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Abstract

A promising venue for hybrid quantum computation involves the strong
coupling between impurity spins and superconducting resonators. One strat-
egy to control and enhance this coupling is to prepare the resonator in a
non-classical state, such as a squeezed state. In this work, we theoretically
study the effects of these states on the coherence properties of the spin. We
develop an analytic approach based on the Schrieffer-Wolf transformation that
allows us to quantitatively predict the coupling and the dephasing rate of the
spin, and we numerically confirm its validity. We find that squeezing can
enhance the coupling between the resonator and the spin. However, at the
same time, it amplifies the photon noise and enhances the spin decoherence.
Our work demonstrates a major impediment in using squeezing to reach the

strong-coupling limit.

1 Introduction

Impurity spins in semiconductors are quantum entities with a long coherence time,
which enables them to store safely quantum information [1]. Unfortunately, the
weakness of their interaction with the environment hinders our ability to control
them directly. An appealing road towards a spin-based quantum processor consists
of combining the impurity spins with superconducting circuits [2, 3]. To realize this
kind of hybrid system, one needs to reach the strong coupling regime, where the
coupling between the spins and the superconducting circuit is much larger than the
decoherence rates. In recent years, such a regime was reached for large ensemble of
spins [4, 5], and for spin-like macroscopic structures [6, 7]. Yet, the coupling constant
of a single microscopic spin with a superconducting resonator is extremely small (of
the order of a few kHz [8]), and reaching the strong coupling, in these conditions,
remains a great challenge [9]. Recently, Ref. [10] suggested to increase artificially
the coupling by squeezing the resonator. In a squeezed state, the fluctuations of the
electromagnetic field in a given quadrature can be controlled and made arbitrarily
large [11, 12, 13]. Thus, increasing the coupling by squeezing seems interesting and

even promising. On the other hand, the large number of photons that characterizes



a squeezed state leads to large fluctuations, and may compromise the coherence of
the spin. In this work, we study the interplay between these two effects and show
that the beneficial effects of squeezing are strongly suppressed by the noise in the

photon number.

2 Physical model

We consider the quantum circuit illustrated in Fig. 1, which contains a lumped
element L.C resonator of resonance frequency w,, coupled inductively by a coupling
constant g to a spin of transition frequency w,. As mentioned earlier, the coupling
between the two systems is intrinsically small and it is necessary to increase it by at
least one order of magnitude in order to reach the strong coupling regime. Following
Ref. [10], we explore the possibility of squeezing the resonator to enhance its coupling
with the spin. To achieve this goal, we connect the resonator to a non-linear element,
namely a superconducting quantum interference device (SQUID). The Hamiltonian

of the system can be written as

E Dex
H/h= wd'a + iwo. + gla+d)o, —2=7 cos ( t) cos () (1)
~—— < — —— h 20
LC resonator spin coupling N -
SQUID

where a' (a) is the creation (annihilation) operator of a photon in the resonator,
{0.,0.} are the Pauli matrices, E; is the Josephson energy of the junctions, @ is
the flux threading the loop of the SQUID, ¢q = h/2e is the reduced flux quantum
and ¢ is the superconducting phase difference between the terminals of the inductor

L [14]. The flux ®.y is varied over time according to
q)ext = (I)DC + CI)AC COS (wpt) . (2)

If ®rc < o, it is possible to expand the cosine term in Eq. (1) to the first order

around Pp¢, such that
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Figure 1: Circuit diagram showing a lumped element LC resonator (red) of
resonance frequency w, and coupled inductively by coupling constant g to a spin

(gray). In order to increase the coupling g, one drives a SQUID (blue) with a

parametric drive (yellow) at frequency w, = 2w, .
This leads to
H/h=wld'a+ 3} (w —w,) (a2 + aTQ) + FWs0
+g(a+a)(op +0-) — Acos(wyt) (a+ aT)2 :
where w!. = w, + 4¢%pr (E;/h) cos [Ppc/(2¢0)] and

2
)\ = &(I)AC SOZPF sin <—(I)DC> . (5)

We now move to a frame that rotates at the pump frequency, by applying the
unitary transformation U (t) = exp [iw,t/2 (a'a + 0./2)], leading to the transformed
Hamiltonian H = UHU' — ihUU'. When w, A 2w, one can neglect the quickly

rotating terms and obtain
H/h=&,aa + Lo, — A (a® + aP?)

+g (aa+ + (ITO'_) ,



where @, = W', —w,/2 and @s; = w; — w,/2. Eq. (6) describes the coupling between
a spin and a squeezed resonator and is the focus of the present study.

In order to characterize the effective coupling between the spin and the squeezed
resonator, we diagonalize the latter using a Bogoliubov transformation. To perform

this task, we introduce the canonical operators v and ', defined as

v = acosh(r) — al sinh(r)
7" = a' cosh(r) — asinh(r)

such that

vl = cosh(2r)a’a — £ sinh(2r) <a2 + aT2> . (8)

The Hamiltonian (6) becomes

H/h=Q"y + 30,0; + 39¢" (V1 +7) (04 +0-) o)
—39¢ (7 =)(o4 —0).
where , = @, /cosh(2r) and r = tanh™'(\/@,)/2. The Hamiltonian Eq. (9) de-
scribes two main effects of squeezing: First, the frequency of the resonator is re-
duced from @, to €, and, second, the coupling between the spin and the resonator
is enhanced by a factor of e"/2. At first sight, this factor can be arbitrarily large
and thus brings the system to the strong coupling regime [10]. However, as we will
see in the following, this effect is impaired by the enhanced decoherence of the spin.
To study the interplay between squeezing and decoherence, we consider the com-
bined action of the Hamiltonian H and the decay of photons from the resonator,
described by the quantum master equation
d _ _ifg 1t :
— h[ ,p]—l—LpL L(L'Lp+ pL'L) | (10)
where p(t) is the density matrix and L = y/ka is a Lindblad superoperator. The
operator L originates from the coupling between the superconducting resonator and

the external environment, and drives the resonator to its vacuum (zero photons)

state.



3 Numeric simulation of a squeezed resonator

To quantify the coupling between the spin and the resonator, we numerically com-
pute the power-spectrum of the resonator S, [w], defined as

s [ " a (H)a(0)yoee— (11)

o0
where the sub-index oo implies that we compute the expression in the steady state
!, Since we work with ladder operators of an harmonic oscillator, and these cannot
be described by a finite matrix, the precision of the numerical calculation depends
on the truncation of the matrix operator which represents them. We truncate the
matrix to a maximal number of photons, denoted by N, leading to density matrices
of size (2N)?. In the presence of squeezing, large values of N are required to obtain
results that coincide with the exact solution (see Fig. 7 in Appendix B). To overcome
this difficulty, we perform the numerical calculations in the squeezed frame, see
Eq. (9), where smaller values of N are sufficient to obtain good numerical results.

Note that the Lindblad superoperator L must transform accordingly:

L = /kcosh(r)y + /K sinh(r)y! (12)

Equation (12) represents a major difference between the present work and Ref. [10],
where the Lindblad operator was assumed to be proportional to the annihilation
operator in the squeezed frame, namely L' = \/k7y. The physical realization of the
Lindblad operator L’ requires one to squeeze the vacuum outside the resonator by
exactly the same amount as the squeezing inside the resonator. While theoretically
possible, this situation is unrealistic in an actual experiment. The substitution of
L' with L has dramatic implications. In particular, this substitution leads to the
disappearance of the level splitting shown in Fig. 1 of Ref. [10] (see Appendix A).

To study the effect of squeezing on the effective coupling between the resonator and
the spin in a controlled manner, we consider a system where the bare frequency of

the resonator is larger than the frequency of the spin @, > @,. For concreteness,

!The numerical calculations presented in this work were obtained using the QuT%P python pack-
age [15]. All the codes used to generate the figures in this article can be found online at https://

github. com/InbarShaniQGlO/Coherence_Properties_of_a_Spin_in_a_Squeezed_Resonator


https://github.com/InbarShani2610/Coherence_Properties_of_a_Spin_in_a_Squeezed_Resonator
https://github.com/InbarShani2610/Coherence_Properties_of_a_Spin_in_a_Squeezed_Resonator
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Figure 2: (a) Frequency of the squeezed resonator, ., in the frame rotating
at angular frequency w,/2 relative to the laboratory frame, as a function of the
squeezing parameter r. The resonator frequency is set to @, = 1 MHz and spin’s
frequency changes between ws = 0.9,0.6,0.3 MHz. Accordingly, the crossing
point between the resonator and the spin changes between r. ~ 0.16,0.61,0.89.
The inset shows a schematic picture of the energy levels, illustrating the resonance
condition in the presence of finite squeezing. (b) Spectrum of the resonator S, (w),

in the vicinity of the crossing conditions (€2, = @) for ¢ = 5 kHz and x = 40 kHz.

throughout the article we consider a system with w, = 1 MHz, w, = 0.6 MHz, g =5
kHz, and x = 40 kHz (unless explicitly mentioned otherwise). By introducing a
squeezing term, we effectively reduce the resonator frequency to Q. (see Eq. (9)),
until the resonance condition is matched (§2, = @), as illustrated in Fig. 2(a).
Changing the bare frequency of the spin @y modifies the value of the squeezing
parameter r = r. at resonance condition. The power spectrum near ., Fig. 2(b),
has the typical structure of an avoided level-crossing. At a fixed value of r, the
spectrum shows two peaks, whose frequencies correspond to the energy levels of the
mixed resonator-spin states (see inset in Fig. 2(a)). We use the frequency difference
between the maximum and the local minimum of the spectrum at resonance, i.e.
for r = r., to estimate the coupling strength between the spin and the resonator.

In analogy to the Jaynes-Cummings model, we denote this distance as y and plot



its value as a function of r. in Fig. 3(a). For small bare detunings (|@, — @s| < @),
the size of the anticrossing x increases as a function of r. until it reaches a maximal
value. This result is in stark contrast to the case of the squeezed vacuum operators
of Ref. [10], where arbitrarily large couplings can be obtained. The upper limit
of x is due to the back-action of the squeezed resonator on the spin, leading to its
fast dephasing: this process can be identified by observing the broadening of the
spectrum at resonance (see Fig. 2(b)). We quantify this effect by measuring the ratio
between the maximal intensity of the spectrum. We denote as Sy, (resp. Smax) the
values of the spectrum at its local minimum (resp. maximum) and show in Fig. 3(b)
that the contrast of the anticrossing, defined as 1 — Syin/Smax, 18 & monotonously
decreasing function of .. When the resonator is squeezed significantly (r. ~ 1) the
contrast vanishes, indicating that the spin is completely dephased. To analyze the
physical origin of this effect, we repeat the same calculations for different values of
the loss rate x, which controls the number of photons occupying the resonator (see
the inset of Fig. 3(b)). The maximum size of the anticrossing x is shifted towards
higher values when the decay rate of the resonator s is increased. Eventually, for
large values of the decay rate x, x begins to deteriorate. The maximal value of y is
only 20% larger than its initial value and is insufficient to reach the strong coupling

regime.

4 Schrieffer-Wolff Transformation for a Squeezed
resonator

Motivated by the numerical results of the previous section, we now introduce a
systematic approach to describe the effects of the squeezed resonator on the spin.
Our approach generalizes the Schrieffer-Wolf (SW) transformation [16] to a squeezed
resonator and allow us to compute the energy shift and the decoherence of the spin

analytically. As a first step, we write the Hamiltonian (6) as H = Hy + V, with

ﬁo/h = Opata + %&)saz — %/\ (a2 + aT2) (13)

V/h=g(a'o_ +aoy). (14)
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Figure 3: (a) Dispersive shift y determined from the spectrum of the resonator
Srlw], as a function of r.. (b) Contrast of the spectrum 1 — Spin/Smaz. The
suppression of the contrast at large squeezing indicates that enhanced decoherence

of the spin. Inset: photon number occupying the resonator.

Next, we apply the unitary transformation U = e, where S is the anti-Hermitian

operator
S = Cy(acy —alo )+ Cylao_ —a'oy), with (15)
g Ws + W, g A
= —— = = 1
YTAGHQ T AG,+ Q. (16)

and A = &, — Q,. This transformation satisfies the condition [Hy, S] = V and leads
to a transformed Hamiltonian I:ISW = ¢5He S that does not include linear terms
in V. By expanding this expression to second order in V', we obtain flsw/ h =

Hy/h+ 60,0./2, with a dispersive shift



where we defined x, = ¢?/A, and

((:)s + (:)r) (QCLTCL + ].) — )\ (CLZ + CLT2>

~ l:
- 2(@s + )

(18)

For A = 0, Egs. (17) and (18) recover the well known Lamb shift of a spin coupled

to a resonator

0Ws =Xo (2aTa + 1) and yg =

(19)

Ws — Wy

The SW transformation creates an effective channel of dissipation for the spin,
in addition to its intrinsic dissipation. In order to consider this effect, one needs to
transform the dissipation operator L using the SW transformation. Up to second

order in V|
Lsw = ¢Le™ = L+ [S, L] + L [S,[S, L] + ... (20)
Using Eq. (15), we obtain

2

LSW = \/ECL + \/ECHU_ + \/ECQO'+ + O (%) (21)
After the transformation, the resonator and the spin are decoupled, such that the
coherence of the spin is entirely dictated by the second and third terms of Eq. (21).

If we consider these two terms as independent channels, we obtain an effective

decoherence rate

FPurcell - I‘1 + F2 =K (012 + 022) . (22)

In the limit of A = 0, this expression reproduces the well-known Purcell decay,

FPurcell = gQH/AQ [177 5]

5 Photon noise

In addition to the Purcell effect, the squeezing of the resonator also affects the pure
dephasing rate of the spin. Stochastic fluctuations in the number of photons in the

resonator create a random dispersive shift which translates into a dephasing of the



spin. The rate of this process can be determined by the decay of the expectation

value (0, (t)) in a system initialized in the |[+) = (]0) 4 [1)) /v/2 state [18],

<O‘z(t)> _ % (ez‘fg Sis (t")dt’ + et fg &Ds(t’)dt’) . (23)

Assuming that n(t) = ng + 0n(t), where the fluctuation dn(t) is a random variable

with zero average, one can rewrite the exponent as

-t oo~ ’ ’ ’
6:I:z fo 8o (t)dt! _ e:l:zxr(Qn()—i-l)t +i2xr fo on(t dt (24)

By expanding the exponent to a Taylor series, one obtains

<€iixrfg5ﬁ(t’)dt ~1 2X7»/ dt' / dt// ~ ~( )>
~1—2M§/ (67(r)571(0)) sl (25)

Here, the last identity is valid in the limit of ¢ — oo, under the assumption that
the resonator is found in a steady state, where two-time correlations depend on the
time difference only. In the case of Gaussian fluctuations, the higher order terms

can be re-summed exactly leading to

thotont

(1)) = cos [y, (20 + 1) 1] e 75, (26)
where we defined
PPN 9,25 and i = / (67(7)57(0)) dr. (27)

In Appendix D, we compute the correlations (dn(7)on(0)) for a thermal state and
for a coherent state and reproduce known results for the photon noise dephasing of

the spin.

6 Steady state correlations of a squeezed resonator

In the previous sections we expressed the dispersive shift and the decoherence rates
of the spin in terms of physical observables of the resonator, see Eqgs. (17), (22)
and (27) . In the following, we compute these quantities in the steady state of a

squeezed resonator described by the Hamiltonian (13) (with ¢ = 0). According to

10



the Lindblad master equation (10), the expectation value of a generic operator O(t)

is determined by the differential equation

S o) = % ([H,0())) + (LIOW)L) — L ((L'LO®)) + (O()LTL)) . (28)

—

This equation can be explicitly solved if one finds a set of variables O = (O1, O, ...)

whose expectation values satisfy the closed-form recursive relation
d
- (0i(1)) = > Gy (05(1)), (29)
J

where G, ; is a time independent scalar. For a squeezed resonator, this condition is

. T
satisfied by the operator O = (aTa, a?, aTQ, ]1) with

—K i i\ 0
2\ —i20, —k 0 i\
= (30)
—i2) 0 020, — K —i\
0 0 0 0

The steady-state expectation values of O can be found by equating the left-hand
side of Eq. (29) to 0, or equivalently by demanding that » . G;; (O;(t)),, = 0. Using
this approach, we find

2\

<aTa>oo = 49—2 T R2 (31)
N2@, + ik)

<a2>oo = 4—92 T R2 (32)
2 A (20, — k)

(@)oo = = p T (33)

Plugging these results in Eq. (17), we obtain an analytic expression for the dispersive

shift of the spin,

ows =

2 2~
g AN “wg . .

e (493 o va, M) (34)
For a quantum system described by a Markovian master equation, the two-time
correlator of Eq. (27) can be computed using the quantum regression theorem [19]

(see also Appendix C for a simple proof). According to this theorem, given a set

11
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Figure 4: (a) Dispersive shift and (b) dissipation rate of the spin, as a func-
tion of the squeezing parameter r. The continuous lines are our analytic ex-
pressions for the dispersive shift, Eq. (34), and for the total dissipation T'yo =
Thurcenn/2 + thown, Egs. (22) and (36). This approximation fits very well to the
exact numerical results (dots), except for the range|A| < g (the gray shaded area

marks where |A| < 0.02g).

of operators O that satisfy Eq. (29), the two-time correlation functions satisfy the

differential equation
d
(04t +7)Ox(1) = D " Gig (O5(t +7)Ok(L)) . (35)
J

Using this theorem, we can compute the two-time correlation function of the squeezed
resonator (see Appendix D for details). Plugging this result into Eq. (27) we obtain

the dephasing rate due to photon noise in the squeezed resonator:

photon 20202 [(2Q2+ k%) (492 + 3k?)
F¢ = 5 QQ B wrwsﬁ
K (Qr 4 @5)° L4027 + £?) (402 + K2)
02 (4% + K?) (492 + 5&2)1
w .
T A2+ R

(36)

12



Equation (Eq. (36)) is proportional to A?: The photon noise is associated with the
occupation of the resonator, induced by squeezing, and vanishes for A = 0. See also
Appendix D for the cases of a resonator in a coherent state and in a thermal state.
In all cases, the resulting expression is inversely proportional to x: if the photons
are allowed to escape rapidly from the resonator, they have a smaller effect on the

dephasing of the spin.

7 Numeric simulation of a spin in a squeezed res-
onator

To test the validity of the expressions obtained for the dispersive shift of a spin,
Eq. (34), and the dissipation rate of the spin, Eqgs. (22) and (36), we compute
numerically the power spectrum of of the spin Sy [w], defined as

Sew] = /OO (0:(7)04(0)) e “7dT (37)
The dispersive shift is the distance between the position of the maximum of S [w]
and the bare frequency @,. This quantity is plotted in Fig. 4(a) as a function of
r. The dispersive shift of the spin is initially negative (because ws; < @,) and its
absolute value increases as a function of r for all r < r.. At r = r., the dispersive
shift changes sign and starts to decrease. At large r = 1, the dispersive shift in-
creases again, signaling an enhancement of the coupling between the spin and the
resonator. Our numerical findings are in excellent agreement with our analytical re-
sult, Eq. (34) , except for a narrow region around r = r., where the analytical curve
diverges, while the numerical one remains finite. From the width of the numerical
spectrum, we estimate the dephasing rate I', see Fig. 4(b). We find a quantitative
agreement with the analytical prediction I' = I'pyreen/2 + thomn, where I'pyreen and

thomn are given in Eqgs. (22) and (36).

From the computed values of the dispersive shift and decoherence rate, we can
estimate the relative strength of these two effects. The ratio between these two

quantities is shown in Fig. 5 and, again, shows an excellent agreement between

13
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Figure 5: Ratio between the dispersive shift of a spin and its spectral width,
dws /T, as a function or the squeezing parameter r and the loss-rate of the resonator
k. The ratio has a local maximum for » = 1.1 4+0.1, where one obtains an optimal

value for the effective coupling x, see Fig. 3.

analytics and numerics. At a fixed k, this ratio follows a non-monotonic behavior,
with local minima at resonance, for r ~ r., and at large squeezing, for r > 1. In
these regions, the ratio between the dispersive shift and the decoherence rate tends to
zero, indicating that the dephasing effect of squeezing dominates over the enhanced
coupling between the spin and the resonator. This ratio obtains an optimal value for
r =~ 1.1, in correspondence to the local maximum of the effective coupling parameter

x found in Fig. 3(a).

8 Discussion and Conclusion

In conclusion, we studied the coherence properties of a spin embedded in a resonator
under parametric drive. We found out that such a drive gives rise to an enhanced
effective coupling between the spin and the resonator but also increases relaxation
and decoherence rates of both systems. These non-unitary effects are related to the
relatively large number of photons in the squeezed resonator. In particular, the num-

ber of photons in a squeezed resonator modifies the relaxation rate of the spin. This

14



effect limits the relative enhancement of the coupling by squeezing to approximately
20%. This situation is in contrast to what usually occurs for coherent or thermal
states, where the relaxation of the spin via the resonator - the so-called Purcell rate
- is fixed by the intrinsic properties of the system and is independent of the pho-
ton occupation. Here, the squeezing terms change both the coupling between the
two systems and their loss rates. The theoretical methods developed in this work
enabled us to consider these two effects on equal footing and could be extended fur-
ther to more ‘exotic’ quantum states like cat states [20] or Gottesman-Kitaev-Preskill
(GKP) states [21, 22]. Our analytical approach based on generalized Schrieffer Wolf
transformations and quantum regression theorem are valid for squeezed cavities on
a large parameter scale and were found to be in quantitative agreement with the

numerical calculations.
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Appendix

A Comparison of the two decay mechanisms

In this section we compare the effects of Lindblad operators coupled to the physical
operator a, or to the squeezed resonator operator . Fig. 6 shows the spectrum
of the spin, defined in Eq. (37), for the two cases. Fig. 6(a) reproduces Fig. 1 of
Ref. [10] and shows that in the presence of squeezing, the system reaches the strong
coupling regime. Fig. 6(b) describes the physical situation, where the resonator is

immersed in the regular vacuum. In this case, no level splitting is observed.

1.0

0.8

0.6

S,w

0.4

0.2

0.0
1.0 (b)
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e’ =0.0dB
e’ =20.0dB
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Figure 6: Spectrum of the spin, in the absence of squeezing (blue) and in the
presence of squeezing (red). The upper and lower panel differ in the nature of
the Lindblad operator used in the calculation: in (a) we use L' = /k7, which
corresponds to a resonator that is immersed in a squeezed vacuum. In (b) we use
L = \/ka, which corresponds to the physical situation of an unsqueezed vacuum.

In the presence of squeezing, a splitting is observed for (a) but not for (b).
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B Numerical calibration of the truncation param-

eter N

In this appendix we study the effect of the truncation parameter N, and compare two
different frames. The first frame, which we denote as the original frame, corresponds
to the Hamiltonian in Eq. (6) and L = y/ka. The second frame, which we denote
as the squeezed frame, corresponds to the transformed Hamiltonian Eq. (9) and
Lindblad operator in the form of Eq. (12). In each frame, we truncate the matrix
representing the annihilation and creation operators, respectively a, a’ and v, vf, and
vary the maximal number of photon occupation N. For concreteness, we consider

the integrated two-time correlation

0

1= [ (o) =)l = a)yar (39
for a squeezed resonator, whose analytical expression is computed in Appendix D,
Eq. (64).

In the original frame, Fig. 7(a), the results converge slowly to the analytic solution
as we increase IN. For intermediate amount of squeezing, » ~ 1.5, the numerical
solution requires extremely large values of the truncation parameter N 2 150 to
converge to the analytic solution. In contrast, the numerical results in the squeezed
frame, Fig. 7(b), are less sensitive to the truncation of the matrix size, thus converg-
ing much faster to the analytic result. In this article we are interested in squeezing

parameters r < 1.5 and, hence, we work in the squeezed frame and use N = 30.

C Quantum Regression Theorem

In this appendix we offer a simple derivation of the quantum regression theorem for

Markovian master equations of the form

d
So=r 39

where L is the Liouvillian superoperator and p is the density matrix. For time-

independent £, the time evolution of p is given by

plt+7) = ¢ p(t). (40)
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Figure 7: Integrated two-time correlation function 7, defined in Eq. (64), for
different values of the numerical truncation parameter N, (a) in the original frame

and (b) in the squeezed frame.

The expectation value of an operator A is defined as

(A(t)) = Tr[Ap(t)]. (41)

Its time derivative is given by
SA0) = T A] =0 [ 4% 000)]. (12

Plugging-in Eq. (39) we obtain
(A = Tr[ALo(1) (43)

The quantum regression theorem allows one to compute the two-time correlation

function
(A(t+7)O(t)) = Tr [Ae“"Op(t)] (44)

for systems where the time derivative of d(A(t))/dt has a linear dependence on the

system’s operators B;,

SHAW) = Y0 6,(B,(0). (45

18



Because the trace of sum of matrices is the sum of their traces, we can rewrite

Eq. (45) as
ZG Tr (Bt ZTI [GB;p(1)]

Because Eq. (46) and Eq. (43) are satisfied for any p(t), we obtain that

A£ == Z Gij

This result allows us to compute the time derivative of Eq. (44),

csz (Al + 7)O(8)) = diTTr (A5 0p(1)]
= Tr [ALe“Op(t)] .

Using Eq. (47) we obtain

d

(At +7)O@) = Tr

Z GijECTOp(t)

J

= ZG-Tr [B;e“"Op(t)]

—ZG (t+7)0())

Eq. (52) is the quantum regression theorem used in Eq. (35).

(46)

(47)

(48)

(49)

D Two-time correlation functions of the resonator

In this appendix we compute the two-time correlation function of the number of

photons in a squeezed resonator coupled to a thermal bath and in a coherent state.

The Hamiltonian of a squeezed resonator is given by Eq. (6) with ¢ =0

H/h=&.a'a - % <a2+aT2> .

(53)

For a system described by the Lindblad master-equation Eq. (10), the time evolution

of an arbitrary operator O;(t) is given by

d l
7 (0:(t)) = = ([H.0))) +

> ((LT Oi(t) L) — _<LT LnO;(t >—%<Oi(t)LIan>),

m

19
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where L,, are the Lindblad superoperators and m is a positive integer {m = 1,2, ..}.

If the resonator is coupled to a thermal bath, the Lindblad operators are

Ly =+v/k(n+1)a (55)

Ly = Vkna' (56)

. . T
The time derivative of O(t), where O(t) = (n(zf)7 a*(t), at(b), ]1) , gives rise

to a set of coupled differential equations that can be written in the form of Eq. (29),

with
—K —1IA A KN
12\ =120, — K 0 A
= (57)
—12) 0 120, — K —IA
0 0 0 0

D.1 Squeezed resonator

For a squeezed resonator coupled to a zero-temperature bath, n = 0, Eq. (57)

becomes
—K —iA A 0
12\ —120, — K 0 A
= (58)
—12A 0 120, — K —IA
0 0 0 0

To obtain the two-time correlation function (n(7)n(0)), we use the quantum regres-

sion theory, see Appendix C, to obtain the relation

a% (0(r)n(0)) = G {G(r)n(0) ). (59)

We solve this equation by diagonalizing G and using the initial conditions for the
steady-state solution of <6 (T)n(0)> To obtain the latter, we compute the equations

of motion of the expectation values of the operator

. T
Y= (aTa, a2, at’, at’a2, a’a, a'ad, at, at’, ]1) (60)
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and write them as < (ip(t)) = M (4)(t)), where

dt
> W > W 0 0 0 0 0
2\ —2iG—k 0 0 0 0 0 0 i
—2A 0 2id—k 0 0 0 0 0 —ix
0 —ix A -2k 20 —2ix 0 0 0
M=1 -3x o 0 —3i\2i@, -2k 0 0 i 0 (61)
3ix 0 0 3\ 0 —2i@-2% —i\ 0 0
0 6ix 0o 0 0 4ix —2k—did, 0 0
0 0 —6iA 0 —4iX 0 0 —2k+did, O
0 0 00 0 0 0 0 0

-,

The steady-state solution is given by the null eigenvector of M, defined by M ()., =

0, and corresponds to

222

402 4r2—4X2

 AQ@@rtis)
—402 —k24+422
2@y AtirA
402 +r2—4x2
_ —402a2 k222 _sxd

(402 +r2—422)?

6(2mr>\3ﬂ‘m3)
< >oo = (—402 —r2+422)? ) (62)
6(2J)T/\3+m>\3)
(492 +r2—422)?

3 (4@3A2+4imm2 7%2%)

(492 +r2-422)?

3(4@3 A2 — i@ kA2 7&2A2)

(492 +r2-422)?
1

From this expression, and using the canonical commutation relations, we obtain
the initial conditions of Eq. (59) for 7 = 0, namely

322 (4&)%+n2)
(402 +12—422)?
. 2A(2J}r+in)(4&$+n27>\2>
(OO)n(0)) e = | — Gz mer |, (63)
673 (20 —ik)
(402 +x2—422)?

222
402 +k2—4)2

Next, we solve Eq. (59) by diagonalizing M and derive an analytic expression
for (n(t)n(0)), see Fig. 8. Using this expression, we can compute the integrated
two-time correlation defined in Eq. (64) and used in Fig 7,

202 (42 + K?) (407 + 5K — 4)?)

64
k(402 + K2 — 4X2)° (64

n

To evaluate the dephasing rate of a squeezed resonator, we need to compute the
two-time correlation of 7, see Eqgs. (18) and (27). In order to find this quantity, we

compute all permutations obtained from the multiplication between n(7) and 72((0)),

21



i.e. all the matrix elements of the 9 x 9 matrix (OT(7)O(0)). We refer the reader to
the Wolfram Mathematica code in the online repository for all the details 2. This
calculation enables us to compute the integrated two-time correlation function 7 and

infer the decoherence rate of a spin coupled to a squeezed resonator, Eq. (36).

0.05
0.00
-0.05
=
= 5
N—"
£
= 0
N—"
c
~
50
0

Figure 8: The two-time correlation for the photon-number operator vs 7, in
a squeezed state for different values of r (solid blue and dashed purple). This
correlation provide an indication for the effective temperature of the system, where

the fluctuations increase for larger squeezing parameter r.

D.2 Thermal bath

We now consider a thermal bath in the absence of squeezing (A = 0). In this case,
. T
it is sufficient to compute the expectation value of O = (n(t), ]1) , whose time

derivative takes the form of Eq. (30) with
G = . (65)

The steady-state expectation values are obtained by the null eigenstate of GG, defined

—

by G(O) = 0, leading to (n(t))oc = 1. To obtain the two-time correlation (n(t +

thtps://github.com/InbarShaniQGlO/Coherence_Properties_of_a_Spin_in_a_

Squeezed_Resonator/tree/Mathematica_code
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T)n(t)), We use the quantum regression theorem Eq. (35) and obtain

a <n(t+r)n(t>>: ~K KR <n<t+r)n(t>>. (66)
dr 1 n(t) 0 0 1 n(t)

Next, we compute the initial conditions (as done previously), and find (n(0)n(0)) =

n(2n + 1). Finally, by diagonalizing G, we obtain
(n(T)n(0))oo = 0* + (A> + 1) e, (67)

Here, one can check that at 7 — oo the operator n(7) is not correlated to the
operator n(0) and lim, . (n(7)n(0))s = (n(7))0e(n(0))s = n?. Using Eq. (67), we
can compute

1= [ tar) = m)talo) - par = 2L (68)

0o K

leading to the known result [23]

oton 4X2 (/ﬁ/2 + ﬁ)
pproten — 20— (69)

N K
D.3 Coherent state

To consider the dephasing of a spin coupled to a resonator in a coherent state, we

consider the following Hamiltonian and Lindblad operator

H = &,d'a (70)
L=k (a—ae™"). (71)

The steady state of this system corresponds to a pure state p(t) = |¢(t))((t)],
where the coherent state [1(t)) = |ae®r?) satisfies L[y(t)) = 0. Applying the
transformation U = e~®ra'at on the Hamiltonian and the Lindblad operator above

we obtain

]
I
=)
—
-3
>

e
I

VE (a — a) ™, (73)
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In the new frame, we can write the coupled equations of motion for 6, where O =

T
<n(t), a(t), a'(t), ]1) , in the form of Eq. (29) with

—K %a*/{ %a/{ 0
o 0 —%/i 0 %om (74)
0 0 —ilx %Oé*li '
0 0 0 0
The steady state solutions result in
<6>OO = (lOé’Q, &, 05*7 ]-)T . (75)

In order to find (n(7)n(0)) we diagonalize the system and plug in the initial condi-
tions in the steady-state solution for 7 = 0 (as done previously for Eq. (62)). Thus,

we obtain
(n(7)n(0)) o = |a]* + Jaf” 7277, (76)

We can, again, check that at 7 — 0o, the operator n(7) does not correlate with the
operator n(0) such that lim,_ e (n(7)n(0))ss = (n(7))ee(n(0))os = |a|*. In this case,

we obtain

1= [ tatr) = m)tulo) - mar = 221 (77)

0o K

By changing the notation ]a]Q to n, we obtain the dephasing rate due to photon

noise in a coherent-state [24]

thoton _ . (78)
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PPN

D90 P2 P3N TS NYDID DM TIN DOOVMP DXIVWIN DY MINID NNV YPIP
TN VDYDY 1N N2 NNX IVIVON .0YDIN-DY DIDIVND 'OIMMY YT DY DISNN
ANN NI PONIP IDIRY 2NN YT HY PIINAY TINHD NMYNNINI N ININ PN
MMANNI DY VN DXANN DY HY MYOIWNN NX YONINN J9IND MIPN 1N NTIAYA .7OINDY
,A9N-19"YW NMXNTNADINY DY NODINY ,NPDIDIN DY) NN .PADN DY NPLIIMPN
YA T NN TINNID PODN DY THINN 7P NN PN I9IND TND 1D NIVINDN
ININND NYNIY GPIN DM D21 DXIVIN JON DY NPVLITIMPN NN TIN NIN
™MD PADY TINNN P2 TN DX DPTHND MMIWY TINNN DY #NVXNDIN ¥ DONIT NMIN
PN TINNN NN OXODINNN DNINVIVN NINIIND IXNN YYIN DY 1IN W NN, NNY
DY2IVWONN NN DXPNN NN ,IT NTIAYA . PIDN HY NPLIIMPN TIVN NINY DN

PN TINOND I 21202 XNNNY NN DY POINDY 2NN WINIYN 292 DXANNN



YIVY DRI VT NNV-NDT IRNNY V7T W DNIITNA NNWYI 1N NTIAY

APON-92 NVIDININ DY NP0 NPONNNN



177X-92 DVXOIDINN

11993 1290 YV NPVITNIP 23NN
1N

Y 11y

P92 NPONNA THDIN ININ NDAP OWY MYIITNN POND NV N NTIAY
PPN NVIDIDININ

ORIV ) NDI N”7aVYNN
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