Shor's algorithm

The elementary version

J Avron

October 14, 2020

What classical computers cant do

Factoring

- Factoring: $35=\underbrace{5 \times 7}$ primes
- Try $35 / 2=$?, $35 / 3=$?...
- \# trials: \sqrt{N}
- Best known: $O\left(e^{n^{1 / 3} \ldots}\right), n=\log N$

$$
\begin{aligned}
& \text { \# with } 230 \text { digits } \\
& 2000 \text { years on } 2.2 \mathrm{GHz} \text { processor }
\end{aligned}
$$

RSA cryptosystem

It's not a bug, it's a feature

- $\underbrace{N}_{\text {public }}=\underbrace{p \times q}_{\text {secret }}$
- Ecryption $=f($ Message,$N)$
- Message $=g($ Encryption, $p, q)$

RSA security

- f, g are known functions.
- Security rests on the presumed difficulty of factoring

Everybody uses RSA

All the time

The potential disaster/Benefits

If a fast factoring algorithm is found
Bad

The internet is insecure Financial transaction insecure State records become public

Good

We read the mail of the evil guys The darknet is insecure Money laundering is difficult State records become public

The quantum threat

Shor algorithm

- Peter Shor 1994
- Fast factoring
- Time $=O\left((\# \text { digits })^{2}\right)$
- Needs a quantum computer

Quantum computer
Allows for fast factoring

Science begets knowledge, opinion ignorance

 Hippocrates

Factoring Oracle

Weak and unreliable is good enough

$\operatorname{Oracle}(N)= \begin{cases}\text { Error } & \text { Probability }=1 / 2 \\ 1, N & \text { Porbability }=3 / 10 \\ 42 & \text { Porbability }=1 / 5 \\ p & \text { Probability }=1 / 10\end{cases}$

Verify answer on a classical computer

- If incorrect, query again
- 10 trials will give p w.h.p.

Math Preliminaries

Facts from number theory
poll 2

- $\quad a^{k} \bmod N$ is a periodic function of k
- Example with $a=2, N=15$ where period=4

k	1	2	3	4	5	\ldots	15
$2^{k} \operatorname{Mod} 15$	2	4	8	$16=1$	2	\ldots	8

- Euler-Fermat: $a^{(p-1)(q-1)}=1 \bmod N, \quad \operatorname{gcd}(a, N)=1$

Factoring reduces to finding the period of $a^{k} \bmod N$

- $p q=N$
- $(p-1)(q-1)=\operatorname{Integer} \times \operatorname{period}\left(a^{k} \bmod N\right)$

Number theory then gives p, q

More math preliminaries

Fourier transform and its Discrete cousin

- $\tilde{F}(f)=\frac{1}{\sqrt{2 \pi}} \int e^{i t t} F(t) d t$
- $\widetilde{e^{i \omega t}} \Longrightarrow \delta(f-\omega)$
- Unitary

Discrete Fourier: $\underbrace{\omega=e^{2 \pi i / L}}_{\text {root of unity }}$
$\tilde{F}(m)=\frac{1}{\sqrt{L}} \sum_{k=1}^{L} \omega^{k m} F(k)$

Periodic functions

Fourier transform is sparse

$$
\tilde{F}(m)=\frac{1}{\sqrt{L}} \sum_{k=1}^{L} \omega^{k m} F(k)
$$

$$
F(k+\text { period })=F(k) \Longleftrightarrow \tilde{F}(m)=\underbrace{\omega^{m \text { period }}}_{?=1} \tilde{F}(m)
$$

- Either $m \times$ period $=($ Integer $) \times L$
- Or $\tilde{F}(m)=0$

k	0	1	2	3	4	5	\ldots
2^{k} Mod 15	1	2	4	8	$16=1$	2	\ldots
Fourier	X	0	0	0	X	\ldots	0

Functions contain exponential amount of information

 Hard classically

Storing $\{F\}$ needs $O(N \log N)$ bits

- n bits for one argument k
- N possible values for k

$\{F\}$ can be stored in $2 n$ qubits

The superposition advantage

- n qubits encode one k
- k takes $N=2^{n}$ values
- Superpositions: No extra qubits
- n qubits encode all of $\{F(k)\}$

Parallel processing
 $$
\frac{|0\rangle+|1\rangle}{\sqrt{2}}|0\rangle \xrightarrow{\text { Function gate }} \xrightarrow{|0\rangle|F(0)\rangle+|1\rangle|F(1)\rangle} \sqrt{2}
$$

No free-lunch principle

Measurement reveals one random $F(k)$

Measurement reveals

- one, random, entry k and the corresponding $F(k)$

Shor algorithm

Quantum Fourier: Exponential improvement on FFT

- Under the hood: massive superposition

$$
\underbrace{|0 \ldots 0\rangle}_{\text {argument function }} \underbrace{\left|a^{0}\right\rangle}+\cdots+|1 \ldots 1\rangle\left|a^{L-1}\right\rangle
$$

- Measure function register $\left|a^{k}\right\rangle$
- Get: Random integer, e.g. $\left|a^{k}\right\rangle=|2\rangle$
- Argument register: superposition of pre-images of $|2\rangle$

$$
|1\rangle+|1+4\rangle+|1+2 \times 4\rangle+|1+3 \times 4\rangle, \quad 2^{1+4 n}=2 \bmod 15
$$

Entanglement gives a periodic sequence of integers

Fourier=interference extract the period

Preimages of 2
$|1\rangle+|5\rangle+\ldots|1+4 n\rangle$
periodic input

You also need to be lucky

1 and N are trivial factors

- Bad luck: Measure |0〉
- Learn nothing:
$0 \times$ period $=$ integer $\times L$

2^{k} Mod 15	1	2	4	8	1	2	\ldots
m	0	1	2	3	4	5	\ldots
\mid Fourier $\left.\right\|^{2}$	1	0	0	0	1	\ldots	0

Moral: Store information in states not in amplitudes

 Be wise and modestFourier constructively interferes the periods on few basis states

- States=Integers: Revealed in single shot
- Amplitudes=Complex numbers: Revealed in statistics
- Relevant information is best revealed in one shot
- The amplitudes are the roulette in the quantum casino

