Advisor: Michael Krueger
Contact: krueger@technion.ac.il
Abstract:
Attosecond microscopy (1 as = 10-18 s) enables the observation of ultrafast quantum dynamics in real-time. To this end, we control the motion of electrons with the waveform of extremely short and strong laser pulses. This interaction leads to attosecond light and electron pulses, which can serve as the “camera flash” in attosecond microscopes. Our research requires the design and characterization of novel laser sources and the waveforms they produce. In this project, you will characterize the temporal shape of laser pulses in our lab. The pulses last usually two optical cycle duration, which means that they are as short as 5 femtoseconds. You will use nonlinear optics to measure the pulse shape. You will also learn and apply the frequency comb invented by Nobel laureate Ted Haensch for measuring the actual waveform of the electric field of the laser pulses.
Pre-requisites: Lasers and quantum optics course