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Coherence properties of a spin in a squeezed resonator
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A promising venue for hybrid quantum computation involves the strong coupling between impurity spins and
superconducting circuits. This coupling can be controlled and enhanced by preparing superconducting resonators
in nonclassical states, such as squeezed states. In this work, we theoretically study the effects of these states on the
coherence properties of the spin. We develop an analytic approach based on the Schrieffer-Wolff transformation
that allows us to quantitatively predict the dynamics of the spin, and we numerically confirm its validity. We
find that squeezing can enhance the coupling between the resonator and the spin. However, at the same time, it
amplifies the photon noise and enhances the spin decoherence. Our work demonstrates a major impediment in
using squeezing to reach the strong-coupling limit.
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I. INTRODUCTION

Impurity spins in semiconductors are quantum entities with
a long coherence time, which enables them to store quan-
tum information safely [1]. Unfortunately, the weakness of
their interaction with the environment hinders our ability to
control them directly. An appealing road towards a spin-
based quantum processor consists of combining the impurity
spins with superconducting circuits [2,3]. To realize this kind
of hybrid system, one needs to reach the so-called strong-
coupling regime, where the coupling between the spins and
the superconducting circuit is much larger than their respec-
tive decoherence rates. In recent years, such a regime was
reached for a large ensemble of spins [4,5] and for spinlike
macroscopic structures [6,7]. Yet reaching the strong-coupling
regime with a single microscopic spin remains today a great
challenge [8,9]. Recently, Refs. [10,11] suggested artificially
increasing the coupling by squeezing the resonator. In a
squeezed state, the fluctuations of the electromagnetic field in
a given quadrature can be controlled and made arbitrarily large
[12–14]. Thus, increasing the coupling by squeezing seems
interesting and even promising. On the other hand, the large
number of photons that characterizes a squeezed state leads
to large fluctuations and may compromise the coherence of
the spin. To overcome this difficulty, Refs. [10,11] proposed
to inject a squeezed vacuum inside the squeezed resonator.
In this work, we consider what happens if the resonator is,
instead, coupled to the normal vacuum. We develop analytical
tools that allow us to account for the effective enhancement of
both coupling and decoherence in the presence of squeezing
and study the interplay between these two effects.

II. PHYSICAL MODEL

We consider the quantum circuit illustrated in Fig. 1,
which contains a lumped-element LC resonator of resonance
frequency ωr coupled inductively to a spin of transition fre-
quency ωs by a coupling constant g. As mentioned earlier, the

coupling between the two systems is intrinsically small, and
it is necessary to increase it by at least one order of magni-
tude in order to reach the strong-coupling regime. Following
Refs. [10,11], we explore the possibility of squeezing the
resonator to enhance its coupling with the spin. To achieve this
goal, we connect the resonator to a nonlinear element, namely,
a superconducting quantum interference device (SQUID). The
Hamiltonian of the system can be written as

H/h̄ = ωra†a︸ ︷︷ ︸
LC resonator

+ 1
2ωsσz︸ ︷︷ ︸

spin

+ g(a + a†)σx︸ ︷︷ ︸
coupling

× −2
EJ

h̄
cos

(
�ext

2ϕ0

)
cos (ϕ)︸ ︷︷ ︸

SQUID

, (1)

where a† (a) is the creation (annihilation) operator of a photon
in the resonator, σz and σx are the Pauli matrices, EJ is the
Josephson energy of the junctions, �ext is the flux threading
the loop of the SQUID, ϕ0 = h̄/2e is the reduced flux quan-
tum, and ϕ is the superconducting phase difference between
the terminals of the inductor L [15]. The flux �ext is varied
over time according to

�ext = �dc + �ac cos (ωpt ). (2)

If �ac � ϕ0, it is possible to expand the cosine term in Eq. (1)
to the first order around �dc, such that

cos

(
�ext

2ϕ0

)
≈ cos

(
�dc

2ϕ0

)
− �ac

2ϕ0
sin

(
�dc

2ϕ0

)
cos(ωpt ). (3)

This leads to

H/h̄ = ω′
ra†a + 1

2 (ω′
r − ωr )(a2 + a†2

) + 1
2ωsσz

+ g(a + a†)(σ+ + σ−) − λ cos(ωpt )(a + a†)2, (4)

where ω′
r = ωr + 4ϕ2

ZPF(EJ/h̄) cos[�dc/(2ϕ0)] and

λ = EJ

h̄
�ac

ϕ2
ZPF

ϕ0
sin

(
�dc

2ϕ0

)
. (5)
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FIG. 1. Circuit diagram showing a lumped-element LC resonator
(dotted, red) of resonance frequency ωr coupled inductively by cou-
pling constant g to a spin (bottom, gray). In order to increase the
coupling g, one drives a SQUID (striped blue) with a parametric drive
(top, yellow) at frequency ωp = 2ωr .

We now move to a frame that rotates at the pump fre-
quency by applying the unitary transformation U (t ) =
exp[iωpt/2(a†a + σz/2)], leading to the transformed Hamil-
tonian H̃ = UHU † − ih̄U̇U †. When ωp ≈ 2ω′

r , one can
neglect the quickly rotating terms and obtain

H̃/h̄ = ω̃ra†a + 1
2 ω̃sσz − 1

2λ(a2 + a†2)

+ g(aσ+ + a†σ−), (6)

where ω̃r = ω′
r − ωp/2 and ω̃s = ωs − ωp/2. Equation (6)

describes the coupling between a spin and a squeezed res-
onator and is the focus of the present study.

In order to characterize the effective coupling between the
spin and the squeezed resonator, we diagonalize the latter
using a Bogoliubov transformation. To perform this task, we
introduce the canonical operators γ and γ †, defined as

γ = a cosh(r) − a† sinh(r),

γ † = a† cosh(r) − a sinh(r),
(7)

such that

γ †γ = cosh(2r)a†a − 1
2 sinh(2r)(a2 + a†2

). (8)

The Hamiltonian (6) becomes

H̃/h̄ = �rγ
†γ + 1

2 ω̃sσz + 1
2 ger (γ † + γ )(σ+ + σ−)

− 1
2 ge−r (γ † − γ )(σ+ − σ−), (9)

where �r = ω̃r/cosh(2r) and r = tanh−1(λ/ω̃r )/2. The
Hamiltonian (9) describes two main effects of squeezing:
First, the frequency of the resonator is reduced from ω̃r to �r ,
and second, the coupling between the spin and the resonator
is enhanced by a factor of er/2. At first glance, this factor
can be arbitrarily large and thus brings the system to the
strong-coupling regime [10,11]. However, as we will see in
the following, this effect is impaired by the enhanced deco-
herence of the spin.

To study the interplay between squeezing and decoherence,
we consider the combined action of the Hamiltonian H̃ and
the decay of photons from the resonator, described by the
quantum master equation

d

dt
ρ = − i

h̄
[H̃ , ρ] + LρL† − 1

2 (L†Lρ + ρL†L), (10)

where ρ(t ) is the density matrix and L = √
κa is a Lindblad

superoperator. The operator L originates from the coupling
between the superconducting resonator and the external envi-
ronment and drives the resonator to its vacuum (zero photons)
state.

III. NUMERIC SIMULATION
OF A SQUEEZED RESONATOR

To quantify the coupling between the spin and the res-
onator, we numerically compute the power spectrum of the
resonator Sr[ω], defined as

Sr[ω] =
∫ ∞

−∞
〈a†(t )a(0)〉∞e−iωt dt, (11)

where the subindex ∞ implies that we compute the expression
in the steady state [16,17]. Since we work with ladder oper-
ators of a harmonic oscillator and they cannot be described
by a finite matrix, the precision of the numerical calculation
depends on the truncation of the matrices which represents
them. We truncate the matrix to a maximal number of photons,
denoted by N , leading to density matrices of size (2N )2. In
the presence of squeezing, large values of N are required to
obtain results that coincide with the exact solution. To over-
come this difficulty, we perform the numerical calculations in
the squeezed frame [see Eq. (9)], where smaller values of N
are sufficient to obtain good numerical results (see Fig. 8 in
Appendix B). Note that the Lindblad superoperator L must
transform accordingly:

L = √
κ cosh(r)γ + √

κ sinh(r)γ †. (12)

Equation (12) represents a major difference between the
present work and Refs. [10,11]. In those works it was assumed
that the vacuum outside the resonator is squeezed in the same
rotating frame as the one used to squeeze the resonator, i.e.,
at frequency ωp/2, and by the same amount r as the res-
onator. In this situation, the Lindblad operator in the squeezed
frame simply reads L′ = √

κγ . While theoretically possible,
this situation is very challenging in actual experiments [18],
where the vacuum is usually unsqueezed. The substitution of
a squeezed vacuum, described by L′, by a regular vacuum,
described by L, has dramatic implications. In particular, this
substitution leads to the disappearance of the level splitting
shown in Fig. 1 of Ref. [10] (see Appendix A).

To describe the effect of squeezing in a controlled man-
ner, we consider a system where the bare frequency of the
resonator is larger than the frequency of the spin ω̃r > ω̃s.
By introducing a squeezing term, we effectively reduce the
resonator frequency to �r [see Eq. (9)] until the resonance
condition is matched (�r = ω̃s), as illustrated in Fig. 2(a).
Changing the bare frequency of the spin ω̃s modifies the value
of the squeezing parameter r = rc at the resonance condition.
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FIG. 2. (a) Frequency of the squeezed resonator �r in the frame rotating at angular frequency ωp/2 relative to the laboratory frame as
a function of the squeezing parameter r. The resonator frequency is set to ω̃r = 1 MHz, and the spin’s frequency changes between ω̃s =
0.9, 0.6, 0.3 MHz. Accordingly, the crossing point between the resonator and the spin changes between rc ≈ 0.16, 0.61, 0.89. The inset shows
a schematic picture of the energy levels, illustrating the resonance condition in the presence of finite squeezing. (b) Spectrum of the resonator
Sr (ω) in the vicinity of the crossing conditions (�r = ω̃s) for g = 5 kHz and κ = 40 kHz.

For concreteness, throughout the article we consider a sys-
tem with ω̃r = 1 MHz, ω̃s = 0.6 MHz, g = 5 kHz, and κ =
40 kHz (unless explicitly mentioned otherwise). The power
spectrum near rc [Fig. 2(b)] has the typical structure of an
avoided level crossing.

At a fixed value of r, the spectrum shows two peaks,
whose frequencies correspond to the energy levels of the
mixed resonator-spin states [see the inset in Fig. 2(a)]. We
use the frequency difference between the maximum and the
local minimum of the spectrum at resonance, i.e., for r = rc,
to estimate the coupling strength between the spin and the
resonator. In analogy to the Jaynes-Cummings model, we
denote this distance as geff and plot its value as a function of
rc in Fig. 3(a). For small bare detunings (|ω̃r − ω̃s| � ω̃r), the
size of the anticrossing geff increases as a function of rc until
it reaches a maximal value. This result is in stark contrast to
the case of the squeezed vacuum operators of Refs. [10,11],
where arbitrarily large couplings can be obtained.

The upper limit of geff is due to the back-action of the
squeezed resonator on the spin, leading to its fast dephasing:
This process can be identified by observing the broadening
of the spectrum at resonance [see Fig. 2(b)]. We quantify
this effect by measuring the ratio between the maximal in-
tensity of the spectrum. We denote as Smin (Smax) the values
of the spectrum at its local minimum (maximum) and show
in Fig. 3(b) that the contrast of the anticrossing, defined as
1 − Smin/Smax, is a monotonously decreasing function of rc.
When the resonator is squeezed significantly (rc ∼ 1), the
contrast vanishes, indicating that the spin is completely de-
phased. To analyze the physical origin of this effect, we repeat
the same calculations for different values of the loss rate κ ,

which controls the number of photons occupying the resonator
[see the inset in Fig. 3(b)]. The maximal value of the effective
coupling geff initially increases for increasing κ . Eventually,
for large values of the decay rate κ , geff begins to deteriorate.
The maximal value of geff is only 20% larger than its initial
value and is insufficient to reach the strong-coupling regime.

IV. SCHRIEFFER-WOLFF TRANSFORMATION
FOR A SQUEEZED RESONATOR

Motivated by the numerical results of the previous section,
we now introduce a systematic approach to describe the ef-
fects of the squeezed resonator on the spin. Our approach
generalizes the Schrieffer-Wolff (SW) transformation [19] to a
squeezed resonator and allows us to compute the energy shift
and the decoherence of the spin analytically. As a first step,
we write the Hamiltonian (6) as H̃ = H̃0 + V , with

H̃0/h̄ = ω̃ra†a + 1
2 ω̃sσz − 1

2λ(a2 + a†2
), (13)

V/h̄ = g(a†σ− + aσ+). (14)

Next, we apply the unitary transformation U = eS , where S is
the anti-Hermitian operator

S = C1(aσ+ − a†σ−) + C2(aσ− − a†σ+), (15)

C1 = g

�

ω̃s + ω̃r

ω̃s + �r
, C2 = g

�

λ

ω̃s + �r
, (16)

and � = ω̃s − �r . This transformation satisfies the condition
[H̃0, S] = V and leads to a transformed Hamiltonian H̃SW =
eSH̃e−S that does not include linear terms in V . By expanding
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FIG. 3. (a) Effective coupling geff determined from the spectrum
of the resonator Sr[ω] as a function of rc. (b) Contrast of the spectrum
1 − Smin/Smax. The suppression of the contrast at large squeezing in-
dicates that enhanced decoherence of the spin. Inset: Photon number
occupying the resonator.

this expression to second order in V , we obtain H̃SW/h̄ =
H̃0/h̄ + δω̃sσz/2, with a dispersive shift

δω̃s = χr (2ñ + 1), (17)

where we defined χr = g2/� and

ñ + 1

2
= (ω̃s + ω̃r )(2a†a + 1) − λ(a2 + a†2)

2(ω̃s + �r )
. (18)

For λ = 0, Eqs. (17) and (18) recover the well-known Lamb
shift of a spin coupled to a resonator,

δω̃s =χ0(2a†a + 1), χ0 = g2

ω̃s − ω̃r
. (19)

The SW transformation creates an effective channel of
dissipation for the spin. In order to study this effect, one
needs to transform the dissipation operator L using the SW
transformation. Up to second order in V ,

LSW = eSLe−S = L + [S, L] + 1
2 [S, [S, L]] + · · · . (20)

Using Eq. (15), we obtain

LSW = √
κa + √

κC1σ− + √
κC2σ+ + O

(
g2

�2

)
. (21)

After the transformation, the resonator and the spin are decou-
pled, such that the coherence of the spin is entirely dictated by
the second and third terms of Eq. (21). If we consider these
two terms to be independent channels, we obtain an effective
decoherence rate,

�Purcell = �1 + �2 = κ
(
C2

1 + C2
2

)
. (22)

In the limit of λ = 0, this expression reproduces the well-
known Purcell decay, �Purcell = g2κ/�2 [5,20].

V. PHOTON NOISE

In addition to the Purcell effect, the squeezing of the
resonator also affects the pure dephasing rate of the spin.
Stochastic fluctuations in the number of photons in the res-
onator create a random dispersive shift which translates into
a dephasing of the spin. The rate of this process can be de-
termined by the decay of the expectation value 〈σx(t )〉 in a
system initialized in the |+〉 = (|0〉 + |1〉)/

√
2 state [21],

〈σx(t )〉 = 1
2

(
ei

∫ t
0 δω̃s (t ′ )dt ′ + e−i

∫ t
0 δω̃s (t ′ )dt ′)

. (23)

Assuming that ñ(t ) = ñ0 + δñ(t ), where the fluctuation δñ(t )
is a random variable with zero average, one can rewrite the
exponent as

e±i
∫ t

0 δω̃s (t ′ )dt ′ = e±iχr (2ñ0+1)t e±i2χr
∫ t

0 δñ(t ′ )dt ′
. (24)

By expanding the exponent to a Taylor series, one obtains

〈
e±iχr

∫ t
0 δñ(t ′ )dt ′ 〉 ≈ 1 − 2χ2

r

∫ t

0
dt ′

∫ t

0
dt ′′ 〈δñ(t ′)δñ(t ′′)〉

≈ 1 − 2χ2
r t

∫ ∞

−∞
〈δñ(τ )δñ(0)〉∞dτ. (25)

Here, the last identity is valid in the limit of t → ∞, under the
assumption that the resonator is found in a steady state, where
two-time correlations depend only on the time difference. In
the case of Gaussian fluctuations, the higher-order terms can
be resummed exactly, leading to

〈σx(t )〉 = cos [χr (2ñ0 + 1)t]e−�
photon
φ t , (26)

where we defined

�
photon
φ = 2χ2

r η̃, η̃ =
∫ ∞

−∞
〈δñ(τ )δñ(0)〉dτ. (27)

For completeness, in Appendix E, we compute the correla-
tions 〈δn(τ )δn(0)〉 for a thermal state and for a coherent state
and reproduce known results for the photon noise dephasing
of the spin.

VI. STEADY-STATE CORRELATIONS
OF A SQUEEZED RESONATOR

In the previous sections, we expressed the dispersive shift
and the decoherence rates of the spin in terms of physical
observables of the resonator [see Eqs. (17), (22), and (27)].
In the following, we compute these quantities in the steady
state of a squeezed resonator described by the Hamiltonian
H̃0, defined in Eq. (13). According to the Lindblad master
equation (10), the expectation value of a generic operator O(t )
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is determined by the differential equation

d

dt
〈O(t )〉 = i

h̄
〈[H, O(t )]〉 + 〈L†O(t )L〉

− 1

2
[〈L†LO(t )〉 + 〈O(t )L†L〉]. (28)

This equation can be explicitly solved if one finds a set of
variables �O = (O1, O2, . . . ) whose expectation values satisfy
the closed-form recursive relation

d

dt
〈Oi(t )〉 =

∑
j

Gi, j〈Oj (t )〉, (29)

where Gi, j is a time-independent scalar. For a squeezed
resonator, this condition is satisfied by the operator �O =
(a†a, a2, a†2

, 1)
T

with

G =

⎛
⎜⎝

−κ −iλ iλ 0
i2λ −i2ω̃r − κ 0 iλ

−i2λ 0 i2ω̃r − κ −iλ
0 0 0 0

⎞
⎟⎠. (30)

The steady-state expectation values of �O can be found by
equating the left-hand side of Eq. (29) to zero, or, equiva-
lently, by demanding that

∑
j Gi, j〈Oj (t )〉∞ = 0. Using this

approach, we find

〈a†a〉∞ = 2λ2

4�2
r + κ2

, (31)

〈a2〉∞ = λ(2ω̃r + iκ )

4�2
r + κ2

, (32)

〈a†2〉∞ = λ(2ω̃r − iκ )

4�2
r + κ2

. (33)

Plugging these results into Eq. (17), we obtain an analytic
expression for the dispersive shift of the spin,

δω̃s = g2

ω̃2
s − �2

r

(
4λ2ω̃s

4�2
r + κ2

+ ω̃r + ω̃s

)
. (34)

For a quantum system described by a Markovian master
equation, the two-time correlator of Eq. (27) can be com-
puted using the quantum regression theorem [22] (see also
Appendix D for a simple proof). According to this theorem,
given a set of operators �O that satisfy Eq. (29), the two-time
correlation functions satisfy the differential equation

d

dτ
〈Oi(t + τ )Ok (t )〉 =

∑
j

Gi, j〈Oj (t + τ )Ok (t )〉. (35)

Using this theorem, we can compute the two-time correla-
tion function of the squeezed resonator (see Appendix E for
details). Plugging this result into Eq. (27), we obtain the
dephasing rate due to photon noise in the squeezed resonator:

�
photon
φ = 2χ2

r λ2

κ (�r + ω̃s)2

[(
2�2

r + κ2
)(

4�2
r + κ2

) + 4ω̃rω̃s

(
4�2

r + 3κ2
)

(
4�2

r + κ2
)2

+2ω̃2
s

(
4ω̃2

r + κ2
)(

4�2
r + 5κ2

)
(
4�2

r + κ2
)3

]
. (36)

Equation (36) is proportional to λ2: The photon noise is
associated with the occupation of the resonator, induced by

FIG. 4. (a) Dispersive shift and (b) dissipation rate of the spin
as a function of the squeezing parameter r. The solid lines are our
analytic expressions for the dispersive shift, Eq. (34), and for the
total dissipation �tot = �Purcell/2 + �

photon
φ , Eqs. (22) and (36). This

approximation fits very well to the exact numerical results (dots),
except for the range |�| � g (the gray shaded area marks where
|�| < 0.02g).

squeezing, and vanishes for λ = 0. See also Appendix E for
the cases of a resonator in a coherent state and in a thermal
state. In all cases, the resulting expression is inversely propor-
tional to κ: if the photons are allowed to escape rapidly from
the resonator, they have a smaller effect on the dephasing of
the spin.

VII. NUMERIC SIMULATION OF A SPIN
IN A SQUEEZED RESONATOR

To test the validity of the expressions obtained for the
dispersive shift of a spin, Eq. (34), and the dissipation rate
of the spin, Eqs. (36) and (22), we compute numerically the
power spectrum of the spin Ss[ω], defined as

Ss[ω] =
∫ ∞

−∞
〈σx(τ )σx(0)〉∞e−iωτ dτ. (37)

The dispersive shift is the distance between the position of the
maximum of Ss[ω] and the bare frequency ω̃s. This quantity
is plotted in Fig. 4(a) as a function of r. The dispersive shift
of the spin is initially negative (because ω̃s < ω̃r), and its
absolute value increases as a function of r for all r < rc. At
r = rc, the dispersive shift changes sign and starts to decrease.
At large r � 1, the dispersive shift increases again, signaling
an enhancement of the coupling between the spin and the
resonator. Our numerical findings are in excellent agreement
with our analytical result, Eq. (34), except for a narrow region
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FIG. 5. Numeric (left) and analytic (right) calculations for the ratio between the dispersive shift of a spin and its spectral width δω̃s/� as a
function of the squeezing parameter r and the loss rate of the resonator κ . The ratio has a local maximum for r = 1.1 ± 0.1, where one obtains
an optimal value for the effective coupling geff (see Fig. 3).

around r ≈ rc, where the analytical curve diverges while the
numerical one remains finite. From the width of the numerical
spectrum, we estimate the dephasing rate � [see Fig. 4(b)].
We find quantitative agreement with the analytical prediction
� = �Purcell/2 + �

photon
φ , where �Purcell and �

photon
φ are given

in Eqs. (22) and (36).
From the computed values of the dispersive shift and de-

coherence rate, we can estimate the relative strengths of these
two effects. The ratio between these two quantities is shown
in Fig. 5 and shows excellent agreement between analytics
and numerics. At a fixed κ , this ratio follows a nonmonotonic
behavior, with local minima at resonance for r ≈ rc and at
large squeezing for r � 1. In these regions, the ratio between
the dispersive shift and the decoherence rate tends to zero, in-
dicating that the dephasing effect of squeezing dominates over
the enhanced coupling between the spin and the resonator.
This ratio obtains an optimal value for r ≈ 1.1, corresponding
to the local maximum of the effective coupling parameter geff

found in Fig. 3(a).

VIII. DISCUSSION AND CONCLUSION

In conclusion, we studied the coherence properties of a
spin embedded in a resonator under parametric drive. We
found that such a drive gives rise to an enhanced effective
coupling between the spin and the resonator but also in-
creases relaxation and decoherence rates of both systems.
These nonunitary effects are related to the large number of
photons in the squeezed resonator. In particular, the number
of photons in a squeezed resonator modifies the relaxation rate
of the spin. This effect limits the relative enhancement of the
coupling by squeezing to approximately 20%. This situation
is in contrast to what usually occurs for coherent or thermal
states, where the relaxation of the spin via the resonator—the
so-called Purcell rate—is fixed by the intrinsic properties of
the system and is independent of the photon occupation. Here,
the squeezing terms change both the coupling between the
two systems and their loss rates. Our analytical approach

based on generalized Schrieffer-Wolff transformations and
quantum regression theorem is valid for squeezed cavities on
a large parameter scale and was found to be in quantitative
agreement with the numerical calculations. The theoretical
methods developed in this work enabled us to consider unitary
and nonunitary effects on equal footing and can be extended
further to more “exotic” quantum states like cat states [23] and
Gottesman-Kitaev-Preskill states [24,25].

The numerical calculations presented in this work were
obtained using the QUTIP PYTHON package. All the codes used
to generate the figures in this article can be found online [16].
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APPENDIX A: COMPARISON OF THE TWO
DECAY MECHANISMS

In this Appendix we compare the effects of Lindblad oper-
ators coupled to the physical operator a and to the squeezed
resonator operator γ . Figure 6 shows the spectrum of the spin,
defined in Eq. (37), for the two cases. Figure 6(a) reproduces
Fig. 1 of Ref. [10] and shows that in the presence of squeezing,
the system reaches the strong-coupling regime. Figure 6(b)
describes the physical situation where the resonator is im-
mersed in the regular vacuum. In this case, no level splitting
is observed.

Next, we compute the spectrum of the spin assuming that
the squeezing of the vacuum outside the resonator rL is dif-
ferent than the squeezing used to squeeze the resonator r. In
order to obtain this spectrum, we used Eq. (12) with squeezing
parameter rL and changed its value compared to the squeezed
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FIG. 6. Spectrum of the spin in the absence of squeezing (blue
circles) and in the presence of squeezing (red squares). The upper
and lower panels differ in the nature of the Lindblad operator used
in the calculation: in (a) we use L′ = √

κγ , which corresponds to a
resonator that is immersed in a squeezed vacuum. In (b) we use L =√

κa, which corresponds to the physical situation of an unsqueezed
vacuum. In the presence of squeezing, a splitting is observed for
(a) but not for (b).

resonator squeezing r. Figure 7 shows the spectrum for dif-
ferent ratios between rL and r. For r = 0 and r = rL, the
results converge to the two cases shown in Figs. 6(b) and 6(a),
respectively. If the vacuum is squeezed less (rL < r) or more
(r > rL) than the cavity, the effective coupling is significantly
reduced with respect to its optimal value (rL = r). Note that
the present calculation assumes that the cavity and the vacuum
are squeezed in the same rotating frame, where they can
be described as a time-independent Lindblad operator. This
requirement is extremely hard to achieve experimentally.

FIG. 7. Spectrum of the spin, assuming that different squeez-
ings are used for the vacuum (rL ) and for the resonator (r). The
Lindblad operator used in this calculation L = √

κ cosh(rL )γ +√
κ sinh(rL )γ †. The result converges to Fig. 6 for rL/r = 0, 1.

FIG. 8. Integrated two-time correlation function η, defined in
Eq. (E12), for different values of the numerical truncation parameter
N (a) in the original frame and (b) in the squeezed frame.

APPENDIX B: NUMERICAL CALIBRATION
OF THE TRUNCATION PARAMETER N

In this Appendix we study the effect of the truncation
parameter N and compare two different frames. The first
frame, which we denote as the original frame, corresponds to
the Hamiltonian in Eq. (6) and L = √

κa. The second frame,
which we denote as the squeezed frame, corresponds to the
transformed Hamiltonian (9) and the Lindblad operator in
the form of Eq. (12). In each frame, we truncate the matrix
representing the annihilation and creation operators, a, a† and
γ , γ †, respectively, and vary the maximal number of photon
occupation N . For concreteness, we consider the integrated
two-time correlation

η =
∫ ∞

−∞
〈[n(τ ) − n̄][n(0) − n̄]〉dτ (B1)

for a squeezed resonator, whose analytical expression is com-
puted in Appendix E [Eq. (E12)]. In the original frame
[Fig. 8(a)], the results converge slowly to the analytic solution
as we increase N . For an intermediate amount of squeez-
ing, r ≈ 1.5, the numerical solution requires extremely large
values of the truncation parameter N � 150 to converge to
the analytic solution. In contrast, the numerical results in the
squeezed frame [Fig. 8(b)] are less sensitive to the truncation
of the matrix size, thus converging much faster to the analytic
result. In this article we are interested in squeezing parameters
r � 1.5, and hence, we work in the squeezed frame and use
N = 30.
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TABLE I. geff max/g.

�����κ

g
5 10 20 40 80

20 1.0670 1.0173 1.0047 1.0180 1.0098
40 1.1469 1.0628 1.0151 1.0017 1.0037
80 1.2175 1.1280 1.0555 1.0118 1.0000
160 1.1990 1.1646 1.1015 1.0429 1.0062

APPENDIX C: DEPENDENCE OF THE MAXIMAL
EFFECTIVE COUPLING ON TWO PARAMETERS

In this Appendix we compute geff as described in Fig. 3(a)
for different values of the loss rate κ and the bare coupling g.
For each combination of κ and g, we extracted the maximal
value of geff , denoted by geff max (Table I). In order to demon-
strate the enhancement of geff , we present the ratio between
geff max and the bare coupling g. We find that the maximal
enhancement is obtained for small g and intermediate values
of κ and corresponds to an enhancement of approximately
20%.

APPENDIX D: QUANTUM REGRESSION THEOREM

In this Appendix we offer a simple derivation of the quan-
tum regression theorem for Markovian master equations of the
form

d

dt
ρ = Lρ, (D1)

where L is the Liouvillian superoperator and ρ is the density
matrix. For time-independent L, the time evolution of ρ is
given by

ρ(t + τ ) = eLτ ρ(t ). (D2)

The expectation value of an operator A is defined as

〈A(t )〉 = Tr[Aρ(t )]. (D3)

Its time derivative is given by

d

dt
〈A(t )〉 = d

dt
Tr[Aρ(t )] = Tr

[
A

d

dt
ρ(t )

]
. (D4)

Plugging in Eq. (D1), we obtain

d

dt
〈A(t )〉 = Tr[ALρ(t )]. (D5)

The quantum regression theorem allows one to compute the
two-time correlation function

〈A(t + τ )O(t )〉 = Tr[AeLτ Oρ(t )] (D6)

for systems where the time derivative of d〈A(t )〉/dt has a
linear dependence on the system’s operators Bj ,

d

dt
〈A(t )〉 =

∑
j

G j〈Bj (t )〉. (D7)

Because the trace of sum of matrices is the sum of their traces,
we can rewrite Eq. (D7) as

d

dt
〈A(t )〉 =

∑
j

G jTr[Bjρ(t )] =
∑

j

Tr[GjBjρ(t )]. (D8)

Because Eqs. (D8) and (D5) are satisfied for any ρ(t ), we find
that

AL =
∑

j

G jB j . (D9)

This result allows us to compute the time derivative of
Eq. (D6),

d

dτ
〈A(t + τ )O(t )〉 = d

dτ
Tr[AeLτ Oρ(t )] (D10)

= Tr[ALeLτ Oρ(t )]. (D11)

Using Eq. (D9), we obtain

d

dτ
〈A(t + τ )O(t )〉 = Tr

[∑
j

G jB je
Lτ Oρ(t )

]
(D12)

=
∑

j

G jTr
[
Bje

Lτ Oρ(t )
]

(D13)

=
∑

j

G j〈Bj (t + τ )O(t )〉. (D14)

Equation (D14) is the quantum regression theorem used in
Eq. (35).

APPENDIX E: TWO-TIME CORRELATION FUNCTIONS
OF THE RESONATOR

In this Appendix we compute the two-time correlation
function of the number of photons in a squeezed resonator
coupled to a thermal bath and in a coherent state. The Hamil-
tonian of a squeezed resonator is given by Eq. (6) with g = 0,

H/h̄ = ω̃ra†a − λ

2
(a2 + a†2

). (E1)

For a system described by the Lindblad master equation (10),
the time evolution of an arbitrary operator Oi(t ) is given by

d

dt
〈Oi(t )〉 = i

h̄
〈[H, Oi(t )]〉

+
∑

m

(
〈L†

mOi(t )Lm〉 − 1

2
〈L†

mLmOi(t )〉

−1

2
〈Oi(t )L†

mLm〉
)

, (E2)

where Lm are the Lindblad superoperators and m is a positive
integer {m = 1, 2, . . . }. If the resonator is coupled to a thermal
bath, the Lindblad operators are

L1 =
√

κ (n̄ + 1)a, (E3)

L2 = √
κ n̄a†. (E4)

The time derivative of �O(t ), where �O(t ) =
(n(t ), a2(t ), a†2(t ), 1)

T
, gives rise to a set of coupled

differential equations that can be written in the form of
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Eq. (29), with

G =

⎛
⎜⎝

−κ −iλ iλ κ n̄
i2λ −i2ω̃r − κ 0 iλ

−i2λ 0 i2ω̃r − κ −iλ
0 0 0 0

⎞
⎟⎠. (E5)

1. Squeezed resonator coupled to a zero temperature bath

For a squeezed resonator coupled to a zero-temperature
bath, n̄ = 0, Eq. (E5) becomes

G =

⎛
⎜⎝

−κ −iλ iλ 0
i2λ −i2ω̃r − κ 0 iλ

−i2λ 0 i2ω̃r − κ −iλ
0 0 0 0

⎞
⎟⎠. (E6)

To obtain the two-time correlation function 〈n(τ )n(0)〉, we use
the quantum regression theory (see Appendix D)

∂

∂τ
〈 �O(τ )n(0)〉 = G〈 �O(τ )n(0)〉. (E7)

We solve this equation by diagonalizing G and using as initial
conditions the steady-state solution of 〈 �O(τ )n(0)〉. To obtain
the latter, we compute the equations of motion of the expecta-
tion values of the operator

�ψ = (a†a, a2, a†2
, a†2

a2, a†3
a, a†a3, a4, a†4

, 1)T (E8)

and write them as d
dt 〈 �ψ (t )〉 = M〈 �ψ (t )〉, where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κ −iλ iλ 0 0 0 0 0 0
2iλ −2iω̃r − κ 0 0 0 0 0 0 iλ

−2iλ 0 2iω̃r − κ 0 0 0 0 0 −iλ
0 −iλ iλ −2κ 2iλ −2iλ 0 0 0

−3iλ 0 0 −3iλ 2iω̃r − 2κ 0 0 iλ 0
3iλ 0 0 3iλ 0 −2iω̃r − 2κ −iλ 0 0
0 6iλ 0 0 0 4iλ −2κ − 4iω̃r 0 0
0 0 −6iλ 0 −4iλ 0 0 −2κ + 4iω̃r 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E9)

The steady-state solution is given by the null eigenvector of
M, defined by M〈 �ψ〉∞ = 0, and corresponds to

〈 �ψ〉∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2λ2

4ω̃2
r +κ2−4λ2

− λ(2ω̃r+iκ )
−4ω̃2

r −κ2+4λ2

− −2ω̃rλ+iκλ
4ω̃2

r +κ2−4λ2

−−4ω̃2
r λ

2−κ2λ2−8λ4

(4ω̃2
r +κ2−4λ2 )2

6(2ω̃rλ
3−iκλ3 )

(−4ω̃2
r −κ2+4λ2 )2

6(2ω̃rλ
3+iκλ3 )

(4ω̃2
r +κ2−4λ2 )2

3(4ω̃2
r λ

2+4iω̃rκλ2−κ2λ2 )

(4ω̃2
r +κ2−4λ2 )2

3(4ω̃2
r λ

2−4iω̃rκλ2−κ2λ2 )

(4ω̃2
r +κ2−4λ2 )2

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E10)

From this expression and using the canonical commutation
relations, we obtain the initial conditions of Eq. (E7) for

τ = 0, namely,

〈 �O(0)n(0)〉∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3λ2(4ω̃2
r +κ2 )

(4ω̃2
r +κ2−4λ2 )2

2λ(2ω̃r+iκ )(4ω̃2
r +κ2−λ2 )

(4ω̃2
r +κ2−4λ2 )2

6λ3(2ω̃r−iκ )
(4ω̃2

r +κ2−4λ2 )2

2λ2

4ω̃2
r +κ2−4λ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E11)

FIG. 9. The two-time correlation for the photon-number operator
vs τ in a squeezed state for different values of r (solid blue and
dashed purple lines). This correlation provides an indication for the
effective temperature of the system, where the fluctuations increase
for a larger squeezing parameter r.
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Next, we solve Eq. (E7) by diagonalizing M and derive an
analytic expression for 〈n(t )n(0)〉 (see Fig. 9). Using this ex-
pression, we can compute the integrated two-time correlation
defined in Eq. (E12) and used in Fig. 8,

η = 2λ2
(
4ω̃2

r + κ2
)(

4ω̃2
r + 5κ2 − 4λ2

)
κ
(
4ω̃2

r + κ2 − 4λ2
)3 . (E12)

To evaluate the dephasing rate of a squeezed resonator, we
need to compute the two-time correlation of ñ [see Eqs. (18)
and (27)]. In order to find this quantity, we compute all
permutations obtained from the multiplication between ñ(τ )
and ñ(0), i.e., all the matrix elements of the 9 × 9 matrix
〈 �OT (τ ) �O(0)〉. We refer the reader to the Wolfram Mathemat-
ica code in the online repository for all the details [26]. This
calculation enables us to compute the integrated two-time
correlation function η̃ and infer the decoherence rate of a spin
coupled to a squeezed resonator, Eq. (36).

2. Thermal bath

We now consider a thermal bath in the absence of squeez-
ing (λ = 0). In this case, it is sufficient to compute the
expectation value of �O = (n(t ), 1)T , whose time derivative
takes the form of Eq. (30) with

G =
(−κ κ n̄

0 0

)
. (E13)

The steady-state expectation values are obtained by the null
eigenstate of G, defined by G〈 �O〉 = 0, leading to 〈n(t )〉∞ = n̄.
To obtain the two-time correlation 〈n(t + τ )n(t )〉∞, we use
the quantum regression theorem (35) and obtain

d

dτ

〈
n(t + τ )n(t )

1 n(t )

〉
=

(−κ κ n̄
0 0

)〈
n(t + τ )n(t )

1 n(t )

〉
. (E14)

Next, we compute the initial conditions (as done previously)
and find 〈n(0)n(0)〉 = n̄(2n̄ + 1). Finally, by diagonalizing G,
we obtain

〈n(τ )n(0)〉∞ = n̄2 + (n̄2 + n̄)e−κ|τ |. (E15)

Here, one can check that at τ → ∞ the operator n(τ ) is not
correlated to the operator n(0) and limτ→∞〈n(τ )n(0)〉∞ =
〈n(τ )〉∞〈n(0)〉∞ = n̄2. Using Eq. (E15), we can compute

η =
∫ ∞

−∞
〈n(τ ) − n̄〉〈n(0) − n̄〉dτ = 2(n̄2 + n̄)

κ
, (E16)

leading to the known result [27]

�
photon
φ = 4χ2

0 (n̄2 + n̄)

κ
. (E17)

3. Coherent state

To consider the dephasing of a spin coupled to a resonator
in a coherent state, we consider the following Hamiltonian and
Lindblad operator:

H = ω̃ra†a (E18)

L = √
κ (a − αeiω̃r t ). (E19)

The steady state of this system corresponds to a pure
state ρ(t ) = |ψ (t )〉〈ψ (t )|, where the coherent state |ψ (t )〉 =
|αeiω̃r t 〉 satisfies L|ψ (t )〉 = 0. Applying the transformation
U = e−iω̃r a†at to the Hamiltonian and the Lindblad operator
above, we obtain

H̃ = 0, (E20)

L̃ = √
κ (a − α)eiω̃r t . (E21)

In the new frame, we can write the coupled equations of
motion for �O, where �O = (n(t ), a(t ), a†(t ), 1)

T
, in the form

of Eq. (29) with

G =

⎛
⎜⎜⎜⎝

−κ 1
2α∗κ 1

2ακ 0

0 − 1
2κ 0 1

2ακ

0 0 − 1
2κ 1

2α∗κ
0 0 0 0

⎞
⎟⎟⎟⎠. (E22)

The steady-state solutions result in

〈 �O〉∞ = (|α|2, α, α∗, 1)T . (E23)

In order to find 〈n(τ )n(0)〉 we diagonalize the system and plug
in the initial conditions in the steady-state solution for τ = 0
[as done previously for Eq. (E10)]. Thus, we obtain

〈n(τ )n(0)〉∞ = |α|4 + |α|2e− 1
2 κ|τ |. (E24)

We can, again, check that at τ → ∞, the operator n(τ )
does not correlate with the operator n(0) such that
limτ→∞〈n(τ )n(0)〉∞ = 〈n(τ )〉∞〈n(0)〉∞ = |α|4. In this case,
we obtain

η =
∫ ∞

−∞
〈n(τ ) − n̄〉〈n(0) − n̄〉dτ = 4|α|2

κ
. (E25)

By changing the notation |α|2 to n̄, we obtain the dephasing
rate due to photon noise in a coherent state [28],

�
photon
φ = 8χ2

0 n̄

κ
. (E26)
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