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Abstract

Quantum computers have triggered intense interest since the discovery of the first quantum

algorithms two decades ago. Indeed, it was shown theoretically that these computers can solve

easily certain computationally demanding problems like factoring large numbers into prime num-

bers or searching efficiently in databases. These unique features have lead scientists to imagine

building quantum processors based on various physical realizations.

The construction of a quantum computer represents a tremendous scientific and technological

challenge due to the extreme fragility of quantum information. The physical support of quantum

information, namely a quantum bit (qubit), must at the same time be strongly coupled by gates

to compute information, and well decoupled from its environment to keep its quantum behavior.

An interesting physical system for realizing such qubits are magnetic impurities in semiconduc-

tors, such as bismuth spins in silicon. Indeed, spins in semiconductors can reach extremely long

coherence times - of the order of seconds. Yet it is extremely difficult to establish and control an

efficient spin-spin coupling. The objective of this work is to solve this problem and to develop

an efficient way to couple reliably distant spins. To achieve this goal, we use a superconducting

circuit called flux qubit, which behaves as a mediator - or quantum bus - between different spins.

In this thesis, we develop the necessary tools to solve several major experimental issues for the

realization of this scheme. First, in order to use the flux qubit as a quantum bus, we need to reach

the so-called strong coupling regime, where the coupling between the mediator and the spin is

greater than its decoherence rate. In a first work, we demonstrate flux qubits with unprecedented

and reproducible coherence properties (T1 ∼ 15−20µs, Tφ
2E ∼ 15−30 µs), which makes this regime

attainable. Secondly, the flux qubit transition frequency should be controllable in order to switch

on and off its coupling to the spin. In a second work, we demonstrate tunable flux qubits with

long coherence times, one to two orders of magnitude longer than the state of the art. Finally,

bismuth donors should be localized in the close vicinity of the qubit loop, in order to maximize

the coupling. Yet, the presence of a metallic circuit close to the donors may ionize them. This

effect should be controlled by the application of a gate voltage. To achieve this, we developed flux

qubits with thin constrictions (20− 30 nm) and readout resonators with Bragg Filters that allow

the application of a voltage bias on the substrate, while keeping the flux qubits protected from

relaxation and decoherence.
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1 Scientific background

1.1 DiVincenzo’s criteria for quantum computation

In 1982, Richard Feynman suggested harnessing the strange properties of entanglement and super-

position in Quantum Mechanics to build a computer. Summarized in a famous quote “Nature isn’t

classical, dammit, and if you want to make a simulation of nature, you’d better make it quantum me-

chanical”, the initial motivation was to build a device capable of quantum simulation, capable of aiding

our understanding in various fields such as condensed matter physics and bio-chemistry. Years later,

the first quantum algorithms were invented. Shor’s Prime Factorisation algorithm [1] and Grover’s

Search algorithm [2] have shown that a Universal Quantum Computer may solve certain algorithmic

problems that have exponential complexity on a classical computer.

The physical implementation of quantum processors requires stringent conditions on both the qubit

register and the set of quantum gates able to manipulate it. These properties are summarized in the

so-called DiVincenzo’s criteria [3]:

1. The physical system must be scalable

2. The qubit register can be properly initialized

3. The set of quantum gates must be sufficient to manipulate the qubit register

4. The gate operations have high fidelity

5. The state of the qubit register can be efficiently readout after the calculation is performed

In the last two decades, different physical implementations have been thoroughly explored. Among

them, cold ions in laser traps [4, 5], quantum dots in semiconductors [6, 7], nuclear/electronic spins

in semiconductors [8] and superconducting qubits [9, 10]. Each of these different implementations has

its own advantages and drawbacks. For instance, spins in semiconductors can store safely quantum

information with low error rates [11, 12], but are hard to manipulate and readout. Superconducting

qubits [9, 10] are scalable, easy to measure but have relatively low fidelities. Over the years, the

fidelity of various superconducting qubits has been constantly improved and their coherence time has

considerably increased from a few nanoseconds [13, 14, 15] to the millisecond range [16, 17, 18], allowing

for the recent race of Tech Giants such as IBM and Google to demonstrate Quantum Supremacy [19].

A promising research direction is to combine spins and superconducting circuits and build a hybrid

quantum system that would hopefully inherit the advantages of each one of the different components

[20, 21]. Indeed, spins in semiconductors with their low error rates are perfect system to store reli-

ably the quantum information while superconducting qubits are perfect systems to process easily fast

quantum gates, thanks to their strong coupling with external fields. This situation resembles that in

classical computers where electronic circuits and magnetic drives achieve respectively fast processing

and robust long-time information storage.
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The key requirement for this hybrid architecture is to ensure that the different components can

efficiently communicate with each other. In quantum optics, this condition is called the strong coupling

regime. This regime can be achieved by using a quantum bus, which acts as a bridge between spins

and superconducting circuits. The ultimate goal of this PhD project is to fabricate such a quantum

bus and reach the strong coupling regime between the electronic spin of a donor in silicon and a

superconducting circuit. This achievement would pave the way for the realization of a spin-based

quantum processor.

1.2 Towards building a spin-based quantum processor

Spin-based quantum processors are often considered as one of the major candidate for the physical re-

alization of quantum processors. In the following, we will analyze briefly the advantages and drawbacks

of such a technology using the DiVicenzo criteria as a guideline.

Scalability - Spin-based platforms for quantum technology is appealing thanks to the maturity of

the semiconductor manufacturing industry. In particular, ion implantation is a key process to doping

semiconductors. This process has been refined in recent years to the point of resolving temporally spin

implantation events [22, 23] as well as the control of the spatial location of implantation using nanos-

tencil fabricated in an AFM cantilever [24]. The integration of spins with metal-oxide-semiconductor

(MOS) nanostructures is also a standard process in the foundaries. It is thus clear that spin-based

platforms perform well in terms of DiVincenzo’s criterion for scalability.

Manipulation with low error rates - Single qubit operations can be implemented by placing a

MW antenna close to the spin, allowing for the application of MW pulses with a given amplitude and

duration [25, 26]. Such quantum operations may have extremely low error rates. Indeed, by choosing

a proper spinless surrounding lattice, an electron spin such as the one bound to a phosphorus donor in

isotopically purified silicon can achieve very long coherence times of hundreds of microseconds [11, 12],

and its nuclear spin can reach more than 3 orders of magnitude longer. Other donors in the group V

such as bismuth also possess similar long coherence times [27].

Spin readout - Regarding the measurement capability of such platforms, a single shot method

has been developed [26] for phosphorous impurities in silicon as presented in Fig.1.1. Voltages applied

on top gates TG, LB, RB form a quantum dot for a 2D electron gas situated in the Si substrate [28].

This quantum dot acts as a single electron transistor and is used to measure Coulomb conductance

peaks. Tuning the electro-chemical potential of the quantum dot (using the PL gate in the figure),

the electron of the donor may leak into the quantum dot depending on the paramagnetic alignment of

its nuclear/electronic spin. The electron thus serves as an ancilla qubit for quantum non-demolition

measurement of the single 31P nuclear spin. The controlled leak and recapture of the electron also

serves as a good way to initialize the spin qubit.

Several other different methods for spin readout have been implemented in the last two decades.

For instance, one can detect the spin-dependent fluorescence of a single NV center in diamond [29].

The advantage of this technique is that it can be implemented at room temperature and that many

8



Figure 1.1: A. Scanning electron micrograph of the readout and control device of a single-donor Si:P
implanted at a depth of 15 nm below the sample surface. B. Isotopically enriched 28Si epilayer can be
employed to enhance spin coherence times. C. Energy levels and transitions of states involving different
electron (simple arrow in ket notation) and nuclear (double arrow) spins. D. Close up showing the
single donor spin (blue arrow). A static magnetic field B0 is applied in the plane parallel to the
substrate surface whereas the AC field generated by the antenna is perpendicular to the substrate
plane. Adapted from Ref.[8, 26]
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individual spins can be selectively readout using the same confocal microscope and optical single-photon

detector. Along these lines, a more general method has been developped recently. This method can also

detect many individual spins with the same device. Moreover, it can be adapted to the measurement

of almost any kind of spin species at cryogenic temperatures. It consists of enhancing the Purcell

emission of a photon by a spin embedded into a resonant cavity, and its subsequent detection by a

single microwave photon detector (SMPD) [30].

The major challenge that remains for a quantum processor architecture based on electron/nuclear

spin is the realization of gates between distant individual spins [31] required for full control of the

qubit register.

1.3 Coupling distant individual spins

There are two strategies when it comes to coupling distant spins. We can either employ a direct

coupling between neighboring spins, or we can use an indirect coupling method where a common

intermediate element may couple two distant spins.

1.3.1 Direct coupling

The Kane Computer [32] is a well known proposal involving inter-coupled spins controlled electrically

using an array of top gates. The coupling between adjacent spins is achieved by controlling the exchange

interaction. The idea is to tune the overlap of the electron wave function of neighboring spins using

voltage gates. The Pauli exclusion principle gives rise to a spin-dependent interaction, from which

two-qubit gates can be implemented. Despite potentially reaching coupling strengths of the order of

GHz [33, 34, 35], the exchange interaction requires the donors to be placed within 15 nm or less from

each other, posing a significant challenge to the fabrication tolerances and the space for the auxiliary

structures needed for control, readout and interconnections.

A recent strategy consists in implementing the so-called Flip-Flop interaction for phosphorous

donors [36, 37] which has less stringent requirements on the inter-spin distance (∼150 nm). The working

principle of this technique is shown in Fig.1.2. A strong magnetic field B0 is applied ((γe + γn)B0 ≫ A,

where γe/n are the electronic and nuclear gyromagnetic ratios and A is the hyperfine coupling strength)

such that the spin eigenstates are separable {|↓⇓⟩ , |↓⇑⟩ , |↑⇓⟩ , |↑⇑⟩}. An electric field Ez applied by a

gate induces a spatial separation in the electron wave function and the nucleus, and thus the hyperfine

interaction strength A (Ez) can be reduced from around 100MHz down to zero. Since the hyperfine

interaction A S · I is transverse in the Flip-Flop (FF) basis |↑⇓⟩ , |↓⇑⟩, the two states mix and lead to

a tunable splitting ϵff =
√
(γe + γn)

2
B2

0 +A2 arising from the diagonalization of the Hamiltonian

H/ℏ = B0 (γeSz − γnIz) +A S · I

= (γe + γn)B0
σFF
z

2
+A

σFF
x

2

the hyperfine strength can be directly modulated by an AC electric field, enabling single qubit Rabi
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oscillations. In [37], the maximal Rabi frequency observed was Ω/2π = 120 kHz. The coherence

times of the flip-flop qubit are T1 = 173 s and a pure dephasing rate T2 = 4.1 µs and T2E = 184µs.

Experiments have yet to be performed in the large-dipole regime as shown in Fig.1.2. In this regime,

the donor is half-ionized and the wavefunction is equally shared between the donor center and the

interface quantum dot. According to theory [36], it may allow for one-qubit and two-qubit gate times

to reach the order of 50 ∼ 100 ns thanks to the large generated dipole.

Figure 1.2: The large-dipole regime. A. Si:P electron-nuclear spin levels, showing standard electron
spin resonance (ESR) and nuclear magnetic resonance (NMR) transitions, together with hyperfine-
enabled electric dipole spin resonance. B. Hybridization of the flip-flop TLS and the charge qubit
TLS. C. Long-range coupling between the hybridized spin-qubits. Adapted from Ref.[36].

1.3.2 Indirect coupling

In the previous section we mentioned two ways of directly coupling spins up to a few hundreds nm

apart. In contrast, indirect coupling strategy involves using a common intermediate element such as

a superconducting resonator to couple to two distant spins at much longer distances. To check the

feasibility of such an idea, let us estimate the order of magnitude of magnetic coupling strength to a

superconducting circuit [38]. The amplitude of the AC magnetic field generated by the circuit can be

straightforwardly determined by using Biot and Savart law. Assuming an infinitely thin wire, the field

amplitude is given by B = µ0I
2πr where I is the current flowing in the wire, and r the distance from

the wire to the spin. The quantum treatment of the circuit replaces I by its operator Î which can be

written as a function of annihilation and creation operators a and a† as

Î = δI
(
a+ a†

)
where

δI = ωr

√
ℏ

2Z0
(1.1)

are the quantum fluctuations of the current, Z0 being the characteristic impedance of the resonator and

ωr its resonance frequency. Assuming that the AC magnetic field B⃗ = B e⃗x is oriented in a direction
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perpendicular to the spin axis (e⃗z), the magnetic coupling Hc = γeS⃗ · B⃗ is given by

Hc/ℏ = γe (Sxe⃗x + Sy e⃗y + Sz e⃗z) · B⃗

= γe ·
µ0δI

2πr
Sx

(
a+ a†

)
where γe = 2π · 27.997GHzT−1 is the electron gyromagnetic ratio. We thus get the coupling constant

g

2π
=
γe
2π

· µ0δI

2πr
|⟨↑ |Sx| ↓⟩| = 2.8

δI [nA]

r [µm]
[Hz] (1.2)

where the current fluctuations δI of an LC resonator having a frequency in the GHz range is comprised

between 20 ∼ 50 nA. Thus, we obtain a coupling constant g ∼ 1 kHz for a spin situated at a distance

of 100 nm from the circuit.

One solution to overcome this weak coupling is to couple to a large ensemble of Nens spins. This

approach will increase the effective coupling strength by a factor gens/g =
√
Nens [39, 40] and allow

to reach the strong coupling regime. In recent years, various realizations of such strong coupling to

spin ensemble have been demonstrated in different substrates such as diamond [41, 42] and Y2SiO5

crystal [43, 44]. Typically, the low-power transmission was measured for a resonator and the width of

the vacuum Rabi splitting gave a measurement of the coupling [41]. Built upon the foundation of this

work, several attempts to use the dark modes of the collective spin ensemble were made in [40, 45, 46].

The elegant idea is to use time-reversal π pulse as a way to rewind the cassette and playback the stored

quantum states in the dark states of the spin, therefore harnessing the spin ensemble as a multi-mode

quantum memory. This memory can be reinitialized to its ground state by engineering the Purcell

decay of the ensemble into the resonator [47]. Yet, due to the leakage from the bright mode to the

dark modes, the storage efficiency of such memories remains rather low.

The strong coupling regime can also be observed by translating the spin degree of freedom into

an electrical dipole. This is interesting because the coupling strength of an electrical dipole to a

microwave resonator may be orders of magnitude larger than for a magnetic dipole. Assuming that

the AC electric field generated by the resonator E⃗ = E e⃗z is parallel to the dipole axis (e⃗z), the electric

coupling Hc = −E⃗ · D⃗ can be written as

Hc = ieδV (d/r)σx
(
a− a†

)
We thus get the coupling constant

g

2π
=
eδV

h

d

r
= 240

(
d

r

)
(δV [µV]) [MHz]

where r is the inter-gate distance, d the dipole size, and δV = ωr

√
ℏZ0

2 are the voltage quantum

fluctuations of the resonator. For δV ≈ 1 µV, d ≈ 2 nm and r ≈ 1 µm, we get g/2π ≈ 500 kHz.

In 2015, Viennot et al. [48] have used such a method and translated an electron spin in a carbon
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Figure 1.3: Electrical coupling of a quantum dot. A. Optical image of a superconducting cavity
containing a Si double quantum dot (DQD). B. Cavity transmission as a function of frequency f and
its fit to a Lorentzian (black line). C. Tilted-angle false-color scanning electron microscope image of
the DQD, with plunger (P1, P2) and barrier gates (B1-B3). D. Schematic cross-section through the
DQD gates and Si/SiGe heterostructure. An excess electron is confined in the quantum well (QW)
within the double-well potential (blue line) created by the gate electrodes. A cavity photon interacts
with the electron. Adapted from Ref.[49]

nanotube into an electrical dipole by the application of a local magnetic gradient in order to reach the

strong coupling regime. Along these lines, Petta and coworkers have demonstrated the strong coupling

between a silicon double quantum dot and a microwave coplanar waveguide resonator [49]. They then

added a cobalt micro-magnet to transfer the spin degree of freedom to the position of the electron in

the double quantum dot [50]. A spin–photon coupling rates of up to 11MHz was reported and the

strong coupling was achieved. However, due to the presence of charge noise, the spin decoherence rate

was severely degraded to a few megahertz.

1.4 Situating our work

Clearly, using an electrical degree of freedom is a good solution for reaching the strong coupling regime

between a nano-object and a microwave resonator. However, the same electrical degree of freedom

makes this nano-object sensitive to electrical noise which implies a severe degradation of its coherence

properties. A spin is intrinsically immune to charge noise, but its magnetic coupling to a circuit

requires large current quantum fluctuations. The ultimate goal of this work is to develop a circuit with

such large fluctuations in order to make it possible to reach the strong coupling regime with a single

spin, without compromising the coherence properties of the spin.
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2 Methodology

As mentioned earlier in Eq.1.1, the current quantum fluctuations of a linear resonator are completely

determined by the resonance frequency and the characteristic impedance of the resonator. In practice,

it is difficult to decrease the characteristic impedance below 10Ω [51], which limits the current quantum

fluctuations in the range of 20 − 50 nA for a linear system. In our project, we make use of a highly

non-linear superconducting circuit which can reach much higher current quantum fluctuations up to

500 nA. This circuit is called a flux qubit. In this thesis, we show that the coherence time of this

circuit can reach 30 µs (see section §6.1).

The second parameter to enhance the coupling is the distance between the spin and the circuit.

Bismuth donors in silicon (Si:Bi) are a good choice since they possess long coherence times (∼ 200 µs)

and can be implanted with good yield and low straggling (4.5 nm at 40keV). Furthermore, their tran-

sition frequencies at low magnetic fields (B < 100G) are convenient for resonantly coupling with flux

qubits at f ∼ 7.4GHz. In this range of frequencies, flux qubits are relatively well protected from flux

noise, which is often considered as the main source of dephasing of these qubits (see section §3.5).

By implanting precisely spins at a depth of ∼ 25 nm in the close vicinity of a thin nanowire where

the current fluctuations are concentrated, we could reach a coupling strength of g/2π = 25 − 50 kHz.

We thus expect to have gT2 ∼ 10, reaching the strong coupling regime.

2.1 Bismuth Donors in Silicon

Bismuth donors appear naturally in bulk silicon. These are impurity centers where a substitution of

a silicon atom by a bismuth atom has occurred. Silicon being part of the IV group, one silicon atom

can form four covalent bonds in the lattice structure. Bismuth is however in the V group, having one

more valence electron. As a result, one excess non-bonding electron may easily be ionized to form a

fully occupied outer valence shell. In semiconductor terminology, bismuth is a shallow1 donor, with a

binding energy of EB,Si:Bi = 71 meV.

Bi is the heaviest stable group V donor, with an atomic mass of 209 u. The choice of using bismuth

thus results in reduced straggling when implanted to a certain depth in silicon compared to other

group V donors [52]. It also has the largest hyperfine coupling of all group V donors, which increases
1its level is only slightly lower than the conduction band such that thermal excitations may easily populate/depopulate

it, leading to charge conduction.
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its zero-field transition energy to a frequency ∼7.4GHz, and is thus well adapted to superconducting

circuits.

2.1.1 Energy Spectrum of a bismuth donor

Hamiltonian The bismuth donor has a nuclear spin I = 9
2 and an electron spin S = 1

2 . The

Hamiltonian of a single bismuth donor in Silicon can be written as follows2

HSi:Bi/ℏ = +γeS⃗ · B⃗ − γnI⃗ · B⃗ +A S⃗ · I⃗

The first two terms in the Hamiltonian are respectively the Zeeman electronic and nuclear terms, where

γe/2π = 27.997GHzT−1 and γn/2π = 6.962MHzT−1 are the electron (resp. nuclear) gyromagnetic

ratios. The last term is the hyperfine coupling term (A/2π = 1.48GHz) and is isotropic due to the

symmetry of the donor.

Ground and excited manifolds of eigenstates After diagonalization of the Hamiltonian, we get

twenty eigenstates. At zero magnetic field, the ground and excited states of the system are multi-

degenerate, and form two manifolds separated by f = 7.377GHz. Nine states of different total angular

momenta form the ground state |G⟩ and eleven states form the excited state denoted in the following

as |E⟩. When a non-zero magnetic field is applied, the degeneracy is lifted. In Fig.2.1, we label the

eigenstates according to their total angular momentum mtot = mS + mI , i.e. |G,−4 . . .+ 4⟩ and

|E,−5 . . .+ 5⟩.
In order to estimate the transition matrices it is convenient to write these states in the tensor

product basis |− 9
2 . . .+

9
2 , ↓ / ↑⟩. For instance,

|G,+4⟩ = 0.95 |+9

2
, ↓⟩ − 0.32 |+7

2
, ↑⟩

|G,−4⟩ = 0.32 |−7

2
, ↓⟩ − 0.95 |−9

2
, ↑⟩

while the two lowest and two highest excited states are

|E,−5⟩ = |−9

2
, ↓⟩

|E,−4⟩ = 0.95 |+9

2
, ↓⟩+ 0.32 |+7

2
, ↑⟩

|E,+4⟩ = 0.32 |+9

2
, ↓⟩+ 0.95 |+7

2
, ↑⟩

|E,+5⟩ = |+9

2
, ↑⟩

2The dot product expressions can be expanded into a sum of components along the three axes (e.g. S⃗ · I⃗ ≡ SxIx +
SyIy + SzIz).

15



A

B C

D

|Sx|/|Sz| |G,−4⟩ |G,−3⟩ |G,−2⟩ |G,−1⟩ |G, 0⟩ |G, 1⟩ |G, 2⟩ |G, 3⟩ |G, 4⟩
|E,−5⟩ 0.47
|E,−4⟩ 0.30 0.42
|E,−3⟩ 0.07 0.40 0.37
|E,−2⟩ 0.12 0.46 0.32
|E,−1⟩ 0.17 0.49 0.27
|E, 0⟩ 0.22 0.50 0.22
|E,−1⟩ 0.27 0.49 0.17
|E,−2⟩ 0.32 0.46 0.12
|E,−3⟩ 0.37 0.40 0.07
|E,−4⟩ 0.42 0.30
|E,−5⟩ 0.47

Figure 2.1: A. Sz (green) and Sx (blue) ESR transition rules at B = 1 G. The linewidth is proportional
to the transition strength

∣∣⟨i|Sx/z |j⟩
∣∣ /ℏ. On the top right, we show the transition frequencies as a

function of the magnetic field. A zoom showing the degenerate Sx transitions is shown in the bottom
right. B. The dependence of the Sx/z transition frequencies on the magnetic field C. Close-up view
of the Sx doublet (|G, i⟩ → |E, i+ 1⟩ and |G, i+ 1⟩ → |E, i⟩) at B = 100G. D. Table showing the
transition strengths at the low magnetic-field limit.
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Transition rules As shown in Fig.2.1A, there is a total of 27 ESR transitions that link the excited

state manifold to the ground state manifold.

The operator Sx allows for ESR transitions from |G,mtot⟩ to |E,mtot ± 1⟩. These transitions are

represented in blue in the figure. It is noteworthy that the energy corresponding to the transition

|G,mtot⟩ ↔ |E,mtot + 1⟩ and to the transition |G,mtot + 1⟩ ↔ |E,mtot⟩ are almost degenerate (see

Fig.2.1C).

The operator Sz which conserves angular momentum, links the states |G,mtot⟩ to the states

|E,mtot⟩. These transitions are represented in green color in the figure.

In Fig.2.1D, we calculated the relative strength of the different possible transitions that connect

the ground manifold to the excited one. The transition frequencies at low fields are well described by

∆ω (⟨G,mtot|Sx |E,mtot + 1⟩) ≈ 5A+
2mtot + 1

10
γeB0 (2.1)

∆ω (⟨G,mtot|Sz |E,mtot⟩) ≈ 5A+
2mtot

10
γeB0

Population within the ground state manifold When the external magnetic field is 1G, the

splitting between the internal levels of the ground state manifold is 300 kHz only. Even at 100G,

the splitting is 30MHz. The temperature at which our experiments are carried out (T = 15mK)

corresponds to kBT/h = 300MHz, which is hot with respect to the energy difference between the

hyperfine states. At thermal equilibrium, we expect therefore a random uniform occupation of the

ground state manifold. Each spin will have a different hyperfine state. This makes them individually

addressable, given that the expected linewidth (∼ 1 kHz) of individual spins is much smaller than the

level spacing.

2.1.2 Long coherence times T1 and T2

Extremely long relaxation times at dilution temperatures At low temperature, the relax-

ation time T1 of donors in silicon can be extremely long. In Ref.[26], the relaxation time of a single

phosphorous donor was measured to be T1 ∼ 0.7 s. In Ref.[47] non-radiative energy relaxation of an

ensemble of bismuth donors was measured to be 1500 s at dilution temperatures T ≈ 20mK. The

coherence of bismuth donors is thus limited mainly by pure dephasing.

Decoherence mechanisms of bismuth donors The coherence time of donors in silicon is expected

to be long due to their spinless environment (28Si). However, the presence of a spin-1/2 isotope 29Si

naturally present in silicon with an abundance of 4.7% limits it substantially. For instance in Ref.[26],

the coherence time of a single phosphorous donor was limited by these isotopes to T ∗2 ≈ 55 ns. This

time can be extended by dynamical decoupling using an Hahn-Echo sequence (π/2− τ − π− τ−Echo)

up to T2 ≈ 0.2ms. By using an isotopically purified sample, Ref.[12] extended coherence times to

T ∗2 = 270 µs and T2 = 1ms. In these samples [26, 12], the spins are located close to the surface which

limits their dephasing due to defects such as dangling bonds.
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Si:P
Impurity

concentration
(cm−3)

29Si density (ppm) Coherence time (ms) Ref.

Single donor 1012 47000 (natSi) T2 = 0.206 / T ∗2 = 55 · 10−6 [26]
1012 800 T2 = 1 / T ∗2 = 0.27 [12]

Ensemble

[2-5]×1014 800 T2 = 6.5 [53]
8.7×1014 50 T2 = 2.8 [54]
1×1015 800 T2 = 4 [53]

1.6×1016 50 T2 = 0.27 [54]

Si:Bi
Impurity

concentration
(cm−3)

29Si density (ppm) Coherence time (ms) Ref.

Ensemble

3.6×1014 100 T2 ≈ 50 / TCT
2 = 2700

[27]1×1015 47000 (natSi) T2 ≈ 0.8 / TCT
2 = 93

2×1015 100 T2 ≈ 15 / TCT
2 = 500

4.4×1015 100 T2 = 6 / TCT
2 = 170

8×1016 500 T2 ∼ 3.3 / TCT
2 ∼ 300 [55]

Table 2.1: Coherence properties of donors in silicon versus impurity and 29Si concentration.

In ensemble experiments, the principal mechanism of decoherence arises from the magnetic dipole

dipole interactions with surrounding impurities. These are depicted in Fig.2.2 and include flip-flops,

spectral and instantaneous diffusion to neighboring spins. As a result of these interactions, T2 decreases

with increasing impurity concentration as shown in Tab.2.1. Spectral diffusion consists of the dephasing

of the central spin through interaction with other non-resonant spins (see Fig.2.2). Instantaneous

diffusion and direct flip-flops concern only dipole interaction with resonant spins. Some of these

mechanisms can be canceled by Hahn-echo (π/2 − τ − π − τ−Echo) and some cannot. Indeed, if the

neighboring spins also fall within the bandwidth of the π pulse, they are also flipped and the sign of the

interaction term is not reversed. As a consequence, instantaneous diffusion (ID) and direct flip-flops

(dFF) cannot be canceled by spin echo.

One particularity of Si:Bi compared to Si:P is the presence of clock transitions [27], which are mag-

netic sweet spots where the slope ∂f/∂B of transition frequency locally becomes zero. Spins operating

under a clock transition have better coherence properties due to their insensitivity to variations of

the surrounding magnetic field. Therefore, spectral and instantaneous diffusion mechanisms are can-

celed, leaving only direct and indirect flip-flops (iFF). At clock transition, it was possible to measure

a coherence time up to 2.7 s in an isotopically purified sample [27].
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Figure 2.2: A. Decoherence mechanisms arising from dipole-dipole interaction B. Dependency on
df/dB of the various mechanisms in Si:Bi. Image adapted from [27].

Interpolating to our single spin experiment in 28Si:Bi The exact clock transitions requires

however a strong magnetic field (25 ∼ 200mT for ESR clock transitions) which are difficult3 to reach

in this project.

The average dipole coupling rate between two nearest neighbor Bi donor electron spins is about

1 kHz for a donor concentration of 1017cm−3. This coupling is 3 orders of magnitude smaller than

the strain-induced inhomogeneous broadening separating different spins ∼ 2MHz (see Fig.2.4). As a

result, resonant mechanisms such as direct flip-flops and instantaneous diffusion is largely absent for

the spins we consider.

Using an isotopically purified sample, the only remaining mechanism affecting T2 are the indirect
3The out-of-plane field are in the order of a few G (see section §2.2), in-plane field applied by a vector magnet can

reach 100G (see section 2.3.1)
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flip-flops from non-resonant bismuth donors. From the asymptotic line in Fig.2.2, we can estimate

this to be in the order of 200 µs for an impurity concentration of 2× 1017cm−3 (see Fig.2.2B, iFF at

|∂f/∂B| /γe = 1). This estimation is comparable to T ∗2 = 0.27ms measured in [12] for single donor

spins in the vicinity of the surface, where coherence is likely limited by surface defects. We therefore

have good reason to believe these numbers will be similar in magnitude in our devices, given that

the donor target (Si:Bi instead of Si:P) sees an environment almost identical (same 29Si density, same

thermally grown oxide) to that of [12], except the contribution of indirect flipflops with the surrounding

donor spins.

B

C

A

D

[nm]

Si5nm therm. SiO 2

Figure 2.3: A. The implantation profile calculated using SRIM for an ion energy of 40 keV into a
silicon substrate covered with 5 nm of thermally grown SiO2. B. Top view of the implantation region
crossed by a thin aluminum wire. C. Cut of a 35-nm wire and map of the coupling strength to the
circuit in kHz assuming current fluctuations δI = 350 nA calculated using Comsol. D. Monte Carlo
simulation showing the expected number of implanted spins with a coupling constant higher than gmin,
assuming 50 activated spins in the implantation region.

2.1.3 Shallow Implantation and use of a local constriction

In this work, the Bi donors are positioned at a depth of ≈ 25 nm below the surface by ion implantation

with an energy of 40 keV (see Fig.2.3A for implantation profile). The region of implantation is defined

by e-beam lithography using a PMMA mask (200 nm) with an opening of size 500 × 100 nm, which
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blocks the ion beam efficiently. The implantation area density is 1−2 ·1011cm−2, which translates into

a peak density of bismuth impurities of 1 − 2 · 1017cm−3. Taking into account an activation ratio of

60%, this density corresponds to a total of 30-60 electron spins. A thin wire of aluminum (35×500 nm)

crosses the implantation region and couples to the spins as represented in Fig.2.3B.

In Fig.2.3C, we represent a cross-section of this wire and the spatial distribution of the coupling

assuming current fluctuations of δI = 350 nA. The coupling is taken to be maximal and thus cal-

culated for an AC magnetic field where the total total angular momentum of the system is zero

(⟨E, 0|Sz |G, 0⟩ = 0.5 according to Fig.2.1D).

In Fig.2.3D, we represent a graph showing a Monte Carlo simulation of the expected number of

spins with a coupling higher than a given threshold. As can be seen, one can expect to have 2 spins

with a coupling higher than 26 kHz.

Inhomogeneous lattice strain Due to the close proximity to the aluminum wire, mechanical stress

resulting from the mismatch of the coefficient of thermal expansion induces a shift in the hyperfine

coupling strength. This shift has been shown experimentally to be dependent on the hydrostatic

components of the strain [56]. To first approximation, one may introduce modifications to the constant

A dependent on diagonal terms of the strain tensor ε.

∆A

A
=
K

3
(εxx + εyy + εzz)

where numerical value for the unitless constant K = 19.1 has been extracted experimentally [57].

For coupling to a single spin, this strain is rather advantageous. Indeed, the constriction induces a

point of hydrostatic singularity, and in the range of a few 10 nm, all single spins have different transition

frequencies (see Fig.2.4). In Fig.2.4B, we show a Monte Carlo simulation of the number of implanted

spins with a given strain shift, assuming 50 spins in the implantation region.

BA

Figure 2.4: A. Strain-induced shift of the ESR absorption due to the presence of a 35 nm-wide wire
calculated using Comsol. B. Monte Carlo simulation showing the expected number of implanted spins
with a strain-induced shift smaller than ∆fmax, assuming 50 activated spins in the implantation region.
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Schottky barrier The aluminum deposited directly on top of a native silicon substrate gives rise

to a Schottky barrier in which the bismuth donors may be ionized [39]. Indeed, the aluminum has

a higher work function4 Φ = 4.25V than the electron affinity5 in silicon χ = 4.05V. Bismuth is a

shallow donor situated at EBi = EC − EB,Si:Bi, where EB,Si:Bi = 71mV is the binding energy of the

donor. Thus, an electron occupying the donor site is situated at a higher electrochemical potential

than the Fermi level of the aluminum, leading to spontaneous ionization of the donors in the so-called

depletion zone (see Fig.2.5B). The presence of these ionized donors and the aluminum surface charges

creates an electric field which bends the bands. The band-bending at the interface re-establishes the

chemical potential equilibrium (see Fig.2.5B) and adapts the size of the depletion zone. In order to

determine the depth of this depletion zone, one can write Poisson equation in the silicon:

d2

dx2
E0 = qρ/ε0εr

where q = +e is the charge of the ionized impurities and ρ is their density. The resulting parabolic

shift of the potential E0 in the depletion zone bridges the difference ∆EF between the Fermi level in

the aluminum and in silicon. At temperatures close to absolute zero, the value of the Fermi level in

the silicon will be roughly equal to energy of the dominant dopant (Si:P). We thus obtain

zd =

√
2εrε0∆EF

eρ
∼

√
2εrε0 (Φ− χ− Ebind)

eρ
(2.2)

The background residual density of phosphorous impurities in our intrinsic sample is ∼ 3 · 1016cm−3,
and thus the depletion region extends up to ∼80 nm in the sample. This depth is larger than the

implantation profile of bismuth donors and thus most of the implanted spins will be ionized. It is

important to note that dipoles or charges originating from dangling bonds at the chemical interface

can introduce local inhomogeneities in the electric field of the boundary and thus make the problem

difficult to solve in practice [55].

A well-known solution to this problem consists of introducing a thin insulating layer of SiO2 in

order to prevent the exchange of electrons between the substrate and the aluminum. This solution is in

fact widely used since many years in the industry of semiconductors. By applying a positive voltage on

the top electrode (see Fig.2.5D), it is possible to create a thin layer of 2D electron gas (2DEG) and to

be assured that the donors cannot be ionized. Consequently, our work employs these thermally-grown

oxide (see section §4.2).

In the following, we will introduce (see section 3.3.3) a new resonator design in which the aluminum

wire can be connected to a DC voltage. This is achieved by replacing one of the coupling capacitors

with a Bragg Filter, which naturally allows for DC biasing of the central strip of a coplanar resonator.

The voltage bias is applied directly between the ground plane and this central strip. Since the oxide

layer is present both in the ground plane and the central strip, but with very different surface areas,
4energy to ionize an electron occupying the Fermi level into a free electron
5energy to ionize an electron at the bottom of the conduction band
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we may assume that the chemical potential difference falls mostly on the oxide layer of the central

strip.

Experimentally, we should connect the anode of the DC source to the ground plane and the cathode

to the central stripline. The voltage of at least V ≥ ESi:Bi − EF,Al = 0.129V should be maintained

while the cooldown occurs, such that the donors retains its electron and converges into the unionized

state.

EB,Si:Bi=0.071

EB,Si:P=0.045

ΔSi=1.1

ΔSi=4.25

free charge 
build-up

free charge 
build-up

free charge 
build-up

--
-

-
--

--
-

depletion zone 

depletion zone 
weak E field in Si

--2DEG

2DEG

B

CA

D

Figure 2.5: Solving the Poisson equations A. Isolated aluminum and Si bulk with Si:P background
concentration, and a surface implantation of Si:Bi. B. Direct contact. Electrons flow from nearby
donors, into the metal surface region, forming a depletion zone and rectifying the Fermi level. C. Due
to difference (∼ 1000 times) in surface area, we model a vacuum-like contact under the coplanar line,
and a direct contact under the ground plane. Under zero bias, electrons from the depletion region leak
through the ground plane contact forming and distributing on both terminal surface. D. Application
of a bias that is greater than Φ− χ may lead to creation of a 2D electron gas.
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2.2 Flux Qubit

The so-called superconducting flux qubit fulfills many requirements necessary to couple strongly to

bismuth donors - It may be designed to have a splitting around 7.4GHz and also have δI ∼ 350 nA.

For flux qubits in this range, long relaxation times of up to 20 µs and echo coherence times of up to

30 µs were measured in this thesis.

Strategies [58, 59, 60] using the flux qubit as a bus has already been considered for coupling with

single spins, in particular for NV centers: [61] proposed using the same flux qubit to couple to two

different spins, whereby an entangling gate can be achieved through adiabatic elimination of the flux

qubit state; [59] proposed using the flux qubit to directly introduce a spin-state-dependent splitting

in the resonator line; Finally, [60] proposed using Rabi drives to bridge the gap between a spin and a

flux qubit.

In the following, we will give a brief introduction to the flux qubit. Then, we will discuss the

main challenges of working with flux qubits, namely, the control and reproducibility of the gap and

coherence properties. Finally, we will present different strategies for bringing the bismuth donor and

flux qubit transition energy into resonance, such as the proposal in Ref.[60].

2.2.1 Flux qubit short description

Optimal point

Best coherence prop.

A B

C D

Figure 2.6: Brief introduction to a flux qubit. A. Afm micrograph of a flux qubit. B. Equivalent
circuit of a flux qubit. C. Energy levels of a flux qubit. A good two-level system appears near the
optimal point. D. Hyperbolic transition energy around the optimal point.
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Figure 2.7: Reproducibility and control of the gap. Persistent current IP versus gap ∆ of the
qubits of sample A (native oxide, red stars), sample B (5 nm grown silicon oxide layer, green dots)
and sample C (5 nm grown silicon oxide layer, blue triangles). The colored regions are obtained
by assuming a normal distribution along axes defined by principal component analysis (PCA). The
probability to find a qubit within the dark (resp. light) colored area is 50% (resp. 90%). The dashed
black lines are obtained by numerical simulations of the flux qubits (see section §2.2 at their average
value

(
⟨EJ⟩A/B/C , ⟨Ec⟩A/B/C , ⟨α⟩A/B/C

)
while varying the parameter α by ±5%.

The superconducting flux qubit is a micron-size superconducting aluminum loop intersected by several

Josephson junctions, among which one is smaller than others by a factor α [62, 63, 64, 65, 66], as shown

in Fig.2.6A-B. When the flux threading the loop is close to half a flux quantum Φ0/2 (= h/ (4e)),

the splitting between two lowest levels |g⟩ and |e⟩ are far detuned from other energy splittings (e.g.

difference between red level and green level in Fig.2.6C), making the flux qubit a true two-level system

(TLS) with high anharmonicity.

The so-called gap ∆ and persistent current IP can be extracted as phenomenological parameters

by fitting the energy splitting between |g⟩ and |e⟩ as a hyperbolic function of the magnetic bias near to

the optimal point, as shown in Fig.2.6D. The hyperbolic dependence of the splitting makes the qubit

immune to magnetic noise in first order at Φ0/2, making it the preferred working point for obtaining

the best coherence properties [67, 68]. In section §3.1, a rigorous quantum-mechanical treatment of

the flux qubit will be presented.

2.2.2 Controlling the gap and persistent current

One major challenge with the flux qubit is the difficulty of controlling the gap solely through design,

as well as the device-to-device reproducibility. In this thesis, a better understanding of the geometrical

capacitance (see section 3.1.3) and meticulous calibration of the junction design parameters using

on-chip test junctions has led to a much better gap predictability starting from design parameters.
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In terms of reproducibility6, major improvements were achieved using different techniques. Firstly,

performing evaporation at cold temperatures (∼−40 ◦C) greatly reduces the grain size and improves

the junction surface smoothness. Secondly, regarding the electron beam patterning of the evaporation

mask, systematic re-focusing and re-calibration by laser interferometer of the surface level was carried

out during lithography writing. Lastly, data measured in this work seems to indicate that thermally

grown oxide may have a positive effect on the spread of the gap. Overall, we were able to measure a

mere spread of 6.9± 1GHz, 5.1± 0.7 GHz and 6.6± 0.6 GHz for three different samples, each having

different junction design parameters. This is a substantial improvement of the flux qubit7 gap control,

compared to previous reports [70]. These results are presented with more detail in section §6.1.

2.2.3 Relaxation and dephasing

A limited coherence time is one of the challenges of working with flux qubits [64, 65, 71, 67]. Long

coherence times reported in previous works relate only to a few singular flux qubits [67]. In the last

years, flux qubits embedded in 3D cavities [70] or in coplanar resonators [66] have exhibited more

reproducible and generally improved relaxation times. More recently, a new design - the so-called

capacitively shunted flux qubit - has shown even better coherence properties [69]. However, the shunting

capacitance used to better control the qubit strongly decreases its anharmonicity. More importantly,

it reduces the persistent current, which is required for magnetic coupling to electron spins.

In this thesis, we demonstrate consistent measurements of long relaxation times T1 ∼ 15 − 20 µs

and long pure dephasing times Tϕ
2E ∼ 15− 30 µs for flux qubits that are galvanically coupled to a 2D

coplanar waveguide resonator (see section §6.1). We attribute the consistency to the oxides present on

the sample, reducing variability in the Al/Si interface, and we attribute the long coherence times to

a refined fabrication procedure (see section §4). In parallel, the coherence properties of the so-called

tunable flux qubits (see section 2.3.2) were also improved by 1-2 orders of magnitude compared to

state-of-the-art. These results are presented in detail in section §6.

2.3 Establishing resonant coupling

Working at the flux qubit optimal point is required to obtain the best coherence properties. It is

therefore important to engineer the flux qubit gap to be as close as possible as that of the donor

spin (∼ 7.4GHz). However, even with identical design parameters, the measured flux qubit inherently

possess a large8 spread in the gap, due to its sensitivity to disorder. Techniques to achieve resonant

coupling regardless of detuning between the flux qubit and the donor frequency is thus of paramount

importance. In this section, we present three possible methods to achieve this goal.
6the observed spread of the gap despite possessing identical design and even undergoing the same fabrication run
7without resorting to capacitively shunted flux qubits. See [69].
8compared to the coupling rate between the flux qubit and the donor spin
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2.3.1 Tuning the bismuth transition frequency

One straight-forward way consists of making use of the Zeeman effect to tune the splitting of the donor

spins as shown in Fig.2.1B. Indeed, transition frequencies involving highly positive and negative mtot

will shift in opposite directions and are well described by Eq.2.1. The simplest way to exploit this

tunability is to apply an in-plane magnetic field through a vector magnet, in which case the flux qubit

should remain mainly near the optimal point. The maximum applicable field is fundamentally limited

by the (in-plane) critical field of the aluminum thin layer used in the resonator and qubit. We expect

to be able to bias the in-plane magnetic field to ∼ 100G before high magnetic fields start to hinder

the quality factor of the resonator.

2.3.2 Tuning the flux qubit gap

The flux qubit gap ∆ is given by the tunneling probability between two degenerate minima of the

potential energy of the circuit. Using WKB approximation, it is possible to estimate the value of ∆

[72]:

∆(α,EJ/Ec) ∝ exp

[
−
∣∣∣∣sinφ∗ − φ∗

2α

∣∣∣∣√4α (1 + 2α)
EJ

EC

]
where φ∗ is the phase of the degenerate minimum. We see clearly that the gap is exponentially

dependent on the parameters of the junctions. A slight change of these parameters will affect drastically

the gap energy of the qubit.

If one wishes to control precisely the gap energy, a good strategy may consist of replacing one of

the junction by a SQUID, which will act as a tunable junction. Indeed the potential energy US of the

SQUID writes

US = −EJ cos (φ1)− EJ cos (φ2) = −

ΦS-tunable︷ ︸︸ ︷[
EJ cos

(
ΦS

2φ0

)]
cos (φ̄)

S

where φ1 = φ̄+ ΦS

2φ0
and φ2 = φ̄− ΦS

2φ0
are the phases across the two identical junctions such that

φ1 − φ2 = ΦS/φ0 and φ0 = ℏ/2e is the reduced flux quantum.

The advantage of this approach is that another degree of freedom is added to the system; the

flux ΦS in the loop of the SQUID controls the critical current of the tunable junction formed by the

SQUID and thus allows controlling the energy of the flux qubit while keeping it at its optimal point. In

Ref.[73], this kind of strategy was implemented : a symmetric SQUID was introduced at the position

of the α-junction of the flux qubit in order to control its gap energy. The results of the experiments

were positive in terms of control of the qubit gap but the coherence times even at optimal point were
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rather poor. The origin of these extremely short coherence times is flux noise [74, 75] in the SQUID

loop, which leads to energy fluctuations even at the optimal point.

In this thesis, we show it is possible to get some control of the qubit gap by replacing one of the

unitary junctions by a highly asymmetric SQUID, as shown in Fig.2.8. First, let us write the potential

energy US of the asymmetric SQUID:

US = −1 + d

2
EJ cos (φ1)−

1− d

2
EJ cos (φ2)

where d ∈ [0− 1] is the asymmetry parameter. This expression can be rewritten as

US = −EJ

√
(1 + d2) + (1− d2) cos (ΦS/φ0)

2
cos

[
φ1 + φ2

2
+ arctan[−d · tan (ΦS/2φ0)

]
The potential energy of the SQUID is therefore equivalent to the potential energy of a single Josephson

junction with tunable Josephson energy EJ that varies between dEJ to EJ . When the asymmetry is

large (d→ 1−), the Josephson energy of equivalent junction varies slightly and thus the qubit will be

less sensitive to flux noise than for a symmetric SQUID (d = 0).

α

Figure 2.8: Afm micrograph showing a tunable flux qubit with asymmetrical SQUID.

In this work, the tunable flux qubits were fabricated on sapphire substrates, the tunability was

measured to be ±3.5GHz. Compared to previously reported tunable flux qubits [73], the coherence

properties (T1 ∼ 8 µs and Tφ
2E ∼ 4µs) were drastically improved. It is possible to enhance even more

the coherence time T2 by dialing down the tunability to ±0.5GHz around the center frequency (see

3.5.4).

2.3.3 Tuning the flux qubit gap in a rotating frame

Lastly, [60] gives a theoretical proposal in which a detuned flux qubit can be brought back into

resonance with a single spin using strong Rabi drives. Here we give an intuitive picture of its working

principle (see Fig.2.9), described more rigorously in section §3.6.
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n≫1
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n≫1
n~1 n~1

B

Figure 2.9: Rabi Dressing of a flux qubit A. Energy diagram in circuit QED showing Rabi-dressed
states (red and blue) for high (above) and low (below) photon number n. B. Resonant coupling when
the spin Hilbert space is considered.

Let us start by considering a photonic mode9 ℏωd in resonance with the flux qubit splitting δ =

ωge − ωd = 0. Using the standard CQED framework (see section 3.3.4), we can define the following

Rabi-dressed states

|n,±⟩ = (|g⟩ |n⟩ ± |e⟩ |n− 1⟩) /
√
2

where |g/e⟩ denotes the qubit state and n is the number of photons in the Rabi drive such that the

Rabi frequency is Ωn = 2Ω0
√
n. Due to the coupling term σ+a+σ−a

†, the energies are shifted En,± =

nωd ± 1
2

√
δ2 +Ω2

n = nωd ± Ωn/2 (see Fig.2.9A), where the term ±Ωn/2 gives rise to the standard

Rabi oscillations at frequency Ω = Ωn. When either of the energy difference En,± −En−1,∓ = ωd ±Ω

9Despite physically being in the resonator, this mode is not the resonator mode. It is a fictive mode determined
principally by the drive bandwidth, and the subsequent zero-point fluctuation of current around that frequency filtered
by the resonator (see section 3.3.2). Indeed, by putting one quanta of energy ℏωd into the driving wavelet we can
calculate the corresponding Rabi frequency Ω0 from the zero-point fluctuations of current.
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matches that of the spin ω↕, ∣∣ωd − ω↕
∣∣ = Ω

resonant Rabi exchange may occur at half the coupling rate of the flux qubit - spin coupling gqb↔↕ due

to the factor 1/
√
2 in the dressed state. For instance supposing the resonant condition En+1,+−En,− =

ωd +Ω = ω↕ (see Fig.2.9B), we can indeed verify resonance and calculate the coupling strength

⟨$| ⟨n+ 1,+|Hhν+qb+↕ |n+ 1,+⟩ |$⟩ = ⟨1| ⟨n,−|Hhν+qb+↕ |n,−⟩ |1⟩

⟨1| ⟨n,−|Hqb↔↕ |n+ 1,+⟩ |$⟩ = gqb↔↕/2

where |$ / 1⟩ denotes the spin’s state. To understand the dynamics, we may suppose an initial state

of

|n⟩ |e⟩ |$⟩ =
(
(|n+ 1,+⟩ − |n+ 1,−⟩) /

√
2
)
|$⟩

The amplitude of |n+ 1,+⟩ |$⟩ will Rabi-oscillate to and from |n,−⟩ |1⟩, from which we could engineer

a coherent swap gate. Indeed, under time evolution, this part of the initial state evolves as

e−iω↕t/2
(
cos
(
gqb↔↕/2 · t

)
|n+ 1,+⟩ |$⟩ − i sin

(
gqb↔↕/2 · t

)
|n,−⟩ |1⟩

)
− e+iω↕t/2 |n,−⟩ |$⟩

Gathering the |$⟩ states and |1⟩ terms, we get(
e−iω↕t/2 cos

(
gqb↔↕/2 · t

)
|n+ 1,+⟩ − e+iω↕t/2 |n,−⟩

)
|$⟩ − ie−iω↕t/2 sin

(
gqb↔↕/2 · t

)
|n,−⟩ |1⟩

We already see coherent oscillation of the probability amplitude of the excited spin state |1⟩. The

left terms may look orthogonal, but this is the result of the oversimplification of a classical Rabi drive

to a Fock state. To correctly account for a classical drive, one should apply in the different steps a

summation over |n,±⟩ states, like in the decomposition of a bosonic coherent state

|α⟩ = e−|α|
2/2

∞∑
n=0

αn/
√
n! |n⟩

Equivalently, we may also treat the drive classically, as is presented in section §3.6. Both of these

correct treatments yield interference patterns on the left term resulting in a beating in the envelope

of the Rabi oscillation as shown in Fig.2.10A. Compared to a direct resonant coupling, this approach

should yield a signature less sensitive to the coherence properties of the flux qubit. This is because

the rapid Rabi Oscillations constitute a powerful dynamical decoupling protocol, especially against low

frequency noise such as the 1/f flux noise, which is considered the dominant source of dephasing for flux

qubits. This can be understood easily by the Taylor expansion
√
δ (t)

2
+Ω2 ≈ Ω + δ (t) · (δ (t) /2Ω),

which transform first order flux noise into second order, and second order into fourth order, and

attenuating at least a factor δ/2Ω < 1 in the accumulated phase error. This robustness can be seen in

Fig.2.10B, where we introduce a static (similar to low frequency) mismatch of the flux qubit transition
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frequency of 1MHz.

A

B

C

7.331

30

Figure 2.10: Linblad simulations with only T1 jump operator (T1 = 20µs) showing the Rabi
Envelope A. Protocol under resonant condition B. Mismatch between qubit frequency and drive
frequency. C. Mismatch between dressed frequency ωd ± Ω ̸= ωSi:Bi.

The phase-coherent exchange can be further adapted into other functionalities, such as spin state

preparation and use of the spin as a quantum memory, as detailed in section §3.6. A real-time control

of the Rabi drive power may even allow for different individual spins to be addressed through the same

qubit. The limit of this method is fundamentally fixed by the maximal driving power we can apply into

the system. In theory, for fixed power, we could increase the Rabi frequency through mode engineering

(e.g. Purcell enhancement, placing on peaks, changing the characteristic impedance, reducing mode

volume e.t.c). Nevertheless, a fundamental relation (proven in section 3.4.1) relates the Purcell rate

ΓP to the driving power P and Ω

ΓP =
ℏωgeΩ

2

4P

A realistic trade-off must be found between tunability and degradation of the Rabi signal. In this

thesis, from the results measured so far, we estimate the maximal tunability to be Ωmax/2π = 80MHz

, driven by a power of Pmax = −75 dBm and causing a Purcell rate ΓP = 10 kHz.
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3 Theoretical Analysis

3.1 Flux qubit model

Figure 3.1: Equivalent circuit diagram of a flux qubit. The Josephson junctions are defined by
their Josephson energy EJ and their bare capacitance CJ . The island I1 is galvanically connected to
the coplanar waveguide resonator. Each island is capacitively coupled to its surrounding by geometric
capacitances denoted as Cij where (i, j) ∈ (0, 1, .., 4), the index 0 representing the ground.

The subsections that follow will introduce how one may model a flux qubit. Fig.3.1 shows a

schematic drawing of a flux qubit. Each Josephson junction is characterized by its Josephson energy

EJ and its bare capacitance CJ . The junctions divide the loop into four superconducting islands. The

island I1 is galvanically connected to the coplanar waveguide resonator. Each island is capacitively

coupled to its surrounding by geometric capacitances denoted as Cij where (i, j) ∈ (0, 1, .., 4), the

index 0 representing the ground.

3.1.1 Potential Energy

The potential energy of the circuit shown in Fig.3.1 corresponds to the inductive energy of the junctions

and can be written as

U = −
3∑

j=1

EJ cosφj,j+1 − αEJ cosφ41 (3.1)

where φj,k denotes the phase difference φk − φj between islands j and k. Faraday law implies that

φ41 = 2π
Φ

Φ0
−

3∑
j=1

φj,j+1 (3.2)
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where Φ is the flux threading the qubit loop and Φ0 = h/2e. When Φ = Φ0/2, the potential energy has

two degenerated minima. The positions of these minima are given by solving the partial differential

equations ∂φi
U = 0. The two solutions verify the simple equation sinφ∗ = α sin 3φ∗ and correspond

to two opposite persistent currents given by

Ip = ±I0

√
3

4
− 1

4α
(3.3)

where I0 is the critical current of the Josephson junctions. As an example, it maybe helpful to draw

intuition from the hypothetical case of a flux qubit with 2 unitary junctions and an α junction: the

potential energy can be plotted in a 2D graph as shown in Fig.3.2. In the language of a particle in a

potential, a weakly connected double well gives rise to the qubit gap after we consider the mass terms,

which will be treated in the following subsection.

Figure 3.2: Potential energy landscape of a 3-island flux qubit with parameters α = 0.7. Left: Φ/φ0 =
0.8π; Right: Φ/φ0 = π. We show only one period of φi,i+1 only.

3.1.2 Kinetic Energy

The kinetic energy K of the system is the sum of the capacitive energies of the circuit

K =
1

2

∑
i̸=j

Cij (Vj − Vi)
2 (3.4)

+
1

2
CJ

(
(V1 − V2)

2
+ (V2 − V3)

2
+ (V3 − V4)

2
+ α (V4 − V1)

2
)

It is a quadratic form of the island voltages Vi and can thus be written as

K =
1

2
VTCV (3.5)

where VT =
(
V1 , V2 , V3, V4

)
and C is a 4 × 4 matrix which we will refer in the following as

the capacitance matrix. The matrix C can be written as the sum of the Josephson capacitance matrix
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CJ and the geometric capacitance matrix Cgeom:

C = CJ +Cgeom (3.6)

where

CJ = CJ


1 + α −1 0 −α
−1 2 −1 0

0 −1 2 −1

−α 0 −1 1 + α

 (3.7)

and

Cgeom =


C10 0 0 0

0 C20 0 0

0 0 C30 0

0 0 0 C40



+


∑

j ̸=1 C1j −C12 −C13 −C14

−C21

∑
j ̸=2 C2j −C23 −C24

−C31 −C32

∑
j ̸=3 C3j −C34

−C41 −C42 −C43

∑
j ̸=4 C4j

 (3.8)

The techniques for calculating Cgeom is described in the following section 3.1.3.

3.1.3 Numerical Estimation of the Geometrical Capacitance

Numerical Estimation of the geometrical capacitance using finite element solvers is difficult due to

the different length scales involved. The qubits have typically micron size dimensions while the oxide

thickness is rather of the order of 1 nm. As a consequence, a fine meshing is difficult to establish. In

this section, we will present an approach which provides satisfactory results.

Coarse estimation We first performed a coarse simulation using the electrostatic module of COM-

SOL. To perform this simulation, we assumed Neumann boundary conditions (zero charge) on a box

of 30 µm surrounding the qubit (see Fig.3.3). The oxide of the Josephson junctions was replaced by

a hollow box of thickness l = 20nm. We defined a minimum meshing size of 4 nm. For these mesh

parameters, the far field components are accurately calculated. Isolated islands not participating in

the flux qubit loop were set to charge conservation Q = 0 terminal settings.

We applied sequentially a voltage on each island in order to construct the capacitance matrix
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a b

Figure 3.3: Coarse Simulation using the electrostatic module of COMSOL. a, The precise
design of the qubit is imported to the simulator and put into a cubic box of 30 µm edge, where zero
charge boundary condition is imposed. b, Close-up view of the meshing around one of the junction.
The junction is modelized by conducting planes separated by 20 nm distance in order to keep a minimal
meshing size of 4 nm.

Ccoarse. For instance, the coarse capacitance matrix of qubit B4 (see section §6.1) is

Ccoarse =


3.752 −0.181 −0.524 −0.137

−0.181 0.350 −0.148 −0.002

−0.524 −0.148 1.044 −0.140

−0.137 −0.002 −0.140 0.300

 fF

Estimating the capacitance between edges In order to obtain more precise results, the capac-

itance between adjacent edges needs to be corrected. In Fig.3.4 , we represent a close-up view of a

typical Josephson junction obtained by Dolan technique, where we show the four edge capacitances

we need to consider. The two capacitances CSi
edge are dominant due to the high permittivity constant

of Si and thus Cair
edge can be neglected in a first approximation.

Figure 3.4: Edge capacitances. a, 3D representation of a Josephson junction obtained by double
angle evaporation. b, View cut of the junction in the yz plane showing the Cair

edge edge capacitances.
c, View cut of the junction in the xz plane showing the CSi

edge edge capacitances. d, Close up view of
the edge showing the electric field lines giving rise to the edge capacitances. We show the edge length
l, the distance to the singularity ρ, and the oxide thickness 2w.

The capacitance between adjacent edges of length l = 20 nm and width L separated by an oxide

layer in the region |ρ| < w (See Fig.3.4d) can be calculated analytically. By using Gauss theorem, we

have
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L

∫ l

w

V

πρ
dρ =

Q

ϵ0ϵr
(3.9)

where V is the voltage potential in the silicon substrate at a distance ρ from the junction singularity,

ϵ0ϵr is the dielectric permittivity of silicon and Q the charge accumulated on the surface of the metallic

island. Thus, the capacitance is given by

CSi
edge = L

ϵ0ϵr
π

ln
l

w
(3.10)

For instance, the edge capacitance matrix of qubit B4 is

Cedge =


0.069 −0.042 0 −0.027

−0.042 0.084 −0.042 0

0 −0.042 0.084 −0.042

−0.027 0 −0.042 0.069

 fF

Numerical results Following the procedure described herein above, the capacitances matrix of

qubit B4 is calculated and given here as an example:

CJ =


7.898 −5.265 0 −2.633

−5.265 10.531 −5.265 0

0 −5.265 10.531 −5.265

−2.633 0 −5.265 7.898

 fF

Cgeom = Ccoarse +Cedge =


3.821 −0.223 −0.524 −0.164

−0.223 0.434 −0.190 −0.002

−0.524 −0.190 1.128 −0.182

−0.164 −0.002 −0.182 0.370

 fF

This matrix is then inserted in the Lagrangian of the qubit as we will see herein below.

3.1.4 Legendre Transformation and Hamiltonian

The Lagrangian of the system is L = K − U . The conjugate momenta of our system are given by

nj ≡
1

ℏ
∂L

∂φ̇j,j+1
(3.11)

Since Φ0

2π φ̇j,j+1 = Vj+1 − Vj , it is neccessary to express the kinetic energy terms in a new basis.

Since island I1 is galvanically connected to the central conductor of the CPW, we can safely assume

that V1 = 0V, which simplifies considerably the transformation:
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V1 = 0

V2 = ���
0

V1 + V12

V3 = ���
0

V1 + V12 + V23

V4 = ���
0

V1 + V12 + V23 + V34

where Vij = Vj − Vi. The passage matrix P between these two bases can be thus written as

P =


0 0 0

1 0 0

1 1 0

1 1 1

 (3.12)

More generally, for non-galvanically connected islands, we remove a constant voltage on each of the

configurations such that the total charge is conserved

P′ = P−
(

1 1 1 1
)
C

The Hamiltonian H is then obtained by the Legendre transformation H = ℏ
∑3

j=1 φ̇j,j+1nj − L and

thus writes

H =
(2e)

2

2
n⃗T
(
PTCP

)−1
n⃗+ U (3.13)

This Hamiltonian can be expressed in the so-called charge basis |n1, n2, n3⟩, ∀n1, n2, n3 ∈ Z3, noting

that

cosφj,j+1 |n1, n2, n3⟩ =
1

2
(|n1 + δj1, n2 + δj2, n3 + δj3⟩+ |n1 − δj1, n2 − δj2, n3 − δj3⟩) (3.14)

In this basis the operator (2e)2

2 n⃗T
(
PTCP

)−1
n⃗ is diagonal while the operator U is sparse. The precision

of the eigenvalues and eigenstates depends on the truncation of the nj bases. With nk = −10...10,

we would need 213 coefficients just to describe the wavefunction and another
(
213
)2 to describe the

Hamiltonian matrix. Thanks to the the sparsity of the Hamiltonian operator, the number of nonzero

entries in this matrix is only 213 × (1 + 4× 2). This resolution in charge space is computationally

feasible both to store and diagonalize matrices efficiently. For reaching the necessary precision to

resolve charge modulation, we used nk = −14...14 and verified carefully the numerical convergence of

the calculation.
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3.1.5 Pseudo-Hamiltonian

Following the full diagonalization of the Hamiltonian, we obtain the spectrum of the flux qubit by

subtracting the energy of the first excited state |e⟩ from the energy of the ground state |g⟩. It can be

shown that close to Φ = Φ0/2, the system behaves as a two level system and the spectrum can be fully

described by two parameters:

• The value of the persistent current Ip, already discussed previously.

• The so-called flux qubit gap, denoted as ∆, which corresponds to the tunneling term between

the two potential minima.

The value of the gap can be directly measured by the transition energy at half a flux quantum Φ = Φ0/2.

This point is known as the optimal point of the flux qubit due to its immunity at first order in flux

noise, as will be explained in later sections. In the vicinity of the optimal point, the Hamiltonian of

the system can be written using perturbation theory as

H = H0 − αEJ∂Φ

(
cos
(
2π Φ

Φ0
−
∑3

j=1 φj,j+1

))
Φ=Φ0/2

·
(
Φ− Φ0

2

)
= H0 +

1
φ0

αEJsin (φ41)︸ ︷︷ ︸
Î·φ0

(
Φ− Φ0

2

) = H0 + Î ·
(
Φ− Φ0

2

) (3.15)

When the current operator is projected on the eigenstates |g⟩ , |e⟩ of H0 we get

⟨g| Î |g⟩ = 0 , ⟨g| Î |e⟩ = Ip

⟨e| Î |g⟩ = Ip , ⟨e| Î |e⟩ = 0
(3.16)

Therefore, the Hamiltonian of the system can be written in this basis as

Heff =
ℏ
2
[∆σz + εσx] (3.17)

where ε = 2Ip
ℏ
(
Φ− Φ0

2

)
.

The frequency of the flux qubit is thus given by

ωge =
√

∆2 + ε2 (3.18)

3.2 Tunable flux qubit model

As mentionned in section 2.3.2, the coherence times of tunable flux qubits are principally limited

by flux noise in the SQUID loop [74, 75]. We mitigate this issue by replacing one unitary junction

by an asymmetric SQUID formed by two different junctions having respectively a Josephson energy

(1 + d)EJ/2 and (1− d)EJ/2 with d ∈ [0− 1], as shown in Fig.3.5. The equivalent Josephson energy

of such a SQUID EJ(ΦS) varies according to the following expression [76]:
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EJ(Φs) = EJ

√√√√ (1 + d2) + (1− d2) cos
(

ΦS

φ0

)
2

(3.19)

where φ0 = ℏ/2e. For a given value of d, the function EJ(ΦS) ranges between dEJ and EJ and

consequently the dependence of the qubit energy on ΦS is strongly reduced as d approches 1. This

technique has been demonstrated recently for tuning transmon qubits while keeping good coherence

properties [77, 78].

Figure 3.5: Tunable Flux qubit model including the kinetic inductance Lk and geometric capacitances.
The island 1 is connected galvanically to the central conductor of the resonator.

3.2.1 Potential Energy

The potential energy of a tunable flux qubit corresponds to the total inductive energy of the junctions

and can be written as

U = −EJ cosφ12 − β
1 + d

2 (1 + η)
EJ cosφ23 − β

1− d

2
EJ cosφ′23 − EJ cosφ23 − αEJ cosφ41

where φj,k denotes the phase difference φk −φj between islands j and k. The factor η comes from the

renormalization (see section 3.2.2) of the junction due to the presence of Lk. Introducing

β̄ = β

(
1 + d

2 (1 + η)
+

1− d

2

)
(3.20)

d̄ =
(2 + η) d− η

−ηd+ (2 + η)
(3.21)
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enables us to write the potential energy back under the form

U = −EJ cosφ12 − β̄
1 + d̄

2
EJ cosφ23 − β̄

1− d̄

2
EJ cosφ′23 − EJ cosφ23 − αEJ cosφ41 (3.22)

Faraday law implies that

φ41 =
Φ

φ0
−

3∑
j=1

φj,j+1 (3.23)

φ′23 = φ23 −
ΦS

φ0
(3.24)

where Φ is the flux threading the qubit loop, ΦS is the flux threading the SQUID loop and φ0 = ℏ/2e.
One can thus write

β̄
1 + d̄

2
EJ cosφ23 + β̄

1− d̄

2
EJ cosφ′23

= β̄EJ

√√√√(1 + d̄2
)
+
(
1− d̄2

)
cos
(

Φs

φ0

)
2

cos

(
φ23 −

Φs

2φ0
+ arctan

(
d̄ tan

[
Φs

2φ0

]))
(3.25)

At optimal point, the sum of the phases across all junctions (including the squid effective junction)

should be a odd multiple of π. We thus obtain the condition for optimal points Φ⋆ given by

Φ⋆

φ0
− Φs

2φ0
+ δφ = kπ (3.26)

with k = ±1,±3,±5... and tan δφ = d̄ tan
[

Φs

2φ0

]
.

3.2.2 Kinetic inductance of the SQUID loop

The kinetic inductance of the SQUID loop is represented in the circuit of Fig.3.5 as a an inductor of

inductance Lk in series with the large SQUID junction. To find the renormalized parameters for this

junction, we treat it as a linear element with admittance

YJ(ω) =
1

iωLJ
+ iωCJ =

1− (ω/ωp)
2

iωLJ
(3.27)

with ωp = 1/
√
LJCJ the plasma frequency of the junction. Adding the kinetic inductance in series,

we find for the total admittance:

Yt(ω) =

(
iωLk +

iωLJ

1− (ω/ωp)2

)−1
=

1− (ω/ωp)
2

iωLJ + iωLk(1− (ω/ωp)2)
(3.28)

For frequencies small compared to the plasma frequency, the expansion of this formula at first order

in (ω/ωp)
2 gives

Yt(ω) ≃
1− (ω/ωp)

2 LJ

LJ+Lk

iω(LJ + Lk)
(3.29)
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Comparing the right-hand sides of Eq.3.27 and Eq.3.29, we see that the latter can be obtained from

former upon the replacements

LJ → LJ + Lk = LJ(1 + η)

CJ → CJ

(
LJ

LJ + Lk

)2

=
CJ

(1 + η)2

where we introduced the dimensionless parameter η = Lk/LJ . In our model we use these replacement

to take into account the kinetic inductance of the SQUID loop.

3.2.3 Kinetic Energy

The kinetic energy K of the system is the sum of the capacitive energies of the circuit

K =
1

2

∑
i ̸=j

Cij (Vj − Vi)
2
+

1

2
CJ

(
(V1 − V2)

2
+ β′ (V2 − V3)

2
+ (V3 − V4)

2
+ α (V4 − V1)

2
)

(3.30)

where Cij is the capacitance between islands i and j and β′ = β
(

1+d
2(1+η)2

+ 1−d
2

)
according to

Eq.3.20. It is a quadratic form of the island voltages Vi and can thus be written as

K =
1

2
VTCV (3.31)

where VT =
(
V1 , V2 , V3, V4

)
and C is a 4×4 matrix which we will refer in the following as

the capacitance matrix. The matrix C can be written as the sum of the Josephson capacitance matrix

CJ and the geometric capacitance matrix Cgeom:

C = CJ +Cgeom (3.32)

where

CJ = CJ


1 + α −1 0 −α
−1 1 + β′ −β′ 0

0 −β′ 1 + β′ −1

−α 0 −1 1 + α

 (3.33)

and

Cgeom =


C10 +

∑
j ̸=1 C1j −C12 −C13 −C14

−C21 C20 +
∑

j ̸=2 C2j −C23 −C24

−C31 −C32 C30 +
∑

j ̸=3 C3j −C34

−C41 −C42 −C43 C40 +
∑

j ̸=4 C4j

 (3.34)

From this point onward, the tunable flux qubit can be treated in the same manner as already
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explained in section 3.1.4 and section 3.1.5.

3.3 Resonator model and circuit QED

The flux qubit is coupled inductively to a coplanar waveguide resonator (CPW), necessary for flux

qubit readout and control. In this section we will first describe the Hamiltonian of the CPW and

calculate its coupling constant to the qubit. This coupling is essential to understand the flux qubit

readout principle, and decoherence mechanisms such as Purcell effect and photon noise.

3.3.1 Hamiltonian of a CPW resonator with infinite quality factor

Let us first consider a coplanar waveguide of length L with open circuit termination on both sides.

Contrary to a lumped-element resonator, such a distributed resonator possesses an infinite number of

modes. We denote C the capacitance per unit length, L the inductance per unit length, Z0 =
√

L /C

the characteristic impedance, and the generalized flux Φ = Φ(x) such that V = ∂tΦ at position

x ∈ [0, L]. The Lagrangian writes as follows:

L =

∫ L

0

1

2

(
CV 2 − L I2

)
dx =

1

2

∫ L

0

(
C Φ̇2 − 1

L
(∂xΦ)

2

)
dx

We thus decompose Φ into infinite stationary modes of mode number j, each verifying the open

circuit boundary condition I = 0 at x = 0 and x = L, we thus write

Φ =

∞∑
j=1

Φj cos (πjx/L)

which we inject into the Lagrangian expression and get

L =
L

2

∞∑
j=1

(
C

2
Φ̇j

2 − 1

2L

(
πj

L
Φj

)2
)

We obtain the Hamiltonian after performing the Legendre transformation

H =

∞∑
j=1

Hj =
1

L

∞∑
j=1

(
Q2

j

C
+
π2j2

4L
Φ2

j

)

where Qj = ∂L/∂Φ̇j = CLΦ̇j/2 is the conjugated variable of Φj . [Φn, Qm] = iℏδnm. We can simplify

in the language of harmonic oscillators to

Hj = ℏωj

(
a†jaj + 1/2

)
where aj =

√
jπ

4Z0ℏΦj + i
√

Z0

jℏπQj , ωj = jω1 = j
(
π
Lc
)

and c =
√

1
CL the wave velocity in the CPW.

Remembering that I (x) = −∂xΦ (x) /L , we get
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I (x) =

∞∑
j=1

sin (πjx/L)
πj

LZ0/c

(√
2Z0ℏ
jπ

(
aj + a†j√

2

))

=

∞∑
j=1

δI1(x)︷ ︸︸ ︷
δI0
√
j sin (πjx/L)

(
aj + a†j

)
(3.35)

where δI0 = ω1

√
ℏ

πZ0
are the (spatially) maximal quantum vacuum fluctuations of the current in the

first mode.

The coupling Hamiltonian between the qubit and the resonator is given by

Hcoupling =MIpI (x)σx (3.36)

which considering only the first mode, yields

Hcoupling =MIpδI1 (x)
(
a1 + a†1

)
σx

Most effects (e.g. photon noise) in circuit Quantum Electro Dynamics are principally dominated

by contributions of the first mode, due to the higher modes being highly out of resonance with the

qubit. From this point onward, the mode index will be taken to be 1 unless stated otherwise, and the

dependency on x may be omitted to lighten the notations.

3.3.2 Resonator modeled under the Filter Formalism

In practice the CPW resonator is delimited on both ends by finite coupling terminations that connects

to the external input/output lines. In the following, we will show a formalism that generalizes the

results of section 3.3.1 while taking into account the exact lumped-element composition of the resonator.

Let us first recall some results from lumped-element electrical circuit engineering.

Propagation in a transmission line A CPW transmission line can be modeled as in Fig.3.6. The

inductance per unit cell u is Lu and the capacitance to the ground per unit cell is Cu.

u

Figure 3.6: Circuit model of a transmission line. The unit cell length is u and the inductance
(resp. capacitance) per unit cell is Lu (resp. Cu)

We write the equations for the voltage and currents in the transmission line using Kirchhoff equa-
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tions

Vn+1 − Vn = −Lu∂tIn→n+1

−Cu∂tVn = In→n+1 − In−1→n

Going to the continuum limit where Lu/u→ L and Cu/u→ C , we get

∂xV = −L ∂tI

−C ∂tV = ∂xI

We introduce the propagation wave amplitudes to decouple these equations. Namely,

A→ = V/
√
Z0 + I

√
Z0

A← = V/
√
Z0 − I

√
Z0

where Z0 =
√

L /C and obtain two decoupled first order differential equations

∂tA
→ + c∂xA

→ = 0

∂tA
← − c∂xA

← = 0

where c = 1/
√

L C is the propagation velocity in the transmission line. The solutions are of the form

A→ (x, t) = A (x− ct) and A← (x, t) = A (x+ ct).

It is possible to look at individual Fourier components10 of A→/← (x, t) at any given point in space

x.

A→/← (x, t) =
∑
n

A→/←
n (x) e−iωnt + c.c.

Since the equations are linear, we will in the following sections, focus on monochromatic waves11 only,

thus dropping the sum and index n systematically. We write

A→/← (x, t) = A→/← (x) e−iωt + c.c.

For two different positions x1, x2, we can write that A (x2 ∓ ct) = A
(
x1 ∓ c

(
t± x1−x2

c

))
and establish

equality between

A→/← (x2, t) = A→/← (x2) e
−iωt + c.c.

A→/←
(
x1, t±

x1 − x2
c

)
= A→/← (x1) e

±iω x2−x1
c e−iωt + c.c.

10We adopt the quantum convention for wave propagation (i.e. ei(kx−ωt)), which differs by a sign from the one found
typically in the microwave textbooks (i.e. ei(ωt−kx)).

11Notice that when we deal with coefficients of a specific frequency ω, we do not add c.c., since that corresponds to
−ω. This will valid be the case for subsequent sections: we restore c.c. to come back to the a time-dependent expression.
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By unicity of the Fourier decomposition, we identify

A→/← (x2) = A→/← (x1) e
±iω x2−x1

c

= A→/← (x1) e
±ik(x2−x1) (3.37)

where k = ω/c. Moreover, the modulus of |A→|2 is proportional to the root-mean-square power

(assuming A← = 0)

P (x, t) = V (x, t) I (x, t)

=
(
A→ (x) e−iωt + c.c.

)2
= 2 |A→ (x)|2 +

(
(A→ (x))

2
e−2iωt + c.c.

)
PRMS = 2 |A→ (x)|2 (3.38)

Calculating transmission and reflection coefficients for simple elements Let us consider the

circuit described in Fig.3.7A.

A.

S

B. C.

Figure 3.7: A. Generic lumped element. B. Circuit element in series. C. Shorting circuit element.

A scatterer separates the transmission line into two separate regions, namely the left side and the

right side. When an incoming EM wave impinges on the scatterer, the propagation wave amplitude

can be transmitted and/or reflected partially. We thus write the scattering matrix S

(
A←L

A→R

)
=

S︷ ︸︸ ︷(
r←↩ t←

t→ r↪→

)(
A→L

A←R

)

S is unitary because of the conservation of energy.

For instance, we consider in Fig.3.7B a CPW waveguide intersected by an impedance Z in series.

We calculate the scattering coefficients by writing the Kirchhoff equations of voltage and current
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assuming A←R = 0. We get

ZI = VL − VR

=
√
Z0 [(A

→
L +A←L )− (A→R +A←R )]

I = IL =
1√
Z0

(A→L −A←L )

= IR =
1√
Z0

(A→R +A←R )

using the scattering matrix, we have A→R = tA→L and A←L = rA→L and thus we get

r = z/ (2 + z)

t = 2/ (2 + z)
(3.39)

with z = Z/Z0. If the scatterer is a capacitor12 Z = 1/ (−iω)C, we get

t (ω) =
2

2 + 1/ (−iω)CZ0
(3.40)

r (ω) =
1/ (−iω)CZ0

2 + 1/ (−iω)CZ0

Another interesting case to consider is a shorting circuit element as shown in Fig.3.7C. In that case,

the Kirchhoff equations gives

V = VL =
√
Z0 (A

→
L +A←L )

= VR =
√
Z0 (A

→
R +A←R )

0 = IL − IR − V/Z

=
1√
Z0

(A→L −A←L )− 1√
Z0

(A→R +A←R )− V/Z

Thus we get

r = −1/ (2z + 1)

t = 2z/ (2z + 1)

Next we consider finite CPW segments. On one hand, a finite CPW segment of length l with

matching impedance acts simply as a phase plate according to Eq.3.37.

S =

(
0 eikl

eikl 0

)
12We adopt the quantum convention for wave propagation (i.e. ei(kx−ωt)), which differs by a sign from the one found

typically in the microwave textbooks (i.e. ei(ωt−kx)).
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Segments with different characteristic impedances should be treated as three entities in series: two

scattering interfaces sandwiching a simple phase-plate. Each interface gives rise to scattering, and the

intermediate region acts as a Fabry-Perot resonator. Let us therefore consider the interface Z1|Z2.

The Kirchhoff equations writes

VL = VR =
√
Z1 (A

→
L +A←L )

(A→L −A←L ) /
√
Z1 = IL = IR = (A→R −A←R ) /

√
Z2

VL/IL = Z1

VR/IR = Z2

which we solve to get

t→ =
2
√
Z1Z2

Z1 + Z2

r←↩ =
Z2 − Z1

Z1 + Z2

Similarly, two other coefficients can be established by a swap operation Z1 ↔ Z2. Finally, we write

S =

(
Z2−Z1

Z1+Z2

2
√
Z1Z2

Z1+Z2

2
√
Z1Z2

Z1+Z2

Z1−Z2

Z1+Z2

)
(3.41)

Figure 3.8: Scattering coefficients calculation for a composite scatterer 1 & 2

Recursive chaining Lumped Circuit Elements From the building blocks seen above, it is pos-

sible to build a composite element and evaluate the scattering coefficients. Considering two scatterers

in series indexed 1 and 2 as shown in Fig.3.8, we may sum over all possible trajectories to get the
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expression

t =
t1t2

1− r1↪→r2←↩
(3.42)

r←↩ = r1←↩ +
t1r2←↩t1

1− r1↪→r2←↩

r↪→ = r2↪→ +
t2r1↪→t2

1− r1↪→r2←↩

which form the bedrock of all numerical simulations of scattering coefficients in this thesis. Any com-

posite scatterers built from the basic building blocks described above verifies time-reversal symmetry

because of the independence on the magnetic field of each component. For the transmission coefficient

considered in this thesis, we may thus always drop the direction index t = t→ = t←.

λ/2 CPW Resonators with symmetrical terminations The use of symmetrical terminations

on both ends of a CPW segment of length L = λ/2 ensures that exactly at the resonant frequency

ωr = 2πc/λ, a continuous wave signal is fully transmitted, and no reflection is observed. This results

from coherent interference of transmission amplitudes (see Fig.3.9), which converges to a unitary

transmission coefficient after performing the substitution

τ (ω) =

∞∑
j=0

t (ω) eikL
(
r2 (ω) e2ikL

)j
t (ω) =

∞∑
j=0

t (ω) eπiω/ωr

(
r2 (ω) e2πiω/ωr

)j
t (ω)

τ (ω) =
t2 (ω) eπiω/ωr

1− r2 (ω) e2πiω/ωr
(3.43)

where kL = ω
c × L = π ω

ωr
. At ω = ωr,

∣∣1− r2 (ω)
∣∣ ≈ 1− |r (ω)|2 and by energy conservation,

1−
∣∣r2 (ω)∣∣ = ∣∣t2 (ω)∣∣

and thus the transmission

|τ (ωr)| ≈
∣∣t2 (ω)∣∣

1− (1− |t2 (ω)|)
= 1

An identity can be established relating the round trip frequency ωr/2π, the transmission coefficient,

and the energy leakage κ

ωr/Q ≡ κ = 2 · ωr/2π · |t|2

The factor 2 stems from the fact that per round trip, both terminations are met once, resulting in two

leaking events per round trip. We thus get

Q = π/ |t|2
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Figure 3.9: A symmetrical readout resonator. We show the calculation of the signal at position
x given a injected unitary signal from the left, as well as the overall transmission coefficient.

Current/voltage seen at a given position in the resonator A qubit situated at the position x

in the coplanar waveguide resonator of length L with a transition frequency at ωge will be coupled to

the local current I (x) and/or V (x). In the case of a flux qubit, the coupling is mainly inductive as

described by Eq.3.36. Working in frequency domain, we can solve the local current as a linear response

of the propagation wave amplitudes A→L and A←R .

The obtained linear map can be summarized as

I (x, ω) =
1√
Z0

(f→ (ω, x)A→L + f← (ω, x)A←R ) (3.44)

V (x, ω) =
√
Z0 (g→ (ω, x)A→L + g← (ω, x)A←R )

The exact numerical value of f→/← and g→/← can be calculated by considering the coherent interfer-

ence from the scattering of all the elements (as done in Fig.3.9). We obtain

f→ (ω, x) = t
eikx − reik(2L−x)

1− eikLr2
(3.45)

f← (ω, x) = t
eik(L−x) − reik(L+x)

1− eikLr2
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similarly for the voltage, we get

g→ (ω, x) = t
eikx + reik(2L−x)

1− eikLr2

g← (ω, x) = t
eik(L−x) + reik(L+x)

1− eikLr2

where we see a denominator resulting from the coherent interference reflecting within the resonator.

Coupling between the flux qubit and the resonator In our formalism, the coupling of the

qubit to the resonator is the result of the filtering of the external bath. The Hamiltonian of the

external bath is given by

Hb/ℏ =
∑
n

ωn

(
a→L,n

)†
a→L,n +

∑
n

ωn

(
a←R,n

)†
a←R,n

where ωn = n · 2πc/Λ , Λ being the length of external cables connected to each side of the system. For

convenience, we introduce the density of states

η (ω) ≡ 1

∆ω
= Λ/2πc (3.46)

The expressions of A→L,n and A←R,n are given by

A→L,n =

√
c

2Λ
ℏωna

→
L,n (3.47)

A←R,n =

√
c

2Λ
ℏωna

←
R,n

Indeed, we verify using Eq.3.38

P (x, t) = 2
(
A→L,ne

−iωnt + H.c.
)2

=
( c

2Λ
ℏωn

)(
2
(
a→L,n

)†
a→L,n + 1 +

(
e−iωnta→L,n

)2
+
(
eiωnta→†L,n

)2)
PRMS (x) =

( c
Λ

)
· ℏωn

[(
a→L,n

)†
a→L,n +

1

2

]
which indeed reflects the energy carried by the influx of photons.

We obtain

I (x, ωn) =
1√
Z0

(
f→ (ωn, x)A

→
L,n + f← (ωn, x)A

←
R,n

)
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which gives us

Î (x) =
∑
n

1√
Z0

(
f→ (ωn, x)A

→
L,n + f← (ωn, x)A

←
R,n

)
(3.48)

=

√
c

2Λ

∑
n

√
ℏωn

Z0

(
f→ (ωn, x) a

→
L,n + f← (ωn, x) a

←
R,n

)
+ H.c.

Let us introduce a linear combination of a→L,n and a←R,n

A =

∑
n n
(
f→ (ωn, x) a

→
L,n + f← (ωn, x) a

←
R,n

)√∑
n n

2
(
|f→ (ωn, x)|2 + |f← (ωn, x)|2

) (3.49)

which verifies
[
A,A†

]
= 1 and thus can rewrite the current operator under the form Î (x) = δI (x)

(
A+A†

)
,

where

δI (x) =

√∑
n

c

2ΛZ0
ℏωn

(
|f→ (ωn, x)|2 + |f← (ωn, x)|2

)

=

√∫
dω

η (ω)
c

2ΛZ0
ℏω
(
|f→ (ω, x)|2 + |f← (ω, x)|2

)
Injecting the expression of η , we recover an expression independent of Λ

δI (x) =

√∫
dω

ℏω
4πZ0

(
|f→|2 (ω, x) + |f←|2 (ω, x)

)
δV (x) =

√∫
dω

ℏωZ0

4π

(
|g→|2 (ω, x) + |g←|2 (ω, x)

)
from which an expression for the coupling constant between the resonator and the qubit may be

established

ℏg =MIp

√∫
dω

ℏω
4πZ0

(
|f→|2 (ω, x) + |f←|2 (ω, x)

)
(3.50)

Let us try to reproduce the results from section 3.3.1. Considering the λ/2 length of the CPW
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resonator, we may develop an approximation for f→ (x, ω) around the first mode ω ≈ ω1

f→ (x, ω ≈ ω1) =
t
(
exp

(
2πi ω

ω1

x
λ

)
− r exp

(
2πi ω

ω1

(λ−x)
λ

))
1− r2 exp

(
2πi ω

ω1

)
≈

i2xC sin
(
−π ω

ω1

2x−λ
λ

)
exp

(
−πi ω

ω1

)
x2C − 2πiω−ω1

ω1

(3.51)

|f→ (x, ω)|2 ≈ 1

1 +
(
(ω − ω1) /

[
x2
Cω1

2π

])2 · 4

x2C
sin2

(
π
ω

ω1

2x− λ

λ

)

where xC = ωCZ0/2. The first part converges to a Dirac distribution at ω1 when xC → 0

1

1 +
(

2π
x2
C

ω−ω1

ω1

)2 xC→0−→
[
x2Cω1

2π

]
πδ (ω − ω1)

from which we get∫
dω

ℏω
4πZ0

|f→ (x, ω)|2 =
ℏω1

4πZ0

x2Cω1

2π

4

x2C
sin2

(
2π
x

λ

)
=

ℏω2
1

2πZ0
sin2

(
2π
x

λ

)
By symmetry, we get |f← (x, ω)|2 = |f→ (λ− x, ω)|2. Finally, we obtain

δI (x) =
∣∣∣sin(2πx

λ

)∣∣∣
√

ℏω2
1

πZ0

which is in agreement with the expression δI1 (x) =ω1

√
ℏ

πZ0
sin (πx/L) of Eq.3.35.

3.3.3 Band-cut Bragg Filters

In this section, we replace one of the coupling capacitors of the resonator with a the Bragg Filter,

comprised of segments of CPW of length LBF = λc/4
13 with alternating impedance as shown in

Fig.3.10. Let us focus on the Bragg filter in isolation. Recall Eq.3.41 from 3.3.2 that the scattering

matrix for propagation amplitudes of an interface Zl|Zh writes

SZl|Zh
≡

(
r←↩ t←

t→ r↪→

)
=

(
Zh−Zl

Zl+Zh

2
√
ZlZh

Zl+Zh

2
√
ZlZh

Zl+Zh

Zl−Zh

Zl+Zh

)

We see that the coefficients only depend on relative ratios between the source and destination

impedance. The characteristic impedances Zl/h can be easily adjusted by modifying the width of

the central conductor and the gap to the ground [79]. Practically speaking, the higher and lower

impedance are Zh ≈ 80Ω and Zl = 35Ω. The reflection coefficients is thus
∣∣rZl|Zh

∣∣ ≈ 40% between

the two interfaces, with the reflected power being
∣∣rZl|Zh

∣∣2 ≈ 15%.
13Defined in the next paragraph (3.3.3)
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Z0=50Ω

Bragg Filter

impedance mismatch interfaces

Zl<50Ω Z0=50ΩZh>50ΩZl<50Ω...Zh>50Ω Z >50Ω

Figure 3.10: Schematic diagram of the Bragg Filters replacing a coupling capacitor.

Constructive interference of reflected signals Let us define the central frequency ωc/2π, such

that the corresponding wavelength is λc = 4LBF. We will see as the name suggests, this corresponds

to the center of the band-cut. Due to the alternating nature of the impedance, two adjacent interface

scatterers will have opposite signs for the reflection coefficient. At the central frequency, we can thus

write a recursive relationship for rn, the reflection coefficient for n consecutive interfaces (i.e. n + 1

alternating impedance segments in series):

r0 = 0

rn+1 = (−1)
n+1

r1 +
t21e

iπ [rn]

1− [(−1)
n
r1] eiπ [rn]

(3.52)

=
(−1)

n+1
r1 − r21rn −

(
1− r21

)
[rn]

1 + (−1)
n
r1rn

=
(−1)

n+1
r1 − rn

1 + (−1)
n
r1rn

(3.53)

By posing Rn = (−1)
n
rn, we get a recursive relationship for Rn

Rn+1 =
r1 +Rn

1 + r1Rn

By parametrizing Rn = tanh θn and r1 = tanh θ1 we get the composition

Rn+1 =
tanh θn + tanh θ1
1 + tanh θn tanh θ1

= tanh (θn + θ1)

This proves that θn = nθ1
14, and that the efficiency of the reflection converges to 1 as the number of

scatterers n→ ∞
|rn| = |Rn| = tanh (nθ1) =

enθ1 − e−nθ1

enθ1 + e−nθ1

14Note that in practice, since all lines are eventually connected by 50Ω, θ corresponding to the first and last interface
should be treated separately (35/50Ω or 80/50Ω), and should be smaller than all other intermediate interfaces (35/80Ω).
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and the power leak rate decreases exponentially

|tn|2 = 1− |rn|2 =
2

(enθ1 + e−nθ1)
2 ≈ 2

e2nθ1
(3.54)

Figure 3.11: Power transmission up to 12 bragg interfaces.

Regarding the width of cut-band, it suffice to change the factor eiπ in Eq.3.52 to a detuned version

eiπ(1+δ/ωc), which amounts to replacing15 rn → rne
iπδ/ωc in Eq.3.53 and leads to

Rn+1 =
r1 +Rne

iπδ/ωc

1 + r1Rneiπδ/ωc

The power transmission after the first 12 iterations of this recursive relationship is shown in Fig.3.11.

3.3.4 Flux qubit readout through the CPW using Cavity Quantum Electro Dynamics

In this section, we give an introduction to the framework of Cavity Quantum Electro Dynamics, and

to how it allows for readout of the flux qubit. In the following, we suppose that the flux qubit is biased

at its optimal point, where Φ = Φ0/2 and thus ωge = ∆ . By going to the rotating frame associated

with ℏωr

(
A†A+ σz

2

)
, we are left with the Hamiltonian

H/ℏ = (∆− ωr)
σz
2

+ g
(
σ+e

iωrt + σ−e
−iωrt

) (
Ae−iωrt +A†eiωrt

)
15A round trip is 2LBF = λ/2
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The rotating wave approximation throws out the rapidly rotating coupling terms, such that we are left

with

H/ℏ ≈ δ
σz
2

+ g
(
σ+A+ σ−A

†)
where δ = ∆− ωr is called the detuning of the qubit with respect to the resonator.

Under the effect of this Hamiltonian, the total number of excitation n, namely the operator σz +

A†A, is conserved. It is thus interesting to work in the basis of individual stable subspaces, where

we denote g/e for flux qubit ground and excited state, and an integer number for photon Fock states.

The tensor product ⊗ is implicit.

B0 = {|g⟩ |0⟩}

B1 = {|g⟩ |1⟩ , |e⟩ |0⟩}

B2 = {|g⟩ |2⟩ , |e⟩ |1⟩}
...

For all n ≥ 1, we have the reduced Hamiltonian matrix expressed in the subspace generated by basis

Bn

Hn/ℏ =
δ

2
σz +

√
ngσx =

√(
δ

2

)2

+ ng2 (cos θσz + sin θσx)

where cos θ = δ
2/

√(
δ
2

)2
+ ng2, and sin θ =

√
ng/

√(
δ
2

)2
+ ng2. Diagonalization of this yields eigen-

vectors Hi/ℏ+ sign (δ)

√(
δ

2

)2

+ ng2

(cos θ
2
|g⟩ |n⟩+ sin

θ

2
|e⟩ |n− 1⟩

)
= 0

Hi/ℏ− sign (δ)

√(
δ

2

)2

+ ng2

(− sin
θ

2
|g⟩ |n⟩+ cos

θ

2
|e⟩ |n− 1⟩

)
= 0

Let us define the ground-like states16 |G,n⟩ ≡ cos θ
2 |g⟩ |n⟩+ sin θ

2 |e⟩ |n− 1⟩ and excited-like states

|E,n− 1⟩ ≡ − sin θ
2 |g⟩ |n⟩+cos θ

2 |e⟩ |n− 1⟩. For completeness, we also extend the definition to |G, 0⟩ ≡
16most of the probability amplitude is in the ground state for the qubit
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|g⟩ |0⟩. For the situation in which
(
δ
2

)2 ≫ ng2, the following properties hold true

sin
θ

2
≪ 1

|G,n⟩ ≈ |g⟩ |n⟩

|E,n− 1⟩ ≈ |e⟩ |n− 1⟩√(
δ

2

)2

+ ng2 ≈ δ

2

(
1 +

ng2

2
(
δ
2

)2
)

=
δ

2
+
ng2

δ

We coin χ ≡ g2/δ as the dispersive shift for reasons which shall soon become apparent. To move back

to the un-rotated frame, it suffices to add back the energy term ℏωr

(
A†A+ σz

2

)
. Finally, the ladder

of the ground-like states |G,n⟩ form an energy ladder EG,n/ℏ = nωr − δ/2− nχ. Similarly for |E,n⟩
we have EE,n = nωr + δ/2− nχ. These two energy ladders can be summarized under a new succinct

form, thanks to the approximation |G,n⟩ ≈ |g⟩ |n⟩ and |E,n− 1⟩ ≈ |e⟩ |n− 1⟩

H/ℏ = ∆
σz
2

+ ωrA
†A+ χσzA

†A (3.55)

The physical interpretation of the above expression, which holds true only for
(
δ
2

)2 ≫ ng2, is that

the state of the qubit will induce a shift in the resonator resonance of ±χ. This constitutes the core

principle of dispersive readout. Inversely, the transition of the flux qubit will fluctuate with the number

of photon in the resonator, which gives rise to the so-called photon-noise decoherence, which we will

treat in 3.5.5. Note that another way to arrive at the same result is to use the so-called Schrieffer-Wolf

transformation [80]

H0 +Hc → H0 +
1

2
[S,Hc] +O

(
H3

c

)
H0 ≡ ℏ

(
ωrA

†A⊗ 1+ (ωr + δ)1⊗ σz
2

)
Hc ≡ ℏg

(
A+A†

)
⊗ σx

where the generator S must obey [H0, S] = Hc. In our case, it suffices to take S = g/δ
(
σ−A

† − σ+A
)
.

As a design principle, χ should be comparable to the loss rate of the resonator κ in order for the

dispersive shift to be efficiently detected.
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3.4 Flux Qubit Relaxation

3.4.1 Purcell loss

The Hamiltonian of the flux qubit can be written as

H = ℏωge
σz
2

+MIpÎ (x)σx (3.56)

Thus, according to the Fermi Golden Rule, the relaxation rates associated to fluctuations of the current

in the resonator Î (x) can be written as

Γe→g =
2π

ℏ2
M2I2pSI (ωge)

Γg→e =
2π

ℏ2
M2I2pSI (−ωge)

ΓP =
2π

ℏ2
M2I2p [SI (ωge) + SI (−ωge)]

where Γe→g (resp. Γg→e) is the transition rate from |e⟩ to |g⟩ (resp. |g⟩ to |e⟩), ΓP is the Purcell decay

rate and SI is the current power spectrum defined as

SI (ω) ≡
1

2π

∫
t∈R

⟨I (t) I (0)⟩ eiωt

We recall that I (x, ω) can be expressed as a function of the propagation wave amplitudes A→L (ω)

and A←R (ω) in the incoming lines as

I (x, ω) =
1√
Z0

(f→ (x, ω)A→L (ω) + f← (x, ω)A←R (ω))

Due to the independence of signals A→L (ω) and A←R (ω), we have

SI (ω) =
1

Z0

(
|f→ (ω, x)|2 SA→L

(ω) + |f← (ω, x)|2 SA←R
(ω)
)

According to Eq.3.47

A→L (t) =
∑
n

√
c

2Λ
ℏωna

→
L,ne

−iωnt + H.c.

A←R (t) =
∑
n

√
c

2Λ
ℏωna

←
R,ne

−iωnt + H.c.
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We may thus calculate

SA→L
(ω) ≡ 1

2π

∫
t∈R

⟨A→L (t)A→L (0)⟩ eiωt

=
1

2π

∑
n≥0

( c

2Λ
ℏωn

)∫
t∈R

(〈(
a→L,n

)†
a→L,n

〉
e+iωnt +

〈
a→L,n

(
a→L,n

)†〉
e−iωnt

)
eiωt

=
∑
n≥0

( c

2Λ
ℏωn

) (〈(
a→L,n

) †a→L,n

〉
δ (ωn + ω) +

〈
a→L,n

(
a→L,n

) †〉 δ (ωn − ω)
)

By replacing the discrete sum
∑

n≥0 by its equivalent integral
∫
dω∈R+

η (ω), we get

SA→L
(ω) =

∫
dω′∈R+

η (ω′)
( c

2Λ
ℏω′
) (〈

a†a
〉
δ (ω′ + ω) +

〈
aa†
〉
δ (−ω′ + ω)

)
=

∫
dω′∈R+

ℏω′

4π

(〈
a†a
〉
δ (ω′ + ω) +

〈
aa†
〉
δ (−ω′ + ω)

)
=


ℏω
4π

〈
aa†
〉

ω > 0

ℏω
4π

〈
a†a
〉

ω < 0
(3.57)

By considering that the photon bath is thermalized at a given temperature T ,

SA→L
(ω) =


ℏω
4π

1
1−e−βℏω ω > 0

ℏω
4π

e−βℏωge

1−e−βℏω ω < 0
(3.58)

where β = 1
kBT . Finally, the Purcell decay rate writes

ΓP =

(
MIp
ℏ

)2 ℏωge coth
(

ℏωge

2kBT

)(
|f→ (ω, x)|2 + |f← (ω, x)|2

)
2Z0

(3.59)

which we separate into two parts

ΓP = Γ→ + Γ←

where

Γ→/← =

(
MIp
ℏ

)2 ℏωge

2Z0

∣∣f→/← (ωge, x)
∣∣2 coth(βℏωge

2

)
(3.60)

Comparison to Input output theory Compared to the widely-used formula predicted by input-

output theory [81] Γ = κ g2

δ2+κ2/4 , Eq.3.60 predicts exactly the same Lorentzian behavior around reso-

nance. Indeed, it is possible to establish that the filter function writes approximately

f (ω) ≈ cte.
κ/2− iδ

(3.61)
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However, the approximation breaks down, when δ becomes comparable to ωge. Indeed, the denominator

κ/2− iδ grows a lot quicker than the one described in this formalism 1−e2ikLr2C , which curls up in the

complex plane in a bounded fashion. Secondly, the dependence of tC and rC on ω is not negligible (see

Eq.3.40). This property is specifically exploited in the Bragg Filter terminated resonator, where the

Bragg Filter behavior around ωge (central region of the cut band) can be very different from around

ωr (edges of the cut band).

All in all, even for a standard capacitor terminated resonator, for a typical detunings of 2GHz in

front of ωr

2π = 10GHz, the experimental difference can be 2-10 fold compared to the predictions by

Input-Output theory.

Rabi driving frequency as a function of driving power According to Eq.3.48

Î (x) =
1√
Z0

∑
n

(
f→ (ωn, x)A

→
L,n + f← (ωn, x)A

←
R,n

)
+ H.c.

Let us assume that we drive a monochromatic wave (ωn = ωge) from the left such that A←R,n = 0,∀n.

The resulting Rabi frequency (see Eq.3.56) is

Ω→ =
2MIp
ℏ

√
1

Z0
|f→ (ωge, x)A

→
L (ωge)|

Since |A→L (ωge)|2 = PRMS/2 (see Eq.3.38), we get

(ℏΩ→)
2
/PRMS =

(2MIp)
2

2Z0
|f→ (ωge, x)|2 (3.62)

The same can be done for a monochromatic drive from the right, assuming A→L,n = 0,∀n. Thus we get

(ℏΩ←)
2
/PRMS =

(2MIp)
2

2Z0
|f← (ωge, x)|2 (3.63)

Calculating the Purcell rate from Rabi frequency Considering Eq.3.60, Eq.3.62 and Eq.3.63,

we establish a relationship valid at zero temperature

Γ→/← (0K) =
ℏωge

(
Ω→/←)2

4PRMS
(3.64)

We thus get

ΓP (0K) =
ℏωge

[
(Ω→)

2
+ (Ω←)

2
]

4PRMS

In the following this relationship will be used to establish the Purcell rates (see Fig.6.3B in sec-

tion 6.1.4). The advantage of this formula is that it gives directly the Purcell rate via the measurement
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of the Rabi frequency for a given power PRMS with a precision limited by the uncertainty on PRMS,

which is typically ±1 dB.

3.4.2 Dielectric Loss

Dielectric losses take place in the capacitors of the flux qubit and can be modeled by a small resistor

of resistance Rij in series with each capacitor. The value of Rij is determined by the loss tangent of

the dielectric material (see section §4) separating island i and j of capacitor Cij
17 and is given by

RijCijωqb = tan δ (3.65)

Since this angle δ is very small, the impedance of the flux qubit circuit is much higher than Rij and

can thus be considered as an open circuit. As a result, the filter function is g (ω) = 1+ r ≈ 2, and the

voltage at a point verifies the following power spectrum

SδVij
(ωge) + SδVij

(−ωge) = |g (ω)|2 Rℏωge

4π
coth

(
βℏωge

2

)
≈ ℏωgeR

π

To calculate the relaxation rate, one must determine the transverse term σx/y in the Hamiltonian

introduced by a small perturbation δVij .

V4

V3

V1

V2

+Q42-Q42

Figure 3.12: An external bias δVij(cyan) is applied. Here we show the example of (i, j) = (4, 2), where
we write Q42 = C42

(
V4 −

(
V2 + Ṽ42

))
Let us suppose fixed a given voltage configuration18 V. As we can see in Fig.3.12, the variation of

17Contrary to Fig.3.1, Cij is the i,j-th element of the total capacitance matrix C, which includes the junction capaci-
tances, although they present a much smaller contribution because of smaller tan δ as we will soon see.

18Bold variables are either for matrices or the vectors that are of dimension 4, corresponding to physical islands. On
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charge across the capacitor C42 due to δV42 is given by

δQ42 = −C42δV42

At first order in δV42, this modifies the kinetic term by

dK42 = δQ42 (V2 − V4)

= −C42δV42V
T


0

1

0

−1


Let us recall that P from Eq.3.12 is the 4× 3 transfer matrix from the junction coordinates to the

island phases such that V = P⃗̇Φ = P
(
PTCP

)−1
Q⃗ (up to a constant). Injecting and generalizing to

all other indices ij, we can write the total perturbation of the Hamiltonian to all perturbations δVij .

dH =
∑
i̸=j

(−dKij)

=
∑
i ̸=j

CijδVijQ⃗
T
(
PTCP

)−1
PT (ej − ei)

where ei is the sparse column vector with 1 only at position i.

Let us justify that Q⃗ = (2e) n⃗ are transverse, i.e. Pauli X or Y and not Z. The gauge that we adopt

in this thesis is that |g⟩ and |e⟩ are real symmetrical and anti-symmetrical wave functions of φ (such

that the current operators ⟨e| sin (φi) |g⟩ ∈ R, cf. Eq.3.16). Here, ni = −i∂φ which after application

on |g⟩ will produce anti-symmetrical and symmetrical pure imaginary wave functions.

⟨e|ni |g⟩ ∈ iR

⟨g|ni |g⟩ = 0

⟨e|ni |e⟩ = 0

The two latter equations come from the flipping of inversion symmetry I |x⟩ = λ |x⟩ =⇒ In |x⟩ =

−λn |x⟩. This proves that the operators n⃗ and Q⃗ are σy operators in our gauge.

Let us define the 3 × 3 real symmetrical matrix comprised of the quantum overlaps of the charge

operators

Q2 = (⟨e|Qi |g⟩ ⟨g|Qj |e⟩ ,∀i, j ∈ {1, 2, 3})

the other hand, a vectorial notation ·⃗ contains 3 elements, corresponding to the number of free phase variables in the
Hamiltonian. Unless specified otherwise, normal scripts with indices denote the components of a matrix or vector.
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Seeing that dH is linear in the Q⃗ operators we can write dH under the form

dH = δVij ·
(
Q⃗T L⃗ij

)
L⃗ij = Cij

(
PTCP

)−1
PT (ei − ej)

Subsequently, the loss rate due to δVij writes

Γij = 2π

[
SδVij (ωge) + SδVij (−ωge)

]
L⃗ij

T
Q2L⃗ij

ℏ2

= (2ωgeR/ℏ)Tr
(
L⃗ijL⃗ij

T
Q2
)

= (2 tan δij/ℏCij)Tr
(
L⃗ijL⃗ij

T
Q2
)

where we replace the expression of R in the last equality according to Eq.3.65. We get

Γij =
2

ℏ
Tr
((

PTCP
)−1 [

PT (ei − ej)Cij tan δij (ei − ej)
T
P
] (

PTCP
)−1

Q2
)

After summation over all island pairs i, j in [·] , we get

Γdielectric =
2

ℏ
Tr
((

PTCP
)−1 (

PTC′P
) (

PTCP
)−1

Q2
)

(3.66)

where C′ =
∑

ij (ei − ej)Cij tan δij (ei − ej)
T is the capacitance matrix weighted by the tan δ of

individual capacitive elements (we recover, for the unweighted expression, the usual capacitance matrix

C =
∑

ij (ei − ej)Cij (ei − ej)
T ). For instance, in the case where tan δ is homogeneous, we recover Γ =

2
ℏ tan δTr

((
PTCP

)−1
Q2
)
. Realistically, we have two different kind of tan δ, one for the Josephson

junctions and another for the geometric capacitance, yielding

C′ = tan δJCJ + tan δgeomCgeom

we may therefore separate into two parts in Eq.3.66

Γdielectric = ΓJ + Γgeom

For the qubits on sample A, B, C, the value of the wavefunction overlap Q2/ (2e)
2 is comprised

between the range 0.05 − 0.09. Numerical estimations supposing tan δJ = 1 × 10−7 and tan δgeom =

1× 10−5 is shown in Tab.3.1.
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∆ IP ΓJ Γgeom

Sample A 7.1GHz 198 nA 2.9 kHz 50 kHz
Sample B 5.1GHz 297 nA 1.7 kHz 28 kHz
Sample C 6.6GHz 295 nA 2.5 kHz 40 kHz

Table 3.1: Numerical for a representative average qubit from each of the samples.

3.5 Flux Qubit Dephasing

3.5.1 General framework for calculating the pure dephasing noise

In an ideal system, the decoherence rate Γ2 is limited by the energy relaxation rate of the qubit and

is given by Γ2 = Γ1/2 . In practice, the decoherence rate of a qubit may be much larger than this

theoretical limit. There are several known sources of dephasing which are responsible for this. Among

them, flux noise, charge noise and photon noise in the resonator. The pure dephasing rate of the flux

qubit can be estimated by the so-called Ramsey sequence, where two identical π/2 pulses are played

consecutively with a time delay t. It is possible to dynamically decouple the noise responsible for this

dephasing by playing a more complex set of pulses. The most popular technique to achieve this is

called Hahn Echo technique and consists of playing a π-pulse in between the two π/2 pulses. This π

pulse inverses the time evolution and therefore cancels the contribution to dephasing of low frequency

noise.

In the Ramsey sequence, the first π/2-pulse raises the qubit initially in its ground state into a

coherent superposition of |Ψ(0)⟩ = (|g⟩+ |e⟩) /
√
2 . During time t, the qubit performs a free evolution

and accumulates phase φ(t) and becomes |Ψ(t)⟩ =
(
|g⟩+ eiφ(t) |e⟩

)
/
√
2. The phase φ(t) consists of

two parts φ(t) = ωget+ δ(t), where δ(t) is the phase due to the small fluctuations δλ(t) which slightly

modify the qubit Hamiltonian. At first order, δ(t) is given by δ(t) = ∂ωge

∂λ

∫ t

0
δλ(t′)dt′. The decoherence

rate of the system corresponds to the decay of the expectation value ⟨σx(t)⟩ and is given by

⟨σx(t)⟩ =
〈
eiφ(t) + e−iφ(t)

〉
/2

When repeating the measurements, the value of ⟨σx(t)⟩ is changed due to the varying environmental

noise δ(t). Therefore, one should average the value of e±iδ(t) in order to determine the influence of this

noise. If the fluctuations δλ(t′) are small enough, they can be considered as a random variable with

Gaussian distribution [82]. Thus,

fR(t) =
〈
e±iδ(t)

〉
= e−1/2⟨δ

2(t)⟩
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The expectation value of ⟨σx(t)⟩ will therefore decay according to

fR(t) = e
−1/2

(
∂ωge
∂λ

)2〈
(
∫ t
0
δλ(t′)dt)

2
〉

(3.67)

= exp

− t
2

2

(
∂ωge

∂λ

)2
∞∫
−∞

dω Sλ(ω) sinc2(
ωt

2
)

 (3.68)

In a Hahn echo sequence, the first π/2-pulse puts the state of the qubit in a coherent superposition

state |Ψ(0)⟩ = (|0⟩+ |1⟩) /
√
2 . During the time t1, the qubit performs a free evolution and accumulates

phase φ1(t1) = ωget1 + δ1(t1). The π - pulse flips the time evolution of the qubit such that during

the time t2 it acquires an opposite phase φ2(t2) = −ωget2 − δ2(t2). The phase accumulated by ωget1

and ωget2 is canceled when t1 = t2 = t/2 and the decoherence rate of the qubit - corresponding to the

decay fE(t) = ⟨σx(t)⟩ - is given by

fE(t) =
〈
e±i(δ1−δ2)

〉
≈ exp

(
−1/2

〈
δ21 + δ22 − δ1δ2 − δ2δ1

〉)
The expectation value of ⟨σx(t)⟩ will therefore decay according to

fE(t) = exp

− t
2

2

(
∂ωge

∂λ

)2
∞∫
−∞

dω Sλ(ω) sin2(
ωt

4
) sinc2(

ωt

4
)

 (3.69)

3.5.2 Dephasing away from the optimal point

Away from the optimal point , the high magnetic moment of the circuit (∼ 500GHz/G) make its

frequency very sensitive to flux

∂Φωge =
∂ε

∂Φ
.
∂ωge

∂ε
=

(
2Ip
ℏ

)2
(Φ− Φ0/2)

ωge

The power spectrum of flux noise has a 1/f shape SΦ [ω] = A2
Φ/ω. For the Echo sequence, one can

calculate exactly the integral given in Eq.3.69 without any additionnal assumption or approximation

and one obtains [82]

Γφ
2E (Φ) =

(
2Ip
ℏ

)2
Φ− Φ0/2

ωge (Φ)
AΦ

√
ln 2 (3.70)

3.5.3 Dephasing at the optimal point: Monte Carlo simulation for second order flux

noise

At the optimal point however, ∂Φωge = 0 and therefore the qubit is immune to flux fluctuations to first

order. Yet, ∂2Φωge =
(

2Ip
ℏ

)2
/ (2π∆) ̸= 0 and thus second order flux noise should be taken into account.

Unlike first order, deriving an analytical expression for 2nd order flux noise is not straight-forward. In
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this work, we performed numerical Monte Carlo simulations in Python [83]. The source code of this

simulation can be found on Github [84].

Microscopically, the flux noise is the sum of many independent uncorrelated sources, most likely

spins on the surface of the loops [75]. Thus, it should be well described as a Gaussian variable. To

simulate a flux noise trajectory in time, we first generate a series of 2nFFT normally distributed real

and imaginary random numbers ai + ibi that will be used as Fourier components of the signal. These

Fourier components are multiplied by an amplitude AΦ

√
nFFTdt

i where dt is the time step unit of the

simulation. Then, we apply an inverse fast Fourier transform in order to obtain a flux noise trajectory

with power spectrum of A2
Φ/f . In the code, the class NoiseGen1OverF is a generator of pink noise.

Attributes includes the time step unit dt, and the total number nFFT of samples to generate. The

method generate is called to generate a single trajectory
−→
δΦ = (δΦ (t1) , . . . , δΦ (tnFFT)) around zero

flux.

Ensemble averaging over noise trajectories The next step of our simulation consists of ensemble

averaging of a complex function over different trajectories. For Ramsey sequence, this complex function

is

fR (t) = exp

(
i

∫ t

0

ωge (Φ + δΦ (u))− ⟨ωge⟩ du
)

where Φ is the flux threading the loop of the qubit. For Hahn-Echo sequence, the complex function is

fE (t) = exp

(
i

∫ t/2

0

ωge (Φ + δΦ (u)) du− i

∫ t

t/2

ωge (Φ + δΦ (u)) du

)

In order to reduce the function call overheads, the function qb_plot_t2s_at performs the ensem-

ble averaging by sampling the nFFT-sized signal at fixed intervals, much like in a real experiment

where ensemble repetitions occur in sequential order at a quasi-fixed period. To further increase the

smoothness of the signal, we resample the same signal using the same period but with different time

offsets.

f o r i in tqdm . tqdm( range (0 , tobs_tstep , l a z i n e s s )) :# l i n e 166

. . .# f o r d i f f e r e n t p e r i o d i c o f f s e t s

In order to optimize the running complexity, the integral
∫ tj
ti
ωge (Φ + δΦ (u)) du is calculated as a

difference of pre-cached cumulative sums
∫ t

0
ωge (Φ + δΦ (u)) du:

∫ tj

t

ωge (Φ + δΦ (u)) du =

∫ tj

0

ωge (Φ + δΦ (u)) du−
∫ ti

0

ωge (Φ + δΦ (u)) du

The pre-caching step is performed in only O (nFFT) complexity. To further speed up the whole

algorithm, we perform the computation described above by using np.reshape commands instead of

writing python for-loops, to exploit the faster speed of C-implemented numpy libraries.

Here is a list of important arguments of the function qb_plot_t2s_at :

1. t_step_ns corresponds to the time step unit dt
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2. t_observation_ns, time interval on which the interpulse time delay will be varied. This is the X

axis of the final plot.

3. t_total_ns, this is the total length of the pink signal, equal to nFFTdt. The inverse is the

resolution df in frequency space.

4. t_cut_off_ns. Its inverse is the low frequency cutoff of the power spectrum. We assume white

noise below this threshold.

The default sample program provided under the __main__ statement performs the following steps.

First a typical flux qubit transition with parameters ∆, Ip, under influence of pink noise of amplitude

AΦ0 is defined. Sanity checks on the calculations of the qubit’s first and second derivatives are per-

formed (cf. equality c1 == c1_sp and c2 == c2_sp). Finally, after the averaging is complete, a plot

of the ensemble averaged signal should pop up. The titles prints the decoherence times τ2E/R, defined

by
∣∣c (τ2E/R

)∣∣ = 1/e. A standard example is shown in Fig.3.13, where a single trajectory as well as

the overall flux dependency is shown.

Figure 3.13: Calculated dephasing rates of a flux qubit. a, The frequency of a flux qubit at optimal point
under influence of 1/f noise over a sub-sample of 400 µs. The flux qubit parameters were chosen to be
∆ = 5GHz, Ip = 300 nA, AΦ = 1.2µΦ0. The parameters of the numerical simulation are tstep = 200 ns,
ttotal = 1 s, tcut-off = 0.2 s. b, We numerically calculated the Ramsey and Echo dephasing rates and
compared the results with analytical formula for first order flux noise. Away from the optimal point,
analytical formula predict ΓφR ∼ 4.5ΓφE in agreement with the numerical simulations.

Empirical results for the second-order flux noise decoherence rates Using the tool described

above, and sweeping many different flux qubit parameters, we were able to establish the following

empirical law for any second-order transition

Γ
(2)
φE = 14.4

∂2f01
∂Φ2

A2
Φ0

(3.71)
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where f01 is the transition frequency. For the particular case of the flux qubit at its optimal point, we

obtain the easy-to-apply formula

Γ
(2)
φE = 56

(IpAΦ0
/h)

2

∆
(3.72)

3.5.4 Bi-variate pure dephasing rates for tunable flux qubits

In the following we consider flux noise in tunable flux qubits, originating from the squid loop and the

remaining loop as two independent noise sources. In order to estimate their influence on the coherence

of the qubits, we will treat the Hamiltonian perturbatively versus the fluxes in the SQUID ΦS and the

remaining flux ΦR = Φ− ΦS around an optimal point.

H = H0 − EJ∂ΦS

α cos

ΦR +ΦS

φ0
−

3∑
j=1

φj,j+1

+ β̄
1− d̄

2
cos

(
φ23 −

ΦS

φ0

)
Φ=Φopti

δΦS

− EJ∂ΦR

α cos

ΦR +ΦS

φ0
−

3∑
j=1

φj,j+1


Φ=Φopti

δΦR

= H0 + I0

(
α sin (φ41)− β̄

1− d̄

2
sin (φ′23)

)
δΦS + I0α sin (φ41) δΦR

≡ H0 + ÎSδΦS + ÎRδΦR (3.73)

One can express the operators ÎS/R in the basis of the two lowest eigenstates of H0 as ÎS/R =

Ix,S/Rσx + Iz,S/Rσz + I0,S/R1 and thus write the Hamiltonian as

H = ℏ
∆

2
σz + (Iz,SδΦS + Iz,RδΦR)σz + (Ix,SδΦS + Ix,RδΦR)σx (3.74)

The transition frequency of the qubit can be written as

ℏωge ≃ ℏ∆+ 2Iz,SδΦS + 2Iz,RδΦR +
1

2ℏ∆
(2Ix,SδΦS + 2Ix,RδΦR)

2 (3.75)

Since the flux noise has a 1/f spectrum, one can show that the first and second order contributions to

dephasing are given by [82]

ΓS/R =
√
ln 2AS/R

∣∣∂ΦS/R
ωge

∣∣
Γ2nd,S/R ≈ 2.3A2

S/R∂
2
ΦS/R

ωge (3.76)

where AS and AR are the flux noise amplitudes in the squid and in the remaining loop respectively.
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∂ΦS/R
ωge =

2Iz,S/R

ℏ
+

1

ℏ2∆
(2Ix,SδΦS + 2Ix,RδΦR)

(
2Ix,S/R

)
∂2ΦS/R

ωge =
1

ℏ2∆
(
2Ix,S/R

)2
An interesting property of 1/f noise is that the decay is gaussian for first order contributions. And

thus one can write

Γ1st =

√
(ΓS)

2
+ (ΓR)

2
=

√
ln 2

(
A2

S (∂ΦS
ωge)

2
+A2

R (∂ΦR
ωge)

2
)
≡ AΦ

√
ln 2 |∂Φωge| (3.77)

where AΦ is the apparent measure of flux noise when the tunable qubit is biased by an external uniform

magnetic field (see Fig.6.9a). Due to the geometrical configuration, ΦS = ζΦ and ΦR = (1− ζ) Φ and

thus

∂ΦS/R
ωge =

2Iz,S/R

ℏ
+

1

ℏ2∆
(2Ix,Sζ + 2Ix,R (1− ζ))

(
2Ix,S/R

)
δΦ

Since Î = ζÎS +(1− ζ) ÎR (see Eq.3.73), we have IP = ζIx,S +(1− ζ) Ix,R and thus using Eq.3.77,

we get

AΦIP =
√
A2

SI
2
x,S +A2

RI
2
x,R (3.78)

Following Ref.[75], we assume that the flux noise amplitude is proportional to the square root of

the perimeters
√
PS/R of the respective sections and define γ ≡

√
PS/PR = AS/AR such that

ASAR =
A2

ΦI
2
P

I2x,Sγ + I2x,R/γ
(3.79)

Finally we get

Γ1st = 2
√
ln 2

√
ASAR

ℏ

√(
Iz,S + Ix,S

2IP
ℏ∆

δΦ

)2

γ +

(
Iz,R + Ix,R

2IP
ℏ∆

δΦ

)2

/γ (3.80)

Γ2nd ≈ 9.2
ASAR

ℏ2∆
(
I2x,Sγ + I2x,R/γ

)
(3.81)

3.5.5 Calculating the photon noise dephasing rate

Let us recall the Hamiltonian of the system under dispersive shift in Eq.3.55

H/ℏ =
(
∆+ 2N̂χ

) σz
2

+ ωrN̂ (3.82)
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where N̂ = A†A, is the number of photons in the mode constructed in Eq.3.49. With respect to the

temporal mean ∆+ 2
〈
N̂
〉
χ, the additional accumulated phase thus writes

c (τ) = exp

(
−i2χ

∫ τ

0

N̂ (t)−
〈
N̂
〉)

After taking the ensemble averaging, only even powered terms remain, and the expectancy of c writes

⟨c (τ)⟩ = exp

(
− (2χ)

2

2

〈(∫ τ

0

N̂ (t1)−
〈
N̂
〉)(∫ τ

0

N̂ (t2)−
〈
N̂
〉)〉)

Our goal is thus to calculate the quantity〈(∫ τ

0

N̂ (t1)−
〈
N̂
〉)(∫ τ

0

N̂ (t2)−
〈
N̂
〉)〉

=

∫ τ

0

∫ τ

0

〈
N̂ (t1) N̂ (t2)

〉
−
〈
N̂
〉2

We have
〈
N̂ (t1) N̂ (t2)

〉
=
〈
N̂ (∆t ≡ t1 − t2) N̂ (0)

〉
from the invariance of translation in time. We

then inject A =
∑

i αiai, with αi being scalars verifying
∑

i |αi|2 = 1, according to Eq.3.49. The

term N̂ (∆t) N̂ (0) contains terms in a†k (∆t) al (∆t) a
†
man each with corresponding coefficients. Recall

also that am (∆t) = ame
−iωmt. To take the ensemble average, only photon-numbers-conserving terms

remain

N̂ (∆t) N̂ (0) =
∑
m,n

|αm|2 |αn|2 a†mama†nan

+
∑
m ̸=n

|αm|2 |αn|2 a†manei(ωm−ωn)ta†nam

We get 〈
N̂ (∆t) N̂ (0)

〉
=
〈
N̂
〉2

+
∑
m ̸=n

|αm|2 |αn|2 a†manei(ωm−ωn)ta†nam

=
〈
N̂
〉2

+
∑
m ̸=n

|αm|2 |αn|2
〈
a†mam

〉 〈
a†nan + 1

〉
ei(ωm−ωn)t

The latter sum can be written as ∑
m ̸=n

=
∑
m,n

−
∑
m=n

in which the latter converges to 0 as we head toward the continuum limit

∑
m=n

|αm|2 |αn|2
〈
a†mam

〉 〈
a†nan + 1

〉
ei(ωm−ωn)t

=
∑
m

|αm|4
〈
a†mam

〉 〈
a†mam + 1

〉
→ 0
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Finally, we establish

〈
N̂ (∆t) N̂ (0)

〉
−
〈
N̂
〉2

=

(∑
m

|αm|2
〈
a†mam

〉
eiωm∆t

)(∑
n

|αn|2
〈
a†nan + 1

〉
e−iωn∆t

)

For well formed resonance peaks (i.e. Q ≫ 1),
〈
a†a
〉

no longer depends on the index and can

be taken out of the sum. Since the coefficients α are result of normalization of the resonance factor,

approximately the complex root of a Lorentzian19, we can write the vector of all coefficients

|αm|2 = N
(∣∣∣∣ 1

κ/2− iδm

∣∣∣∣) = N

(
1

(κ/2)
2
+ δ2m

)

the dependency of
∑

m |αm|2 eiωmt should therefore be exponentially decaying as exp (−κ |∆t| /2). We

finally establish

〈
N̂ (∆t) N̂ (0)

〉
−
〈
N̂
〉2

=
〈
a†a
〉 (〈

a†a
〉
+ 1
)
exp (−κ |∆t|)

where b(†) is used to emphasize that from this point onward, it suffices to use standard bosonic statistics

at mode frequency ωr/2π. Under the condition that κτ ≫ 1, the double integration of the expression

yields approximately:∫ τ

t2=0

∫ τ

t1=0

〈
N̂ (t1) N̂ (t2)

〉
−
〈
N̂
〉2

≈
∫ τ

t2=0

∫ +∞

∆t=−∞

〈
N̂ (∆t) N̂ (0)

〉
−
〈
N̂
〉2

= τ
〈
a†a
〉 (〈

a†a
〉
+ 1
) ∫ +∞

∆t=−∞
exp (−κ |∆t|)

=
2τ

κ

〈
a†a
〉 (〈

a†a
〉
+ 1
)

Finally, we establish

⟨c (τ)⟩ = exp

(
− (2χ)

2

2

2τ

κ

〈
a†a
〉 (〈

a†a
〉
+ 1
))

= exp

(
−4χ2

κ

〈
a†a
〉 (〈

a†a
〉
+ 1
)
τ

)
and define

Γphot =
4χ2

κ

〈
a†a
〉 (〈

a†a
〉
+ 1
)

(3.83)

In practice, since the cryogenic fridge has various levels of filtering at different temperatures, a should be

treated as a composite mode from modes of different temperatures with various degree of participation
19See Eq.3.61
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λi from each stage.

a =
∑
i

λTi
aTi∑

i

|λTi |
2
= 1

∣∣λTi+1

∣∣2 / |λTi
|2 = pow. att. from stage i+ 1 down to i

3.6 Rabi Dressing

A theoretical basis in which a detuned flux qubit can be brought back into resonance with a single

spin using strong Rabi drives is described in [60]. This section will try to succinctly summarize the

paper. In what follows, |$ / 1⟩ will be used to denote the donor’s ground/excited state, whereas |g/e⟩
will be for the flux qubit. We apply a time-dependent Rabi drive that is resonant with the flux qubit

(δfq = 0). The driven Hamiltonian writes

H/ℏ =

Hd/ℏ︷ ︸︸ ︷
Ω (t)

ei∆t + e−i∆t

2
σqb
x + (∆+ δfq)

σqb
z

2
+ gσqb

x ⊗ σ̂s
x +

(
∆+ δ↕

) σ̂s
z

2

We can then move into the rotating frame using the evolution operator

U = e−i∆(σ
qb
z +σ̂s

z)t/2 (3.84)

Keeping only the resonant terms (e−i∆tσqb
+ + ei∆tσqb

− ) under the rotating wave approximation. We

get the following Hamiltonian in the rotating frame

H ′/ℏ = U†
(
H/ℏ−∆

(
σqb
z + σ̂s

z

)
/2
)
U

≈ ���
0

δfq
σqb
z

2
+ Ω (t)

σqb
x

2
+ g

(
σqb
+ e

i∆t + σqb
− e
−i∆t

) (
σ̂s
+e

i∆t + σ̂s
−e
−i∆t

)
+ δ↕

σ̂s
z

2

where δ↕ = ωs −∆. The eigenstates associated to eigen-values ±Ω/2 of Ω (t)σqb
x /2 are

|+⟩ = |g⟩+ |e⟩√
2

|−⟩ = |g⟩ − |e⟩√
2
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The splitting of these two levels is at the origin of Rabi oscillations. The operators can be rewritten

in the basis of |∓⟩ as

σqb
+ = |e⟩ ⟨g| = (|+⟩ − |−⟩) (⟨+|+ ⟨−|) /2

σqb
− = |g⟩ ⟨e| = (|+⟩+ |−⟩) (⟨+| − ⟨−|) /2

σqb
x = σqb

+ + σqb
− = |+⟩ ⟨+| − |−⟩ ⟨−|

Under this basis change, the above operators can be replaced by

σqb
± →

(
σqb
z ∓ iσqb

y

)
/2

σqb
x → σqb

z

With this replacement, we write

H ′ = H0 +Hint

H0/ℏ = Ω
σqb
z

2
+ δ↕

σ̂s
z

2
(3.85)

Hint/ℏ = g

(
σqb
z − iσqb

y

2
ei∆t +

σqb
z + iσqb

y

2
e−i∆t

)
σ̂s
+e

i∆t + H.c.

Recall that our goal is to dress |Ω| ≈
∣∣δ↕∣∣. Out of all terms all terms σqb

z σ̂
s
+e

i(∆±∆)t, we first discard

those without chance of becoming resonant under the RWA. In the same way, we also discard terms

with e2i∆t, which is is impossible to match phases with any of the four possibilities ei(±Ω±δ↕)t. We are

left with

Hint/ℏ ≈ g

2

(
σqb
− − σqb

+

)
σ̂s
+ + H.c.

Placing once again in the rotating frame associated with H0

U ′ = e−iH0t/ℏ (3.86)

we get

Hint/ℏ ≈ g

2

(
σqb
− σ̂

s
+e

i(−Ω+δ↕)t − σqb
+ σ̂

s
+e

i(+Ω+δ↕)t
)
+ H.c.

Out of the four terms, we can freely switch between the two following modes of operation for Ω = ±δ↕,
experimentally achieved by introducing a π phase-shift in the Rabi drive

HΩ=δ/ℏ =
g

2

(
σqb
− σ̂

s
+ + σqb

+ σ̂
s
−

)
HΩ=−δ/ℏ = −g

2

(
σqb
+ σ̂

s
+ + σqb

− σ̂
s
−

)
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3.6.1 Flux qubit and single spin state preparation

Without loss of generality, any arbitrary state may be written as

|ψ⟩ =
(
cosα |+⟩+ eiϕ sinα |−⟩

) (
cos θ |$⟩+ eiφ sin θ |1⟩

)
where |$ / 1⟩ denotes the spin’s energy state. The parameters α and ϕ will be used to describe the

qubit state, whereas θ, φ will be used to describe the spin state. Full control of the flux qubit can be

achieved by controlling with the phase of the Rabi pump with respect to a reference tone. The driven

Hamiltonian writes

Hd/ℏ = Ω
ei∆teiϑ + e−i∆te−iϑ

2

(
σqb
+ + σqb

−

)
and will give a component after the rotating wave approximation in Eq.3.84 equal to

Hd/ℏ = Ω ·
(
cos (ϑ)σqb

x + sin (ϑ)σqb
y

)
Notice that the mode of operation Ω = −δ is a special case where |Ω| = |δ| but with an overall phase

shifted of the drive by π. From the flux qubit ground state, we can easily reach thus any point in the

equatorial plane of the Bloch sphere by a geodesic movement, notably |−⟩ by setting ϑ = π/2.

By driving Ω = δ in sync with the reference ϑ = 0 for a time gt = π. We may convert any arbitrary

quantum amplitude associated to an excited spin into a flux qubit excited amplitude.

|−⟩
(
cos θ |$⟩+ eiφ sin θ |1⟩

)
→
(
−i cos θ |+⟩+ eiφ sin θ |−⟩

)
|$⟩

After a typical timescale of the T1 of the flux qubit, we would have initialized the spin state to |$⟩. The

same process can be used in the opposite direction: any arbitrary flux qubit state can be converted

into a spin state superposition, then read back out. This allows for use of the spin as a quantum

memory with long coherence times.

3.6.2 Detection of the coupling of the spin-qubit interaction

At millikelvin cryogenic temperatures, the thermal equilibrium of both the spin and flux qubit should

be readily in the ground state. More precisely, the overall qubit state is

|g⟩ |$⟩ = |+⟩+ |−⟩√
2

|$⟩

According to the previous section, the overall state will oscillate between the initial state and |−⟩ (|$⟩ − i |1⟩) /
√
2

up to a global phase. For any time t, the exact solution is

|ψ (t)⟩ =
[
|−⟩ |$⟩+ cos

(g
2
t
)
|+⟩ |$⟩ − i sin

(g
2
t
)
|−⟩ |1⟩

]
/
√
2
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Reverting the RWA associated with Eq.3.86, we get

|ψ (t)⟩ =
[
eiΩt |−⟩ |$⟩+ cos

(g
2
t
)
e−iΩt |+⟩ |$⟩ − i sin

(g
2
t
)
eiΩt |−⟩ |1⟩

]
/
√
2

Collecting coefficients for flux qubit ground and excited states

|ψ (t)⟩ = |g⟩
((
eiΩt + cos

(g
2
t
)
e−iΩt

)
|$⟩ − i sin

(g
2
t
)
eiΩt |1⟩

)
/2

+ |e⟩
((

−eiΩt + cos
(g
2
t
)
e−iΩt

)
|$⟩+ i sin

(g
2
t
)
eiΩt |1⟩

)
/2

We can then calculate the population

Pg/e =
1

4

(∣∣∣sin(g
2
t
)
eiΩt

∣∣∣2 + 1 + cos2
(g
2
t
)
± 2 cos (Ωt) cos

(g
2
t
))

=
1

2

(
1± cos (Ωt) cos

(g
2
t
))

where we see that the envelope of the Rabi oscillation beats like cos
(
g
2 t
)
, with nodes appearing for

values gt = π, 3π, 5π . . ., corresponding to total transfer of the superposition into the spin. Fitting of

the envelope would give a quantitative measure of the coupling constant.

One major advantage of Rabi oscillating the qubit at relatively fast rates is that the flux qubit

undergoes a sort of dynamical decoupling and filters out low-frequency noises of decoherence such as

flux noise. Under evolution of Linblad equations, the decay of a Rabi envelope of an isolated qubit can

reach 4
3T1. Indeed, for a jump operator of

√
1/T1 = κ1σ−,we write a differential function involving

the Linbladian map L (ρ)

∂tρ = L (ρ) ≡ [H, ρ]

iℏ
+

1

T1

(
σ−ρσ+ − σ+σ−ρ+ ρσ+σ−

2

)
which we replace the density matrice ρ with the coordinates in the Bloch sphere ρ = xσx

2 + y
σy

2 +

z σz

2 + 1/2 with
√
x2 + y2 + z2 ≤ 1. We thus get the following equations

˙
x

y

z

 =


−κ1

2

−κ1

2 −ωr

ωr −κ1




x

y

z

+


0

0

−κ1


The linear matrix has for eigen-values −κ1

2 , and the two roots of
(
−κ1

2 −X
)
(−κ1 −X) + Ω2 =

X2+ 3
2κ1X+Ω2+ 1

2κ
2
1. The two roots of the polynomial are responsible for decaying Rabi oscillations

r± =
− 3

2κ1 ±
√(

3
2κ1
)2 − 4

(
Ω2 + 1

2κ
2
1

)
2

In the limit where Ω ≫ κ1, the expression approximates to r± ≈ − 3
4κ1 ± iΩ, prooving that a Rabi
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decay of 4
3T1 may be experimentally observed.

In Fig.2.10, the simulations were performed for exactly the same Linblad model as above. Techni-

cally, we write the non-Hermitian matrix of the Linbladian, viewed as a linear map over density matrix

vectors and diagonalize spectrally L = PDP−1. From this point onward, it is possible to move to any

point in time without needing to explicitly integrate in time using

ρ (t) = P exp (Dt)P−1ρ
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4 Fabrication

Prior to fabrication, the wafers are diced into a format of 23×23mm squares, denoted in the following

as coupons. In this thesis, each coupon contains 14 samples of dimensions 3×10mm. On each of them

is fabricated a λ/2 coplanar waveguide resonator which can be galvanically-coupled to a series of flux

qubits.

Provider Wafer
material

oxide Density of Impurities Reference in
study

Virginia Intrinsic Si native natSi, P (< 1012cm−3) sample A
Topsil Intrinsic Si thermally grown

(5 nm)

natSi, P (< 1012cm−3) sample B, C

Crystec sapphire
c-axis

irrelevant irrelevant sample D

Isonics 10 µm
isotopically

pure epilayer

thermally grown
(5 nm)

29Si(730 ppm), P (1016cm−3) sample E, F

Table 4.1: Overview of samples

4.1 Substrate Surface treatment

Dielectric losses impact strongly the relaxation rate of superconducting circuits [85]. In theory, the

internal quality factor of a coplanar waveguide resonator (CPW) is related to the loss tangent of the

substrate by the relation

1/Qi = p tan δ (4.1)

where p is the participation ratio of the electric field energy stored in the substrate [86, 87]. Due to the

high permittivity of the substrate (ϵr,Si = 11.5, ϵr,sapphire = 10), the participation ratio p = ϵr/ (ϵr + 1)

is close to 90%. Thus, choosing a good substrate is critical. Since silicon and sapphire have both good

tan δ, they are the materials of choice for such resonators. Indeed, the loss tangent of bulk silicon is of

the order of 10−5 [88, 89] while in bulk sapphire the losses are even lower with tan δ < 1× 10−6 [90].

In practice, the loss rate of superconducting circuits, especially for coplanar designs, never reaches

the fundamental bulk limit, suggesting that the interface has an important role to play. The losses at

the surface are generally attributed to two-level systems (TLS) near the interface [85].

In the last two decades, several studies have been carried out to improve CPW quality factors

through surface treatments. Ref.[91] showed that fabricating a resonator on sapphire with liftoff tech-

niques leads to low quality factors (Q ∼200k) and that fabrication involving etching of the aluminum

gives rise to substantially higher Q ∼ 1M . Ellipsometric measurements have shown the presence of a

thin residual resist layer which can bring losses, even after ultrasonic acetone cleaning and/or hot N-

Methyl-2-pyrrolidone (NMP) cleaning. Meanwhile, oxygen ashing leaves significantly less residues (see

Fig.4.1). Moreover, ion milling prior to evaporation degrades the internal quality factor of resonators

down to 400k [91]. In [92], Q ∼ 2M was achieved for silicon-based CPW resonator by combining
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Figure 4.1: Residual resist after chemical or O2 ashing cleaning techniques. Adapted from
Ref.[91].

pre-evaporation chemical surface treatment and minimization of surface under high-E field by deep

reactive ion etching (DRIE). More recently, Ref.[93] demonstrated reproducible improvement of coher-

ence properties (T1 ∼ 0.3ms) for a batch of 2D tantalum transmons fabricated on sapphire. This was

achieved by extensive surface cleaning (Piranha solution and oxygen plasma cleaning) performed sys-

tematically between key steps of the fabrication, as well as a sputtering of the tantalum while heating

to high temperatures (T = 500 ◦C) to ensure growth in a given crystallographic phase (BCC α).

Along these lines, Ref.[86] characterized quantitatively the contributions to the internal loss from

TLS coming from the close vicinity (2 nm) of the different interfaces of the CPW (see Fig.4.2). The

contribution of the metal-substrate interface is important because of its high participation ratio (see

Eq.4.1). On silicon substrate, the oxygen ashing recommended by Ref.[91] may lead to growth of

Figure 4.2: The extracted TLS loss tangents for the different interfaces. We show the metal-to-
substrate (MS), substrate-vacuum or substrate-air interface (SA), metal-vacuum or metal-air interface
(MA), and silicon substrate ( Si ) dielectric regions. Figure adapted from Ref.[86].
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oxides of uncontrolled thickness and stochiometry. It is thus interesting to grow a thermal layer of

SiO2 under controlled conditions (pressure, temperature, and time). This layer is immune to oxygen

ashing and enables a homogeneous good surface with less interface traps and fixed oxide charges.

From another point of view, thermal SiO2 has been shown [88] to have a tan δ ∼ 3× 10−4 which is

significantly higher than bulk silicon (∼ 10−5). It is therefore required to limit the participation ratio

of this SiO2 layer. A good compromise is thus to grow a 5 nm layer of SiO2. This step was done by

our collaborators from the group of Prof. David Jamieson at Melbourne University and is detailed in

Fig.4.3.

Figure 4.3: Parameters for growth of the thermal oxide

Before growing the thermal oxide on silicon, standard wafer cleaning techniques are employed.

First, acetone/IPA/DI water cleaning are performed on the intrinsic silicon coupon, with sonication to

remove large dust particles. Then, Piranha cleaning and RCA cleaning removes organic compounds.

Finally, HF solution strips the silicon of its native oxide. The sample is heated to ∼ 800 ◦C for 20

minutes inside a Si furnace with an ultra high purity oxygen ambient (≥ 99:999% O2) which grows

the thermal oxide [94].

4.2 Bismuth donor implantation

We implanted the bismuth donors on Isonics coupons with different implantation energy and density.

The Stopping and Range of Ions in Matter software package (SRIM) [52] results show that a standard

200 nm layer of PMMA ebeam resist is enough to block the implanted bismuth ions (see Fig.4.4C).
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This enables us to pattern an ebeam mask to delimit the implantation ion to a small region.

4.2.1 Bismuth Implantation profile

The area density of implantation for the first coupon (sample E) is 1 ∼ 2 · 1011cm−2. This is done

through a PMMA mask of size 500 × 100 nm. The difference in the two dimensions allows for easier

alignment of the constriction with a tolerance in the range of ±250 nm in both directions. The energy

of implantation is chosen to be 40 keV, yielding an average depth of 25 nm below the sample surface

according to SRIM simulations. This corresponds to a volume density in the range of 1 · 1017cm−3.
For the second coupon (sample F), the spin profile is spread out in order to reduce the volume

density while keeping a high number of total spins. This is achieved by overlapping two profiles of

different ion implantation voltages (100keV and 180keV) as shown in Fig.4.4. The average summed

profile is around 1 · 1018cm−3 over a range of 100 nm, with a peak density of 2 · 1018cm−3. This

implantation is done through a PMMA mask of size 1 × 3 µm. This rectangular shape was chosen to

reduce strain-induced homogeneous broadening.

B

C

A

Figure 4.4: spin-ensemble profile

4.2.2 Bismuth Implantation process

In silicon lattice, a single implanted bismuth atom may occupy the meta-stable substitutional site

and replace a single silicon atom. It is also possible for the bismuth to be pushed off into a more

energetically favorable interstitial sites. One major figure of merit is thus the activation rate, which

measures the ratio of the working substitutional sites to the total number of implanted spins.

Compared to other group V donors, the relatively heavy nature of Bi reduces straggling (∼ 5 nm)

when implanted [52]. However, this also induces significantly more lattice damage [95]. The mentioned

effects can be repaired by the so-called Rapid Thermal Annealing (RTA) step, which repairs the lattice

damage and activates donors. This is done in forming gas (Ar/H) to passivate dangling bonds at the

Si-SiO2 interface. Time and temperature are critical parameters to reduce adverse diffusion of the
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donors, which may increase the depth spread, as well as cause the entry of bismuth atoms into the

inactivated interstitial structure [94, 96, 97]. The implantation process, the RTA (T ∼ 400 ◦C for a

duration t ∼30 min), and its characterization were carried out by the group of Prof. David Jamieson

at Melbourne University. We estimate that activation rate after all these steps to be around ∼ 60%.

4.3 Fabrication of superconducting devices

In the following we will present our fabrication process of the resonator and flux qubit in chronological

order in the fabrication process.

4.3.1 Nb Alignment marks

RIE

EBL

Nb
3

A B C

E FD

Figure 4.5: Formation of Nb markers

For E-beam lithography, precise alignment marks are needed as a universal spatial reference for both

the implantation mask and the superconducting circuits (see Fig.4.5). Niobium marks with a thickness

of around 100 nm present good contrast under electron beam lithography (EBL), even under multiple

layers of resist, and/or germanium, and/or aluminum films. Conveniently, markers made of niobium

are resistant to Piranha cleaning20, and need only to be fabricated once per coupon, following the

instructions in the table below. In practice, some Nb markers may disappear after the first Piranha

cleaning, most likely due to residual substance underneath the Nb dissolving in Piranha and causing

liftoff. Therefore, to ensure that there are always a pair of markers present for alignment, redundant

backup markers must be designed. . We thus prepare between 4-9 markers for each 10× 3mm sample

in the coupon.

Furthermore, it is imperative to choose a metal resisting the high heat of the RTA. Although Nb

has an extremely high melting point (2470 ◦C), we still want to be protected against eventual diffusion
20When fabrication error occurs, we may start over anew with a Piranha solution cleaning, which will dissolve all

organic material as well as aluminum structures.
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onto the substrate during the process. We therefore pre-etch deep holes ∼ 90 nm using an SF6 Reactive

Ion Etching (RIE) process prior to the Nb evaporation. Most of the Nb markers do indeed survive

the RTA, although a color change of the evaporated Nb markers can be observed under the optical

microscope, from silver to green/purple. For the markers that remain, the contrast under ebeam

lithography nevertheless remains high.

Under EBL, the two strips forming the X shape (see Fig.4.5F) are approximately ∼ 250 nm wide.

During marker alignment, we may designate the center of the cross with a precision of ±30 nm. The

dominant limiting factor of alignment should be hardware systematic errors that are hard to pinpoint

and solve (e.g. stage movement precision, change of configuration by the machine administrators etc).

We estimate the overall alignment precision between different EBL exposures using the exact same

pair of markers to be less than ±100 nm.

Fig.4.5 Process Name About the process
Cleaning Piranha acid 10 min; water; IPA; N2 blow-dry

A

Al spacer Plassys MEB 550S: Al deposition of > 150 nm at 0.5nm s−1;
P < 2× 10−7 mBar

Copolymer spacer

MMA(8.5)MAA-EL721 spun at 2000 rpm for 60 s
Hotplate: 180 ◦C for 1min

MMA(8.5)MAA-EL7 21spun at 2000 rpm for 60 s
Hotplate: 180 ◦C for 15min

EBL resist CSAR AR-P 6200.09 21spun at 4500 rpm for 60 s
Hotplate: 100 ◦C for 5min

B E-Beam lithography Crestec 9000: 30 pA at 50keV, dose = 670 µCcm−2

EBL Development MIBK for 240 s; IPA rinse for 60s; N2 blow-dry

C Etching of Al-spacer ≥ 15 minutes of Al etchant, Water
1 min AZ726, Water

D RIE etching of Si SF6 50 sccm, rf bias = 100W, ∼ 80 nm etched in 20 s
O2-N2 plasma Recipe 13, 30s at 50% power

E Evaporation Plassys MEB 550S: Nb deposition of 100 nm at 0.5nm s−1;
P = 3− 8× 10−8 mBar

F Lift off NMP soak at 85 ◦C until the Niobium layer is removed
Cleaning Piranha acid 10 min; water; IPA; N2 blow-dry

Table 4.2: Formation of Nb markers

215 s ramping to 500 rpm and hold for 5 s; then ramp to target speed in 6 s and hold for target time
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4.3.2 Resonator fabrication

A B

C D

UV lithography

Figure 4.6: Wet etch of aluminum resonators.

In our fabrication, we took into account the considerations in section §4.1, and thus fabricated our

coplanar resonators by wet aluminum etching (see Fig.4.6): We evaporate 150 nm of aluminum im-

mediately after Piranha cleaning of the coupon. The CPW resonators are then formed by aluminum

etchant (HNO3/H3PO4), through a resist spun directly on the aluminum film and patterned using

maskless optical lithography.

The internal quality factor of several plain coplanar waveguide resonators was measured on the

different samples. This measurement was done by designing a λ/2 CPW (f ∼ 8GHz) terminated

by small capacitances such that the coupling loss rate Qc ∼750k is negligible in front of the internal

losses. We did not notice any significant difference between the quality factor of resonators fabricated

on Virginia Semiconductor samples with native oxide (33k at single photon, 40k∼50k at high power)

and those fabricated on Topsil samples with thermally grown 5 nm oxide layer (45k at single photon).

The precision of the positioning of the resonator with respect to the alignment mark is < 1.5 µm.

The central conductor of the CPW resonators is interrupted by N open spaces in order to connect

galvanically the qubits that will be fabricated in the next steps (see section 4.3.3).Typically, these

spaces are 20 µm long. Electrical contact between the central strip of the CPW and the flux qubits is

established after ion milling and evaporation of a final aluminum layer. It is important to avoid leaving

any bare substrate exposed to ion-milling, which would lead to damage to the thermally grown oxide.

The designs of samples A, B/C/F, D, E can be found in Fig.4.7, along with design parameters.
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Fig.4.6 Process Name About the process

Cleaning Piranha acid 10 min; water; IPA; N2 blow-dry

A

Evaporation Plassys MEB 550S: Al deposition of 150 nm at 0.5nm s−1

P = 3− 8× 10−8 mBar

O2-N2 plasma Recipe 13, 60s at 50% power to remove moisture and increase the

adhesion of the hydrophobic resist

Photo-resist
AZ1505 21spun at 5000 rpm for 60 s

Hotplate: 80 ◦C for 5min

B
UV lithography MLA150: dose = 23mJ cm−2 at λ = 405 nm, CD=0

Development AZ726 45s (Dynamic rinsing), Water 45s, N2 blow-dry

C

Post Bake Hotplate: 120 ◦C for 5min

Etching
Al etch until no further visual change (≈ 7− 10 min).

Add +50% extra time; Water rinse; N2 blow-dry

1 min AZ726, Water

D Cleaning Acetone/IPA quick resist removal without drying. Then soak in

NMP 80− 90 ◦C for > 3 h. Water, IPA, N2 blow-dry
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4.3.3 Flux qubit fabrication

Al-ox-Al (2-angle)

A B C

D E F

MIBK/IPA

MIBK/IPA

EBL
RIE SF6

t

θ

d

Figure 4.8: Trilayer method, EBL mask patterning, evaporation and junction formation

The trilayer technique The flux qubits are fabricated by ebeam lithography using the so-called

Dolan technique [98]. The idea is to evaporate two thin layers of superconducting aluminum at different

angles, separated by an intermediate oxidation step aimed to form the Josephson junction. In this

project, we employ a trilayer process [70], in which a germanium mask, suspended on top of a ∼ 650 nm

thick copolymer resist is employed. The rigidity and conductance of the Ge mask during EBL helps

to achieve sharper resolution and more stable dimensions. Moreover, this mask is immune to oxygen

ashing which allows for cleaning the region below the mask.

Formation of the suspended Ge mask The CSAR mask opening is patterned by Ebeam lithogra-

phy using two kinds of beam current (30 pA and 120 pA) at 50 keV, and developped by MIBK/IPA=3:1.

The Ge mask is patterned using an RIE process. We use a laser interferometer on a Ge calibration

sample to fix precisely the etching time. We found that a 2.7-2.85 factor is required in order to etch

small details such as constrictions, when compared to the calibration sample etching time. The use

of the commercially available CSAR (AR-P 6200.09) resist instead of the standard PMMA resist adds

extra resistance against RIE to the non-exposed regions as shown in the table herein-below.

Etched material Rate of SF6 RIE etch

Ge 2.7−3.1 nm s−1

CSAR 0.9− 1.15 nm s−1

EL7 ∼ 1.5 nm s−1

After the RIE process, the copolymer resist (MMA(8.5)MAA-EL7) that has been exposed under

EBL previously is developed using MIBK/IPA=3:1 (see Fig.4.8D). Areas under the qubit are thus
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automatically cleaned all the way down to the substrate surface. The nominal dose to fully expose the

copolymer resist is 30% that of CSAR resist (dEL7 = 220µCcm−2). It is thus possible to remove the

copolymer resist on expected regions of aluminum deposition that are not necessarily directly under

Ge mask openings. This is done by adding underdosed (dEL7) patterns in the EBL lithography design.

During this MIBK/IPA=3:1 development step, the Ge mask doesn’t collapse the solution, and the

aluminum deposition regions become mostly clean of resist.

A final step of O2 ashing further cleans this undercut region. The boundary of the undercut extends

isotropically by ∼ 400 nm. The CSAR resist on top of the Ge mask is also removed. We measure the

height of the Ge layer H by atomic force microscope (AFM), which is required for calibrating the

evaporation angles.

design: 
Wα×Hα

design: 
Wu×Hu

impl. 
zone

asymetrical SQUID

impl. 
zone

if no SQUID

design: 
Wα×Hα

design: 
Wu×Hu

design: 
Wβ×Hβ

design: 
Wε×Hε

sample A,B,C

sample E,FI. II.

III.

 dose ≈ 666 uC/cm2

 2nd angle location

 dose ≈ 180 uC/cm2

 implantation zone

 single pixel line 
dose = 6.6nC/cm 

sample A B C E,F (no SQUID) E,F (with SQUID)
Wu (nm) 270 270 270 270 270
Hu (nm) 165 192 204 198±18 168±18
Wα (nm) 165 180 180 171 171
Hα (nm) 144 141 141 126 129
Wβ (nm)

x x x x

270
Hβ (nm) 570
Wε (nm) 117
Hε (nm) 90

Figure 4.9: Flux qubit EBL design paramters. I. Format for Sample A, B & C. II. format for
Sample E & F. III. table of dimensions.

Double angle evaporation and junction oxidation For achieving the best resolution, we evapo-

rate a first Al layer of 20 nm perpendicularly into the sample (θ1 = 0◦). This is done at low temperature

(∼ −45 ◦C) to enable finer grain size, necessary for details such as constrictions. A dynamical oxida-

tion of the first Al layer is performed, by introducing a dynamic flow of O2/N2 in the sample chamber

(typ. P ∼ 19µbar).

For the second angle, we target a displacement d = 420 nm with respect to the first image (see
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Fig.4.8F). The angle can be calculated using trigonometry

d =

(
H − tGe

2
+
tAl

2

)
tan θ

where H is the height from the substrate to the top of the Ge mask characterized using AFM. It is

worth noting that H may fluctuate in vicinity of other thick structures, such as the CPW resonators

which are 150 nm thick. It is therefore preferable to average over multiple measures of H to get an

average displacement of 420 nm. Looking ahead, it is advised for the test junctions to replicate a similar

environment (Fig.4.10A) to the real junctions, simulating the presence of a local CPW resonator, to

avoid obtaining a different horizontal displacement.

A CB

Figure 4.10: A. AFM micrograph showing height map H of the trilayer. B. Horizontal cut. A difference
of 80 nm can be observed because of the thick 150 nm resonator layer. C. Test junction simulating the
shrinking effect, achieving a width < 80 nm.

Since the first angle is evaporated at zero angle, it is observed (see Fig.4.8F) that the width of the

second image shrinks by

wlim = (tGe + tAl) tan θ (4.2)

Consequently the evaporated second angle of small openings w < wlim will not appear. In this thesis,

we have θ ≈ 35◦ which corresponds to wlim ≈ 56 nm. This shrinking effect can be exploited to make

extremely small junctions where the width w2 < 100 nm while still using a bigger, robust mask opening

w ≈ w2 + wlim, as shown in Fig.4.10C (and Wε in Fig.4.9II).

After the two layers are deposited, we finish by static oxidation at P = 10mbar for 10 minutes.

This last step encapsulates the junctions with aluminum oxide and allows for a more controlled aging.

The coupon is then soaked in NMP overnight to liftoff the trilayer mask.
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Subfig. Process Name About the process

A

Copolymer spacer

MMA(8.5)MAA-EL7 21spun at 2000 rpm for 60 s

Hotplate: 180 ◦C for 1min

MMA(8.5)MAA-EL7 21spun at 2000 rpm for 60 s

Hotplate: 180 ◦C for 15min

Evaporation Plassys MEB 550S: Ge deposition of 60 nm at

0.3nm s−1

EBL resist
CSAR AR-P 6200.0921spun at 4500 rpm for 60 s

Hotplate: 100 ◦C for 5min

B
EBL Crestec 9000: 30 pA at 50keV, dose = 670 µCcm−2

Development MIBK for 240 s; IPA rinse for 60s; N2 blow-dry

C RIE etching of Ge SF6 20 sccm, rf bias = 20W, laser calibration +180%

extra time

D Development MIBK for 90 s; IPA rinse for 60s; N2 blow-dry

E
O2-N2 plasma Recipe 13, 4min30s at 50% power

Afm depth probing AFM: check depth required to calculate the side angle.

F Cold Evaporation

Plassys MEB 550S: Al deposition of 20 nm at

0.5nm s−1, T = −44 ◦C

dynamic oxidation T = −10 ◦C 7→ +4 ◦C at 0.019mbar

Side angle: Plassys MEB 550S: Al deposition of 30 nm

at 0.5nm s−1, T ∼ 9 ◦C

Static oxidation for 10min at 10mbar

Cleaning Liftoff: soak in NMP 80− 90 ◦C for > 6 h. Water, IPA,

N2 blow-dry

4.3.4 Ion-milling Recontact of flux qubit to resonator

Direct contact between the CPW resonator and the flux qubit will not form conductive contact due to

the native oxide formed between the fabrication steps. We therefore connect both layers to a common

∼ 150 nm-thick aluminum strip from above (see blue strip in Fig.4.11). To achieve good electric

contact, an ion milling step prior to evaporation removes the native oxide. The process follows similar

steps as in section 4.3.3 except using a CSAR mask suspended on copolymer resist. The opening can

thus be formed by a single step of MIBK/IPA=3:1 development, and an undercut which is beneficial for

liftoff is automatically created. A small dose (30s) of O2-ashing is recommended to clean the exposed

metal surface before the ionmilling and evaporation while keeping the CSAR mask robust.

The results on silicon substrates presented in this thesis used an ion-milling duration of 15s (Ar,

500V, 17.5mA). The rather low internal quality factors observed (2k, 6k, 18k) suggest that this may

be insufficient and should be increased for future samples.
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Process Name About the process

Copolymer spacer

MMA(8.5)MAA-EL7 21spun at 2000 rpm for 60 s

Hotplate: 180 ◦C for 1min

MMA(8.5)MAA-EL7 21spun at 2000 rpm for 60 s

Hotplate: 180 ◦C for 15min

EBL resist
CSAR AR-P 6200.0921spun at 4500 rpm for 60 s

Hotplate: 100 ◦C for 5min

E-Beam lithography Crestec 9000: 120 pA at 50keV, dose = 670 µCcm−2

EBL Development MIBK for 240 s; IPA rinse for 60s; N2 blow-dry

O2-N2 plasma Recipe 13, 40s at 50% power

Ion-milling (in evaporator) P < 10−6 mBar; Argon at 20 sccm; 500V, 17.5mA over an area 25 cm2

Evaporation Plassys MEB 550S: Al deposition of 200 nm at 0.5nm s−1

Cleaning Liftoff: soak in NMP 80− 90 ◦C for > 6 h. Water, IPA, N2 blow-dry

Flux qubit

Recontact

CPW Resonator

Figure 4.11: Schema of Ion-milling recontact viewed from top. The equivalent circuit diagram is
shown in the inset: the recontact layer serves as an intermediary for the electrical contact. [[dimensions
of IM

Material @1mAcm−2 @17.5mA/25 cm2

Si 38 nmmin−1 0.44 nm s−1

SiO2 39 nmmin−1 0.45 nm s−1

Al2O3 10 nmmin−1 0.11 nm s−1

Al 73 nmmin−1 0.85 nm s−1

S1822 < 100 nmmin−1 < 1.16 nm s−1

Ge 8.5 nmmin−1 0.1 nm s−1

Table 4.3: Ion milling etch rates using Ar ions at 500V at an angle normal to the wafer. Extracted
from [99]
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4.4 Characterization of constrictions

In the following, we characterize of the widths of the evaporated thin constrictions. As shown in

Fig.4.12A, constrictions may manifest a penumbra effect when the Ge mask slit is sufficiently thin.

This occurs when the viewing angle of the extended source is larger than the angle of the slit opening

seen from the substrate surface. By conservation of matter, the quantity of evaporated aluminum

passing through the slit is always given by s× tAl, but it is evaporated over a broadened zone on the

substrate, resulting in partially evaporated regions (penumbra). The resulting profile can be computed

as a convolution of the slit to the point spread function of finite width, which corresponds to a minimal

width attainable for the constrictions.

Figure 4.12: Penumbra of the evaporator source cast by the suspended Ge mask A. Schema
of the penumbra formation. B. evaporated profile as a function of the slit size s. C. Peak thickness
t∞ as a function of the slit size s D. FWHM of the constriction profile as a function of s.

In Fig.4.12B, we show the broadened profile evaporated on the substrate as a function of the slit
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width, supposing tAl = 25nm, coming from a source with a gaussian distribution of diameter w = 1 cm

at a distance d = 500mm and a mask suspended at height H = 650 nm. The peak thickness of the

profile grows with the slit width and saturates only above a certain slit size s ≈ 25 nm (see Fig.4.12C).

In Fig.4.12D, we show the FWHM of the evaporated constriction profile versus the slit size s. The

minimal width is ≈ 13 nm.

Figure 4.13: A. Afm micrograph of a test constriction on Topsil test sample. B. Profile along the cut
1 in E. C. The constriction resistance tested on different coupons and the median (dashed) D. The
predicted FWHM of the evaporated profile supposing a bulk conductivity model.

In Fig.4.13A, we show an AFM micrograph of a typical constriction. The height profile of the

constriction along the cut indicated in Fig.4.13A is shown in Fig.4.13B and illustrates the penumbra

effect. We realize similar measurements for 5 different constrictions (blue stars in Fig.4.13D) and infer

the FWHM of the constriction using the average height according to our model. These constrictions

were also measured electrically which allows us to establish a calibration curve between constriction

resistance and FWHM. In practice, measuring electrical resistance is much more rapid and convenient

than measuring the height using AFM. This technique allows for establishing statistics on a large

number of constrictions (see Fig.4.13C). As a rule of thumb, a width target of 30 nm corresponds to

R ≈ 60Ω. This corresponds to 500/30 = 16.7□ which gives us a resistance per square of 3.6Ω/□,

91



which is in good agreement with values found in the literature [100].

4.5 Room temperature characterization of the Josephson Junctions

Checking the resistance of junctions As mentioned earlier, each coupon can be diced into 14

samples of dimension (10×3mm each), each of which can be packaged for cryogenic measurement. The

dicing step is a point of no return, since it is very difficult to restart the fabrication on small samples

individually. It is therefore crucial to check the junction parameters before dicing. We principally

check the resistance of test Josephson junctions and test constrictions, typically using four probe

measurement with a lock-in amplifier.

Test junctions are fabricated on the same sample with the same design as the real ones intersecting

the loop of the flux qubit. The critical current of a Josephson junction can be characterized using the

Ambegaokar-Baratoff relation

I0R(T = 4K) =
π∆g

2e

where ∆g is the superconducting gap of our thin aluminum film. In practice, the resistance measure-

ment is made at room temperature and this formula needs to be renormalized by the Residual-resistance

ratio (RRR). For junctions fabricated by dynamical oxidation, we found the proportionality constant

to be approximately

I0R(T = R.T.) ≈ 287 µV (4.3)

In Fig.4.14, we show the histogram of the junction resistances for samples A,B and C obtained

through four probe measurement. The spread of the unitary junctions is 6% for sample A, and 1.7%

for sample B and C. The spread in α is 0.518 ± 0.035 (6.7%) for sample A, 0.486 ± 0.011 (2.2%) for

sample B and 0.464 ± 0.010 (2.2%) for sample C. We show in Fig.4.15b the spread of the resistance

measurements for sample D obtained through two-probe measurement. The standard deviation of the

unitary junctions for sample D is 2.3%, which corresponds to a spread of α = 0.423± 0.012 (2.7%).
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Figure 4.14: Room temperature resistance measurements of samples A,B,C. a, Microscope
image showing 4 probe measurement of a test sample. b, AFM micrograph showing a close-up view on
the test sample which consists of the two Josephson junctions in series. c, Resistance measurements
of several unitary junctions for sample A (in red), B (in green) and C (in blue). The resistance of the
unitary junctions is 614± 39 Ω, 420± 7 Ω, 398± 7 Ω for sample A,B and C respectively. d, Resistance
measurements of several α junctions for sample A (in red), B (in green) and C (in blue). The resistance
of the α junctions is 1185± 25 Ω, 864± 12 Ω, 857± 11 Ω for sample A,B and C respectively.

Figure 4.15: Room temperature resistance measurements of sample D. (a) Atomic force mi-
crograph of two unitary test junctions in series. (b) Histogram representing the resistance distribution
of an ensemble of 60 test junctions: 30 unitary junctions (gray), ten α junctions (red), ten β(1 + d)/2
junctions (dark blue), and ten β(1− d)/2 junctions (light blue). The standard deviations of the resis-
tances are in the range of 1.5% ∼ 4.2%. the extracted parameters of the qubit are α = 0.42 ± 0.01,
d = 0.79± 0.01 and β = 2.11± 0.09. The critical current of the unitary junction can be estimated by
Ambegaokar-Baratoff relation to be 1.08 µA. (c) Scheme of the room temperature lock-in measurement
setup.
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Validating the oxidation Eq.4.3 can be used to calculate the critical current of the junction, which
is a product of area times the critical current per unit of area. The oxidation condition (time, pressure,
humidity, gas decomposition) determines the latter. It is therefore required to have a measure of area
to gauge the oxidation conditions. AFM measurements gives unreliable horizontal dimensions since
each image depends on the type of tip used, the surface charging condition, as well as the tip’s wear
and tear. In this work, we adopt another strategy. We implement test junctions with different size
design and check the relationship to the corresponding resistance. We make the hypothesis that the
final junction area AJJ is flat, and oxidation is homogeneous, and that the dimensions relate to the
design in an affine manner. The affine offset takes into account empirically all complexities such as RIE
underetch/overetch, EBL underdose/overdose as well as extra area resulting from the 3D overlapping
around the edges.

AJJ = WJJ ×HJJ

WJJ = Wdesign +Woffset

HJJ = Hdesign +Hoffset

For a fixed design width Wdesign, the slope of the conductance to the height increments ∂σ/∂Hdesign

may be calculated. By employing two or more Wdesign, we can easily calculate ∂2σ/∂Hdesign∂Wdesign,

for which the inverse can be put in units of Ω µm2, as more commonly used in literature. We get for our

oxidation in the range of 22− 25Ωµm2, translated into 11.5− 13 µA µm−2 of critical current density.

This spread may appear to be problematic, but it is worth noting that the two major parameters of

the flux qubit ∆, IP depends much less on this parameter than on the relative area ratios between the

junctions. In other words, as long as the oxidation conditions change uniformly on the whole coupon,

the parameters of the resulting qubit will only change globally (e.g. increased ∆ and decreased IP )

and only slightly (< 0.5GHz, < 50 nA). As a counter-measure, we may decide to change the ratio

from sample to sample within the same coupon, such that no matter the oxidation, one of the samples

will fall around the target parameters.

The mask opening design are also updated according to the last Woffset and Hoffset measured

on that particular kind of sample: We distinguish on one hand, those with native oxide (Silicon

Virginia), and on the other hand those with thermally grown oxide (Topsil, Isonics). A major reason

for this, besides the apparent different surface treatment used, is the difference in thickness in these

two kinds of samples. We suspect strongly that the thickness will change the thermal conductivity

during the RIE process and lead to a different offset resulting from underetch/overetch. Interestingly,

we systematically measure an increase in the resistance by 5 ∼ 12% after dicing, suggesting a change

in the oxide properties. We suspect this has to do with the heating, in presence of the copolymer

resist during the dicing process. Indeed, we dice the coupon from the top side to properly delimit the

samples. It is thus required to put 2-4 layers of copolymer resist to protect the surface from dicing

debris. We bake these layers only up to 120◦ for 5 minutes per layer to prevent overheating of the

junctions.
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5 Experimental Setup

Experiments are performed at a temperature of 14mK in a Cryoconcept dilution refrigerator, model

Hexadry 200 with low mechanical vibrations. Fig.5.1 shows a detailed schematic of the experimental

setup. The samples are glued on a microwave printed circuit board made out of TMM10 ceramics,

then enclosed in a copper box with low mode volume which is itself embedded into a superconducting

coil that is used to provide magnetic flux biases to the qubits. To reduce low frequency magnetic

noise, the coil is surrounded by a superconducting enclosure (Copper plated by SnPb 60/40 15 µm)

and magnetically shielded with a high permeability metal box (CryoPhy from Meca Magnetic). The

apertures of the box are tightly closed using Eccosorb AN-72, in order to protect the sample from

electromagnetic radiation that could generate quasiparticles.

The coil is powered by a BILT BE-2102 voltage source filtered by a custom designed ultra-stable

voltage to current converter. The microwaves are generated by Keysight PSG E8257D analog mi-

crowave synthesizers. The pulses are modulated at an intermediate frequency of 10-200 MHz by a

Quantum Machines OPX system connected to MITEQ IRM0618/IRM0408 mixers. Voltage controlled

attenuators (Pulsar AAR-29-479) are used to adjust the pulse amplitude over a wide range (0.5-64

dB). The input line is attenuated at 4K stage (XMA -20 dB) and at the mixing chamber stage (XMA

-40 dB) to minimize thermal noise and filtered with an homemade impedance-matched copper powder

filter (-10 dB @ 10 GHz). In addition, the pulses are shaped with smooth rise and fall (∼ 20 ns) in

order to reduce the population of microwave photons in the resonator during coherent state evolution

of the qubit.

Qubit state measurement is done using dispersive readout, by measuring the transmission of mi-

crowave pulses through the resonator, using a custom built setup. The readout output line is filtered

by two shielded double circulators (LNF-CICIC8_12A) and a 8− 12GHz band pass filter from Micro-

Tronics, model BPC50406. The readout output signal is amplified using a low-noise cryogenic HEMT

amplifier (LNF-LNC1_12A) and a room temperature amplifier (LNF-LNR1_15A). After demodu-

lation, the quadratures of the readout output pulse are sampled and averaged using the IQ inputs

of the OPX system. At this point, we perform a principal axis transformation on the data points

by diagonalizing their covariance matrix. Using this transformation, we extract the largest principal

component of the measured (I,Q) points and obtain the state of the qubit.
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Figure 5.1: Experimental Setup.
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6 Results and analysis

6.1 Reproducibility and gap control of superconducting flux qubits

6.1.1 Circuit implementation

Figure 6.1: Circuit implementation. (a) Optical microscope image of a λ/2 CPW resonator (res-
onator B) intersected and galvanically coupled to a series of eleven flux qubits labelled B1 to B11. The
CPW resonator length is chosen to be 5.73 mm, such that the first resonant mode is at frB ≃ 9.8 GHz.
(b) Close up view of the coupling capacitor terminating at both ends the CPW resonator. The value of
the capacitance is calculated by an electromagnetic simulator (Sonnet) to be CC ∼ 5.0 fF. (c) Colored
AFM micrograph of qubit B4. The surface area of the unitary junction is Auni = 0.0526± 0.0008 µm2

and the small junction was chosen to have α = 0.5. (d) Colored AFM micrograph of qubit B6. The
surface area of the unitary junction and the ratio α are identical to B4. The loop of this qubit includes
a thin constriction. (e) Close up view of the 30-nm width constriction of qubit B6.

The three samples presented in this work are fabricated on silicon chips and contain a 150-nm thick

aluminum coplanar waveguide (CPW) resonator, with two symmetric ports used for microwave trans-

mission measurements (see Fig.6.1(a)). As mentioned in Tab.4.1, the CPW resonator A is directly

fabricated on a high resistivity (> 10 kΩ cm) silicon wafer with native oxide while resonators B and

C are fabricated on a 5 nm thermally grown silicon oxide layer. A series of eleven flux qubits is gal-

vanically coupled to each CPW resonator. In the following, the qubits are labelled according to their

spatial position on the relevant resonator (e.g. A1...A11, B1...B11, C1...C11).

Fig.6.1(c) and (d) present Atomic Force Microscope (AFM) images of qubits B4 and B6. The loop

area of qubit B4 (resp. B6) is SB4 ≃ 13.3 µm2 (resp. SB6 ≃ 12.4 µm2). The three identical junctions

have a Josephson energy EJ/h = 360GHz and a single electron charging energy EC/h = 3.68GHz

while the fourth junction is smaller than others by α=0.5. In addition, qubit B6 contains a 30 nm

width constriction over a length of 500 nm (see Fig.6.1(e)).

We first characterize the qubit-resonator system by spectroscopic measurements (see section §5).

Fig.6.2(a-b) shows a continuous wave transmission scan of resonator B taken as a function of the
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applied magnetic field. This measurement is performed with a vanishing power corresponding to an

average of less than one photon in the resonator. We observe an anticrossing each time a qubit and

the resonator are resonant. Far from the anticrossings, the resonance corresponding to the first mode

of the resonator is frB = 9.804 GHz and its quality factor is QB = 2800 (see Tab.6.1).

Resonator Length (µm) CC (fF) fr (GHz) Qtot κ
(
rad.s−1

)
QC Qint n̄thermal

A 7250
5

7.756 1400 3.5× 107 5500 1878 8.88× 10−4

B 5730 9.805 2800 2.2× 107 3500 14000 6.82× 10−4

C 5730 9.850 2200 2.8× 107 3500 5923 6.78× 10−4

Table 6.1: Resonator parameters. Length of the resonator, coupling capacitance CC , bare frequency
of the resonator ωr/2π, quality factor Q of the resonator, photon loss rate κ, coupling QC and internal
Qint quality factor of the resonator given by 1

Q = 1
QC

+ 1
Qint

, estimated number of thermal photons in
the resonator n̄thermal.

6.1.2 Spectroscopic measurements

Figure 6.2: Characterisation of qubit B4 (top panels) and B6 (bottom panels). (a-b) Trans-
mission spectrum of CPW resonator B versus applied magnetic field showing anticrossing of qubit
B4/B6. For each qubit we fit the anticrossing to our qubit-resonator coupling model and extract the
value of the coupling constant g of the qubit with the resonator. (c-d) Measured qubit frequency
(blue dots) and fit (black dashed curve) yielding the qubit parameters ∆ and Ip. (e-f) (left panel)
Qubit energy relaxation and spin echo measurements. The excited state probability Pe is plotted as
a function of the delay between the π pulse and the readout pulse (green dots) or between the two
π/2 pulses of the echo sequence (red dots). The black dashed line is an exponential fit to the energy
relaxation (spin-echo) data. (Right panels) Measured Ramsey fringes (purple solid line) with fit to its
exponentially decaying envelope.

The frequency dependence of qubit B4 and B6 on Φ is shown in Fig.6.2(c-d), respectively. The

transition frequency of each qubit follows f01 =
√
∆2 + ε2 with ε = 2IP (Φ− Φ0/2) /h, yielding

∆(B4) = 5.182GHz and I
(B4)
P = 298 nA (resp. ∆(B6) = 5.085GHz, I(B6)

P = 297 nA). Since both

qubits were designed to have the same parameters, this demonstrates excellent reproducibility of our
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e-beam lithography and oxidation parameters. Taking into account the contribution of geometric

capacitance between neighboring islands allows us to fit the parameters of the flux-qubits in good

agreement with the measured values of α and EJ extracted from Ambegaokar-Baratoff formula (see

Eq.4.3). We now turn to the coherence times at the so-called optimal point where the qubit frequency

f01 = ∆ is insensitive to first order to flux-noise [64, 65]. Energy relaxation decay is shown in Fig.6.2(e)

and f to be exponential for both qubits, with T1 = 20µs for B4 and 19 µs for B6. Ramsey fringes show

an exponential decay for B4 with T2R = 9µs, for B6 with T2R = 5µs. Spin-echo decays exponentially

with identical dephasing times T2E = 13µs. Apparently, the presence of the constriction in qubit B6

does not seem to influence the coherence time of the qubit. This property is particularly exciting if

one wishes to coherently couple a single spin to this circuit [101].

6.1.3 Reproducibility and Control of gap

We repeat this procedure for the qubits of our three samples. Each qubit is thus characterized by

its spectroscopic parameters ∆ and IP , extracted from the dependence of its transition frequency

on the applied flux. In Fig.6.3(a), we represent a graph showing the gaps ∆ of the different qubits

versus their persistent currents IP . In order to optimize our qubit design, we varied the size of the

unitary junctions of samples A, B and C while keeping an approximately constant critical current

density of ∼ 13.5 µA µm−2. Within each sample, the qubit parameters (EJ , EC , α) were designed to be

identical and thus the qubits should be clustered within a well defined region. The extent of this region

indicates the level of reproducibility of our fabrication process. A slight improvement in the data spread

is observed for Sample B and C in comparison to sample A. Quantitatively speaking, the gap average

values are 6.9±1GHz, 5.1±0.7 GHz and 6.6±0.6 GHz for samples A, B and C respectively. A principal

component analysis (PCA) is performed on the covariance matrix of the (∆, IP ) data-points in order

to define regions with high probability to find a qubit. For each sample, a dashed line is represented

and corresponds to the result of qubit numerical diagonalizations (see section §2.2) while varying the

parameter α by ±5% around their respective average value
(
⟨EJ⟩A/B/C , ⟨Ec⟩A/B/C , ⟨α⟩A/B/C

)
. For

the three samples, the principal axis and the numerical diagonalizations are well aligned indicating

that the main origin of disorder is indeed uncontrolled variations of the value of the parameter α. The

variation of the critical current density of the junctions due to different oxidation of samples A, B and

C (±5%) leads to an additional uncertainty of ±150MHz in the control of the desired qubit gap.
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6.1.4 Relaxation and dephasing

Figure 6.3: Reproducibility and control. (a) Persistent current IP versus gap ∆ of the qubits of
sample A (native oxide, red stars), sample B (5 nm grown silicon oxide layer, green dots) and sam-
ple C (5 nm grown silicon oxide layer, blue triangles). The colored regions are obtained by assuming
a normal distribution along axes defined by principal component analysis (PCA). The probability
to find a qubit within the dark (resp. light) colored area is 50% (resp. 90%). The dashed black
lines are obtained by numerical simulations of the flux qubits (see section §2.2 at their average value(
⟨EJ⟩A/B/C , ⟨Ec⟩A/B/C , ⟨α⟩A/B/C

)
while varying the parameter α by ±5%. (b) The estimated in-

trinsic relaxation rates Γint = Γ1 − ΓP versus measured relaxation rates Γ1 for qubits of sample A
(red stars), B (green dots) and C (blue triangles). The error bars stem from calibration uncertainties
of ±1 dB of the incoming power at the resonator input. (c) Stacked bar chart showing the pure de-
phasing rates Γϕ

2E at optimal points of the measured qubits of sample A (red), B (green) and C (blue).
The black color corresponds to the calculated decoherence rate due to photon noise in the resonator.
The pink color corresponds to calculated decoherence rate due to second order flux noise. The black
stars indicate the presence of a 30-nm width constriction in the loop of the qubit. The presence of a
constriction does not seem to affect significantly the relaxation or the dephasing of the qubits.

In Fig.6.3(b), we represent the spread of the relaxation rates Γ1 of the different qubits. Qubit A9

exhibits the longest relaxation time with T1 = 32µs. Several mechanisms contribute to relaxation of

qubits; among them, spontaneous emission by the qubit to the resonator (the so-called Purcell effect

[102]). As shown in section 3.4.1, the Purcell rate ΓP can be quantitatively determined by measuring

the qubit Rabi frequency ωr for a given microwave power Pin at the resonator input. For a qubit

coupled symmetrically to the input and output lines, a simple expression for ΓP was obtained in

Ref.[70]. We thus calculated ΓP for each qubit and represented the intrinsic relaxation rates of the

qubits defined as Γint = Γ1 − ΓP . The average values of the intrinsic relaxation rates are 260 ± 440

kHz, 61 ± 15 kHz and 68 ± 11 kHz for samples A, B and C, respectively. These average numbers

are comparable to those obtained in Ref.[69] for C-shunted flux qubits. Relaxation due to 1/fγ-flux

noise can be safely neglected for qubits in our frequency range [69]. The spread of the relaxation rates

in sample B and C is remarkable compared to sample A and more generally to the state of the art

[70, 66]. We thus come to the conclusion that better qubit reproducibility in terms of relaxation rates
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is obtained on samples with a thermally grown 5 nm width silicon oxide layer. It is yet important

to stress that the best relaxation rates (∼ 25 kHz) were obtained on intrinsic silicon (e.g. A11, A8).

These findings are consistent with previous studies comparing loss tangents for silicon oxide and silicon

at low temperatures [103, 104, 105]. Yet, the high variability of the devices on native oxide points

towards an extreme sensitivity of the dielectric losses to the nanoscale variations in the stoichiometry

and thickness of the oxide.

In the rest of this section, we will focus on the origin of the dephasing rates of the qubits. Indeed, the

noticeable reproducibility of the qubits enables us to analyze the different noise sources that influence

the coherence times and systematically eliminate possible noise factors. We begin this analysis away

from the optimal point, where the flux qubit decoherence is dominated by flux noise. The power

spectrum of flux noise has a 1/f shape SΦ [f ] = A2
Φ/f [64, 67, 68, 66]. Thus, measuring the flux qubit

decoherence versus ε gives us directly access to the flux noise amplitude AΦ [82, 75]. Interestingly, we

obtain almost the same flux noise amplitude AΦ = 1.2± 0.2 µΦ0 for all the qubits whether on sample

A, B or C including those with constrictions or not (see section 6.1.5).

In Fig.6.3(c), we show the pure echo dephasing rate Γϕ
2E = Γ2E − Γ1/2 at the optimal point for

the different qubits. At this point, the qubits are protected against flux noise at first order. Yet,

second order effects may still impact the dephasing rates. To account for these effects, we performed a

numerical Monte Carlo simulation detailed in 3.5.3. At the optimal point, a simple formula is obtained:

Γopti
2E ≃ 56

(IpAΦ/h)
2

∆

The results of our analysis show that second order flux noise can only explain partially the observed

dephasing at the optimal point. Other well-known mechanisms of dephasing are related to photon noise

in the resonator [64, 69] and charge noise [70]. As shown in Fig.6.3(c), photon noise has some impact

on several qubits whose resonance happens to be close to the one of the resonator. The sensitivity

of flux qubits to charge-noise is highly dependent on the ratio between the Josephson energy EJ and

the charging energy EC . We thus calculated the maximum amplitude of the charge modulation for

each qubit. In average, the charge modulation is equal to 100 kHz, 5 kHz and 1 kHz for samples A,

B and C respectively. Clearly, this is more than one order of magnitude smaller than the measured

pure dephasing rate for sample B and C and cannot explain the data. Thus, another mechanism

is necessary to explain at least qualitatively the remaining dephasing rate of these qubits. Critical

current fluctuations are for instance a possible channel of dephasing in our system. These fluctuations

are due to charges localised in the barrier of the Josephson junctions. They also produce a 1/f shape

spectral density [106, 107]. Assuming that the remaining dephasing rate of sample C is fully due

to this microscopic source of noise, we get SI0 [1Hz] ≃ (0.5 pA)
2 µm−2, which seems compatible with

previously reported values in the literature.
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6.1.5 Extracting the flux noise amplitudes

We use the formula established in 3.5.2 to to extract the amplitude of the flux noise as shown in Fig.6.4.

Figure 6.4: Flux noise amplitude. a, Echo pure dephasing rates of qubit B4 as a function of
Φ − Φ0/2. Fitting the measured data with Eq.3.70 yields AΦ = 1.12 µΦ0 . b, Extracted amplitude
of flux noise for different qubits in red for sample A, green for sample B and blue for sample C. We
obtain almost the same flux noise amplitude AΦ = 1.2± 0.2 µΦ0 for all the qubits whether on sample
A , B or C and including those with constrictions.

6.1.6 Doublet behavior at optimal point

Figure 6.5: Ramsey measurement of qubit B5 showing beating.

Some of the measured qubits exhibit a doublet line shape at optimal point. This lineshape is manifested

as a beating of the Ramsey oscillations as shown in Fig.6.5. For qubit B5, the frequency of this beating

is 340 kHz, almost two orders of magnitude larger than the charge modulation δ∆ng = 4.3 kHz and

thus cannot be attributed to slow fluctuations of the electron number parity on one of the qubit’s

islands [70, 108]. An alternative explanation for the origin of this doublet is related to trapping and

un-trapping of a single quasiparticle in the α junction.

By simple arguments, we can give a rough estimate for this effect. The area of the α junction of

qubit B5 is Aα = 0.0257 µm2 while the Fermi wavelength of electrons in aluminum is λF = 0.36 nm.

Thus, the number of channels in such a junction is large and can be estimated as Aα/λ
2
F ∼ 2 × 105.

Assuming that all channels have the same transmission τ , we can estimate the change of the Josephson

energy of the α junction to be around 1MHz. We then calculate numerically the variation δ∆trapping

of the qubit gap and obtain 300 kHz , which is close to the observed value of the doublet. We thus
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come to the conclusion that these doublets are most likely due to the trapping and un-trapping of a

quasiparticle in the α junction.

6.1.7 Conclusion and summary tables

In conclusion, we have shown that flux qubits can be fabricated in a reproducible way both in terms

of gap transition energy and in terms of decoherence rates. Reproducible relaxation times have been

measured with T1 ∼ 15 − 20 µs for samples fabricated on a thermally grown 5-nm SiO2 layer. These

numbers are comparable to those observed in Ref.[69] for C-shunted flux qubits. The major advantages

of our design are its large anharmonicity (f12 ∼ 30GHz) and high persistent current (Ip ∼ 300 nA).

This makes flux qubits ideal candidates for magnetic coupling to spins such as NV centers [109, 101]

or other impurities in silicon [110]. In all the samples, the amplitude of flux noise was low and

reproducible Aϕ = 1.2 ± 0.2 µΦ0/
√
Hz. At the optimal point, long and reproducible pure dephasing

times were measured with Tϕ
2E = 15 − 30 µs. At this level, the pure dephasing times are most likely

limited by critical current fluctuations of the small junction of the qubits. Our results prove that flux

qubits can reliably reach long coherence times and open interesting new perspectives for both hybrid

quantum circuits and scalable quantum processing.
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6.2 Tunable superconducting flux qubits with long coherence times

Figure 6.6: (a) Microscope picture of the sample, showing the coplanar waveguide resonator inductively
coupled to five tunable flux qubits labelled according to their position on the resonator. The resonator
is fabricated on a sapphire wafer by evaporation of a 150 nm- thick aluminum layer and UV lithography.
(b) Colored atomic force micrograph of flux qubit 3. The qubit is galvanically coupled to the central
conductor of the resonator (colored in green). It consists of two loops: The surface of the main
loop is S(3)

main = 43.71 µm2 while the surface of the SQUID loop is Ssquid = 30.82 µm2 giving a ratio
ζ(3) = 0.705. In our experimental setup, the magnetic field is applied uniformly such that the flux
threading the SQUID loop is ΦS = ζΦ and ΦR = (1− ζ)Φ.

Here we study a series of tunable flux qubits inductively coupled to a coplanar waveguide resonator

fabricated on a sapphire substrate. Each qubit includes an asymmetric superconducting quantum

interference device which is controlled by the application of an external magnetic field and acts as a

tunable Josephson junction. We replace one of the unitary junctions of the flux qubit by an assymmetric

SQUID and study the controllability of the qubits and their coherence properties. The tunability of

the qubits is ±3.5GHz around their central frequency. The intrinsic relaxation rates are limited by

dielectric losses in the substrate and can be as low as Γint ∼ 130 kHz (T1 ∼ 8µs) while the pure echo

dephasing rates at optimal points are limited by flux noise even at optimal points and are typically

ΓφE ∼ 260 ± 90 kHz (Tφ
2E ∼ 4µs). These decoherence rates are much smaller than the state of the

art for tunable flux qubits [73, 111, 112]. We show that these decoherence rates are mostly limited

by flux noise, even at optimal points. The sample studied in this work is presented in Fig.6.6. It is

fabricated on a sapphire chip and contains a λ/2 aluminum coplanar waveguide (CPW) resonator with

two symmetric ports for microwave transmission measurements. The resonator has a first resonant

mode at ωr/2π ∼ 10.23GHz with quality factor Q ∼ 3500. Five tunable flux qubits labelled according

to their position on the resonator i = {1, ..., 5} are galvanically coupled to the CPW resonator with

coupling constant ∼ 120MHz.

Fig.6.6b presents a colored atomic force micrograph (AFM) of one of these qubits. The circuit

consists of two loops. The main loop indicated by a yellow dashed line is intersected by two identical

Josephson junctions of Josephson energy EJ and one smaller junction colored in red of Josephson

energy αEJ . The SQUID loop is intersected by two additionnal Josephson junctions of Josephson

energy β(1 + d)EJ/2 and β(1− d)EJ/2. Its surface is smaller than the main loop by a factor ζ ∼ 0.7.
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6.2.1 Spectroscopic Measurements and fit to the model

Figure 6.7: (a) Measured qubit frequency of qubit 3 versus Φ (magenta triangles) and fit (magenta
curve) yielding the qubit parameters ∆ and Ip at optimal points π and 5π. (b) Measured gaps of
qubit 3 (magenta triangles), 4 (green stars) and 5 (blue circles) versus Φs/φ0. The dashed curves are
calculated for arbitrary values of ΦS according to the model illustrated in (c) with fitting parameters
EJ , α and d. (c) Flux qubit model including the kinetic inductance Lk and geometric capacitances.
The island 1 is connected galvanically to the central conductor of the resonator.

The inductive energy of the circuit exhibits two local minima which correspond to a persistent current

IP flowing clockwise or anticlockwise in the main loop. These two minima become degenerate when

the flux threading the main loop Φ = Φ⋆ is such that

Φ⋆

φ0
− ΦS

2φ0
+ δφ = kπ (6.1)

with k = ±1,±3,±5... and tan δφ = d tan
[

Φs

2φ0

]
. At these optimal points, the two quantum states

hybridise into symmetric and antisymmetric superpositions and give rise to an energy splitting ℏ∆
called the flux-qubit gap. In our experimental setup, the magnetic field is applied uniformly such that

the flux threading the SQUID loop is ΦS = ζΦ. One can therefore solve Eq.6.1 and get the values

of the fluxes Φ⋆ and ΦS at each optimal point. For different values of k, the value of the effective

Josephson energy of the SQUID changes according to Eq.3.19 and consequently, the value of the gap

of each qubit depends on k. In the following, the gap of qubit i at each optimal point will be denoted

as ∆(i,kπ) and its associated persistent current as I(i,kπ)P .

Fig.6.7a shows the frequency dependence of qubit 3 on Φ around the π and 5π optimal points.

The transition frequency of the qubit around each optimal point follows ωge =
√
∆2 + ε2 with

ε = 2IP (Φ− Φ⋆) /ℏ, yielding ∆(3,π)/2π = 4.48GHz, I(3,π)P = 456 nA and ∆(3,5π)/2π = 7.15GHz,

I
(3,5π)
P = 354 nA. We repeat this procedure for the five qubits at their respective optimal points

±π,±3π,±5π,±7π,±9π (See Tab.6.3).
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π 3π 5π 7π 9π Units

qubit 1
∆/2π 7.30 12.16 8.15 6.05 11.96 GHz
IP 376 230 342 401 230 nA
χ/2π 5.05 -5.93 6.37 3.16 -6.26 MHz

qubit 2
∆/2π 6.84 12.82 9.82 5.60 11.91 GHz
IP 388 238 282 440 263 nA
χ/2π 3.61 -4.31 33.1 3.41 -4.31 MHz

qubit 3
∆/2π 4.48 9.43 7.15 3.10 NaN GHz
IP 457 289 354 NaN NaN nA
χ/2π 2.85 16.3 5.65 3.06 NaN MHz

qubit 4
∆/2π 8.02 13.65 8.46 7.54 13.61 GHz
IP 365 224 353 341 246 nA
χ/2π 8.86 -4.66 11.3 8.21 -4.05 MHz

qubit 5
∆/2π 6.98 12.46 9.00 5.46 11.69 GHz
IP 392 254 332 444 NaN nA
χ/2π 2.83 -4.08 6.48 NaN -4.23 MHz

Table 6.3: Qubit Parameters: ∆, IP and the dispersive shift of the resonator χ.

Fig.6.7b presents the gaps of qubits 3, 4 and 5 versus Φs/φ0. This data together with the persistent

currents obtained for each optimal point enables us to fit parameters of the model shown in Fig.6.7c.

In this model, the qubit consists of two superconducting loops intersected by five Josephson junctions.

Each Josephson junction is characterized by its Josephson energy EJ and its bare capacitance energy

EC = e2/2CJ . The junctions divide the loops into four superconducting islands. Each island is

capacitively coupled to its surrounding by geometric capacitances. These geometric capacitances are

calculated using the electrostatic module of COMSOL (see section 3.1.3). They reduce the gaps of the

qubits by approximately ∼ 1GHz but barely modify their persistent currents.

Qubit # EJ (GHz) EJ/EC α d ζ
√
ARAS (µΦ0)

1 550 318 0.429 0.759 0.696 2.2
2 558 323 0.426 0.715 0.687 2.6
3 559 323 0.442 0.711 0.705 2.3
4 518 300 0.421 0.707 0.677 2.3
5 563 326 0.426 0.740 0.714 3.0

Table 6.4: Parameters of the qubits. The charging energy is fixed at EC = 1.73GHz assuming a
specific capacitance of the junction C/A = 100 fFµm−2. The ratio ζ is measured by AFM. The value
β = 2.11 is taken according to room temperature measurements. The inductance Lk = 72.5 pH is
determined according to the resistance measurement of wires at low temperatures. The value of EJ , d
and α are obtained by fit with the model shown in Fig.6.7c. The amplitude of the flux noise

√
ARAS

is extracted for each qubit from the dependence of ΓφE versus ε.

It is also neccessary to take into account the kinetic inductance of the SQUID loop in order to

match the parameters of the model with the experimental results. The kinetic inductance is estimated
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by measuring the resistance of evaporated aluminum wires at low temperature and is added in our

model as a renormalization of the large Josephson junction of the SQUID described in section 3.2.2.

We summarize the results of the fits in Tab.6.4. These values are in good agreement with the measured

values of α, d and EJ extracted from room temperature resistance measurements (see 4.15 on page 93).

6.2.2 Decay times

Figure 6.8: (a) Energy relaxation and spin-echo measurements of qubit 3 at optimal points π and
5π. (b) Intrinsic relaxation rates Γint versus ∆. The dashed line corresponds to calculated dielectric
losses in the substrate assuming tan δ = 5 × 10−5. (c) Stacked bar chart showing the measured pure
echo dephasing rates Γ

(i,kπ)
φE . The calculated contributions to dephasing are represented in different

colors: flux noise (purple), critical current noise Γα (yellow) and photon noise Γphot (red). The flux
noise dephasing can be separated into first order flux noise in the qubit loop ΓR (dark purple), first
order flux noise in the SQUID loop ΓS (purple) and second order effects Γ2nd (light purple). The
total Γtot =

√
Γ2
R + Γ2

S + Γ2
2nd + Γ2

α + Γ2
phot is represented as a dot-dashed black segment. For each

contribution X ∈ {R,S, 2nd, α, phot}, the percentage indicated in the relevant colored stack represents
Γ2
X/Γ

2
tot.

The change of the gap modifies the relaxation rate. For illustration, we represent in Fig.6.8a the

energy relaxation decay of qubit 3 at two different optimal points. The decay is exponential in both

cases but the relaxation times are different, namely T
(3,π)
1 = 7.7µs and T

(3,5π)
1 = 5.2 µs. Several

mechanisms may give rise to such a phenomenon; among them, Purcell effect. The Purcell rate ΓP

is quantitatively determined by measuring the qubit Rabi frequency ωr for a given microwave power

Pin at the resonator input [70]. This enables us to analyze and compare the intrinsic relaxation rates

defined as Γint = Γ1 − ΓP of all the qubits at various optimal points. Such an analysis shows that

qubit 3 has approximately the same intrinsic relaxation rate at optimal points π and 5π.

Fig.6.8b unveils a general behavior of intrinsic relaxation rates versus frequency. Previous mea-

surements of flux qubits [70] identified dielectric losses in the substrate as a major contributor to

relaxation at low temperature [105]; using the approach of Ref.[70] and a loss tangent of 5 × 10−5,

we obtain the dashed line in Fig.6.8b. Clearly dielectric losses account for most of the relaxation at
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intermediate frequencies but cannot explain the increased relaxation rates at high frequencies when

the flux in the SQUID ΦS/φ0 is close to 2π. A second source of losses could be quasiparticle tunneling

[113, 114, 115]. A single quasiparticle trapped in one of the large qubit islands would lead to a relax-

ation rate larger than what is observed, at least at low frequencies, as well as to non-exponential decay

due to fluctuations in the number of trapped quasiparticles [116, 117]. Alternatively, quasiparticles can

reach the qubits from the CPW resonator. However, a relatively high normalized quasiparticle density,

corresponding to an effective quasiparticle temperature of order 150mK, would be needed to explain a

decay rate of the order of tens of kHz. Therefore we conclude that quasiparticles do not significantly

account for relaxation and cannot explain explain the residual decay rate observed at high frequencies.

π 3π 5π 7π 9π Units

qubit 1
Γ1 236 1073 271 296 647 kHz
ΓP 28 23 77 14 23 kHz
Γint 208 1050 194 282 624 kHz

qubit 2
Γ1 194 1141 NaN 268 625 kHz
ΓP 16 34 NaN 9 47 kHz
Γint 178 1107 NaN 259 578 kHz

qubit 3
Γ1 142 373 185 225 NaN kHz
ΓP 1 151 45 0 NaN kHz
Γint 141 222 140 225 NaN kHz

qubit 4
Γ1 446 1858 341 298 1568 kHz
ΓP 79 310 58 62 248 kHz
Γint 367 1548 283 236 1320 kHz

qubit 5
Γ1 236 709 298 236 NaN kHz
ΓP 14 8 60 5 NaN kHz
Γint 222 701 238 231 NaN kHz

Table 6.5: Relaxation Rates: measured relaxation rate Γ1, estimated Purcell rate ΓP , and the estimated
intrinsic rate Γint = Γ1 − ΓP .

6.2.3 Dephasing due to Flux noise

At their respective optimal points, the amplitude of the spin-echo signal shown in Fig.6.8a decays

with pure dephasing times T (3,π)
φE = 2.6 µs and T

(3,5π)
φE = 4.6µs. In Fig.6.8c, we present a stacked

bar chart showing the measured pure echo dephasing rates at various optimal points and the different

contributions of flux noise, critical current noise, charge noise, and photon noise22. The dephasing due

to photon noise (represented in red) has been estimated by measuring the dispersive shifts at optimal

points and by estimating the number of thermal photons in the resonator [64]. It is the dominant

dephasing mechanism for (3, 3π) since at that point the qubit gap happens to be very close to the

resonator transition. The contribution of charge noise is strongly reduced by the ratio EJ/EC ∼ 300

22For simplicity, we use the 2-norm. This allows us to be able to compare easily the relative ratios of contributions
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and was found to be always completely negligible (< 1 kHz). We also considered critical current

fluctuations in the α junction assuming SIα (ω) = A2
Iα
/ |ω|, with AI0 ∼ 0.1 pA [106, 107], and found

an approximately constant contribution of ∼ 70 kHz (represented in yellow in Fig.6.8c). The flux noise

shown in purple represents the main source of dephasing of the qubits even at optimal points.

Away from their optimal points, the decoherence of flux qubits is known to be governed by flux

noise [65, 67, 68]. The flux noise power spectrum SΦ(ω) = A2
Φ/ |ω| implies that the pure echo dephasing

rate is given by ΓΦ
φE = AΦ

√
ln 2 |∂ωge/∂Φ| with |∂ωge/∂Φ| ≃ 2 IP |ε| /ℏ∆ [82]. At the optimal points,

ε = 0 and thus this decoherence mechanism should be cancelled. Yet, contrary to standard flux qubits,

our design contains two independent degrees of freedom (ΦS , ΦR) [111]. These degrees of freedom add

σz components in the Hamiltonian of the system, namely H = ℏ∆
2 σz + (Iz,SδΦS + Iz,RδΦR)σz (See

3.5.4). Thus, even at optimal point where Iz,Sζ + Iz,R (1− ζ) = 0, ∂ωge/∂ΦS/R ̸= 0 will give first

order contributions to dephasing:

ΓS/R = 2
√
ln 2

Iz,S/RAS/R

ℏ
(6.2)

For each qubit, we measure ΓφE versus ε and extract the apparent flux noise amplitude AΦ around

each optimal point. The amplitudes AS/R of the flux noise in the different loops can be directly

extracted from AΦ and from the ratio γ =
√
PS/PR where PS and PR are the perimeters of the two

loops [75]. As expected, we find that AS and AR do not change significantly for the different optimal

points of a given qubit and thus
√
ASAR is a good indicator of flux noise in each qubit (See Tab.6.4).

A more rigorous derivation of flux noise contributions including second order effects is given in 3.5.4.

We find that such effects can be also significant as shown in Fig.6.8c.

In Fig.6.9b, we represent the calculated contributions of first and second order flux noise to the

dephasing rates for qubits 3 and 4 at optimal point when the flux ΦS/φ0 is varied between 0 and

2π. The first order contributions are cancelled when the ∂ΦS
ωge = 0 and reach a maximum of around

200 kHz approximately. The second order contributions are small for large gap and tend to become

dominant when the flux qubit gap is small.

6.2.4 Conclusion

In conclusion, we have shown that it is possible to control the gap of flux qubits by using an asymmetric

SQUID. This method mitigates the decoherence due to flux noise in the SQUID loop while keeping

a tunability range of ±3.5GHz. It should be possible to improve further the coherence properties of

the qubits by reducing the persistent currents down to 200 nA and by exchanging the locations of the

small and large junctions of the SQUID. This exchange will further reduce the tunability of the qubit

to the level of ±500MHz and thus decrease the pure dephasing rates related to the presence of the

SQUID. According to our simulations, the dephasing rate due to flux noise should then be comprised

between 15 and 100 kHz.

110



Figure 6.9: (a) Measured pure dephasing rate Γ
(4,5π)
φE versus ε. We extract the apparent flux noise

amplitude from the slope of the graph using Eq.3.77. (b) Calculated contribution of first (dashed line)
and second order (solid line) flux noise to the dephasing rates for qubits 3 (magenta) and 4 (green)
at optimal point. The curves are calculated for arbitrary values of ΦS while keeping the qubit at its
optimal point.

6.3 Bragg Filter resonators

As explained in 2.1.3, we would like to apply a DC voltage on the central conductor of the coplanar

waveguide in order to overcome the Schottky potential arising from the Si/Al interface. To this end,

the most elegant solution is to replace one of the termination of the CPW resonator by a Bragg Filter

(BF). In the following, we will briefly describe preliminary results concerning design and measurements

of these resonators.

6.3.1 Considerations for designing a Bragg Filter termination

We follow the theoretical guidelines of section 3.3.3. The main considerations of the design are the

following:

At resonance, the transmission is 100%. This condition allows for having a good signal to

noise ratio for qubit measurements. This is achieved by matching the transmission modulus of the

Bragg Filter and the coupling capacitor |tC (ωr)| = |tBragg (ωr)|. To achieve this, we can either modify

the period length LBF of the filter (shifting ωc), control the ratio between impedances Zh/Zl) and/or

modify the number of segments n.

In Fig.6.10, we show |tBragg (ω)| assuming n = 11 segments, LBF = 3.44mm corresponding to

ωc/2π = c
4LBF

= 8.33GHz and Zh/Zl = 2.3. The first inner segment of the Bragg Filter is chosen to

have high impedance Zh > Z0. The transmission |tC (ω)| of the capacitor is calculated for Cc = 6.6 fF.
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A B

Figure 6.10: The coefficients of reflection and transmission of Bragg and capacitor ter-
minations versus the frequency. A. Modulus in dB. B. Argument in degree of the reflection
coefficients. The resonance frequency of the resonator (shown in dashed) is chosen to be 9.8GHz such
that |tC | = |tBragg|, at that point the phase of the BF is non-zero arg (rBragg) = 37◦.

Fixing the resonance of the CPW resonator at ωr. In a CPW resonator of length L with

symmetrical terminations (see Eq.3.43), the resonance factor R is given by:

R (ω) =
∑
j

(
r2 (ω) ei2ωL/c

)j
=

1

1− r2 (ω) eiei2ωL/c

At resonance, the factor r2 (ω) ei2ωL/c should be a positive real number. When the termination is a

capacitor, the imaginary part of r (ω) is negligible and thus the resonance frequency is given by

ωr =
π

L
c

Contrary to a standard capacitor terminated CPW resonator, the imaginary part of the reflection

coefficient of a Bragg Filter is not zero (see Fig.6.10). The resonance factor becomes

R (ω) =
1

1− rC (ω) rBragg (ω) ei2ωL/c
(6.3)

The accumulated phase φacc (ω) = arg
(
rC (ω) rBragg (ω) e

i2ωL/c
)

should be equal to 0 modulo 2π at

the resonance. This is mainly adjusted by the length L of the central segment between the Bragg

Filter and the coupling capacitor. We calculate numerically the arg (rBragg (ω)) by chaining interfaces

and segments according to 3.3.2 and show it in Fig.6.10B.

In the case of a standard capacitor terminated CPW resonator, the accumulated phase is a linear

function exactly

φacc (ω) = 2π
ω

ωr

As for the resonator with Bragg-filter terminations, the function is no longer linear. In the vicinity of

the resonance frequency, one can describe it as
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φacc (ωr + δω) = 2πγ
δω

ωr
mod 2π (6.4)

In our design, we get γ = 1.80 > 1. In other words, the round trip travel time τ = 2π∂ωφacc (ωr) for a

quanta of energy can be longer than both the period 2π/ωr and the round trip time between the two

terminations 2L/c. The Bragg filter has a non-zero dwell time for the quanta of energy. EM waves

propagate into the Bragg Filter as an evanescent wave, before reflecting the energy back. Thus we

will achieve a higher quality factor- by a factor γ- despite keeping the same capacitor as before and

matching the transmission of both terminations at ωr.

Figure 6.11: A. We show the design of the resonator, with wirebonding. B. Simulation using the
filter formalism (see section 3.3.2), showing the transmission S21 in decibels (solid lines), and the filter
function modulus |f→ (ω)|2 = |fC (ω)|2 in decibels (orange dashed), and |f← (ω)|2 = |fBragg (ω)|2 in
decibels (green dashed).

Relaxation of qubits due to Purcell rate. The Purcell relaxation of a flux qubit situated at a

frequency of 7.4GHz should be controlled and limited. From Eq.3.60, we can establish that the Purcell

rate of the left and right ports depends on the filter function modulus Γ→/← ∝
∣∣f→/← (ωge, x)

∣∣2 where

|f→ (ωge, x)| = |fC (ωge, x)| =

∣∣∣∣∣ tC (ωge)
(
eikx − rBragg (ωge) e

ik(2L−x))
1− |rC (ωge)| |rBragg (ωge)| exp (iφacc (ωge))

∣∣∣∣∣ (6.5)

|f← (ωge, x)| = |fBragg (ωge, x)| =

∣∣∣∣∣ tBragg (ωge)
(
eik(L−x) − rC (ωge) e

ik(L+x)
)

1− |rC (ωge)| |rBragg (ωge)| exp (iφacc (ωge))

∣∣∣∣∣
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ωge being the frequency of the qubit, and x ∈ [0, L] its position in the resonator assuming the capacitor

termination is on the left side.

As shown in Fig.6.10, |tBragg| depends strongly on ω, contrary to |tC |which remains relatively

stable. To make sure that the qubit is well protected, we design the bragg filter such that its band cut

minimum is deep enough and its band cut center is close to the qubit frequency. This is principally

adjusted by the ratio of impedances Zh/Zl and the number of segments n. On the other side, the

factor |fC | remains comparable to a standard CPW resonator with capacitor terminations. Indeed,

the modulus of the resonance factor |R| is close to 1 when out of resonance (|φacc (ω)| of order 45◦).

Taking into account the above considerations, and a design is reached as shown in Fig.6.11.

6.3.2 Characterizing experimentally BF resonators

We characterize the BF-terminated resonators using the experimental setup depicted in Fig.6.12. The

main advantage of this setup is that both the transmission (Bragg-in-capacitance-out) and reflection

(capacitance-in-capacitance-out) could be easily compared. Indeed, as mentioned already, away from

resonance, R is of order of magnitude 1 and thus t2CR cannot interfere with the quasi-full reflection

of the capacitance. We may interpolate the reflected power measured on a Vector Network Analyzer

to resonant regions which serves as a 0 dB reference for the transmission. We therefore dis-embed all

attenuation/amplification in the transmission lines.

Figure 6.12: Experimental Setup for auto-calibrating the power

A first test sample is measured without the presence of flux qubits, and we fully bond the ground

planes along the Bragg and the inter-region (position L,C,R in the L′-long inter regions in Fig.6.14).

This reference measurement (see Fig.6.13) shows that the filtering effect is compatible with theory

(see Fig.6.11). The primary23 resonance occurs at 10.182GHz exactly in accordance with the design

specs ≈ 10GHz. A mere −2 dB was observed with respect to the reflection signal. Stray resonances

appear around 10.7GHz, with peak transmission at −10 dB and at 11.7GHz with a peak transmission

of −5 dB. These resonances could match with the one calculated (11GHz and 12GHz) shown in

Fig.6.11.
23as opposed to strays that are unintentional
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A

B C D

Figure 6.13: Reference measurement A. Transmission (blue) and reflection (red) B-D. Zooms
around local resonances

6.3.3 Wire bonding strategy preventing Meissner Loops

It is good practice to bond-wire the two ground plane along the resonator to prevent any unintentional

resonances. These bonds may complete loops where Meissner current can flow. In Fig.6.14, we give

two examples of continuous conductive loops (purple dashed lines circling green regions) that form

from these bondings. It is difficult to vary the total magnetic flux inside these regions because a

counter current canceling out the external field may arise in this loop due to the Meissner effect giving

rise to strong magnetic hysterisis. Thus, it is difficult to bias flux qubits to their optimal points in

such regions. As a rule of thumb for our design, we ensure that hypothetical magnetic vortices may

travel from the external boundaries to regions of the flux qubit along a continuous path in non-metallic

regions, without ever crossing over wire-bonds.

Taking into account the above considerations, we leave unbonded the positions L and C, as shown

in Fig.6.14. We observe an additional stray resonance at 9.7GHz that was not anticipated by our

model. This stray resonance may be due to other modes of the resonator released due to the absence

of constraints.

6.3.4 Stray resonances and photon noise

Asymmetry factor Let us now try to understand the impact of such stray modes. We treat the

stray mode exactly as we would treat the principal mode. Let us now consider a resonant mode at

ωs with linewidth ωs/Q and with power transmission T (measured in dB), assumed to be without

internal losses. We describe the mismatch between the power transmission at resonance of the two
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Test

A

L C

input T

to circulator

R

B

C D E

Figure 6.14: Wire bonding induced Meissner Loops. A. The case where position L and C are left
unbonded is shown. The green dashed zones delimit two (non-exhaustive) examples of Meissner Loops
closed by wire bonding (white shadows), where the magnetic field may not penetrate into. Bonding of
site L and/or C would give rise to Meissner Loops covering the qubits, preventing them from reaching
their optimal points. B. We show the corresponding transmission and reflection measurements and
their zooms (C.-E.), in D. we also plot the values in the reference measurement (unconnected cross)
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ports |tC (ωs)|2 and |tBragg (ωs)|2 by an asymmetry factor α ∈ [−1, 1] , writing

|tC (ωs)|2 ≡ |t̄|2 (1 + α)

|tBragg (ωs)|2 ≡ |t̄|2 (1− α) =
1− α

1 + α
|tC (ωs)|2 (6.6)

In this parametrization, the resonance factor depends solely on the average power transmission coeffi-

cient |t̄|2

R (ω) =
1

1− |rC (ω)| |rBragg (ω)| exp (iφacc (ω))

≈(⋆) 1

1−
(
1− 1

2 |t̄|
2
(1 + α)

)(
1− 1

2 |t̄|
2
(1− α)

)
exp (iφacc (ω))

=
1

|t̄|2 − iφacc (ω)

where we apply in (⋆) the approximation |r| =
√
1− |t|2 ≈ 1− |t|

2

2 +O
(
|t|4
)
, which gives us

T =

∣∣∣∣ tC (ωs) tBragg (ωs)

1− |rC (ωs)| |rBragg (ωs)|

∣∣∣∣2
≈

∣∣∣∣∣ |t̄|2 (1 + α) (1− α)

|t̄|2

∣∣∣∣∣
2

=
(
1− α2

)2 (6.7)

An incomplete transmission thus gives us access to the modulus of the asymmetry factor |α|. Recall

that this may be measured with good precision by comparing against the (interpolated) reference

reflection from the capacitor (see Fig.6.12).

We may also apply Eq.6.7 to the principal resonance. Assuming no internal loss, the corresponding

asymmetry factor is estimated to be |α| ∼ 0.45. This asymmetry could be due to the BF transmission

coefficient being highly sensitivity to design/fab inaccuracies as n becomes large (see Eq.3.54). It may

also be an overestimation if internal losses are non negligible.

Photon noise To check the photon noise dephasing rate, let us recall the expression in 3.5.5

Γphot ≈
4χ2

κ

〈
a†a
〉

where χ ≈ g2/δ is the dispersive shift (cf section 3.3.4), and κ is the energy loss rate. We verify that the

linewidth is equivalent to κ, even after taking into account the lengthening of the round trip. Indeed,
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we establish from the dependency of the resonance factor R (Eq.6.3) an expression for the linewidth

∆ω ≡ ωs/Q ≡ FWHM

=

FW︷︸︸︷
2 ·

HM︷ ︸︸ ︷
φ−1acc

(
|t̄|2
)
= �2

ωs |t̄|2

�2πγ
(6.8)

We show that an identical expression for the energy loss rate κ can be obtained. We write κ as a

product of the round trip frequency and the energy ratio lost per round trip

κ =
[
|t̄|2 (1 + α) + |t̄|2 (1− α)

] ωs

2πγ
=
ωs

π

|t̄|2

γ

Q =
πγ

|t̄|2

Let us now consider the coupling constant between the flux qubit and these stray modes, since it

intervenes in χ ≈ g2/δ. We can verify inside the integral of Eq.3.50 that for ω ≈ ωs,

|f→|2 (ω, x) + |f←|2 (ω, x)

≈(⋆1)
|t̄|2
∣∣eikx − e−ikx

∣∣2 [(1 + α)
2
+ (1− α)

2
]

|1− |rC (ωs)| |rBragg (ωs)| exp (iφacc (ω))|2

≈(⋆2) 1

1 +
(

ω−ωs

∆ω/2

)2 2
(
2 sin kx

2

)2 (
1 + α2

)
|t̄|2

where (⋆1) expands the numerator using Eq.6.5, Eq.6.6, and the resonance condition rewritten as

φacc (ω) ≈ φacc (ωs) =�����:≈ 0
arg (rC) + arg (rBragg) + 2kL = 0 mod 2π

arg
(
rCe

ik(2L−x)
)
≈ −kx

k ≡ ωs/c

and where (⋆2) expands the denominator using |r| ≈ 1 − |t|2
2 , exp (iφacc (ω)) ≈ 1 + iγ (ω − ωs) /ωs,

and Eq.6.8. The integration yields

∫
|f (ω)|2 + |fBragg (ω)|2 = (π ·∆ω/2) ·

2
(
2 sin kx

2

)2 (
1 + α2

)
|t̄|2

=
ωs

γ

(
1 + α2

)(
2 sin

kx

2

)2
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which finally gives

ℏg =MIp

√
ℏωs

4πZ0γ

∫
|fC (ω)|2 + |fBragg (ω)|2

=MIpωs

√
ℏ (1 + α4)

πZ0γ
|sin (kx/2)| (6.9)

As a sanity check, Eq.6.9 is in agreement with Eq.3.35 for the limit α → 0 and γ → 1. The physical

significance behind this is that the Bragg Filter increases the overall mode volume and dilutes the

quantum fluctuations inside the resonator, leading to less coupling strength.

g ∝
√

1

γ
(6.10)

Injecting into the the expression of Γphot, we establish that the dependencies of photon noise on unfixed

factors are

Γphot ∝ χ2/κ =

(
MIpωs

ℏ

√
ℏ (1 + α2)

πZ0γ
|sin (kx/2)|

)4

/δ2∆ω ∝
(
1 + α4

)2
γ2∆ω

where the dependency on α ∈ [−1, 1] is limited
(
1 + α2

)2 ∈ [1, 4]. In Fig.6.14C/E, the two peaks

are around −12 dB from the reflected reference, for which α ≈ 0.71, which yields
(
1 + α2

)2
= 2.26

(compared to 1.44 for the principal resonance). By assuming that the dwell time in the BF is non-

negative (for causality reasons), we may establish that γ obeys γ ≥ γL′ ∼ 1. Typically, for stray

resonances to occur, the winding number is added in a small frame of frequency, resulting in large

γ, before returning back to the steady increase. Consequently, this has the tendency to lower Γphot

for stray modes. The dominant dependency of Γphot due to the introduction of the BF is ∆ω. We

verify that in our samples, the broad linewidth ∆ω of the stray resonances are at least one magnitude

broader than the principal resonance (25MHz vs. 2MHz). As a conclusion, we therefore estimate that

the photon noise should be dominated by the principal resonance, which is approximately 1/γ times

smaller than the capacitance-terminated design 1
γ2∆ω ∝ 1

γ|tC |2
.

6.3.5 Conclusion

We present preliminary measurements on resonators with partial Bragg-filter termination that is re-

quired for the application of a DC voltage on the substrate. We realistically consider a wirebonding

strategy that will not hinder the ability to bias flux qubits magnetically. The results are compatible

with the theory section 3.3.3, except for the appearance of stray resonances. We show theoretically that

no additional photon noise dephasing is introduced by the stray modes. We show that at resonance,

γ = 1.80 (obtained by simulation) plays a crucial role since it increases the mode volume. This leads

to dilution of the quantum fluctuations in the resonator, sharpening the linewidth inversely ∆ω ∝ 1/γ,
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and decreasing the coupling constant g ∝
√

1
γ . Consequently, the measurement efficiency is roughly

similar, since χ/∆ω is unchanged, as well as the factor Qint/QC/Bragg remaining almost the same.

120



7 Conclusion and Perspectives

The ultimate goal of this work is to develop a spin-based quantum processor. One of the required tools

for building such a processor is a quantum bus that allows controlling the coupling between spins. To

this end, we consider using a superconducting circuit as a mediator between spins and try to establish

a strong coupling between these entities. Over the course of this PhD, many intermediate results

necessary to prove the feasibility of this approach have been established. Here is a summary of the

principle results:

1. Control and reproducibility of the flux qubit : We experimentally improved upon the

control of the flux qubit transition energy and demonstrated reproducibility through a batch of

more than 20 flux qubits fabricated on three different silicon samples. The best sample yielded

long and reproducible coherence times (T1 ∼ 15 − 20 µs, Tφ
2E ∼ 15 − 30 µs). We observed that

the sample surface had some impact on the reproducibility of the coherence, while the presence

of a local constriction had no apparent effect.

2. Constrictions and precise positioning of the circuit with respect to the implanted

spins : We developed a fabrication technique involving cold evaporation permitting the fabrica-

tion of thin constrictions (20− 35 nm), which we are able to position in the vicinity of implanted

spins.

3. Tunable flux qubits exhibiting long coherence times : A study on tunable flux qubits was

conducted on a sapphire sample. By replacing one of the unitary junctions with an asymmetrical

SQUID, we were able to demonstrate tunability on a range of ±3.5GHz and measure coherence

times (up to T1 ∼ 8 µs and Tφ
2E ∼ 4 µs) one or two orders of magnitude better than state-of-the-

art.

4. Bragg-Filtered resonators : designing a readout resonator delimited on one side by Bragg

Filters allows for direct application of a gate voltage to the flux qubit. Preliminary theoretical

and experimental work has been conducted. The band-cut feature was observed as intended.

The sharpening of the peak due to prolonged photon round-trip time was also compatible with

theory.

All these results contribute to the goal of having a resonant flux qubit with good coherence properties

in close proximity to a single bismuth donor. The implanted bismuth donor can be kept unionized

through a gate voltage at the Bragg port, while ensuring the qubits do not suffer from additional Purcell

loss. The close proximity of the constriction and the high persistent current of the qubit enhances the

coupling to the spin. The flux qubit transition frequency may be designed with good control and even

scanned to a certain extent. Finally, the good coherence properties of the qubits should allow us to

reach the strong coupling regime.
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7.1 Short term research directions

As of the writing of this thesis, the fabrication of a Bragg-filtered resonator galvanically coupled to

flux qubits on a sample of isotopically pure silicon containing implanted bismuth donors (sample E in

Tab.4.1) is almost achieved. The characterization of the coherence properties and transition energies

of these flux qubits should be performed in the coming months. Our plan is to find a flux qubit with

good coherence properties and a gap close to the Si:Bi transition frequency in order to detect the

coupling of a spin and the qubit. Several questions remain open:

1. What are the coherence properties of a flux qubit fabricated on the slightly doped isotopically

purified layer?

2. Is it possible to reinitialize the spin state by application of a gate voltage?

3. What is the impact of the gate voltage on the quality factor of the resonator and/or the coherence

properties of the qubit?

4. Are the coherence properties of the donor spin affected by the close proximity to a flux qubit?

5. What kind of power stability can we realistically expect? How will this degrade the the protocol

described in Ref.[60]?

6. Would it be possible to engineer superposition of hyperfine ground states using Ref.[60], and

characterize their coherence properties?

7.2 Future perspectives

The architecture of resonantly coupling spins to flux qubits using the Rabi dressing protocol provides a

robust way of coupling otherwise non-resonant quantum objects. In addition, the dynamical decoupling

effect of the Rabi suppresses sensitivity to T2 originating from low frequency noise. This provides a

powerful method of multiplexing control sequences intended for different spins by power modulation.

Using only spin-FQ swap gate, it is possible to realize a swap gate between two spins coupled to the

same flux qubit bus. Furthermore, by coupling many such buses to a common resonator, spatially

distant spins coupled by respective buses may be entangled. All in all, this architecture has the

potential to increases many-fold the scalability of spin-based quantum processors : selecting the flux

qubit bus by drive frequency and selecting the spin by drive power.
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8 Table of acronyms and variables

variable description

Math

e⃗x, e⃗y, e⃗z The normalized basis vectors in 3D euclidean space. When applicable, the z+

direction is coming out of the sample substrate, or defined by the static magnetic

field.

i Imaginary number

N Hermitian Normalization of coefficients N (ci) = ci/
√∑

j |cj |
2

Tr Trace operator

B Vector basis, comprised usually of kets

nFFT Number of Fourier frequencies in the (fast) Fourier Transform(ation). Equivalent

to number of spatial or temporal data-points.

1 Identity matrix or the identity operator

0 Vectorial or matricial zero

Re Real part function

Im Imaginary part function

H Symbol for an Hamiltonian operator

L Symbol for Lagrangian

c.c. Complex conjugate

H.c. Hermitien conjugate

Chemistry

AFM Atomic Force Microscope/Microscopy

Si Silicon

SiO2 Silicon oxide
28Si Silicon 28 isotope
29Si Silicon 29 isotope
natSi Silicon with natural isotopic abundance. Typically having 4.7% 29Si and 3.1%

30Si.

Spin related

B0 Static DC magnetic field. Could either be vector
−→
B0 or a scalar B0

Si:Bi Symbol for bismuth donors in silicon

Si:P Symbol for phosphorous donors in silicon

↕ Symbol for the electronic spin qubit.

Nens Number of spins in the (homogeneous) ensemble.

A Hyperfine interaction strength in GHz
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|↑⇑⟩ Ket states where double arrows indicate nuclear while simple arrow indicate

spin. Up direction defined by static field.

|$ / 1⟩ To differentiate from the above, a tilted arrow represents the donor spin ground

(downward) and excited (upward) state, which are a priori not pure states of the

electron spin operator, but rather entangled states of nuclear and electronic spin

states. Under high fields, the definitions may align

σ̂s Pauli operators in the spin logical space {|$⟩ , |1⟩}. For σ̂s
z, the eigenvalue +1 is

automatically associated to the excited state.

superconducting circuit

cpw Coplanar waveguide

fq Flux Qubit

L Linear inductance of the 2D coplanar waveguide

C Linear capacitance of the 2D coplanar waveguide

Z0 Characteristic impedance.
√
L/C in the lumped element resonator or

√
L /C in

a distributed CPW.

L Length of the coplanar waveguide

ω1 Frequency of the first mode of the CPW

x Position (usually of a flux qubit) in the coplanar waveguide

I Current at a particular position in the CPW, all modes included. The first mode

dominates.

δI Quantum fluctuations of current

C Capacitance matrix

Pauli operators in the flux qubit logical space {|g⟩ , |e⟩}. For σz, the eigenvalue

+1 is automatically associated to the excited state.

circuit QED

Ω Frequency (rad·Hz) of Rabi oscillations

phot Shorthand for photon. To resolve the ambiguity, hf or ℏω denotes the photon

energy

N̂ Photonic number operator. N̂ = a†a

η Density of states per unit of angular frequency

I0 Critical current of a Josephson junction

n⃗ Column vector of the charge number operators, which are unitless conjugate

momenta of the three free junction phases.

ΓP Purcell rate of a flux qubit

∆ Flux qubit gap, i.e. splitting at the optimal point. Units in frequency (radGHz)

ωge Flux qubit transition frequency
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Ip Flux qubit persistent current.

Φ⋆ Flux threading the qubit main loop at an optimal point.
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 תקציר 

 

מחשבים קוונטיים עוררו עניין רב מאז גילוי האלגוריתמים הקוונטיים הראשונים לפני שני עשורים. ואכן,  

יכולים לפתור בקלות בעיות מסוימות   כמו הפקת מספרים  וקשות  הוכח באופן תיאורטי שמחשבים אלה 

ילו מדענים לדמיין בניית  גדולים למספרים ראשוניים או חיפוש יעיל במסדי נתונים. תכונות ייחודיות אלו הוב

 .שונות  תוקלי פיזי ערכות מעבדים קוונטיים המבוססים על מ

 

בנייתו של מחשב קוונטי מייצגת אתגר מדעי וטכנולוגי אדיר בשל השבריריות הקיצונית של המידע הקוונטי.  

להיות  יקה חייב  ו  מופעלוביט  מידע  לחשב  כדי  שערים  ידי  על ונמעל  לשמור  כדי  מהסביבה  היטב    תק 

זיהומים מגנטיים במוליכים   קיוביטים הם  פיזיקלית מעניינת למימוש  ההתנהגות הקוונטית שלו. מערכת 

למחצה, כמו ספינים של ביסמוט בסיליקון. ואכן, ספינים במוליכים למחצה יכולים להגיע לזמני קוהרנטיות  

ספין יעיל. המטרה של  - בסדר גודל של שניות. עם זאת, קשה מאוד לשלוט בצימוד ספין  - ארוכים במיוחד  

אנו   זו,  מטרה  להשיג  כדי  מרוחקים.  ספינים  לצמד  יעילה  דרך  ולפתח  זו  בעיה  לפתור  היא  זו  עבודה 

 .שמתנהג כמתווך בין ספינים שונים וביט שטף י ק  על הנקרא-משתמשים במעגל מוליך 

 

למימוש תכנית זו. ראשית,  ה זו, אנו מפתחים את הכלים הדרושים לפתרון מספר סוגיות מרכזיות  עבודב

והספין    וביט י קוביט השטף עלינו להגיע למה שנקרא צימוד חזק, שבו הצימוד בין ה יעל מנת להשתמש בק

קוהרנטיות שלו. בעבודה ראשונה, אנו מדגימים קיוביטים שטף עם מאפייני קוהרנטיות  -גדול משיעור הדה 

תן לשליטה על מנת להפעיל ולכבות את הצימוד  צריך להיות ני קווביט שטףחסרי תקדים. שנית, תדר של ה

שטף   קיוביטים  מדגימים  אנו  שנייה,  בעבודה  לספין.  ארוכים.    ן ניתששלו  קוהרנטיות  זמני  עם  לכוונון 

להיות בסביבה הקרובה של לולאת הקיוביט, על מנת למקסם את הצימוד. עם זאת,  ך  ביסמוט צרי הלבסוף,

. השפעה זו צריכה להיות נשלטת על ידי הפעלת  תו יה ליינן אועשו  זיהום נוכחות של מעגל מתכתי קרוב ל

עם   קיוביטים שטף  פיתחנו  זאת,  להשיג  כדי  צריםמתח.  עם מסנני (20-30nm) גשרים   Bragg ומהודים 

 .טקיובישל ה  קוהרנטיותההמאפשרים הפעלת מתח על המצע, תוך שמירה על 

 



של   מחלקה לפיסיקהמן השל ד"ר מיכאל שטרן   תועבודה זו נעשתה בהדרכ
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