How many measurements does it take to kill a Quantum state?

Entanglement Phase Transitions and natural error correction in Random
Unitary Circuits with Measurements
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Large scale entanglement is essential for
guantum computation

1 + 1 Are all entangled states fragile
JE‘ > \7_5-\ ’-) like Schroedinger’s cat?
NO! Highly entangled states encode information in nonlocal coefficients:
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Measuring a few local qubits does not reveal much of this information.
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How many measurements does it take to collapse a quantum state?



Lets sharpen the questions ...

S(A) ~ N4
Generic unitary time evolution generates O
Large scale (volume law) entanglement
@ e I I O
1 1 1 /7{
Now suppose we measure the state L = -
of local qubits at some rate during w [ T 1 T I 1
How sensitive is the volume law? | O O O O O A
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Numerics (and general arguments) Li, Chen, Fisher arXiv:1808.06134

suggest a phase transition from Skinner, Ruhman, Nahum arXiv:1808.05953
volume-law to area law at a critical
measurement rate. Related to early work by Dorit Aharonov

quant-ph/991008
* Note: here it is crucial to look at individual trajectories!

What is the nature of the phase transition ?
What is the most natural way to observe it ?



Entanglement in generic unitary time evolution
Tractable example: random unitary circuit

Minimal cut picture (Nahum, Ruhman et al, PRX 2017):

Short time ¢ < /2 Long time ¢t > L /2
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Random Unitary Circuit with projective measurements

Add a finite density of single g-bit L 1 L 1 | 1 1 |
measurements ( -- ) to the circuit:
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PM‘TM with prob.<pu>
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How does the entanglement grow?
Does it saturate to an area law or volume law?

B. Skinner et al, arXiv:1808.05953
Y. Li et al, arXiv:1808.06134
A. Chan et al, arXiv:1808.05949



Percolation picture

Skinner, Ruhman, Nahum, arXiv:1808.05953
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Percolation transition {

* This model is oversimplified. Works only for a very singular type of entropy (S,)

Gets the wrong value of p,

p<0.5

P>0.5
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Minimum cut: Volume-law entanglement

“Free cuts” percolate: Area-law entanglement

Numerical solutions seem to give non-percolation exponents



This talk

 Effective description of the transition
(mapping to statistical-mechanics models)

* A new interpretation as a phase transition in the amount of
information extracted from the system by measurements

=+ More readily observable signature of the transition



Challenges for theoretical analysis

* There is a nice mapping from random unitary circuits to classical
statistical mechanics models (Nahum, Vijay, Haah PRX 2018)

* Adding projective measurements -> highly non linear process:

1. Need to normalize the WF after each projection.

2. The probability of measurements/trajectories depend on the state.



Generalize to a circuit with weak measurement

Random unitary circuit with
projective measurements

-Random + Projective
Unitary gate measurement

Random unitary circuit with

weak measurements

Weak
measurement



measurements

* Introducing ancilla with qg+1 internal states

e Controlled rotation

- q X
i Ro =) i) (il @e ™ %= i), (0], +10),, (il,,
0)
_  Measurement of ancilla in the computational basis
Ancilla . . .
(equivalent to dephasing ancillae)
Physical
qgudit

No [Ba (pin ® [0),,, (0],,) RS | =

(1 —sin® @) pin, ® 10, (0| + sin® azpipinlsi ® |7),. (i,

l No measurement l Projection to
1—p D the i-th basis

This weak measurement scheme is equivalent to random
projective measurements with measurement probability p



Conditional entropy

A B A B

Conditional entropy

. _ _ Tilde means: only
S(AIM) = ZpiM (U)S[palU,im)] = Sam — Sm diagonal elements in
in the measurement basis

Double problem: how to trace over a log?
How to take average of a log? Sx = tr(px logpx)




Conditional entropy: replica trick

A B
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S )(A]M) =T log (ZP?MUIOZ,W> —1 . log (Zp?M )
(33

S(A|M) = lim S (A|IM).
n—

This will facilitate analytic calculations (mapping to stat mech models)



Mapping between RUC and Classical 2D Ising model

S (AIM) = —log By [trp? ] + log By [trp3]

Example: (purity) tr (15124M) — trAM [tI‘B (ﬁ) . tl”B (/5)]
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Key step: average over unitaries
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Spin represents the permutation over two copies:

N7 N7 AN + = |dentity
- =swap

We have now replaced unitary gates with simple

tensors.
Next step: contract the tensor network



Contracting the tensor network
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Partition function of classical Ising model on Honeycomb Iattice!

Problem: w,? has negative weights
Solution: Integrate out one spin of every pair.



Mapping to an Ising model with Z, symmetry

G(2) (A) <€ > Classical Ising model

Free energy of a domain wall ending at the interface of A

Volume law phase: AF;?U) ~ [ Ferromagnet

Area law phase: Achz) ~ const  Paramagnet
w



Generalization to n>2

Generalized spins with n! states.

Ising spins > Elements of the permutation group

Simplification in the limit g — OO
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And enlarged permutation symmetry: P — P,
m) n! state Potts model




Taking the replica limit

1. Critical measurement probability/strength

For the Potts model on the square lattice we know the exact critical
point through Kramers-Wannier duality:
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n=1 n=2
n=1.1 n=23
0.2 n=12 n=4
n=14
Numerics g=2: p. = 0.25 + 0.0 0 R .
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2. Universality of the transition is bond percolation
(m state Potts model maps to bond percolation in the limit m — 1 )

But Potts symmetry is broken at finite g. What is the universality then?



Alternative signature of the transition ?

How much information can we potentially extract about the initial
state from collecting measurement results for as long as we need?

Given ensemble of measurement outcomes how well can we distinguish
two initial states that differ by some small local rotation by small angle ¢ ?
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divergence: 2

Fisher information

Is there a phase transition in the extracted Fisher information ?



Mapping to spin models using replicas

1 —— 1 -

The same spin model as before, only different boundary conditions

SR

Boundary field — he Ni/ No Boundary field
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The phase transition in ability to extract information

Information on initial state revealed by measurements (¢ — oo)

| Fn) _ 2(Ny)
n—1
Y, W
; / |
Measurement strength o Boundary field: — he Ni{

Below the threshold measurement strength/rate the unitary
gates effectively scramble the information so that some of
it remains hidden from measurements forever!



Outlook

* What is the universality class of the transition at finite q ?

* Are there even simpler measurements?
Correlation measurements? Simple estimators of Fisher information
that? What is the minimal number of experiment repetitions needed?

 Sensitivity to real errors (unread measurements) ?
Use sharpness of the transition as an intrinsic test of quality of a
guantum circuit (quantum advantage)?

e Relation to threshold theorem in error-correction?
(fault tolerance)



