process utilizes the established Dolan shadow evaporation technique, wherein the 

first aluminum layer is deposited through a suspended mask onto the bare substrate. 

Following in-situ oxidation to form the tunnel barrier, the second aluminum layer is deposited 

at a predetermined angle 𝜃𝜃 relative to the substrate normal, creating an overlap region where 

the two layers intersect to form the active junction area. The effective junction area follows 

𝐴𝐴 = 𝑤𝑤(ℎ + 2𝑡𝑡), where 𝑡𝑡 represents the thickness of the initial superconducting layer. For any 

given oxidation protocol, this junction area directly determines the characteristic Josephson 

energy 𝐸𝐸𝐽𝐽 and charging energy 𝐸𝐸𝐶𝐶  parameters. 

The fabrication sequence begins with formation of a suspended bridge structure using a 

trilayer resist stack comprising high-sensitivity electron beam resist (MAA EL7), an 

intermediate metallic masking layer (60 nm germanium), and low-sensitivity top resist (CSAR), 

as illustrated in Figure 32. The complete stack undergoes electron beam exposure followed by 

development of the top resist layer. Reactive ion etching transfers the pattern into the 

germanium mask, after which a second development step and plasma ashing sequence 

creates the required undercut profile in the trilayer stack. 
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Figure 34 – Trilayer technique for double-angle shadow evaporation fabrication sequence for Josephson junctions. 

The prepared sample is then loaded into an electron beam evaporator where the first 

aluminum layer is deposited at normal incidence while maintaining the substrate at -44°C. The 

suspended bridge structure casts a shadow onto the substrate, defining the junction region. 

Without breaking vacuum, controlled oxidation proceeds to form the insulating aluminum 

oxide barrier on exposed metal surfaces. The oxidation process begins at -10° C and concludes 

at 4° C under 0.019 mbar oxygen pressure. Subsequently, the second aluminum layer is 

deposited at an elevated substrate temperature of 9° C and at angle 𝜃𝜃 relative to the surface 

normal, creating the overlap region that constitutes the tunnel junction. Final static oxidation 

at 10 mbar for 10 minutes forms a protective oxide layer over the entire device structure. 

Following evaporation completion, the resist mask is dissolved using heated N-methyl-2-

pyrrolidone (NMP). Additional e-Beam lithography process is used to define a rectangular 

patch that overlaps both qubit and central line of the resonator. Argon ion milling through the 

patch ensures good surface contact before aluminum is evaporated to create galvanic contact  

between the qubits and the resonator. Final cleaning is done by soaking the sample in NMP 

overnight. The completed device is mounted on a dedicated printed circuit board with wire-

bond connections. Summary of the fabrication process steps is given in Table 9. 

Table 10 – Complete fabrication protocol for Josephson junctions. 

Process Description 
Tri-Layer Formation  

Spin coating MAA EL7: 2000 rpm, 60 s; bake 180° C for 1 min0 
MAA EL7: 2000 rpm, 60 s; bake 180° C for 10 min 
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Metal deposition Ge layer: 60 nm at 0.3 nm s−1 (Plassys MEB 550S) 
Spin coating CSAR (AR-P 6200.09): 4500 rpm, 60 s; bake 100° C, 5 min 

Junctions Formation  
E-beam lithography Elionix ELS Boden 100: dose = 1300 μC cm-2, I = 1 nA 

Development MIBK:IPA (1:3), 5 min 

Metal Etching RIE: SF6 20 sccm, Prf = 20 W, laser interferometer calibration 
(Versaline SLR 770) 

Development MIBK:IPA (1:3), 90 s 
Plasma ashing O2+N2, 3.5 min 

Metal deposition 

First Al layer: 20 nm of Al at 0.3 nm s−1, T = -44° C, θ=0° 
Dynamic oxidation: Tstart = −10° C, Tend = 4° C, P = 0.019 mbar 

Second Al layer: 30 nm of Al at 0.3 nm s−1, T = 9° C, θ≠0° 
Static oxidation: 10 min, P = 10 mbar 

Cleaning  
Solvents cleaning NMP: 80° C, Overnight 

Re-contact  

Spin coating MAA EL7: 2000 rpm, 60 s; bake 120° C for 4 min0 
PMMA 950A3: 6000 rpm, 60 s; bake 120° C for 4 min 

E-beam lithography Elionix ELS Boden 100: dose = 1000 μC cm-2, I = 10 nA 
Development MIBK:IPA (1:3), 1 min 

Ion-milling Plassys MEB 550S: P<10-6 mbar, Ar 20 sccm, 500 V, 17.5 mA 
Metal deposition Plassys MEB 550S: Al 170 nm, 0.5 nm s−1 

Cleaning  
Solvents cleaning NMP: 80° C, Overnight 

3.3.2 Josephson Junctions Characterization 

Junction characterization required dedicated test structures featuring junctions of varying 

dimensions. Normal-state resistance measurements using four-probe techniques enabled 

extraction of the resistance-area product, providing the design parameter necessary for 

achieving specific normal resistance values. Through the Ambegaokar-Baratoff relationship 

detailed in the methodology chapter, normal resistance directly correlates with critical 

current, enabling precise control of qubit parameters through accurate junction dimension 

control. 

Test structures were implemented on both substrate types to establish fabrication 

parameters. The diamond test array contained six distinct junction geometries with twenty 

repetitions of each design distributed across the chip area to average spatial fabrication 

variations. Each site contained a single junction element, yielding 120 total junctions per chip. 

Figure 33 presents the measured resistance plotted against inverse junction area, 

demonstrating the expected linear relationship.  
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Figure 35 – Josephson junction characterization and substrate comparison | (a) Normal-state resistance versus inverse 

junction area demonstrating the predicted linear relationship. Dataset D1 (diamond, immediate): 𝑅𝑅𝑛𝑛
𝐴𝐴,𝐷𝐷 = 27.21 ± 0.58 

Ω·μm², Dataset D2 (diamond, 24-day aging): 𝑅𝑅𝑛𝑛
𝐴𝐴,𝐷𝐷 = 27.52 ± 0.58 Ω·μm², Dataset S1 (silicon, immediate): 𝑅𝑅𝑛𝑛

𝐴𝐴,𝑆𝑆𝑆𝑆 = 19.77 ±

0.12 Ω·μm². AFM topography of completed junctions on (b) diamond and (c) silicon substrates. 

Initial measurements immediately following fabrication yielded 𝑅𝑅𝑛𝑛
𝐴𝐴,𝐷𝐷 = 27.21 ± 0.58 Ω·μm² 

for diamond substrates. To assess temporal stability, devices were stored under ambient 

laboratory conditions and re-measured after 24 days, producing 𝑅𝑅𝑛𝑛
𝐴𝐴,𝐷𝐷 = 27.52 ± 0.58 Ω·μm². 

While individual junction resistances increased by approximately 9 Ω, the resistance-area 

product remained essentially constant, confirming minimal aging effects on junction 

properties. 

Silicon test arrays employed a similar characterization approach with ten junction variants and 

twenty repetitions per design. Each test site incorporated four individual junctions, resulting 

in 80 junctions per geometry and 800 total junctions across the full array. Immediate post-

fabrication measurements yielded 𝑅𝑅𝑛𝑛
𝐴𝐴,𝑆𝑆𝑆𝑆 = 19.77 ± 0.12 Ω·μm² for silicon substrates. 

3.3.3 Gradiometer Flux Qubit Fabrication 

The gradiometer flux qubit design employed in this work appears in Figure 36. The 

gradiometer geometry is characterized by its height ℎ and length 𝑙𝑙 parameters, which together 

determine the total loop area 𝐴𝐴. The length of each gradiometer arm, measured at the center 

of the 600 nm wide metal strip, follows 𝐿𝐿 = ℎ + 𝑙𝑙 − 2𝑤𝑤. The loop area governs the magnetic 

flux threading the gradiometer structure, while the arm length affects qubit-resonator 

coupling through its associated inductance. 
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Figure 36 – Gradiometer flux qubit geometry and design parameters | The symmetric gradiometer loop is characterized by 

height ℎ and length 𝑙𝑙, yielding total area 𝐴𝐴 = ℎ × 𝑙𝑙 and arm length 𝐿𝐿 = ℎ + 𝑙𝑙 − 2𝑤𝑤 (measured at center of strip width 𝑤𝑤). 

Inset shows detailed view of asymmetric Josephson junction pair with normal junction (𝑤𝑤𝑛𝑛, ℎ𝑛𝑛) and 𝛼𝛼-junction (𝑤𝑤𝛼𝛼, ℎ𝛼𝛼). 

To enable identification of individual devices, eleven distinct qubits were designed with 

parameters summarized in Table 10. 𝑥𝑥𝑞𝑞𝑞𝑞 represents the position of the qubit along the 

transmission line of the resonator with respect to the end of the Bragg filter. 

Table 11 – Gradiometer flux qubit design matrix. 

Parameter Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 

𝒉𝒉 [𝛍𝛍𝛍𝛍] 5.00 5.15 5.30 5.45 5.60 5.75 5.90 6.05 6.20 6.35 6.50 

𝑳𝑳 [𝛍𝛍𝛍𝛍] 8.80 8.95 9.10 9.25 9.40 9.55 9.70 9.85 10.00 10.15 10.30 

𝑨𝑨 [𝛍𝛍𝐦𝐦𝟐𝟐] 19.36 20.02 20.68 21.34 22.00 22.66 23.32 23.98 24.64 25.30 25.96 
𝒙𝒙𝒒𝒒𝒒𝒒 [𝛍𝛍𝛍𝛍] 955 1305 1655 2005 2355 2705 3055 3405 3755 4105 4455 

The Josephson junction elements within each qubit are characterized by their geometric 

parameters. Both normal and 𝛼𝛼 junction heights were fixed at ℎ𝑛𝑛 = ℎ𝛼𝛼 = 180 nm, with widths 

designed as 𝑤𝑤𝑛𝑛 = 245 nm and 𝑤𝑤𝛼𝛼 = 125 nm.  

To assess the fabricated Josephson junctions the experimental chip 28 test structures 

arranged with four Josephson junctions per array, comprising 18 structures featuring normal 

junctions and 10 incorporating 𝛼𝛼 junctions. 
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Room-temperature resistance measurements result with normal resistances of 𝑅𝑅𝑛𝑛𝑁𝑁 = 710 ±

38 Ω for standard junctions and 𝑅𝑅𝑛𝑛𝛼𝛼 = 1235 ± 99 Ω for 𝛼𝛼 junctions, corresponding to 𝐸𝐸𝐽𝐽 =

201 ± 11 GHz and 𝛼𝛼 = 0.57 ± 0.06.  

The geometric capacitance of the junctions was simulated using COMSOL Electrostatics (see 

Figure 37a), following the rational developed in reference 118. The result geometric 

capacitance is given by Equation 34 with 𝐶𝐶12 = 0.28216 fF, 𝐶𝐶13 = 0.22577 fF, 𝐶𝐶14 = 0.27159 fF, 

𝐶𝐶23 = −0.05037 fF, 𝐶𝐶24 = −0.00189 fF, 𝐶𝐶34 = −0.05687 fF. 

 
Figure 37 – Simulations of the gradiometer flux qubit | (a) COMSOL model of the gradiometer qubit used to evaluate its 

geometric capacitance. (b) Energy gap and persistence current from the solution of the full Hamiltonian of the gradiometer 

flux qubit with 𝐸𝐸𝐽𝐽 = 201 GHz and 𝐸𝐸𝐽𝐽 𝐸𝐸𝐶𝐶⁄ ≈ 53 GHz. For the target parameter 𝛼𝛼 = 0.575, the energy gap is 𝛥𝛥 = 2.74 GHz and 

the persistent current is 𝐼𝐼𝑝𝑝 = 190 nA. 

With all design parameters in hand, we numerically solved the full Hamiltonian to extract the 

energy splitting of the qubit and its persistence current, as shown in Figure 37b. For our design 

parameters, 𝐸𝐸𝐽𝐽 = 201 GHz and 𝐸𝐸𝐽𝐽 𝐸𝐸𝐶𝐶⁄ ≈ 53 GHz, we expect to get Δ = 2.74 GHz and 𝐼𝐼𝑝𝑝 = 190 

nA. 

Figure 38 shows the coupling between the Bragg resonator and the qubit as well as the Purcell 

decay rate where calculated based on the design parameters and positions 𝑥𝑥𝑞𝑞𝑞𝑞 of the qubits 

along the transmission line part of the Bragg resonator that are given in Table 10. Coupling 

strength is on the range of 30 MHz to 80 GHz while according to Equation 74 the expected 

Purcell decay rate is on the range of 60-190 kHz.  
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Figure 38 – Simulated coupling strength 𝑔𝑔 and Purcell decay rate 𝛤𝛤𝑃𝑃. 

The double-angle evaporation process inherently creates two superconducting loops within 

the completed device structure, as shown in Figure 39. To prevent unwanted flux trapping in 

the parasitic loop formed during second-layer deposition, this redundant circuit element must 

be electrically isolated. This isolation is accomplished through focused ion beam milling to 

sever the unwanted loop while preserving the primary gradiometer circuit. 

 
Figure 39 – Completed gradiometer flux qubit structure and parasitic loop removal | (a) Schematic overlay showing first 

aluminum layer pattern (purple stripes) and second aluminum layer (gray solid) illustrating the double-angle evaporation 

result. The overlap regions form the active Josephson junctions while creating an unwanted parasitic loop. (b) Tilted SEM 

image (30° tilt) of finished device after focused ion beam cutting to eliminate the redundant superconducting loop, preventing 

flux trapping while preserving the primary gradiometer circuit. 

4. Experimental System 
This chapter presents comprehensive details of the measurement infrastructure employed for 

characterizing superconducting resonators and flux qubits. The experimental configurations 

are tailored to accommodate two distinct measurement scenarios: coplanar waveguide 
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resonator characterization and integrated flux qubit systems incorporating Bragg resonator. 

Additionally, we describe the implementation and optimization of a traveling wave parametric 

amplifier (TWPA) readout application. 

4.1 Coplanar Waveguide Resonator Characterization Setup  

Sample mounting for coplanar waveguide (CPW) resonator measurements utilize PMMA 

adhesive to secure devices onto microwave-compatible printed circuit boards (PCBs) made 

from TMM10 ceramics. These boards incorporate precision-etched 50 Ω coplanar waveguide 

transmission lines that route signals from the device location to SMP connectors, enabling 

connection to external coaxial infrastructure. Electrical continuity between the sample and 

board is established through wire bonding, providing zero-resistance pathways for both signal 

and ground connections. 

The complete assembly is housed within a gold-plated copper enclosure engineered for 

minimal electromagnetic mode volume, thereby reducing parasitic coupling and improving 

measurement sensitivity. This packaged system operates within a Cryoconcept Hexadry 200 

dilution refrigerator featuring low mechanical vibration characteristics. Thermal anchoring to 

the mixing chamber achieves base temperatures of 15 mK, essential for accessing the 

quantum regime of superconducting devices. 

Microwave characterization employs a Keysight PNA-L N5235 vector network analyzer (VNA) 

as the primary measurement instrument. Signal routing from room temperature to the 

cryogenic environment begins with TestPro 4.5 cables connecting the VNA output to copper-

nickel composite cables within the refrigerator. These CuNi cables provide the necessary 

balance between thermal isolation and electrical conductivity while routing signals from 

ambient temperature to the 4 K thermal stage. 

At the intermediate temperature stage, microwave signals undergo controlled attenuation 

through an XMA -20 dB attenuator before transition to superconducting NbTi coaxial cables 

for the final connection to the mixing chamber stage. Additional signal conditioning at the 

base temperature stage incorporates XMA attenuators providing attenuation from -10 dB to -

40 dB, depending on the specific experiment. 
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The signal detection pathway incorporates a shielded double-circulator (QCY-060400CM20, 

QuinStar Tech.) positioned at the mixing chamber stage to enforce unidirectional signal-flow 

and minimize reflections. Signal amplification occurs in multiple stages, beginning with a low-

noise cryogenic HEMT amplifier (LNF-LNC4_8C) at the 4 K stage, followed by additional room-

temperature amplification using a second HEMT amplifier (LNF-LNR1_15A). The conditioned 

signal returns to the VNA input port for digital processing and analysis. The complete 

measurement architecture is illustrated in Figure 40, showing the temperature-staged signal 

routing and conditioning elements.  

 

Figure 40 – Measurement infrastructure for CPW resonator characterization | The schematic shows signal routing from room 

temperature VNA through temperature-staged attenuation and amplification within a dilution refrigerator. Key components 

include CuNi thermal isolation cables (RT to 4K), superconducting NbTi cables (4K to 15mK), staged HEMT amplification (LNF-

LNC4_8C at 4K, LNF-LNR1_15A at RT), and shielded circulators for signal isolation. The CPW resonator sample is housed in a 

gold-plated copper enclosure thermally anchored to the 15 mK mixing chamber stage. 

4.2 Bragg Resonator and Flux Qubit Measurement Configuration 

Silicon substrates containing integrated Bragg resonators and gradiometer flux qubits require 

a more sophisticated experimental arrangement to accommodate both microwave 

characterization and magnetic flux control. Sample mounting follows similar protocols as 

described for CPW resonators, utilizing identical PCB technology and wire bonding techniques 

for device connectivity. 
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The critical enhancement for flux qubit experiments involves implementation of a custom 

superconducting magnetic coil system. This coil features a gold-plated copper bobbin wound 

with 387 meters of NbTi wire embedded in a CuNi stabilizing matrix. The total wire diameter 

was 0.152 mm. Room temperature coil resistance measures 10.38 kΩ, yielding a current-to-

magnetic-field conversion efficiency of 0.3788 G/mA at the sample location. 

The coil assembly accommodates multiple sample orientations, enabling magnetic field 

application either parallel or perpendicular to the substrate surface, as demonstrated in Figure 

41. This flexibility proves essential for investigating different coupling mechanisms between 

external fields and the gradiometer loop structures. 

 

Figure 41 – Custom superconducting magnetic coil system for flux qubit bias control | Flexible sample mounting enables 

magnetic field orientation parallel (a) or perpendicular (b) to substrate surface, essential for investigating different 

gradiometer coupling mechanisms. The coil features gold-plated copper bobbin with NbTi-in-CuNi wire. (c) Multi-layer 

magnetic shielding combines superconducting Ti-64 alloy inner shield with high-permeability CryoPhy outer housing. Eccosorb 

AN-72 absorbing material seals cable penetrations to prevent electromagnetic leakage while maintaining thermal anchoring 

to the mixing chamber base temperature. 

Magnetic noise suppression employs a multi-layer shielding approach incorporating both 

superconducting and high-permeability materials. The primary shield consists of a 

superconducting titanium alloy (Ti-64130) enclosure that eliminates low-frequency magnetic 

fluctuations through flux expulsion. Secondary shielding utilizes high-permeability CryoPhy 

material (Meca Magnetic) to attenuate residual magnetic noise at higher frequencies. 

Electromagnetic radiation suppression is achieved through strategic placement of Eccosorb 

AN-72 absorbing material at potential leakage points. 

Current sourcing for magnetic bias control utilizes a BILT BE-2102 precision voltage source 

coupled to a custom voltage-to-current converter. This converter incorporates a series-
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connected capacitor and 1 kΩ precision resistor maintained at constant temperature (37°C) to 

minimize resistance drift and ensure stable current conversion. Temperature regulation proves 

critical for maintaining current stability over extended measurement periods. 

The DC signal for sample biasing is applied by additional BILT source. The signal goes through 

multiple filtering stages to achieve the noise levels required for coherent qubit operation. 

Initial filtering employs an inductive low-pass filter (R = 142 Ω, L = 16 H) at room temperature 

followed by a Mini-Circuits VLFX 1050 low-pass filter and an XMA -20 dB attenuation at the 4 

K stage. Further noise reduction at the mixing chamber stage utilizes a cascaded filter chain 

including a custom Eccosorb filter (approximately -6 dB/GHz131), and a MiniCircuit SLP-1.9+ 

commercial filter. 

For practical implementation, the DC bias current 𝐼𝐼𝐷𝐷𝐷𝐷  is applied through a T-type attenuator 

circuit (see Figure 42) to provide impedance matching and signal isolation.  

 
Figure 42 – Circuit diagram of a T-attenuator 

The effective resistance 𝑅𝑅 relating the applied voltage 𝑉𝑉𝐷𝐷𝐷𝐷 to the bias current 𝐼𝐼𝐷𝐷𝐷𝐷  is: 

 
𝑅𝑅 =

𝑅𝑅∗𝑅𝑅1 + 𝑅𝑅∗𝑅𝑅2 + 𝑅𝑅1
2 + 2𝑅𝑅1𝑅𝑅2

𝑅𝑅2
 

(100) 

where 𝑅𝑅∗ is the residual resistance of connecting wires, and 𝑅𝑅1 = 𝑅𝑅0
𝑁𝑁−1
𝑁𝑁+1

, 𝑅𝑅2 = 𝑅𝑅0
2−𝑅𝑅1

2

2𝑅𝑅1
 are the 

attenuator resistors. The attenuator parameters are designed to match the system impedance 

𝑅𝑅0 and provide attenuation factor 𝑁𝑁 = 10
𝑑𝑑𝑑𝑑
20 . This configuration enables precise control of the 

qubit operating point while maintaining proper impedance matching for microwave signals.  

Microwave signal generation employs dual-source architecture optimized for independent 

resonator and qubit control. Resonator driving signals originate from a Keysight E8257 analog 

signal generator, while qubit manipulation employs an R&S SMA100B RF generator. Pulse 

modulation occurs at intermediate frequencies spanning 10-200 MHz using a Quantum 
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Machines OPX+ control system connected to MITEQ IRM0618/IRM0408 frequency mixers. 

Fine amplitude control utilizes a Pulsar AAR-29-479 voltage-controlled attenuator providing 

continuous adjustment across 0.5-64 dB range. 

Signal combination prior to refrigerator entry employs a Pulsar PS2-18-450/9S two-way power 

divider, enabling simultaneous resonator and qubit addressing. Thermal noise minimization 

incorporates staged attenuation with XMA -20 dB attenuation at 4 K and XMA -30 dB 

attenuation at the mixing chamber stage. Additional filtering utilizes a custom131 impedance-

matched copper powder filter providing -10 dB attenuation at 10 GHz. A shielded circulator 

(QCY_0812, QuinStar Tech.) eliminates reflected signal leakage. 

DC and microwave signals are combined at the mixing chamber stage through a Marki BT-0018 

bias-T and undergo final filtering through a -3 dB IR filter before sample connection. This 

configuration enables simultaneous flux biasing and microwave control of the qubit system. 

Readout signal processing employs reflection measurements from the Bragg resonator with 

extensive filtering prior to parametric amplification. The signal processing chain includes a 3 

dB IR filter, shielded double circulator (QCY_0812), 8-12 GHz bandpass filter (MicroTronics 

BPC50406), and DC blocking capacitor. Following TWPA amplification, additional signal 

conditioning includes circulator isolation and cryogenic HEMT amplification (LNF-LNC1_12A). 

Room temperature processing incorporates secondary HEMT amplification (LNF-LNR_15A), 

signal demodulation, and voltage amplification using a Femto HVA-500M-20-B amplifier. Final 

signal acquisition utilizes the analog inputs of the OPX+ control system. The complete 

experimental configuration is detailed in Figure 43, illustrating the integration of all signal 

generation, conditioning, and detection components. 
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Figure 43 – Experimental configuration for flux qubit characterization with Bragg resonator readout | The system integrates 

dual-source microwave generation, Quantum Machines OPX+ pulse control, staged cryogenic filtering and attenuation, 

custom magnetic coil with multi-layer shielding, and traveling wave parametric amplifier. Signal processing includes 

temperature-staged amplification, extensive filtering chains, and real-time demodulation. The modular design enables 

simultaneous flux biasing, microwave control, and high-fidelity readout of superconducting flux qubits. 
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4.3 Traveling Wave Parametric Amplifier Implementation 

The reversed Kerr traveling wave parametric amplifier (RKerr-TWPA) used in this work was 

developed by the research team led by Dr. Nicolas Roch at the Néel Institute in Grenoble. The 

amplifier is integrated directly into the readout signal path at the mixing chamber base 

temperature, positioned between the sample filtering chain and the cryogenic HEMT 

amplifier stage. This placement ensures that the weak reflected signals from the Bragg 

resonator receive immediate low-noise amplification before encountering additional circuit 

elements that could degrade the signal-to-noise ratio. 

The TWPA requires independent pump signal generation and DC bias control for optimal 

operation. The pump line utilizes an additional R&S SMA100B signal generator with dedicated 

signal conditioning including XMA -20 dB attenuators at both 4 K and mixing chamber stages, 

followed by custom copper powder filtering to minimize noise coupling into the amplification 

process. DC biasing of the TWPA employs a separate BILT source with precise voltage control 

to maintain the optimal flux operating point. 

TWPA characterization begins with VNA transmission measurements in the absence of a 

pump. These measurements reveal spurious mode oscillations that vary with applied 

magnetic flux, as presented in Figure 44a. The optimal operating point for reversed Kerr 

amplification occurs at the 'half-flux' condition corresponding to minimized spurious mode 

amplitude. Based on these measurements, we selected 𝑉𝑉𝐷𝐷𝐷𝐷 = 0.08 V as the optimal flux bias 

point for subsequent operation. 

 

Figure 44 – TWPA characterization and optimization | (a) VNA transmission mapping versus frequency and flux bias showing 

spurious mode oscillations that determine optimal operating conditions. The 'half-flux' point at 𝑉𝑉𝐷𝐷𝐷𝐷 = 0.08 V corresponds to 

minimum spurious mode amplitude, providing optimal phase-matching conditions for reversed Kerr amplification. (b) 
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Parametric gain optimization showing peak gain of 21 dB achieved at pump frequency 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 8.174 GHz and pump power 

5 dBm. 

Parametric gain optimization requires systematic characterization of both pump power and 

frequency to identify conditions yielding maximum signal amplification. The measurement 

protocol involves VNA transmission measurements using narrow-bandwidth drive signals 

(10.19 GHz ± 5 MHz) while varying pump parameters. Gain calculation compares average 

transmitted power with and without pump activation. This optimization procedure identified 

optimal conditions of 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 8.174 GHz and 5 dBm pump power, yielding peak gain of 21 

dB, as shown in Figure 44b. 

5. Results and Discussion 
This chapter presents experimental characterization of gradiometer superconducting flux 

qubits (GFQs) coupled to Bragg resonators on a high resistivity silicon substrate. Detailed 

device design and fabrication are given in section 3.2.2. The GFQ consists of a figure-eight 

superconducting loop intersected by three or four Josephson junctions, where the two sub-

loops form a gradiometer configuration that cancels homogeneous magnetic field 

dependence.  

Early implementations demonstrated significant capabilities but with notable limitations. The 

first tunable-gap GFQ achieved gap control up to 12 GHz through tunable 𝛼𝛼-junctions, though 

coherence times remained very short94. Strong coupling between a tunable GFQ and 

microwave resonator was subsequently demonstrated, but coherence was still limited to 𝑇𝑇1 =

1.5 μs and 𝑇𝑇2 = 300 ns95. GFQs also enabled studies of the quantum-to-classical transition in 

macroscopic systems96 and investigations of kinetic inductance effects on qubit 

performance97. 

In this work, we eliminate the need for dedicated flux lines by implementing a Bragg-filter 

terminated coplanar waveguide resonator. The Bragg filter termination enables DC current 

application through the resonator's center conductor while simultaneously providing noise 

suppression through high-frequency signal filtering. Each qubit has a different loop area (see 

Table 10), thus their anticrossing appears at different values of the bias current. To maximize 

qubit-resonator coupling strength, the GFQ is galvanically connected directly to the resonator. 
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We demonstrate quantum coherent operation through spectroscopic analysis, coherence 

time measurements (Γ1 = 33 kHz, Γ2,𝐸𝐸 = 80 kHz), and randomized benchmarking protocols 

(𝑟𝑟𝑔𝑔 = 9 × 10−3). 

5.1 Bragg Resonator Integration and Performance 

Figure 45a presents the Bragg resonator device fabricated on a silicon substrate using a 150 

nm aluminum superconducting layer, following the fabrication protocols detailed previously. 

The device features a Bragg filter architecture consisting of 𝑚𝑚 = 4 doublets with alternating 

impedances of 𝑍𝑍1 = 35 Ω and 𝑍𝑍2 = 80 Ω, where each impedance segment has a length of 

𝐿𝐿𝐵𝐵 = 3.44 mm. This Bragg filter configuration achieves near-perfect reflection with |𝑟𝑟𝐵𝐵|2 ≈

99% at the stopband center frequency of 8.58 GHz. Beyond the Bragg filter, an 8.044 mm 

coplanar transmission line accommodates eleven gradiometer flux qubits, which are 

galvanically connected to the central line, before terminating in a short circuit to ground, with 

both microwave and DC signals transmitted through the Bragg filter via a single port. Figure 

45 displays scanning electron microscopy image of qubit A, showing the completed 

gradiometer structure after removal of the redundant loop using focused ion beam 

processing. Comprehensive details regarding sample design and fabrication procedures are 

provided in Chapter 3. 

 
Figure 45 – Circuit implementation | (a) Optical microscopy image of complete device showing quarter-wave Bragg resonator. 

Eleven GFQs are integrated along the transmission line section. (b) Scanning electron micrograph of qubit A after the focused 

ion beam cut the parasitic superconducting loop. (c) Vector network analyzer reflection measurement demonstrating 
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resonator performance with measured frequency 𝜔𝜔𝑟𝑟

2𝜋𝜋
= 10.162 GHz, decay rate 𝜅𝜅𝐶𝐶 = 6  MHz, and quality factor 𝑄𝑄𝐶𝐶 ≈ 104, 

confirming integration without significant loss mechanisms. (d) Resonator spectroscopy versus 𝐼𝐼𝐷𝐷𝐷𝐷  revealing distinct 

anticrossing patterns of six qubits and two overlapping signatures, validating flux control through transmission line current 

injection. (e) Detailed anticrossing analysis for qubit A yielding coupling strength 𝑔𝑔(𝐴𝐴) = 19.3 MHz through model fitting. 

The experimental system employs dedicated microwave sources to generate local oscillator 

signals for resonator and qubit control, which are mixed with intermediate frequency pulses 

from an OPX+ system before being combined and transmitted to the sample housed within a 

Cryoconcept dilution refrigerator operating at a base temperature of 15 mK. The outgoing 

signals undergo attenuation and filtering along the transmission path to the sample, while the 

reflected signals from the sample are amplified through a multi-stage amplification chain 

consisting of a reversed Kerr traveling wave parametric amplifier (RKerr-TWPA) providing ~21 

dB gain positioned at the mixing chamber stage, followed by high electron mobility transistor 

amplifiers located at 4 K and room temperature. The amplified signals are subsequently 

demodulated and measured using the OPX+ system at room temperature, with 

comprehensive details of the experimental setup provided in Chapter 4. 

Figure 45c shows vector network analyzer reflection measurements used to characterize the 

resonator response. The measured resonance frequency of was 𝜔𝜔𝑟𝑟
2𝜋𝜋

= 10.162 GHz required 

correction of our estimated substrate permittivity to 𝜖𝜖𝑟𝑟𝑆𝑆𝑆𝑆 = 11.896, corresponding to an in-

resonator light velocity of 𝑐𝑐 = 118,060,115 m·s⁻¹. The experimental decay rate 𝜅𝜅𝐶𝐶 = 6 MHz 

produced a quality factor 𝑄𝑄𝐶𝐶 ≈ 104, demonstrating good correspondence with theoretical 

predictions established in previous chapters. 

DC current bias measurements revealed the anticipated anticrossing behavior characteristic 

of strong qubit-resonator coupling, as demonstrated in Figure 45d. Systematic investigation 

identified responses from eight of the eleven integrated qubits. Six devices exhibited distinct 

magnetic flux responses while two displayed overlapping characteristics. This outcome 

validates our approach using current injection through the Bragg filter and into the resonator 

transmission line to magnetically bias the qubits. 

Of the three unobserved qubits, one sustained damage during the focused ion beam 

procedure, while the remaining two are believed to operate far detuned from the resonator 

frequency, rendering them undetectable within our measurement bandwidth. We analyzed 

the relationship between the design sizes of the qubit loops and the positions of the optimal 
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flux bias points to assign each pattern to a specific qubit. We found that the qubits appearing 

in Figure 45d correspond to the designed positions 3 (qubit A) and 8 (qubit B). 

Detailed analysis concentrated on qubits A and B, which demonstrated clear anticrossing 

signatures suitable for quantitative characterization. Figure 45e presents the anticrossing 

pattern for qubit A, from which we extracted coupling strength 𝑔𝑔(𝐴𝐴) = 19.3 MHz through 

fitting to the established resonator-qubit interaction model. Similar analysis of qubit B yielded 

coupling strength 𝑔𝑔(𝐵𝐵) = 21.5  MHz, indicating comparable interaction strengths across 

different device positions within the resonator. 

5.2 Spectroscopic Characterization and Qubit Parameters 

Comprehensive qubit characterization required spectroscopic measurements under variable 

magnetic bias conditions. The qubit transition frequency follows 
𝜔𝜔𝑞𝑞𝑞𝑞

2𝜋𝜋
= �Δ2 + 𝜖𝜖2, where 𝜖𝜖 =

2𝐼𝐼𝑝𝑝
ℏ
�Φ − Φ0

2
�, represents the energy offset from the optimal flux point. Here, Φ = Φ𝑑𝑑

2
 with Φ𝑑𝑑 

the flux difference between the two loops of the GFQ. This relationship enables extraction of 

the fundamental qubit parameters: energy splitting Δ and persistent current 𝐼𝐼𝑝𝑝. 

Experimental results shown in Figure 46a and b yielded Δ(𝐴𝐴) = 9.097 GHz with 𝐼𝐼𝑝𝑝
(𝐴𝐴) = 138 nA, 

and Δ(𝐵𝐵) = 7.226 GHz with 𝐼𝐼𝑝𝑝
(𝐵𝐵) = 147 nA. These parameters correspond to Josephson 

energies 𝐸𝐸𝐽𝐽
(𝐴𝐴) = 194 GHz and 𝐸𝐸𝐽𝐽

(𝐵𝐵) = 191 GHz, with asymmetry ratios 𝛼𝛼(𝐴𝐴) = 0.475 and 

𝛼𝛼(𝐵𝐵) = 0.499. The Josephson energy is in good agreement with the expected values from 

room temperature characterization of the test junctions while the reduced values of 𝛼𝛼 reflect 

dimensional variations in junction fabrication. 

The voltage-to-flux conversions were calibrated through measurements at the optimal flux 

point Φ = Φ0/2. Knowledge of the applied DC voltage at operation 𝑉𝑉𝐷𝐷𝐷𝐷
𝑜𝑜𝑜𝑜𝑜𝑜  allowed conversion 

of arbitrary voltages 𝑉𝑉𝐷𝐷𝐷𝐷 to magnetic flux using Φ = 𝑉𝑉𝐷𝐷𝐷𝐷 2𝑉𝑉𝐷𝐷𝐷𝐷
𝑜𝑜𝑜𝑜𝑜𝑜⁄  [Φ0]. We used the 

relationship given in Equation 40 to calculate the mutual inductance of the qubits per 

gradiometer loop length 𝑀𝑀 = 1.00 ± 0.06 pH/μm. 
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Figure 46 – Comprehensive flux qubit characterization and coherence measurements | (a,b) Spectroscopic determination of 

qubit parameters showing energy splitting 𝛥𝛥 and persistent current 𝐼𝐼𝑝𝑝 for qubit A (𝛥𝛥(𝑎𝑎) = 9.097 GHz, 𝐼𝐼𝑝𝑝
(𝐴𝐴) = 138 nA) and qubit 

B (𝛥𝛥(𝐵𝐵) = 7.226 GHz, 𝐼𝐼𝑝𝑝
(𝐵𝐵) = 147 nA), with theoretical fits confirming gradiometer flux response. (c,d) Coherence time 

measurements reveal relaxation rate 𝛤𝛤1 (33 kHz for qubit A, 113 kHz for qubit B) and decoherence rate 𝛤𝛤2,𝐸𝐸 (80 kHz for qubit 

A, 275 kHz for qubit B) through standard decay and Hahn-Echo protocols respectively. (e,f) Flux noise amplitude extraction 

from coherence data yielding 𝐴𝐴(𝐴𝐴) = 13.3 𝜇𝜇𝛷𝛷0 and 𝐴𝐴(𝐵𝐵) = 6.6 𝜇𝜇𝛷𝛷0. 

On the basis of the spectroscopic parameters, we implemented coherent qubit control using 

tailored microwave pulses. Continuous wave pulses employed tapered-cosine window 

envelopes to minimize spectral leakage, with pulse durations of 100 ns for qubit A and 16 ns 

for qubit B, both incorporating 8 ns rise/fall times. Rabi-like calibration procedures determined 

𝜋𝜋-pulse amplitudes by measuring qubit state populations versus drive strength. Half-

amplitude pulses generated the required 𝜋𝜋/2 rotations for coherence measurements. 

Frequency and power correction based on the ALLXY method132 were implemented to 

increase the fidelity of the gate.  

Readout fidelity optimization involved comparing resonator responses between qubit ground 

states (following extended relaxation periods, 𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 > 5𝑇𝑇1) and excited states (immediately 

after 𝜋𝜋-pulse application). This process generated distinct populations in the resonator's I-Q 

measurement plane, which were aligned along the I-axis through coordinate rotation. Optimal 

state discrimination thresholds yielded ground-state fidelities of 𝑓𝑓𝑔𝑔𝑔𝑔 = 97% for qubit A and 
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95% for qubit B. Excited-state fidelities reached 𝑓𝑓𝑒𝑒𝑒𝑒 = 87% for qubit A and 77% for qubit B. 

The origin of the low excited-state fidelity remains unclear, as while readout errors and pulse 

control issues contribute to the reduced fidelity, they cannot fully account for the observed 

degradation—the high ground-state measurement fidelity indicates minimal readout error 

contribution, and randomized benchmarking experiments (described in a subsequent section) 

show that pulse control errors alone are insufficient to explain the magnitude of the fidelity 

loss. 

In subsequent measurements we used the readout fidelity matrix 𝑅𝑅 = �
𝑓𝑓𝑒𝑒𝑒𝑒 𝑓𝑓𝑒𝑒𝑒𝑒
𝑓𝑓𝑔𝑔𝑔𝑔 𝑓𝑓𝑔𝑔𝑔𝑔

�, where 𝑓𝑓𝑖𝑖𝑖𝑖 

represents the probability of measuring state 𝑗𝑗 when the qubit was prepared in state 𝑖𝑖, to 

improve results visibility. Each measurement yielded probability vectors 𝑃𝑃 = �𝑝𝑝𝑒𝑒 ,𝑝𝑝𝑔𝑔�, which 

were corrected through 𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑅𝑅−1 to account for finite readout fidelity. 

Relaxation time characterization employed standard energy decay measurements, initializing 

qubits in excited states through 𝜋𝜋-pulse application and monitoring population decay over 

variable delay periods. The measured relaxation rates were Γ1
(𝐴𝐴) = 33.1 ± 0.55 kHz and Γ1

(𝐵𝐵) =

113 ± 1.4 kHz, as presented in Figure 46c and d respectively. To validate we are not limited by 

the Purcell decay, we calculated the decay rate using Equation 74. We found Γ𝑃𝑃
(𝐴𝐴) = 2.109 kHz, 

and Γ𝑃𝑃
(𝐵𝐵) = 0.105 kHz, assuming 𝑇𝑇 = 20 mK. Thus, we can conclude the Purcell effect does not 

limit the decay rate of the qubits. 

Dephasing time measurements utilize Hahn-Echo sequences. The protocol involved ground 

state initialization, 𝜋𝜋/2-pulse application, free evolution for time t/2, 𝜋𝜋-pulse refocusing, 

additional free evolution for time t/2, and final 𝜋𝜋/2-pulse readout. This approach yielded echo 

coherence rates Γ2,𝐸𝐸
(𝐴𝐴) = 80 ± 5 kHz and Γ2,𝐸𝐸

(𝐵𝐵) = 275 ± 9 kHz, demonstrated in Figure 46c and 

d. Consequently, the pure dephasing rates Γ𝜙𝜙
(𝐴𝐴) = 63 ± 5 kHz and Γ𝜙𝜙

(𝐵𝐵) = 219 ± 9. 

Following established theoretical frameworks detailed in the Flux Qubit Relaxation and 

Dephasing section, these coherence measurements enabled extraction of flux noise 

amplitudes 𝐴𝐴(𝐴𝐴) = 13.3 μΦ0 and 𝐴𝐴(𝐵𝐵) = 6.6 μΦ0, as shown in Figure 46e and f. These values 

exceed previously measured flux noise levels (~1 μΦ0) in our experimental systems, which we 
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attribute to residual gallium ions and substrate degradation in the immediate qubit vicinity 

from focused ion beam processing. 

At the optimal point, the decay rate due to second order flux noise (see Equation 82) is given 

by Γ2,𝐸𝐸
Φ,(2) = 57.6

Δ/2𝜋𝜋
�
𝐼𝐼𝑝𝑝𝐴𝐴𝜑𝜑,𝐸𝐸

Φ

ℎ
�

2

 which equals 262 (58) kHz for qubit A (B). These values exceed the 

estimated photon noise Γ𝜑𝜑𝑛𝑛� = 13 (3) Hz and charge noise Γ𝜑𝜑𝐶𝐶 = 3.203 (4.281) kHz. Therefore, 

we conclude that flux noise is the dominant decoherence mechanism also at the optimal 

point. 

5.3 Gradiometer Design Validation 

Gradiometers suppress uniform magnetic field fluctuations by using two loops with opposite 

orientations, making them sensitive only to field gradients. This design principle requires 

precise fabrication to achieve the necessary loop area matching and proper geometric 

alignment. 

The total magnetic flux threading each gradiometer loop combines contributions from two 

distinct sources according to Φ𝑡𝑡/𝑏𝑏 = Φ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + Φ𝑒𝑒𝑒𝑒𝑒𝑒, where Φ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑀𝑀𝐼𝐼𝐷𝐷𝐷𝐷 2⁄  represents flux 

from bias current in the Bragg resonator transmission line and Φ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐴𝐴𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 cos(𝜃𝜃0) accounts 

for external field coupling with 𝐴𝐴 representing the loop area, 𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 the external field strength, 

and 𝜃𝜃0 the angle between the field and loop normal. In experimental conditions, perfect 

alignment between the sample and external coil is practically impossible, introducing 

systematic errors that must be accounted for in the differential flux calculation. Consequently, 

the gradiometer differential flux becomes Φ𝑑𝑑 = 𝑀𝑀𝐼𝐼𝐷𝐷𝐷𝐷 + 𝛿𝛿𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 cos(𝜃𝜃0 + 𝛿𝛿𝛿𝛿), where 𝛿𝛿𝛿𝛿 

represents the inevitable area difference between the two loops and 𝛿𝛿𝛿𝛿 accounts for sample 

misalignment. For small misalignment angles the cosine term can be approximated as 

cos(𝜃𝜃0 + 𝛿𝛿𝛿𝛿) ≈ cos(𝜃𝜃0) − 𝛿𝛿𝛿𝛿 sin(𝜃𝜃0) and the differential flux takes the form of Φ𝑑𝑑 = 𝑀𝑀𝐼𝐼𝐷𝐷𝐷𝐷 +

𝛿𝛿𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒[cos(𝜃𝜃0) − 𝛿𝛿𝛿𝛿 sin(𝜃𝜃0)]. 

We validated the gradiometer architecture through systematic characterization under 

controlled external magnetic fields. The validation protocol employed the superconducting 

coil system described in the Experimental System chapter to generate controlled magnetic 

fields with both perpendicular and parallel orientations relative to the substrate surface. 

Sample positioning within the coil enabled application of both perpendicular and parallel 
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magnetic field orientations relative to the substrate surface, as illustrated in Figure 47a and b 

respectively. 

 
Figure 47 – Gradiometer functionality validation under controlled external magnetic fields | (a,b) Schematic illustrations 

showing sample orientations for perpendicular (𝐵𝐵⊥) and parallel (𝐵𝐵∥) magnetic field application relative to substrate surface. 

(c,d) Experimental data and theoretical fits demonstrating gradiometer operation with loop area differences 𝛿𝛿𝐴𝐴/𝐴𝐴 = 0.12 ±

0.002% for both qubits. Misalignment angles 𝛿𝛿𝜃𝜃(𝐴𝐴) = −2.09 ± 0.03° and 𝛿𝛿𝜃𝜃(𝐵𝐵) = −5.42 ± 0.06° reflect variations in the 

magnetic field due to the superconducting surface of the chip. 

We measured qubit transition frequencies 𝜔𝜔𝑞𝑞𝑞𝑞 as functions of external magnetic field to 

extract the magnetic flux response of each gradiometer loop. The qubit energy offset from 

the optimal point follows 𝜖𝜖 = �𝜔𝜔𝑞𝑞𝑞𝑞
2 − Δ2, where Δ represents the energy splitting at zero flux 

bias. 

Figure 47c (d) presents systematic measurements of qubit A (B) with perpendicular (𝐵𝐵⊥,𝜃𝜃0 =

0°, Φ𝑑𝑑 = 𝑀𝑀𝐼𝐼𝐷𝐷𝐷𝐷 + 𝛿𝛿𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒) and parallel magnetic fields (𝐵𝐵∥,𝜃𝜃0 = 90°, Φ𝑑𝑑 = 𝑀𝑀𝐼𝐼𝐷𝐷𝐷𝐷 −

𝛿𝛿𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝛿𝛿𝛿𝛿). In the perpendicular configuration, the external field couples maximally to both 

gradiometer loops, making the measurement sensitive to loop area differences 𝛿𝛿𝛿𝛿. 

We performed fits to the frequency shift versus field strength data based on equation 38. The 

perpendicular field measurements for qubit A and qubit B yielded a linear response with slope 

corresponding to 𝛿𝛿𝐴𝐴
(𝐴𝐴)

𝐴𝐴(𝐵𝐵) = 𝛿𝛿𝐴𝐴(𝐴𝐴)

𝐴𝐴(𝐵𝐵) = 0.12 ± 0.002%. Here, 𝐴𝐴(𝑖𝑖) is the designed area of qubit 𝑖𝑖. 

This result represents a suppression factor of ~800 compared to single-loop devices, 

significantly reducing sensitivity to homogeneous magnetic fields. 

In parallel orientation, the external field should not be coupled to properly aligned 

gradiometer loops, making the measurement sensitive to the angular misalignment 𝛿𝛿𝛿𝛿. 
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Systematic fitting of parallel field data revealed misalignment angles of 𝛿𝛿𝜃𝜃(𝐴𝐴) = −2.09 ± 0.03° 

and 𝛿𝛿𝜃𝜃(𝐵𝐵) = −5.42 ± 0.06°. We believe these results stem from repulsion of magnetic fields 

from the superconducting surfaces on the chip. 

The comprehensive validation establishes that the gradiometer design achieves its intended 

functionality of suppressing uniform magnetic field noise while maintaining sensitivity to local 

flux bias control. The measured fabrication precision and geometric accuracy support the 

viability of this approach for quantum computing applications requiring enhanced magnetic 

field immunity.  

5.4 Randomized Benchmarking 

We evaluated gate performance using randomized benchmarking (RB) protocols to 

characterize average gate fidelities and identify dominant error sources. Randomized 

benchmarking provides a robust method for measuring gate performance by averaging over 

random sequences of quantum operations, thereby isolating systematic errors from state 

preparation and measurement errors. 

5.4.1 Standard Randomized Benchmarking 

We characterized the average gate fidelity across the complete Clifford gate set at the optimal 

flux point. Our protocol generated 25 random sequences of varying lengths, with each 

sequence containing 𝑚𝑚 Clifford operations followed by an inverse operation to return the 

qubit to its initial state. We varied the sequence length 𝑚𝑚 from 1 to 200 operations and 

repeated each measurement 400 times to achieve statistical precision. 

The experimental protocol proceeded as follows: (1) initialize the qubit in the ground state, 

(2) apply a random sequence of m Clifford gates, (3) apply the inverse sequence to return to 

the ground state, and (4) measure the final qubit state. The sequence fidelity F(m) follows the 

decay model 𝐹𝐹(𝑚𝑚) = 𝐴𝐴𝑝𝑝𝑚𝑚 + 𝐵𝐵, where 𝑝𝑝 represents the depolarizing parameter, 𝐴𝐴 accounts 

for measurement contrast, and 𝐵𝐵 represents the background offset. 

Figure 48a shows results for qubit A, yielding a depolarizing parameter 𝑝𝑝(𝐴𝐴) = 0.967 ±

1 × 10−3. Figure 48b presents qubit B results with 𝑝𝑝(𝐵𝐵) = 0.974 ± 1 × 10−3. We converted 

these values to average gate error rates using 𝑟𝑟𝑔𝑔 1.875⁄ = (1 − 𝑝𝑝) 2⁄ , accounting for the fact 
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that each Clifford operation requires 1.875 primitive gates on average. This analysis yielded 

average gate error rates of 𝑟𝑟𝑔𝑔
(𝐴𝐴) = 0.009 ± 1 × 10−3 and 𝑟𝑟𝑔𝑔

(𝐵𝐵) = 0.0069 ± 4 × 10−4. 

To assess whether decoherence limits gate performance, we calculated the expected error 

rate from pure dephasing: 𝑟𝑟∗~𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝Γ𝜙𝜙, where Γ𝜙𝜙 = Γ2,𝐸𝐸 −
1
2

Γ1 represents the pure dephasing 

rate. For qubit A with 100 ns gates, 𝑟𝑟∗,(𝐴𝐴) = 0.007, while qubit B with 16 ns gates yields 𝑟𝑟∗,(𝐵𝐵) =

0.003. The measured error rates exceed these decoherence-limited values, indicating that 

control errors rather than decoherence dominate gate infidelity at the optimal point. 

The higher error rate for qubit B despite shorter gate times results from increased sensitivity 

to control parameter fluctuations. Short, high-amplitude pulses exhibit greater sensitivity to 

amplitude and frequency errors, explaining why qubit B shows reduced gate fidelity compared 

to the longer-pulse operation of qubit A. 

 
Figure 48 – Randomized benchmarking at the optimal point | Average Clifford set fidelity F(m) as a function of sequence 

length m for (a) qubit A and (b) qubit B. Blue circles represent standard randomized benchmarking (RB) experiments 

measuring composite Clifford gate performance, while orange triangles show interleaved randomized benchmarking (IRB) 

results isolating individual 𝑋𝑋𝜋𝜋 2⁄  gate fidelity. The exponential decay model (solid lines) yields depolarizing parameters 𝑝𝑝(𝐴𝐴) =

0.967 (qubit A) and 𝑝𝑝(𝐵𝐵) = 0.974 (qubit B) for RB, corresponding to average gate error rates 𝑟𝑟𝑔𝑔
(𝐴𝐴) = 0.009 and 𝑟𝑟𝑔𝑔

(𝐵𝐵) = 0.0069 

respectively. IRB measurements give individual 𝑋𝑋𝜋𝜋 2⁄  gate errors of 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
(𝐴𝐴) = 0.006 and 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

(𝐵𝐵) = 0.003. 

5.4.2 Interleaved Randomized Benchmarking 

We characterized individual gate performance using interleaved randomized benchmarking 

(IRB). This protocol follows the standard RB procedure but inserts a specific gate (𝑋𝑋𝜋𝜋/2 in our 
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case) after each random Clifford operation. Comparing IRB and RB decay rates isolates the 

fidelity of the interleaved gate. 

The IRB protocol yielded depolarizing parameters of 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
(𝐴𝐴) = 0.955 ± 2 × 10−3 for qubit A and 

𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
(𝐵𝐵) = 0.968 ± 2 × 10−3 for qubit B. We extracted individual 𝑋𝑋𝜋𝜋/2 gate error rates of 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

(𝐴𝐴) =

0.006 ± 1 × 10−3 and 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
(𝐵𝐵) = 0.003 ± 1 × 10−3. These values fall within the theoretical 

bounds [0, 0.032] and [0, 0.033] respectively, as established by the IRB formalism (see 

Equation 98). 

The 𝑋𝑋𝜋𝜋/2 gate fidelities approach the decoherence limit calculated above, indicating that 

individual pulse errors primarily stem from decoherence rather than control imperfections. 

This contrasts with the composite Clifford operations, where control errors become more 

significant due to error accumulation across multiple primitive gates. 

5.4.3 Decoherence And Gate Performance 

We investigated the transition between control-limited and decoherence-limited regimes by 

operating qubits away from the optimal flux point. Magnetic flux bias reduces coherence 

times, as demonstrated in Figure 46, allowing systematic study of gate performance versus 

decoherence rates. 

Figure 49a presents average gate error rates versus the product 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝Γ𝜙𝜙 for both qubits. 

 
Figure 49 – Effect of decoherence on gate fidelity through flux bias detuning | Average gate error rates from randomized 

benchmarking experiments versus the product 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝛤𝛤𝜙𝜙 for different pulse durations and detuning conditions. (a) Standard RB 

results showing the transition from control-limited to decoherence-limited regimes. For qubit A (green circles, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

100 𝑛𝑛𝑛𝑛), gate errors remain constant below 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝛤𝛤𝜙𝜙 ≈ 0.025, indicating control parameter uncertainties dominate 
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performance. Above this threshold, errors increase linearly with proportionality constant 𝛼𝛼 = 0.18. Qubit B shows similar 

behavior with 𝛼𝛼 = 0.24 for 92 ns pulses (orange triangles) and 𝛼𝛼 = 0.99 for 16 ns pulses (blue stars). (b) Interleaved RB results 

for individual 𝑋𝑋𝜋𝜋 2⁄  gates showing decoherence-limited behavior across all measured ratios. Linear fits yield 𝛼𝛼 = 0.16 (qubit 

A, 100 ns) and 𝛼𝛼 = 0.85 (qubit B, 16 ns). The smaller proportionality constants compared to composite Clifford operations 

reflect the reduced complexity of single-gate sequences.  

Two distinct regimes emerge: 

Decoherence-limited regime (𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝Γϕ > 0.025): Gate errors increase linearly with the 

product 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝Γϕ according to 𝑟𝑟𝑔𝑔 = 𝛼𝛼𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝Γϕ + 𝑐𝑐. We measured proportionality constants 

𝛼𝛼 = 0.259 ± 0.007  (qubit A, 100 ns pulses), 𝛼𝛼 = 0.251 ± 0.008  (qubit B, 92 ns pulses), and 

𝛼𝛼 = 0.99 ± 0.08  (qubit B, 16 ns pulses). 

Constant fidelity regime (𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝Γϕ < 0.025): Gate errors remain approximately constant 

despite varying coherence times. Control parameter uncertainties (amplitude, frequency, 

phase) dominate the error budget. The error floor reflects systematic imperfections in pulse 

calibration and environmental stability. Moreover, we believe that in this regime 1/f noise is 

dominant. Subsequently, the assumption that errors do not depend on the gate position in 

the sequence (that is, time dependent) is not valid. This can affect the RB model and results. 

The transition occurs when the product of pulse length and recoherence rate become 

comparable to 0.025. Below this threshold, gates complete before significant decoherence 

occurs, and control errors dominate. Above this threshold, decoherence during gate execution 

becomes the primary error source. 

Figure 49b shows IRB results, where 𝑋𝑋𝜋𝜋 2⁄  gate errors exhibit decoherence-limited behavior 

across all measured ratios. Linear fits yield 𝛼𝛼 = 0.16 ± 0.02  (qubit A, 100 ns) and 𝛼𝛼 = 0.85 ±

0.04  (qubit B, 16 ns). The smaller proportionality constants compared to composite Clifford 

operations reflect lower sensitivity of the 𝑋𝑋𝜋𝜋 2⁄  gate compared to the average sensitivity of the 

entire set used to construct the Clifford group. 

The counterintuitive result that shorter pulses show greater sensitivity to decoherence arises 

from the averaging effect of longer gate sequences. During RB experiments, qubits undergo 

random rotations on the Bloch sphere, effectively averaging over static field inhomogeneities 

and low-frequency noise sources. This averaging mechanism resembles dynamical decoupling 

sequences like Hahn-Echo experiments. 
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Longer pulse durations provide extended averaging windows, reducing the impact of noise. 

Conversely, short pulses cannot average over noise fluctuations occurring on comparable time 

scales, leading to increased sensitivity to decoherence effects. 

The analysis reveals three primary error sources: (1) systematic control errors affecting all 

gates, (2) decoherence during gate execution, and (3) noise averaging effects that depend on 

gate duration. Understanding these mechanisms enables targeted improvements through 

enhanced control calibration, reduced gate times, and optimized pulse shapes that minimize 

sensitivity to environmental fluctuations. 

6. Conclusion 

6.1 Summary of Research Contributions 

The central challenge addressed by this dissertation was the architectural realization of a 

hybrid mechanical-superconducting quantum processor. The primary thesis posited that by 

successfully coupling a high-coherence mechanical resonator to a superconducting flux qubit, 

one could establish a powerful platform for quantum transduction and computation. The work 

detailed herein has successfully laid the experimental and theoretical groundwork for this 

goal, culminating in three significant, self-contained contributions. 

First, we demonstrated the successful fabrication and preparatory characterization of the two 

key, disparate components required for the hybrid system: diamond nanobeams and silicon 

membranes (mechanical resonators) and the gradiometer flux qubit architecture 

(superconducting element). 

Second, we achieved the first experimental realization of a gradiometer flux qubit integrated 

with cQED readout. Crucially, this architecture delivered a new benchmark in coherence: our 

qubits exhibited a low relaxation rate (Γ1 = 33 kHz) and the best-reported dephasing rate 

(Γ2 = 80 kHz) for gradiometer flux qubits to date. This high coherence confirms the viability 

of the architecture for future quantum experiments. 

Third, we performed a quantitative study, based on randomized benchmarking 

measurements, characterizing the relationship between single-qubit gate fidelity and 

coherence time. This investigation identified two distinct operational regimes: a coherence-

dependent regime and a constant fidelity regime. The transition threshold between these two 
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was empirically determined (𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝Γϕ = 0.025), providing essential design guidance for 

optimizing gate operations in future processors. 

6.2 Scientific Significance and Technological Impact 

The results of this dissertation represent a substantial advancement in the development of 

hybrid superconducting architectures. The successful implementation of a gradiometer flux 

qubit utilizing cQED readout establishes a pioneering platform. The gradiometer, which senses 

a magnetic field gradient rather than a uniform field, is inherently more robust against 

common-mode magnetic noise, providing the critical stability needed for high-fidelity 

operations. 

The record-setting coherence metrics achieved—specifically the dephasing rate—set a new 

standard of performance for gradiometer flux qubits. This is pivotal, as the gradiometer design 

is essential for achieving the required magnetic coupling to the mechanical resonator, which 

is the ultimate goal of the hybrid system. 

 

Furthermore, the architecture’s intrinsic ability to hinder qubit-qubit crosstalk marks a 

significant step towards scalability. By mitigating parasitic interactions between neighboring 

qubits, the gradiometer design addresses one of the most persistent and difficult challenges 

in building multi-qubit processors. Our findings confirm that this system is not merely a path 

to quantum transduction but also an intrinsically superior architectural choice for larger-scale 

superconducting quantum circuit integration. 

6.3 Limitations and Caveats 

While the experimental demonstration of high-coherence gradiometer flux qubits is robust, 

the current work is subject to specific constraints. The conclusions regarding qubit 

performance are derived from measurements of a relatively small number of qubits, which 

limits the statistical generalization of the results across fabrication batches. 

A significant experimental caveat stems from the dominant environmental noise, where the 

system performance was primarily limited by 1/f flux noise. This noise source remains the 

principal constraint on ultimate coherence. Additionally, the standard randomized 
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benchmarking model used for gate characterization does not intrinsically account for or filter 

the effects of this dominant 1/f noise, meaning the characterized gate error may not fully 

isolate the noise-independent performance of the underlying quantum gates. 

6.4 Outlook and Future Research Trajectories 

The successful foundation established by this research immediately suggests several high-

impact research directions that are both concrete and actionable: 

Refined Gradiometer Design and Noise Mitigation: The most immediate and critical future 

step is to develop and test an improved gradiometer design that removes the necessity of 

Focused Ion Beam fabrication steps. Eliminating this process is projected to substantially 

reduce materials-related defects and intrinsic flux noise, pushing the coherence limits even 

further toward the coherence-independent regime. 

Integration and Demonstration of Hybrid Coupling: The logical next phase is the execution of 

the primary thesis goal: the direct integration of the high-coherence gradiometer flux qubit 

with the prepared mechanical resonators. This requires demonstrating and characterizing the 

coherent quantum coupling between the superconducting and mechanical degrees of 

freedom, the fundamental building block of a quantum transducer. 

Advanced Metrology for 1/f Noise: New experimental protocols should be implemented to 

more accurately characterize gate fidelity under non-Markovian noise conditions. Specifically, 

applying advanced quantum metrology techniques that explicitly model or filter the effects of 

the dominant 1/f noise will provide a clearer picture of the intrinsic gate error, leading to more 

targeted optimization strategies. 

Multi-Qubit Processor Feasibility: Future work should leverage the crosstalk suppression the 

gradiometer architecture and focus on the design and experimental testing of a small-scale 

multi gradiometer flux qubit processor. This trajectory will directly explore the scalability 

advantages identified in this dissertation and validate the architecture's potential for complex 

quantum algorithms. 
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8. Appendices 

8.1 List of The Clifford Group Operations 

1. 𝐼𝐼      7.𝑌𝑌−𝜋𝜋 2⁄          13.𝑋𝑋𝜋𝜋 2⁄ 𝑌𝑌𝜋𝜋 2⁄    19.𝑋𝑋𝜋𝜋 2⁄ 𝑌𝑌𝜋𝜋           
2.𝑋𝑋𝜋𝜋      8.𝑋𝑋𝜋𝜋𝑌𝑌𝜋𝜋         14.𝑋𝑋−𝜋𝜋 2⁄ 𝑌𝑌𝜋𝜋 2⁄  20.𝑋𝑋−𝜋𝜋 2⁄ 𝑌𝑌𝜋𝜋         
3.𝑌𝑌𝜋𝜋       9.𝑌𝑌𝜋𝜋 2⁄ 𝑋𝑋𝜋𝜋 2⁄     15.𝑋𝑋𝜋𝜋 2⁄ 𝑌𝑌−𝜋𝜋 2⁄  21.𝑋𝑋𝜋𝜋 2⁄ 𝑌𝑌𝜋𝜋 2⁄ 𝑋𝑋−𝜋𝜋 2⁄  
4.𝑋𝑋𝜋𝜋 2⁄  10.𝑌𝑌−𝜋𝜋 2⁄ 𝑋𝑋𝜋𝜋 2⁄  16.𝑋𝑋−𝜋𝜋 2⁄ 𝑌𝑌−𝜋𝜋 2⁄ 22.𝑋𝑋𝜋𝜋 2⁄ 𝑌𝑌−𝜋𝜋 2⁄ 𝑋𝑋−𝜋𝜋 2⁄

5.𝑌𝑌𝜋𝜋 2⁄   11.𝑌𝑌𝜋𝜋 2⁄ 𝑋𝑋−𝜋𝜋 2⁄  17.𝑌𝑌𝜋𝜋 2⁄ 𝑋𝑋𝜋𝜋     23.𝑋𝑋𝜋𝜋 2⁄ 𝑌𝑌𝜋𝜋 2⁄ 𝑋𝑋𝜋𝜋 2⁄    
6.𝑋𝑋−𝜋𝜋 2⁄ 12.𝑌𝑌−𝜋𝜋 2⁄ 𝑋𝑋−𝜋𝜋 2⁄ 18.𝑌𝑌−𝜋𝜋 2⁄ 𝑋𝑋𝜋𝜋   24.𝑋𝑋−𝜋𝜋 2⁄ 𝑌𝑌𝜋𝜋 2⁄ 𝑋𝑋−𝜋𝜋 2⁄

 

8.2 Bragg Filter Simulation Python Script 

# %% Imports 

import numpy as np 
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from scipy.constants import constants 

 

# $$ Functions 

def phase_accumulation(omega, x, kappa, c): 

    t = x / c 

    return omega * t + 1j * kappa * t 

 

 

def interface(z1, z2): 

    r = (z2 - z1) / (z1 + z2) 

    t = 2 * np.sqrt(z2 * z1) / (z1 + z2) 

    return np.matrix( 

        [[r, t], 

         [t, -r]] 

    ) 

 

 

def transmission_line(omega, L, kappa, c): 

    phi = phase_accumulation(omega, L, kappa, c=c) 

    r = 0 

    t = np.exp(1j * phi) 

    return np.matrix( 

        [[r, t], 

         [t, r]] 

    ) 

 

 

def two_elements_chain(s1, s2): 

    r1_backward = s1.A[0][0] 

    r1_forward = s1.A[1][1] 

 

    t1_backward = s1.A[0][1] 

    t1_forward = s1.A[1][0] 
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    r2_backward = s2.A[0][0] 

    r2_forward = s2.A[1][1] 

 

    t2_backward = s2.A[0][1] 

    t2_forward = s2.A[1][0] 

 

    r_backward = r1_backward + (t1_forward * t1_backward * 

r2_backward) / (1 - r1_forward * r2_backward) 

    r_forward = r2_forward + (t2_backward * t2_forward * 

r1_forward) / (1 - r1_forward * r2_backward) 

 

    t_forward = (t1_forward * t2_forward) / (1 - r1_forward * 

r2_backward) 

    t_backward = (t2_backward * t1_backward) / (1 - r1_forward 

* r2_backward) 

    return np.matrix( 

        [[r_backward, t_backward], 

         [t_forward, r_forward]] 

    ) 

 

 

def bragg_filter(omega, L, z1, z2, m, z0=50, kappa=0, 

c=constants.c): 

    phi = transmission_line(omega, L, kappa, c) 

    n = 2 * m - 1 

    for i in range(n): 

        s_temp = (-1)**i * two_elements_chain(phi, 

interface(z1, z2)) 

 

        if i == 0: 

            s = two_elements_chain(interface(z0, z1), s_temp) 

        else: 

            s = two_elements_chain(s, s_temp) 
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    s = two_elements_chain(s, phi) 

    return two_elements_chain(s, interface(z2, z0)) 

 

 

# %% Si parameters 

epsilon_Si = 11.7 

epsilon_r = (1 + epsilon_Si) / 2 

c_eff = constants.c / np.sqrt(epsilon_r) 

 

# %% Bragg parameters 

m_doublets = 4  # range(1, 13)  # Number of l-h doublets 

Z_l = 35  # Ohm 

Z_h = 80  # Ohm 

L_bragg = 3438e-6  # m 

 

wl_Bragg = L_bragg * 4  # m 

f_Bragg = c_eff / wl_Bragg  # Hz 

# %% Bragg-CPW-short 

omega = np.linspace(0.2 * 2 * np.pi * f_Bragg, 1.8 * 2 * np.pi 

* f_Bragg, 1001, endpoint=True) 

 

r_tot, t_tot = [], [] 

 

r_Bragg, r_prime_Bragg, t_Bragg = [], [], [] 

 

r_CPW, t_CPW = [], [] 

 

r_Short, t_Short = [], [] 

 

for omega_ in omega: 

    bragg = bragg_filter(omega_, L_bragg, Z_l, Z_h, 

m_doublets, c=c_eff) 

 

    r_Bragg.append(bragg.A[0][0]) 
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    r_prime_Bragg.append(bragg.A[1][1]) 

    t_Bragg.append(bragg.A[1][0]) 
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 תקציר

  של   יסודיות  חקירות  הן   שמניע,  המודרנית  בפיזיקה  מרתק  גבול  הוא  מקרוסקופיות  קוונטיות   תופעות  חקר

 הגיחו  מוליכים-על  שקיוביטים  בעוד.  חדשניות  קוונטיות  טכנולוגיות  פיתוח  והן   הקוונטים  מכניקת  טבע

  הם ,  מיקרוגל  לשדות  החזק   וצימודם  המהירה   פעולתם   בזכות  קוונטי  למחשוב  מובילה  כפלטפורמה

 מציעים  מכניים  מהודים,  זאת  צולב. לעומת  ודיבור  קצרים  קוהרנטיות  זמני  כמו   מגבלות  עם  מתמודדים

  המובנית  הליניאריות,  זאת  . עם610עולים על    שלרוב  איכות  גורמי  עם,  דופן  יוצאות  קוהרנטיות  תכונות

.  כקיוביטים  בהם  לשימוש  משמעותיים  אתגרים  מציבים   חיצוניים  בקרה  לשדות  החלש  והצימוד  שלהם

  מזעור   תוך   שונות   פיזיות  פלטפורמות  של  המשלימים  היתרונות  את  המשלבות,  היברידיות  קוונטיות  מערכות

 .אלה לאתגרים מבטיח פתרון  מציעות, שלהן  האישיות המגבלות

  של   הצעה   ידי  על   היברידית  קוונטית  מערכת  למימוש   חדשנית  גישה  מציגה   זו   גמר  עבודת

 מציעים  אנו.  מכניים  למהודים  מוליכים-על  שטף  קיוביטי   בין  מגנטי  שטף  בתיווך  חדשניות  אינטראקציות

 אינטראקציות  דרך  מכניים  מהודים  עם  בתצורת גרדיומטר  מוליכים-שטף על  קיוביטי  המשלבת  צימוד  תוכנית

- אופטו  מערכות  של  הצימוד   מגבלות  את  עוקפת  זו  גישה.  מקבילים  מגנטיים  שדות  תחת  מגנטי  שטף  של

  מינוף   תוך,  השטף  קיוביטי  של   המשופרת  הרגישות  ניצול   ידי   על  קונבנציונליות  מכניות-ואלקטרו  מכניות

  מהודים   של  וייצור  בתכנון  מתחילה  העבודה .  המכניים  המהודים  של  הדופן  יוצאות   הקוהרנטיות  תכונות

  ביעילות   להתחבר  כדי.  יהלום  קורות - ננוב  והן  סיליקון  בממברנות  הן   שימוש   תוך  גבוהה   באיכות  מכניים

  שדות   של המזיקות  ההשפעות  את  מבטל  תכנונו  שכן,  גרדיומטרבתצורת    שטף  קיוביט  פותח,  אלו  למהודים

 ללא  אותו  הופך  קיוביטצורת הגרדיומטר של השת  מכיוון.  הצימוד  למנגנון  להפריע  שיכולים  אחידים  מגנטיים

 מהוד  פיתחנו,  לכן.  חיצוני  סליל  באמצעות  אותו  למגנט   ניתן  לא ,  אחידים  חיצוניים  מגנטיים  לשדות  רגיש

 את  מאפשר ובכך, מקומי מגנטי שטף יצירת עבור ישר זרם  יישום מאפשרה )Bragg( בראג בסורג סתייםמש

 .הקיוביט של המגנוט

 מנגנון  של   הדגמה   כוללת  המחקר  ליבת,  ואופיינו  שיוצרו  אלה  אינדיבידואליים   רכיבים  עם

 מדידות  באמצעות.  בראג  בסורג  שהסתיימו  המהודים  לבין  שטףה  קיוביטי  בין   חזק  אינטראקציה

  שתי   בין  חזק   צימוד  שמדגים  מה ,  הרץ-מגה  20-כ   של  צימוד  עוצמות  חולצו,  שיטתיות  ספקטרוסקופיות

  וזמני   שניות- מיקרו  30  עד  של  הרפיה  זמני  עם  קוונטית  קוהרנטית  פעולה  הראו  שטףה   קיוביטי.  המערכות

 שנגרם   לזיהום  המיוחס  שטף  כרעש  זוהתה  העיקרית  המגבלה.  שניות- מיקרו  12  עד  של)  echo(  קוהרנטיות

 . ישיר תמסורת קול וצימודשל הקיוביט  מהייצור כתוצאה

 והמסגרת  הבודדים  הרכיבים ,  הודגם  לא  שטףלקיוביט    מכני  מהוד  הניסיוני  שהצימוד   בעוד

  המעולה   הקוהרנטיות  את   למנף  שיוכלו  היברידיות  קוונטיות  מערכות  ליישום  הבסיס  את  מקימים  התיאורטית

- על  שטף  קיוביטי   באמצעות  ליניארית  לא  קוונטי  מצב  להנדסת  אפשרות  מתן  תוך  מכניים  מהודים  של

.מוליכים
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